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PARTIAL DIFFERENTIAL EQUATIONS
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Homework 1

2. First-Order Equations.

2.1. Generalities.

Exercise 2.1.1. Verify that, for any C
1 function f(x), u(x, t) = f(x � ct) is a

solution of the PDE ut + cux = 0, c a constant.

Solution.

ut + cux = f
0(x� ct)

@(x� ct)

@t
+ c

✓
f
0(x� ct) · @(x� ct)

@x

◆

= �cf
0(x� ct) + cf

0(x� ct)

= 0.

⇤

Exercise 2.1.2. Verify that u(x, y) =
p
x2 + y2 satisfies the nonlinear PDE u

2
x +

u
2
y = 1 for (x, y) 6= (0, 0).

Solution. u
2
x + u

2
y =

✓
xp

x2+y2

◆2

+

✓
yp

x2+y2

◆2

= 1 ⇤

Exercise 2.1.3. Show that u(x, t) = f(x/t) satisfies

ut +
⇣
x

t

⌘
ux = 0 for t > 0,

where f is any C
1 function.

Solution.

ut +
⇣
x

t

⌘
ux = ft(x/t)

@(x/t)

@t
+
⇣
x

t

⌘
fx(x/t)

@(x/t)

@x

=
⇣
� x

t2

⌘
ft(x/t) +

⇣
x

t2

⌘
fx(x/t)

= 0.

⇤

Date: Spring 2018.
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2.2. First-Order PDE’s.

In the next exercise, the PDE has the characteristic x = x0 + ct. Let v(t) =
u(x0 + ct, t) be the restriction of u to a characteristic line. Find the ODE solved
by v. Solve it, and then restate the answer in terms of u.

Exercise 2.2.1. Solve the IVP

ut + cux + u = 0, u(x, 0) = f(x).

Solution. Notice that
d

dt
v(t) = cux(x0 + ct) + ut(x0 + ct) = �u(x0 + ct) = �v(t),

and so v(t) = Ce
�t for some constant C. Then

C = v(0) = u(x0, 0) = f(x0) = f(x� ct).

So u(x0 + ct, t) = v(t) = f(x0)e�t for all x0, and hence u(x, t) = f(x� ct)e�t. ⇤
Exercise 2.2.4. Let l be any line in the x, t plane and consider the IVP

ut + cux = 0, u given on l.

Can this problem always be solved? Pay special attention to the case when l is a
characteristic x� ct =constant.

Solution. In the case when l is a line that is not a characteristic, the problem may
be solved. Indeed, if l intersects a characteristic line x � ct = x0 at a point (x, t),
then, as u is constant along a characteristic line, we have that

u(x0, 0) = u(x, t).

Hence the initial data u given along l can be used to define a function f by the
rule

f(x0) = value of l at (x, t),

where (x, t) is the point that l intersects the characteristic line x� ct = x0. Hence
our initial data becomes u(x, 0) = f(x), in which case we can solve the PDE by
Theorem 2.1.

However, in the case when l is itself a characteristic line, the initial data ugiven

along l does not give enough information, because this only tells us that u is constant
along l, and we cannot use this data to construct a function as before in order to
explicitly solve the PDE. ⇤
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Exercise 2.2.5. Let u(x, t) = f(xe�t) be the sol of ut + xux = 0, u(x, 0) = f(x).

(a) Use MATLAB to plot snapshots of the solution on [0, 15] for t = .4, .8, 1.2, 1.6.
Make a fine mesh with �x = .01.

(b) We want to approximate the velocity of the top of the hump at two di↵erent
times, say t = .5 and t = 1.5. Plot u(x, t) at times t = .5, 1.5+�t, .5, 1.5+
�t. First use �t = .1. Use the zoom feature of MATLAB to determine how
far the top of the hump moves over the time interval [t, t+�t]. Determine
the average velocity of the top of the hump over this time interval. Compute
the average velocities of the hump again, this time with �t = .05.

(c) Use the formula for the characteristic through x0 = 2 to compute the
instantaneous velocity of the top of the hump at times t = .5 and t = 1.5.
How well does the average velocity as you computed it in part (b) compare
with the instantaneous velocity?

(d) Why does the hump broaden as the wave moves to the right?

Solution.

(a)

Function definition in script, and Command lines:

Plots of the solution u(x, t) for t = .4, .8, 1.2, 1.6, respectively:

(b) Command lines for �t = .1: , which gave the figures:

On the time interval [.5, .5 + .1] the hump moves ⇡ 3.65 � 3.3 = .35,
giving a velocity of 3.5. On [1.5, 1.5+ .1] the hump moves ⇡ 9.8� 8.9 = .9,
giving a velocity of 9.
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Command lines for�t = .05: , which gave the figures:

On the time interval [.5, .5 + .05] the hump moves ⇡ 3.47 � 3.3 = .17,
giving a velocity of 3.4. On [1.5, 1.5+ .05] the hump moves ⇡ 9.4�8.9 = .5,
giving a velocity of 10.

(c) Since dx/dt = x, then we know x(t) = x0e
t. So at x0 = 2, x(t) = 2et.

At times t = .5 and t = 1.5, we have instantaneous velocities x(.5) ⇡ 3.3
and x(1.5) ⇡ 9. These are close to the answers in part (b), but I suppose
“close” is subjective.

(d) The characteristic curves in the x, t plane are logarithms which diverge
from each other. Since the solution u is constant on the curves, the humps
broaden as t increases.

To see this more explicitly, fix a time t = t0 and consider the distance
in the x, t-plane between two points u(a0, t0) and u(b0, t0) for distinct fixed
position values x = a0 and x = b0, say ↵ := dist(u(a0, t0), u(b0, t0)). (We
pick a0 and b0 so that they lie on either side of the “hump”).

For another fixed time t1 > t0, pick two values a1 and b1 so that (a0, t0)
and (a1, t1) lie on the same characteristic curve, and so that (b0, t0) and
(b1, t1) lie on the same characteristic curve. Let � := dist(u(a1, t1), u(b1, t1)).
Since the characteristic curves in the x, t plane are logarithms which are
diverging from one another, then � > ↵. This is not yet enough to say that
the hump is broadening. However, if we consider the fact that u is constant
on the characteristic curves, then

u(a0, t0) = u(a1, t1) and u(b0, t0) = u(b1, t1).

With this additional information, the inequality � > ↵ now tells us that
as time increases, points along two distinct characteristic curves remain at
constant “heights” above the x, t plane, but that they are getting farther
apart from one another, hence broadening the hump.

⇤
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Exercise 2.2.8. Solve the IVP for the linear equation

ut + x
2
ux = 0, u(x, 0) = f(x).

You will need to use the formula of Example (b) of Section 1.3. Over what region
in the x, t plane does the solution exist?

Solution. The characteristic curves for the PDE are given by solutions to the ODE

dx

dt
= x

2
, x(0) = x0,

and so our characteristic curves are

x(t) =
x0

1� tx0
.

Solving explicitly for x0 to obtain p(x, t):

x0 = p(x, t) =
x

1 + tx

which is only defined when x 6= �1/t. The curve x = �1/t splits the x, t plane into
two regions, and the solution will only exist in the region containing the x axis,
i.e. the region given by x < �1/t. On this region, the solution to the given IVP is

u(x, t) = f(p(x, t)) = f

⇣
x

1+tx

⌘
. ⇤
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Homework 2

2. First-Order Equations.

2.3. Nonlinear conservation laws.

Exercise 2.3.2. Show that if the initial data f(x) has f
0(x0) < 0 for some x0,

then the C
1 solution of

ut + uux = 0, u(x, 0) = f(x)

must break down at some time t > 0.

Proof. Since f is C
1, then the inequality f

0(x0) < 0 implies that f is decreasing
on some interval [x0, x1]. The characteristic lines emanating from x0 and x1 are
respectively given by

x = x0 + f(x0)t and x = x1 + f(x1)t.

In terms of t, these become

t =
x� x0

f(x0)
and t =

x� x1

f(x1)
.

Now f(x0) > f(x1) implies 1/f(x0) < 1/f(x1). So the slope of the line at x1 in the
x, t plane is steeper than that at x0. But x0 < x1, which means that these lines
must intersect at some time value t = T . At this value T is where the solution
breaks down. ⇤
Exercise 2.3.3. Show that is f

0(x) � 0 for all x, then the characteristic lines
emanating from the x axis do not intersect in t > 0. What does this say about the
existence for t > 0.

Proof. If f 0(x) = 0 for all x, then f is constant so the characteristic lines are vertical
lines, and so they do not intersect.

Now since f 0(x0) � 0 for all x0, f is non-decreasing. Since the characteristic lines
are given by x = x0 + f(x0)t, or, t =

x�x0
f(x0)

, then as x0 increases, the slopes of the
characteristic lines decrease. In particular, if x0 < x1 then the lines corresponding
to these points either remain parallel (if f(x0) = f(x1)) or diverge from one another
as time t increases, and hence never intersect. So the solution exists for t > 0 when
f
0(x) � 0 for all x. ⇤
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Exercise 2.3.6. Next consider the IVP ut + uux = 0, u(x, 0) = f(x) with initial
data

f1(x) =

8
><

>:

1, x  0

1� (1/8)x2(3� x), 0  x  2

1/2, x � 2.

Sketch some characteristics in the x, t plane. Do they intersect in t > 0? Run mtc
with this data choice at times t = 1, 2, 3, 4. By choosing other times t1, t2, t3, t4,
carefully determine the time t⇤ when the profile first has a vertical tangent. Use
the zoom feature to blow up the important parts of the graph.

Solution. Here are some characteristics. They intersect at some time between t = 2
and t = 4:

Using mtc at times 1, 2, 3 and 4, we have the following profiles for u(x, t):

Now, using mtc at times 2.3, 2.5, 2.7, and 2.9, and zooming in, we see that we have
a vertical tangent at some time time between t = 2.7 and t = 2.9:

⇤
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2.4. Linearization.

Exercise 2.4.1. If u0 is a constant, and u is a solution of ut+c(u)ux = 0, u(x, 0) =
f(x), show that max |u(x, t)� u0| = max |u(x, 0)� u0|.

Proof. Since u is constant on characteristic lines, then if (x, t) and (x0, 0) lie on the
same characteristic line, we have u(x, t) = u(x0, 0). So u(x, t)� u0 = u(x0, 0)� u0,
and hence

max
(x,t)

|u(x, t)� u0| = max
x

|u(x, 0)� u0|.

⇤
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Homework 3

2. First-Order Equations.

2.5. Weak solutions.

Exercise 2.5.1. Let u(x, t) be defined for (x, t) 2 R2 by

u(x, t) =

(
1 for x < t/2

0 for x > t/2.

(a) Show that u is a weak solution of ut + uux = 0.
(b) Show that u satisfies the integral form

d

dt

Z b

a
u(x, t)dx = F (a, t)� F (b, t)

of the conservation law when F (u) = u
2
/2.

Solution.

(a) We use the change of variables y = x� t/2 to obtain:

ZZ

R2

✓
u't(x, t) +

u
2

2
'x(x, t)

◆
dxdt =

Z 1

�1

Z t/2

�1

✓
't(x, t) +

1

2
'x(x, t)

◆
dxdt

=

Z 1

�1

Z 0

�1

✓
't(y + t/2, t) +

1

2
'x(y + t/2, t)

◆
dydt

=

Z 0

�1

Z 1

�1

✓
't(y + t/2, t) +

1

2
'x(y + t/2, t)

◆
dtdy

=

Z 0

�1

✓Z 1

�1

d

dt
'(y + t/2, t)dt

◆
dy

=

Z 0

�1

✓
lim
⌧!1

['(y + ⌧/2, ⌧)]� lim
⌧!�1

['(y + ⌧/2, ⌧)]

◆
dy

= 0

where the last equality follows from the fact that ' has finite support.
(b) We use the hint given in the back of the book and consider three cases:

(i) a < b < t/2:

d

dt

Z b

a
u(x, t)dx =

d

dt
(b� a) = 0 =

1

2
� 1

2

=
u(a, t)2

2
� u(b, t)2

2
= F (u(a, t))� F (u(b, t))
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(ii) a < t/2 < b:

d

dt

Z b

a
u(x, t)dx =

d

dt

Z t/2

a
u(x, t)dx =

d

dt

✓
t

2
� a

◆

=
1

2

=
u(a, t)2

2
� u(b, t)2

2
= F (u(a, t))� F (u(b, t))

(iii) t/2 < a < b:

d

dt

Z b

a
u(x, t)dx = 0 =

u(a, t)2

2
� u(b, t)2

2
= F (u(a, t))� F (u(b, t))

⇤

Exercise 2.5.2. Run mtc with data choice (1) and with t1 = 1, t2 = 2, t3 = 3, and
t4 = 4.Type the MATLAB command hold on. Then run the program shocks with
data choice (1) and the same times.

(a) Verify that t = 8/3 is a vertical tangent of u graphically by repeating the
above process with appropriate choices of times. Use the zoom feature of
MATLAB.

(b) Now run the program shocks with times t1 = 8/3 and the other times at
intervals of .2. The vertical segment of the profile indicates the location of
the shock at that time. How fast is the shock moving? The values u` and
ur are the heights of the top and bottom of the vertical segment. Is the
Rankine-Hugonoit condition satisfied?

Solution. mtc with data choice (1) and with t1 = 1, t2 = 2, t3 = 3, and t4 = 4:
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(a) mtc with data choice (1) and with t1 = 1, t2 = 2, t3 = 8/3, and t4 = 4

(b) shocks with data choice (1) and with t1 = 8/3, t2 = 8/3+ .2, t3 = 8/3+ .4,
and t4 = 8/3 + .6.

The change in x is approximately .15, and the change in t is .2 so the shock
is moving .75 units.

Using the zoom feature, we find that the tops of the vertical segments
for times t1 = 8/3, t2 = 8/3 + .2, t3 = 8/3 + .4, and t4 = 8/3 + .6 are,
.945, .945, .96, and .98, respectively. Similarly, the bottoms of the vertical
segments are .6, .57, .55 and .52, respectively.
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Checking the RH condition:

.9452

2 � .62

2

.945� .6
⇡ .7725

.9452

2 � .572

2

.945� .57
⇡ .7575

.962

2 � .552

2

.96� .55
⇡ .755

.982

2 � .522

2

.98� .52
⇡ .75

Ignoring user error, it looks like the RH condition is satisfied. ⇤
Exercise 2.5.5.

(a) Verify that, when ul < ur and t > 0,

v(x, t) =

8
><

>:

ul, x  x0 + tul

(x� x0)/t, x0 + tul < x < x0 + tur

ur, x � x0 + tur

is a continuous weak solution of vt = vvx = 0. v is a rarefaction wave
centered at x = x0.

(b) Sketch the characteristics of v, i.e., the lines alone which v is constant.
(c) Let f(x) be a piecewise constant function

f(x) =

8
>>><

>>>:

1, x < �1

1/2, �1 < x < 1

3/2, 1 < x < 2

1, x > 2

.

Construct the weak solution of the IVP, ut + uux = 0, u(x, 0) = f(x) for
small values of t > 0 using step shock waves and centered rarefaction waves.
Sketch the characteristics of the solution.

Solution.

(a) Without loss of generality, assume x0 = 0. We have initial data

u(x, 0) =

(
u` if x < 0

ur if x > 0.

We also have F (u) = u
2
/2 and so the entropy condition

F
0(u`) = u` > s > F

0(ur) = ur

is not satisfied since u` < ur. Hence we have a rarefaction wave solution

u(x, t) =

8
><

>:

u` x < u`t

(F 0)�1(xt ) u`t < x < urt

ur ur > x

=

8
><

>:

u` x < u`t

x
t u`t < x < urt

ur x > urt,
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which we know is a weak solution.
(b)

(c) We break up the constant values of the initial data into pairs and check the
entropy conditions for each pair:

For 1, 1/2 s = 3/4 1 > 3/4 > 1/2 =) Shock Wave

For 1/2, 3/2 s = 1 1/2 6> 1 6> 3/2 =) Rarefaction Wave

For 3/2, 1 s = 5/4 3/2 > 5/4 > 1 =) Shock Wave

So our solution is

u(x, t) =

8
>>>>>><

>>>>>>:

1 x <
3
4 t� 1

1
2

3
4 t� 1 < x <

1
2 t+ 1

x+1
2

1
2 t+ 1 < x <

3
2 t+ 1

3
2

3
2 t+ 1 < x <

5
4 t+ 2

1 x >
5
4 t+ 2

⇤
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2.6. Numerical methods.

Exercise 2.6.1. Let a mesh �x,�t be chosen, and set ⇢ = �x/�t. Consider the
equation ut + cux = 0, u(x, 0) = f(x) with initial data f(x) = cos(⇡x/�x).

(a) With uj,0 = f(xj) = (�1)j , show that the scheme

uj,n+1 = uj,n � c

⇢
(uj+1,n � uj,n)

yields uj,n = (1 + 2c/⇢)n(�1)j .
(b) For the same initial data, show that the scheme

uj,n+1 = (1� c

⇢
)uj,n +

c

⇢
uj�1,n

yields uj,n = (1� 2c/⇢)n(�1)j .

Solution.

(a) By induction. The case n = 0 is easily verified. Suppose the claim holds
for n. Then

uj,n+1 = uj,n � c

⇢
(uj+1,n � uj,n)

= (1� 2c/⇢)n(�1)j � c

⇢

�
(1� 2c/⇢)n(�1)j+1 � (1� 2c/⇢)n(�1)j

�

= (1� 2c/⇢)n(�1)j � c

⇢

�
(1� 2c/⇢)n(�1)j+1 + (1� 2c/⇢)n(�1)j+1

�

= (1� 2c/⇢)n(�1)j � 2c

⇢
(1� 2c/⇢)n(�1)j+1

= (1� 2c/⇢)n(�1)j +
2c

⇢
(1� 2c/⇢)n(�1)j

= (1� 2c/⇢)(1� 2c/⇢)n(�1)j

= (1� 2c/⇢)n+1(�1)j .

(b) By induction. The case n = 0 is easily verified. Suppose the claim holds
for n. Then

uj,n+1 = (1� c

⇢
)
�
(1� 2c/⇢)n(�1)j

�
+

c

⇢

�
(1� 2c/⇢)n(�1)j�1

�

=
�
(1� 2c/⇢)n(�1)j

�
� c

⇢

�
(1� 2c/⇢)n(�1)j

�
� c

⇢

�
(1� 2c/⇢)n(�1)j

�

=
�
(1� 2c/⇢)n(�1)j

�
� 2c

⇢

�
(1� 2c/⇢)n(�1)j

�

= (1� 2c/⇢)(1� 2c/⇢)n(�1)j

= (1� 2c/⇢)n+1(�1)j .

⇤
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Exercise 2.6.3.

(a) Use the flux function F (u) = u(� � u) of example A in the scheme

uj,n+1 = uj,n � 1

⇢
[F (uj,n � F (uj�1,n)].

What is the resultant scheme?
(b) What restrictions must we place on the values of the initial data so that

F
0(u) � 0 for all the values of u encountered in the problem?

(c) Under this restriction on the initial data, how would you state the CFL
condition?

Solution.

(a) uj,n+1 = uj,n � 1
⇢ [uj,n(� � uj,n)� uj�1,n(� � uj�1,n)].

(b) 0  u  �/2.
(c) �

⇢ < 1.

⇤

Exercise 2.6.4. Run ct with data choice (1), �x = �t = .05, with 20 time steps
between snapshots. This will produce plots at times t = 0, 1, 2, 3, 4. Then type the
command hold on. Next run program shocks with data choice (1) and the same
times.

(a) The plots are not identical. When do you begin to see significant di↵er-
ences?

(b) Repeat the calculations for shocks and cl, but this time use�x = �t = .02
and 50 time steps between snapshots. How do the plots compare now?

Solution.

(a) We begin to see di↵erences around time t = 3.
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(b) The plots are better now.

⇤
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Homework 4

3. Di↵usion.

3.2. The maximum principle.

Exercise 3.2.1. Verify that each of the following functions satisfies the heat equa-
tion.

(a) u(x, t) = kt+ 1
2x

2 + C.
(b) v(x, t) = exp(��2kt) sin(�x), for any real �.
(c) w(x, t) = exp(��2kt) cos(�x), for any real �.
(d) z(x, t) = exp(kt± x).

Solution.

(a) ut(x, t) = k = kuxx(x, t).
(b)

vt(x, t) = ��2k exp(��2kt) sin(�x)
vx(x, t) = � exp(��2kt) cos(�x)
vxx(x, t) = ��2 exp(��2kt) sin(�x)
=) vt = kvxx.

(c)

wt(x, t) = ��2k exp(��2kt) cos(�x)
wx(x, t) = �� exp(��2kt) sin(�x)
wxx(x, t) = ��2 exp(��2kt) cos(�x)
=) wt = kwxx.

(d)

zt(x, t) = k exp(kt± x)

zx(x, t) = exp(kt± x)

zxx(x, t) = exp(kt± x)

=) zt = kzxx.

⇤
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Exercise 3.2.2.

(a) For each of the functions in exercise 1, find the maximum and minimum
over the rectangle [�a, a] ⇥ [0, T ]. Verify that the maximum principle of
Theorem 3.1 is satisfied in each case. To which of the cases can you apply
the maximum principle of Theorem 3.2?

(b) Make 3-D plots of each of these functions using MATLAB, thereby visually
verifying your results of part (a).

Solution.

(a) (i) u(x, t) = kt+ 1
2x

2 + C.
Since ut = k 6= 0, u doesn’t attain extreme values on the interior of
the rectangle. So the maximum/minimum values u attains over the
rectangle are that which it achieves on the boundary of the rectangle,
hence Theorem 3.1 is verified. On the boundary, we have:

max
0tT

u(±a, t) = max
0tT

kt+
a
2

2
+ C = kT +

a
2

2
+ C

min
0tT

u(±a, t) = min
0tT

kt+
a
2

2
+ C =

a
2

2
+ C

max
�axa

u(x, 0) = max
�axa

1

2
x
2 + C =

a
2

2
+ C

min
�axa

u(x, 0) = min
�axa

1

2
x
2 + C = C

max
�axa

u(x, T ) = max
�axa

kT
1

2
x
2 + C = kT +

a
2

2
+ C

min
�axa

u(x, T ) = min
�axa

kT
1

2
x
2 + C = kT + C.

So on the given rectangle, we have

max
[�a,a]⇥[0,T ]

u(x, t) = kT +
a
2

2
+ C and min

[�a,a]⇥[0,T ]
u(x, t) = C.

However, Theorem 3.2 does not apply since u is not bounded on the
region (1,1)⇥ [0, T ].
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(ii) v(x, t) = exp(��2kt) sin(�x), for any real �.
Setting vt = 0, we must have � = 0 or sin(�x) = 0. Setting vx = 0, we
must have � = 0 or cos(�x) = 0. If � = 0, then v = 0, and we are done.
Suppose � 6= 0. The condition that sin(�x) = 0 = cos(�x) cannot
happen, so v has no extreme values in the interior of the rectangle. So
the maximum/minimum values u attains over the rectangle are that
which it achieves on the boundary of the rectangle, hence Theorem 3.1
is verified. On the boundary, we have:

max
0tT

v(a, t) = max
0tT

exp(��2kt) sin(�a) =
(
sin(�a) if sin(�a) � 0

exp(��2kT ) sin(�a) if sin(�a) < 0

min
0tT

v(a, t) = min
0tT

exp(��2kt) sin(�a) =
(
exp(��2kT ) sin(�a) if sin(�a) � 0

sin(�a) if sin(�a) < 0

max
0tT

v(�a, t) = max
0tT

exp(��2kt) sin(��a)

= max
0tT

� exp(��2kt) sin(�a) =
(
exp(��2kT ) sin(�a) if sin(�a) � 0

sin(�a) if sin(�a) < 0

min
0tT

v(�a, t) = min
0tT

= max
0tT

� exp(��2kt) sin(�a) =
(
sin(�a) if sin(�a) � 0

exp(��2kT ) sin(�a) if sin(�a) < 0

max
�axa

v(x, 0) = max
�axa

sin(�x) =

(
1 if �a � ⇡

sin(�a) if �a < ⇡

min
�axa

v(x, 0) = min
�axa

sin(�x) =

(
�1 if �a � ⇡

� sin(�a) if �a < ⇡

max
�axa

v(x, T ) = max
�axa

exp(��2kT ) sin(�x) =
(
exp(��2kT ) if �a � ⇡

exp(��2kT ) sin(�a) if �a < ⇡

min
�axa

v(x, T ) = min
�axa

v(x, T ) =

(
� exp(��2kT ) if �a � ⇡

� exp(��2kT ) sin(�a) if �a < ⇡

So on the given rectangle, we have

max
[�a,a]⇥[0,T ]

v(x, t) =

(
1 if �a � ⇡

sin(�a) if �a < ⇡
and min

[�a,a]⇥[0,T ]
v(x, t) =

(
�1 if �a � ⇡

� sin(�a) if �a < ⇡

Since |v(x, t)|  1, Theorem 3.2 applies.
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(iii) w(x, t) = exp(��2kt) cos(�x), for any real �. By the same reasoning
as in (ii), Theorem 3.1 is satisfied. On the boundary, we have

max
0tT

w(±a, t) = max
0tT

exp(��2kt) cos(�a) =
(
cos(�a) if cos(�a) � 0

exp(��2kT ) cos(�a) if cos(�a) < 0

min
0tT

w(±a, t) = min
0tT

exp(��2kt) cos(�a) =
(
exp(��2kT ) cos(�a) if cos(�a) � 0

cos(�a) if cos(�a) < 0

max
�axa

w(x, 0) = max
�axa

cos(�x) = 1

min
�axa

w(x, 0) = min
�axa

cos(�x) =

(
�1 if �a � ⇡

cos(�a) if �a < ⇡

max
�axa

w(x, T ) = max
�axa

exp(��2kT ) cos(�x) =
(
exp(��2kT ) if �a � ⇡

exp(��2kT ) if �a < ⇡

min
�axa

w(x, T ) = min
�axa

w(x, T ) =

(
� exp(��2kT ) if �a � ⇡

exp(��2kT ) cos(�a) if �a < ⇡

So on the given rectangle, we have

max
[�a,a]⇥[0,T ]

w(x, t) = 1

and

min
[�a,a]⇥[0,T ]

w(x, t) =

8
>>><

>>>:

�1 if �a � ⇡

(
exp(��2kT ) cos(�a) if cos(�a) � 0

cos(�a) if cos(�a) < 0
if �a < ⇡

Since |w(x, t)|  1, Theorem 3.2 applies.
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(iv) z(x, t) = exp(kt± x).
We have zx(x, t) = exp(kt ± x) and vt(x, t) = k exp(kt ± x) which
cannot be 0. So z has no extreme values in the interior of the rectangle.
So the maximum/minimum values z attains over the rectangle are that
which it achieves on the boundary of the rectangle, hence Theorem 3.1
is verified. On the boundary, we have for z(x, t) = exp(kt+ x),

max
0tT

z(a, t) = max
0tT

exp(kt+ a) = exp(kT + a)

min
0tT

z(a, t) = min
0tT

exp(kt+ a) = exp(a)

max
0tT

z(�a, t) = max
0tT

exp(kt� a) = exp(kT � a)

min
0tT

z(�a, t) = min
0tT

exp(kt� a) = exp(�a)

max
�axa

z(x, 0) = max
�axa

exp(x) = exp(a)

min
�axa

z(x, 0) = min
�axa

exp(x) = exp(�a)

max
�axa

z(x, T ) = max
�axa

exp(kT + x) = exp(kT + a)

min
�axa

z(x, T ) = min
�axa

exp(kT + x) = exp(kT � a).

Moreover, if z(x, t) = exp(kt� x), we have

max
0tT

z(a, t) = max
0tT

exp(kt� a) = exp(kT � a)

min
0tT

z(a, t) = min
0tT

exp(kt� a) = exp(�a)

max
0tT

z(�a, t) = max
0tT

exp(kt+ a) = exp(kT + a)

min
0tT

z(�a, t) = min
0tT

exp(kt+ a) = exp(a)

max
�axa

z(x, 0) = max
�axa

exp(�x) = exp(a)

min
�axa

z(x, 0) = min
�axa

exp(�x) = exp(�a)

max
�axa

z(x, T ) = max
�axa

exp(kT � x) = exp(kT + a)

min
�axa

z(x, T ) = min
�axa

exp(kT � x) = exp(kT � a).

So on the given rectangle, we have (for either exp(kt+x) or exp(kt)�x),

max
[�a,a]⇥[0,T ]

z(x, t) = exp(kT + a) and min
[�a,a]⇥[0,T ]

z(x, t) = exp(�a)

Since exp is not bounded on (�1,1)⇥ [0, T ], Theorem 3.2 does not
apply.
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(b) These plots help me visually verify the results from (a). They are given in
order.

⇤
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Exercise 3.2.3. Let u(x, t) and v(x, t) both be solutions of the equation

ut � kuxx = q.

Suppose that u(x, t)  v(x, t) for |x|  L, t = 0, and for x = ±L, 0  t  T .
Show that u(x, t)  v(x, t) for |x|  L, 0  t  T .

Solution. Notice that

(u� v)t � k(u� v)xx = ut � kuxx � vt � kxx = q � q = 0.

So u � v satisfies the heat equation. Our assumptions on u and v imply that
u(x, t)� v(x, t)  0 on the region

�T := {(x, t) : x = �L,L, 0  t  T} [ {(x, t) : t = 0, �L  x  L}.
Let QT be

QT = {(x, t) 2 R2 : �L < x < L, 0 < t < T}.
Then by Theorem 3.1, we conclude that

max
QT

(u� v) = max
�T

(u� v)  0,

and hence u(x, t)  v(x, t) on the region QT , as desired. ⇤
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Homework 5

3. Di↵usion.

3.3. The heat equation with boundaries.

Exercise 3.3.2. Run heat1 with time t = .01, k = 1, and with n = 2, 4, 6, 8, 12.
To get a better view, restrict the plots to the interval [�5, 5] with the command
axis([-5 5 -1.5 3]). What happens as n increases?

Solution. The plots are displayed in order for n = 2, 4, 6, 8, 12. As n increases, the
approximation better resembles the initial data f .

⇤
Exercise 3.3.4. Let f(x) = ↵ for x < 0, and f(x) = � for x > 0 and let u(x, t) be
the solution of ut = kuxx, u(x, 0) = f(x) for x 2 R.

(a) Show that for this data, the formula u(x, t) = 1p
4⇡kt

R
R e

� (x�y)2

4kt f(y)dy can

be rewritten in terms of the (extended) error function. You will need to

make the change of variable z = (y�x)p
4kt

.

(b) Show that for each x, limt!1 u(x, t) = (↵+ �)/2.
(c) Using the error function of MATLAB erf(x), plot the solution on [�5, 5]

for k = 1 and t = .01, .1, .5, 2.
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Solution.

(a) We apply the change of variable z = (y�x)p
4kt

at the third equality:

u(x, t) =
1p
4⇡kt

✓
↵

Z 0

�1
e
� (x�y)2

4kt dy + �

Z 1

0
e
� (x�y)2

4kt dy

◆

=
1p
⇡

 
↵

Z 1

xp
4kt

e
�z2

dz + �

Z 1

�xp
4kt

e
�z2

dz

!

=
1p
⇡

 
↵

 Z 1

0
e
�z2

dz �
Z xp

4kt

0
e
�z2

dz

!

+�

 Z 1

0
e
�z2

dz �
Z �xp

4kt

0
e
�z2

dz

!!

=
1p
⇡

✓
↵

✓p
⇡

2
�

p
⇡

2
erf

✓
xp
4kt

◆◆
+ �

✓p
⇡

2
�

p
⇡

2
erf

✓
�xp
4kt

◆◆◆

=
↵

2

✓
1� erf

✓
xp
4kt

◆◆
+
�

2

✓
1 + erf

✓
xp
4kt

◆◆

(b) This follows from our formula found in (a) and the fact that lim
x!0

erf(x) = 0.

(c)

⇤
Exercise 3.3.6. Assume that u(x, t) is a solution of ut = kuxx, such that u and ux

tend to zero rapidly, as x ! ±1. Let Q =
R
R u(x, t)dx. We have already seen that

Q is a conserved quantity. Here are two more quantities associated with solutions
of the heat equation that have a special behavior. In the following, assume that
Q 6= 0.

(a) Show that m = 1
Q

R
R xu(x, t)dx is independent of t.

(b) Let

p(t) =
1

Q

Z

R
(x�m)2u(x, t)dx.

Show that p(t) = p(0) + 2kt.
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(c) Show that

p(t) =
1

Q

Z

R
x
2
u(x, t)dx�m

2

(d) Find m and p(t) for the fundamental solution S(x, t).
(e) Evaluate the integral

Z p
p(t)

�
p

p(t)
S(x, t)dx

using error function. The amount of hear contained in the interval [�
p
p(t),

p
p(t)]

is a constant fraction of the total amount of heat.

Solution.

(a) Below, the second equality follows since u satisfies the heat equation, and
the last equality follows since u, ux ! 0 rapidly as x ! ±1.

dm

dt
=

1

Q

Z

R
xut(x, t)dx

=
k

Q

Z

R
xuxx(x, t)dx

=
k

Q

✓
xux(x, t)

��1
�1 �

Z

R
ux(x, t)dx

◆

= 0.

(b) First, notice that

dm

dx
=

1

Q

Z

R
[u(x, t) + xux(x, t)]dx

=
1

Q

✓
Q+ xu(x, t)

��1
�1 �

Z

R
u(x, t)dx

◆

=
1

Q
(Q+ 0�Q)

= 0

since u, ux ! 0 as x ! ±1. Hence

dp

dt
=

k

Q

Z

R
(x�m)2uxx(x, t)dx

=
k

Q

✓
(x�m)2ux(x, t)

��1
�1 � 2

Z

R
ux(x, t)(x�m)dx

◆

=
k

Q

✓
0� 2

✓
(x�m)u(x, t)

��1
�1 �

Z

R
u(x, t)dx

◆◆

=
k

Q
(�2(0�Q))

= 2k.

So p(t) = 2kt+C, C constant. Then p(0) = C, and hence p(t) = 2kt+p(0).
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(c)

p(t) =
1

Q

Z

R
(x2 � 2xm+m

2)u(x, t)dx

=
1

Q

Z

R
x
2
u(x, t)dx� 2m

Q

Z

R
xu(x, t)dx+

m
2

Q

Z

R
u(x, t)dx

=
1

Q

Z

R
x
2
u(x, t)dx� 2m2 +m

2

=
1

Q

Z

R
x
2
u(x, t)dx�m

2
.

(d) Note that g(x, t) := xe
� x2

4kt is an odd function in x, so
R
R g(x, t)dx = 0.

Hence for u = S,

m =
1

Q

✓
1p
4⇡kt

Z

R
g(x, t)dx

◆
= 0.

Note that Q = 1. Now using part (c) and a change of variable y = x/
p
4kt,

p(t) =
1

Q

Z

R
x
2
S(x, t)�m

2 =
4ktp
⇡

Z

R
y
2
e
�y2

dy.

Hence p(0) = 0, and so p(t) = 2kt.
(e) Using the same change of variable as in part (d),

Z p
p(t)

�
p

p(t)
S(x, t)dx =

Z p
2kt

�
p
2kt

S(x, t)dx

=
1p
⇡

Z 1p
2

� 1p
2

e
�y2

dy

=
2p
⇡

Z 1p
2

0
e
�y2

dy

= erf

✓
1p
2

◆
.

⇤
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Exercise 3.3.9. Solve the initial-value problem

ut � kuxx + �u = 0, u(x, 0) = f(x).

Solution. Let v(x, t) := e
�t
u(x, t). Then

vt � kvxx = �e
�t
u+ e

�t
ut � ke

�t
uxx = e

�t(ut � kuxx + �u) = 0,

so v satisfies the heat equation. So

u(x, t) =
e
��t

p
4⇡kt

Z

R
e
� (x�y)2

4kt f(y)dy.

⇤
3.4. Boundary value problems on the half-line.

Exercise 3.4.2. Let u be a solution of either

ut = kuxx for x, t > 0, u(x, 0) = f(x) for x > 0, u(0, t) = 0 for t > 0

or ut = kuxx for x, t > 0, u(x, 0) = f(x) for x > 0, ux(0, t) = 0 for t > 0.

Assume that u(x, t) � 0 and that u, ux, uxx ! 0 rapidly as x ! 1.

(a) Compute the rate of change of the total heat energy
R1
0 u(x, t)dx.

(b) For which boudnary conditions (Dirichlet or Neumann) is this quantity
conserved? Why?

(c) Assme the Dirichlet boundary condition. If the temperature in the bar
u(x, t) > 0 for x near zero, does the total amount of heat increase or de-
crease? If the temperature outside the bar is greater than the temperature
inside, does the total amount of heat increase or decrease?

Solution.

(a)

d

dt

Z 1

0
u(x, t)dx = k

Z 1

0
uxx(x, t)dx = k

⇣
lim
a!1

ux(a, t)� ux(0, t)
⌘

= �kux(0, t)

=

(
�kux(0, t) for Dirichlet bound. cond.,

0 for Neumann bound. cond.

(b) The rate of change of the total heat energy is conserved for the the Neumann
boundary conditions. This is because, as page 95 explains, the Neumann
conditions mean that the end of the bar is insulated so that no heat can
flow, i.e. Flux = 0.

(c) For fixed t, the Dirichlet boundary condition u(0, t) = 0 and the fact that
u(x, t) > 0 near 0 together imply that u is increasing near 0. In other words
ux(0, t) > 0, giving

d

dt

Z 1

0
u(x, t)dx = �kux(0, t) < 0.

So the total amount of heat energy is decreasing in this situation.
If the temperature outside the bar is greater than the temperature inside

the bar, then u is decreasing near zero, i.e. ux(x, t) < 0, so the integral
above is positive, i.e. the total heat energy is increasing.

⇤
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Exercise 3.4.3. The program heat2 solves the initial-boundary-value problems of
Dirichlet and Neumann. Which solution decays faster? Find constants CD, �D, CN

and �N such that the solution of the Dirichlet boundary-value problem decays like
CDt

��D at x = 1 and the solution of the Neumann boundary-value problem decays
like CN t

��N at x = 1.

Solution. Plotting the solutions at time t = 15, it appears that the solution of
the Dirichlet boundary-value problem decays faster than that of the Neumann
boundary-value problem.

In the code for heat2, the vector x is given as x = �10 : .05 : 10, so the 221st
entry of the vector x corresponds to when x = 1, i.e., x(221) = 1.

Using time values t = 10, 11 in the heat2 program, we find the values u(1, 10)
and u(1, 11) for the solution to the Dirichlet IBVP by the code dirch(221) since
the 221st entry of the vector dirch is the value of u(1, t) at a given time t. We find
that u(1, 10) = .0123 and u(1, 11) = .0107. So

CD10�D

CD11�D
=

u(1, 10)

u(1, 11)
=

0.0123

0.0107
=) �D = log11/10

✓
0.0123

0.0107

◆
⇡ 1.46,

which gives CD ⇡ 0.35 or CD ⇡ .31. In a similar manner we find that �N ⇡ .43
and CN ⇡ .44 or CN ⇡ .43. ⇤
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Exercise 3.4.5.

(a) Starting with the solution formula for the IBVP

ut = kuxx for x, t > 0, u(x, 0) = f(x) for x > 0, u(0, t) = 0 for t > 0,

show that the solution for this IBVP with initial data f(x) ⌘ U is given by

u(x, t) = U � 2U

Z 1

x
S(y, t)dy.

(b) Verify directly that this function u solves the above IBVP.
(c) Make the change of variable z = y/

p
4kt, and show that u(x, t) ! 0 for

each x as t ! 1.

Solution.

(a) Recall that in Exercise 3.3.4 we proved
Z

R
S(x� y, t)f(y)dy =

1p
4⇡kt

Z

R
e
� (x�y)2

4kt f(y)dy

=
↵

2

✓
1� erf

✓
xp
4kt

◆◆
+
�

2

✓
1 + erf

✓
xp
4kt

◆◆

where f(x) = ↵ when x > 0 and f(x) = � when x < 0. Applying this
formula to the case f(x) = U for all x 2 R, we get

U

Z

R
S(x� y, t)dy =

U

2

✓
1� erf

✓
xp
4kt

◆◆
+

U

2

✓
1 + erf

✓
xp
4kt

◆◆

=
U

2
(1 + 1)

= U,

which means
R
R S(x � y, t)dy = 1. Notice that by the change of variable

z = x� y,
Z 0

�1
S(x� y, t)dy = �

Z x

1
S(z, t)dz =

Z 1

x
S(z, t)dz.

By the change of variable z = x+ y,
Z 1

0
S(x+ y, t)dy =

Z 1

x
S(z, t)dz.

Putting this all together, we obtain

u(x, t) = U

Z 1

0
[S(x� y, t)� S(x+ y, t)]dy

= U

✓Z

R
S(x� y, t)�

Z 0

�1
S(x� y, t)�

Z 1

0
S(x+ y, t)dy

◆

= U

✓
1�

Z 1

x
S(z, t)dz �

Z 1

x
S(z, t)dz

◆

= U

✓
1� 2

Z 1

x
S(z, t)dz

◆



PARTIAL DIFFERENTIAL EQUATIONS 31

(b) Since S satisfies the heat equation,

ut(x, t) = �2U

Z 1

x
St(y, t)dy = �2Uk

Z 1

x
Sxx(y, t)dy.

Also, uxx(x, t) = 2USx(x, t). So

ut(x, t) = �2Uk

Z 1

x
Sxx(y, t)dy = �2Uk

⇣
lim
z!1

Sx(z, t)� Sx(x, t)
⌘

= �2Uk(�Sx(x, t))

= kuxx(x, t).

Moreover, u(x, 0) = U � 0 = U and u(0, t) = U � 2U(1/2) = 0.

(c) Making the change of variable, we have u(x, t) = U � 2Up
⇡

R1
xp
4kt

e
�z2

dz. So

lim
t!1

u(x, t) = U � 2Up
⇡

Z 1

0
e
�z2

dz = U � 2Up
⇡

p
⇡

2
= 0.

⇤
Exercise 3.4.6.

(a) Using the solution of exercise 5, show that the solution of the inhomoge-
neous IBVP

vt � kvxx = 0 x, t > 0, v(x, 0) = 0, x > 0, v(0, t) = U, t > 0,

is given by v(x, t) = 2U
R1
x S(y, t)dy.

(b) Show that v(x, t) ! U for each x as t ! 1.
(c) Write the solution v in terms of the error function erf(x).

Solution.

(a) The desired solution has the form v(x, t) = U �u(x, t), so we need to check
that this formula for v(x, t) solves the given IBVP. We have

vt = �ut = �kuxx = kvvv, v(0, t) = U � u(0, t) = U � 0 = U,

and v(x, 0) = U � u(x, 0) = U � f(x) = U � U = 0. So v(x, t) is a solution
to the given IBVP.

(b) limt!1 v(x, t) = U � limt!1 u(x, t) = U � 0 = U .
(c) Using change of variable z = y/

p
4kt, we get

v(x, t) = 2U

Z 1

x
e
� y2

4kt dy =
2Up
⇡

Z 1

xp
4kt

e
�z2

dz

=
2Up
⇡

 Z 1

0
e
�z2

dz �
Z xp

4kt

0
e
�z2

dz

!

=
2Up
⇡

✓p
⇡

2
�

p
⇡

2
erf

✓
xp
4kt

◆◆

= U

✓
1� erf

✓
xp
4kt

◆◆
.

⇤
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Homework 6

3. Di↵usion.

3.5. Di↵usion and nonlinear wave motion.

Exercise 3.5.5. The nonlinear equation

ut � kuxx = f(u)

is called a reaction-di↵usion equation. The nonlinear term f(u) represents the
reaction of chemicals while the term kuxx as usual represents di↵usion.

(a) Let f(u) = u(1� u). What constant solutions are there?
(b) Look for a traveling wave solution u(x, t) = '(x� ct). What second-order

nonlinear ODE must ' satisfy?
(c) Write this second-order ODE as a first order system by introducing the

new dependent variable  = '
0. Find the critical points of this system.

Linearize the system about each of these critical points, and discuss the
stability of each (this will depend on the relationship between c and k).

(d) It can be proved that for each c < 0, there is a unique trajectory s !
('c(s), c(s)) which approaches (1, 0) as s ! 1, and approaches (0, 0) as
s ! �1. Sketch the graph of 'c(s) for di↵erent values of c.

Solution.

(a) A constant solution would have to satisfy u(1� u) = 0, so u = 0 or u = 1
are the only constant solutions.

(b) Looking for a solution of the form u(x, t) = '(x � ct), ' would need to
satisfy the ODE

�c'
0 � k'

00 = '(1� ').

(c) Setting  = '
0, we obtain the system


'
0

 
0

�
=


 

1
k (�'(1� ')� c ).

�

The critical points of this system are (0, 0) and (1, 0). Letting f = ('0
, 

0),

Df =


0 1

1
k (2'� 1) �c

k

�
.

The linearized system for (0, 0) is

'
0

 
0

�
= Df |(0,0)


'

 

�
=


 

1
k (�'� c )

�

The eigenvalues for Df |(0,0) are

�± =
�c±

p
c2 � 4k

2k
,

Note that |c| >
p
c2 � 4k.

• If c > 0, then

(3.5.5.1) c = |c| >
p

c2 � 4k =) �c+
p

c2 � 4k < 0

– If c2 � 4k � 0, we have real eigenvalues, �� < 0, and 3.5.5.1
implies �+ < 0. Hence (0, 0) is an asymptotically stable critical
point.
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– If c2�4k < 0 then we have imaginary eigenvalues and Re(�±) =
�c/2k < 0, so (0, 0) is an asymptotically stable critical point.

• If c < 0 then

(3.5.5.2) � c = |c| >
p
c2 � 4k =) �c�

p
c2 � 4k > 0

– If c2 � 4k � 0, we have real eigenvalues, �+ > 0, and 3.5.5.2
implies �� > 0. Hence (0, 0) is an unstable critical point.

– If c2�4k < 0 then we have imaginary eigenvalues and Re(�±) >
0, so (0, 0) is an unstable critical point.

• If c = 0, then Re�± =Re(±i/
p
k) = 0 so (0, 0) is a stable critical point.

The linearized system for (1, 0) is

'
0

 
0

�
= Df |(1,0)


'� 1
 

�
=


 

1
k ('� 1� c )

�
.

The eigenvalues for Df |(0,0) are

�± =
�c±

p
c2 + 4k

2k
,

Since (�+)(��) = �1/k, we have an unstable saddle at (1, 0).
(d)

⇤
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Project 3.7

Write a MATLAB program to implement the Explicit Finite Di↵erence Scheme
(3.33):

uj,n+1 = (1� 2s)uj,n + s(uj+1,n + uj�1, n).

Set k = 1 and use the boundary conditions u = 0 at x = 0 and x = 10. Write
an mfile f.m for the initial data. Try out your program with initial data sin(⇡x10 ).

Exercise 3.7.6. (15pts) Fix �x = 0.5 and then experiment with various values of
�t to see when the scheme becomes stable. Your observations should agree with
the results of section 3.6.

(a) (5pts) What is the condition on step size for the numerical scheme to be
stable in this case?

(b) (5pts) Print the graphs of the numerical solution for time t = 10 with
�t = 0.5, 0.2, 0.125, 0.1, 0.0005.

(c) (5pts) Do you observe that the scheme becomes stable for a certain step
size?

Solution.

(a) We must have �t  �x2

2 , so in our case, this means �t  .125.
(b) The following plots correspond to the desired time steps in numerical order,

i.e. �t = 0.0005., 0.1, 0.125, 0.2, 0.5

(c) Yup, at �t = .125, which corresponds to our result in (a).

MATLAB Code for Exercise 3.7.6, Part (b):

delt=.5;
delx=.5;
x=0:delx:10;
xsteps=10/delx;
T=10;
t=0:delt:T;
tsteps=T/delt;
s=delt/delx^2;

u=zeros(xsteps+1,tsteps+1);
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for j=1:xsteps+1
u(j,1)=f(x(j));

end
for n=1:tsteps

u(1,n+1) = 0;
u(xsteps+1,n+1) = 0;

for j=2:xsteps
u(j,n+1)=(1-2*s)*u(j,n)+s*(u(j+1,n)+u(j-1,n));

end
end
plot(x,u(:,tsteps+1))
axis([0 10 -1.5 2]) ⇤

Exercise 3.7.7. (15pts) Compare your computed results with the exact solution

sin(
⇡x

10
)e�( 10

⇡ )2t

at various times with �t = 0.125. Find the maximum error at each time.

(a) (5pts) Print the graphs of the numerical solution and the exact solution on
the same figures for time t = 1, 5, 10, 25.

(b) (5pts) Calculate the maximum error for each of these times. That is
max(Exact(x, t)�Approximation(x, t)).

(c) (5pts) What happens to the maximum error as time increases?

Solution.

(a) The following plots of the numerical and exact solutions correspond to times
t = 1, 5, 10, 25, in order. Note the di↵erence in the vertical axis scales for
the last two plots from that of the first two plots.
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(b) Using the following MATLAB code at T = 1, 5, 10, 25,

T=25;

delt=.125; delx=.5; x=0:delx:10; xsteps=10/delx; t=0:delt:T; tsteps=T/delt; s=delt/delx^2;

u=zeros(xsteps+1,tsteps+1);

for j=1:xsteps+1

u(j,1)=f(x(j));

end

for n=1:tsteps

u(1,n+1) = 0;

u(xsteps+1,n+1) = 0;

for j=2:xsteps
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u(j,n+1)=(1-2*s)*u(j,n)+s*(u(j+1,n)+u(j-1,n));

end end

y=sin(pi*x/10)*(exp(-(pi/10)^2*T));

maxerr=max(transpose(y)-u(:,(tsteps)+1)) ,

we obtain the following maximum errors:

t Maximum Error
1 3.7009⇥ 10�4

5 0.0012
10 0.0015
25 8.6179⇥ 10�4

(c) As time increases from t = 1 to t = 15, the error doesn’t have a uniform
behavior. From t = 1 to t = 5, the error increases, but then decreases again
between t = 10 to t = 25.

MATLAB Code for Exercise 3.7.7, Part (a):

delt=.125; delx=.5; x=0:delx:10; xsteps=10/delx; T=10; t=0:delt:T; tsteps=T/delt; s=delt/delx^2;

u=zeros(xsteps+1,tsteps+1);

for j=1:xsteps+1

u(j,1)=f(x(j));

end

for n=1:tsteps

u(1,n+1) = 0;

u(xsteps+1,n+1) = 0;

for j=2:xsteps

u(j,n+1)=(1-2*s)*u(j,n)+s*(u(j+1,n)+u(j-1,n));

end

end

plot(x,u(:,tsteps+1),x,sin(pi*x/10)*(exp(-(pi/10)^2*T)))

axis([0 10 0 .1]) ⇤
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Exercise 3.7.8. (15pts) Now reduce the special size to �x = 0.25 and make

�t  �x2

2 . Again compare the computed solution and then exact solution at the
same times you did before when �x = 0.5. Is the error smaller? By how much?

(a) (5pts) Print the graphs of the numerical solution and the exact solution on
the same figures for times t = 1, 5, 10, 25.

(b) (5pts) Calculate the maximum error for each of these times. That is
max(Exact(x, t)�Approximation(x, t)).

(c) (5pts) Compare the maximum errors in Q2 with Q3. Which max error is
smaller and by how much?

Solution. For �x = 0.25, we must have �t  .03125. So we use �t = .03125.

(a) The following plots of the numerical and exact solutions correspond to
times t = 1, 5, 10, 25, in order. Only in the last plot can we (slightly) see
the di↵erence in the solution graphs. Note the di↵erence in the vertical axis
scales for the last plot from that of the first three plots.
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(b) Using the code in Exercise 3.7.7 Part (b), except with delt=.03125 and
delx=.25, and at T = 1, 5, 10, 25, we obtain the following maximum errors:

t Maximum Error
1 9.2078⇥ 10�5

5 3.1016⇥ 10�4

10 3.7861⇥ 10�4

25 2.1521⇥ 10�4

(c) The maximum error at times t = 1, 5, 10, 25 for �x = .25 is smaller than
those times for �x = .5. The di↵erence in maximum errors are:

t Di↵erence in Max Error between �x = .25 and �x = .5
1 2.7801⇥ 10�4

5 9.537⇥ 10�4

10 0.0011
25 6.4659⇥ 10�4

⇤



40 NICHOLAS CAMACHO

Homework 7

4. Boundary Value Problems for the Heat Equation.

4.2. Convergence of the eigenfunction expansions.

Exercise 4.2.2. Let u be a solution of

ut � kuxx = 0 0 < x < L, t > 0

u(x, 0) = f(x) 0  x  L,

u(0, t) = u(L, t) = 0 t � 0

with initial data f(x) � 0 and f(0) = f(L) = 0. Use the maximum (or minimum)
principal to show that u(x, t) � 0 for 0  x  L, t � 0.

Proof. Let T > 0 and define

QT := {(x, t) 2 R2 : 0 < x < L, 0 < t < T},
and

�T := {(x, t) 2 R2 : x = 0, L, 0  t  T} [ {(x, t) 2 R2 : 0  x  L, t = 0}.
The initial data implies

min
�T

u 2 {min
x

{u(x, 0) = f(x)}, u(0, t) = u(L, t) = 0} = {0},

for all T > 0, i.e. min�T u = 0 for all T > 0.
By the minimum principle, minQT

u = min�T u = 0 for all T > 0. So u(x, t) � 0

on the region {(x, t) 2 R2 : 0  x  L, t � 0}, as desired. ⇤
Exercise 4.2.3. Show that the eigenvalue problem �'00(x) = �'(x),'(0) =
'(L) = 0 has no complex solution � with Im(�) 6= 0.

Proof. The characteristic equation for the eigenvalue problem has roots ±i
p
i, so

the solution is
'(x) = Ae

xi
p
� +Be

�xi
p
�
.

The initial condition '(0) = 0 implies

'(x) = 2A(exi
p
� � e

�xi
p
�) = 2Ai(sin(x

p
�)).

Assuming we don’t have the trivial solution, 0 = '(L) implies sin(L
p
�) = 0, which

is true if and only if L
p
� = ⇡n for n 2 Z+. So � = (⇡n/L)2 2 R�0. ⇤
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Exercise 4.2.4. Consider a solution of the IBVP

ut � kuxx = 0 0 < x < L, t > 0

u(x, 0) = f(x) 0  x  L,

u(0, t) = u(L, t) = 0 t � 0

with initial data f(x) = 5 sin(2⇡x/L)� 2 sin(3⇡x /L) + 3 sin(5⇡x/L).

(a) Find the solution. It consists of three terms.
(b) Set L = ⇡ and k = 1. Make an mfile u.m for the solution u(x, t). Plot

snapshots of the solution for t = 0, .5, 1, 2, 5. Which term in the sum is a
good approximation to the solution when t = 5? Why?

Solution.

(a) The solution is u(x, t) =
P1

1 An'(x) n(t). The initial data u(x, 0) = f(x)
implies A2 = 5, A3 = �2, A5 = 3 and An = 0 for all n 2 N� {2, 3, 5}. So

u(x, t) =5 sin

✓
2⇡x

L

◆
e
�( 2⇡

L )2kt

� 2 sin

✓
3⇡x

L

◆
e
�( 3⇡

L )2kt

+ 3 sin

✓
5⇡x

L

◆
e
�( 5⇡

L )2kt
.

(b) Snapshots of the solution for t = 0, .5, 1, 2, 5.
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Below, we have plotted u(x, 5) with each of the terms in the solution at
t = 5:

The first graph clearly shows that the first term best approximates the so-
lution when t = 5. This is because the exponential decreases as n increases.

⇤
Exercise 4.2.6. Compute the coe�cients of An of the eigenfunction expansion for
the function f(x) = 1 for 0  x  L/2, f(x) = 0 for L/2 < x  L. This function
has a jump at x = L/2. Will the series converge uniformly?

Proof. We have

An =
2

L

Z L/2

0
sin
⇣
n⇡x

L

⌘
dx =

�2 cos
�
n⇡
2

�
+ 2

n⇡

=

8
>>>>>>>><

>>>>>>>>:

2

(2k + 1)⇡
if n = 2(2k + 1) for some k 2 Z�0

2

(2k + 1)⇡
if n = 2k + 1 for some k 2 Z�0

0 else

The series diverges since
1X

n=1

|An| =
2

⇡

1X

n=1

1

2n+ 1
>

1X

n=1

3

✓
2

(4n� 1)⇡

◆
= 1.

⇤
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Exercise 4.2.8. Suppose that the initial data f(x) is C
1, with f(0) = f(L) = 0,

so that the coe�cients An satisfy the summability condition
1X

n=1

|An| < 1.

Show that the solution u(x, t) of

ut � kuxx = 0 0 < x < L, t > 0

u(x, 0) = f(x) 0  x  L,

u(0, t) = u(L, t) = 0 t � 0

tends to zero exponentially as t ! 1:

|u(x, t)|  Ce
��1kt,

where C is a constant. Can you show this type of result even when f is only
piecewise continuous? Hint: Let t0 > 0, and show that the estimate can be made
for t � t0.

Solution. Let C =
P1

n=1 |An|. Then

|u(x, t)| 
1X

n=1

|An||'n(x)|| n(t)| 
1X

n=1

|An||e��1kt| = Ce
��1kt.

Setting g(x) = u(x, t0) for t0 > 0, the solution of the IBVP

ut � kuxx = 0 0 < x < L, t > t0

u(x, 0) = g(x) 0  x  L,

u(0, t) = u(L, t) = 0 t � t0

will have the same long term behavior at the solution of our original IBVP, and so
the same ⇤
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Exercise 4.2.15. Another way to prove the uniqueness of the solutions of

ut � kuxx = 0 0 < x < L, t > 0

u(x, 0) = f(x) 0  x  L,

u(0, t) = u(L, t) = 0 t � 0.

.

(a) Show
Z L

0
u
2(x, T )dx+ 2k

Z T

0

Z L

0
u
2
x(x, t)dxdt =

Z L

0
u
2(x, 0)dx.

(b) Use this equation to prove the uniqueness of the solution.

Proof.

(a) Multiplying the equation by u, and integrating in x from 0 to L, then
integrating by parts, we have

0 =

Z L

0
uutdx� k

Z L

0
uxxudx

=
1

2

d

dt

Z L

0
u
2
dx� k

 
uux

��L
0
�
Z L

0
u
2
xdx

!

=
1

2

d

dt

Z L

0
u
2
dx+ k

Z L

0
u
2
xdx(u(0, t) = u(L, t) = 0)

Integrating in t, we get

0 =
1

2

Z L

0
u
2
dx+ k

Z L

0
u
2
xdx

=
1

2

Z T

0

d

dt

Z L

0
u
2
dxdt+ k

Z T

0

Z L

0
u
2
xdxdt

=
1

2

⇣Z L

0
u
2
dx

⌘���
T

0
+ k

Z T

0

Z L

0
u
2
xdxdt

=
1

2

Z L

0
u
2(x, T )dx� 1

2

Z L

0
u
2(x, 0)dx+ k

Z T

0

Z L

0
u
2
xdxdt.

(b) If u and v are two solutions of the IBVP, then so is u� v, with initial data
(u� v)(x, 0) = 0 and (u� v)(0, t) = (u� v)(L, t) = 0. This, together with
the formula from (a), we have

Z L

0
(u� v)2(x, T )dx+ 2k

Z T

0

Z L

0
(u� v)2xdxdt = 0.

Since (u�v)2 � 0 and (u�v)2x � 0, then each term above is 0. In particular,
Z L

0
(u� v)2(x, T )dx = 0,

which implies (u� v)2(x, T ) = 0 for all T , i.e., u = v.

⇤
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Homework 8

4. Boundary Value Problems for the Heat Equation.

4.3. Symmetric boundary conditions.

Exercise 4.3.1. Let u be a solution of ut�kuxx = 0 with the Neumann boundary
conditions, ux(0, t) = u(L, t) = 0.

(a) Show that the average

u(t) =
1

L

Z L

0
u(x, t)dx =

1

L

Z L

0
fdx = f

for all t � 0.
(b) Show that u(x, t)� f tends to zero exponentially as t ! 1.

Solution.

(a) We have

d

dt
u(t) =

k

L

Z L

0
uxxdx =

k

L
ux

��L
0
=

k

L
(ux(L, t)� ux(0, t)) = 0.

So

u(t) =
1

L

Z L

0
u(x, 0)dx =

1

L

Z L

0
fdx = f.

(b) We have f = A0/2,

An =
1

L

Z L

0
f(x) cos

⇣
n⇡x

L

⌘
dx, and u(x, t) =

A0

2
+

1X

n=1

Ane
��nkt'n(x).

Moreover, there exists an M so that for all n, |An|  M . So

|u(x, t)� f | 
1X

n=1

|An|e��nkt|'n(x)|


1X

n=1

|An|e�(
n⇡
L )2kt| cos

⇣
n⇡x

L

⌘
|

 M

1X

n=1

e
�(n⇡

L )2kt

= M

1X

n=1

e
�n2( ⇡

L )
2
kt

= M

1X

n=1

⇣
e
�n( ⇡

L )
2
kt
⌘n

 M

1X

n=1

⇣
e
�( ⇡

L )
2
kt
⌘n

= �M +
M

1� e
�( ⇡

L )
2
kt
,

which tends to 0 exponentially as t ! 1.

⇤
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Exercise 4.3.2. Let u(x, t) be the solution of ut�kuxx = 0 with Neumann bound-
ary conditions ux(0, t) = u(L, t) = 0, and the initial data

f(x) =

(
1, 0  x  L/2

0, L/2 < x  L
.

(a) Find the coe�cients An in the appropriate eigenfunction expansion.
(b) Verify the conclusions of Exercise 4.3.1.

Solution.

(a) We have

A0 =
2

L

Z L

0
f(x) cos

✓
0⇡x

L

◆
dx =

2

L

Z L/2

0
f(x)dx = 1,

and for n � 1

An =
2

L

Z L/2

0
cos
⇣
n⇡x

L

⌘
dx

=
2

L

L

n⇡
sin
⇣
n⇡x

L

⌘ ���
L/2

0

=
2

n⇡
sin
⇣
n⇡

2

⌘

=

8
><

>:

0 if n even

� 2
n⇡ if n = 2m+ 1,m odd

2
n⇡ if n = 2m+ 1,m even

.

(b) We have

f =
1

L

Z L

0
f(x)dx =

1

L

Z L/2

0
dx =

1

2

and

u(t) =

 
A0

2

1X

n=1

Ane
�(n⇡

L )2kt cos
⇣
n⇡x

L

⌘!
dx

=
1

2
+

1

L

1X

n=1

Ane
�(n⇡

L )2kt
Z L

0
cos
⇣
n⇡x

L

⌘
dx

=
1

2
+

1

L

1X

n=1

Ane
�(n⇡

L )2kt L

n⇡
sin
⇣
n⇡x

L

⌘ ���
L

0
dx

=
1

2
.
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Moreover, |An|  2/n⇡, so

|u(x, t)� f | 
1X

n=1

|An|e�(
n⇡
L )2kt| cos

⇣
n⇡x

L

⌘
|


1X

n=1

2

n⇡
e
��nkt

= e
��1kt

1X

n=1

2

n⇡
e
�1kte

��nkt

= e
��1kt

1X

n=1

2

n⇡
e
(�1��n)kt.

Since 0 < �1 < �2 < · · · , then �n � �n+1 < 0 for all n, so

e
(�1��n+1)kt

e(�1��n)kt
= e

(�n��n+1)kt < 1,

hence by the ratio test our series converges, say
P1

n=1
2
n⇡ e

(�1��n)kt = M .
Then

|u(x, t)� f |  Me
��1kt,

so |u(x, t)� f | tends to 0 exponentially.

⇤
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Exercise 4.3.7. Run heat4 with initial data f(x) = exp[�(x � 5)2] and q(x) =
0, k = 1 and k = 5.

(a) Compute the integral (1/10)
R 10
0 f(x)dx (using the error function). Does

this value agree with the asymptotic value, as t ! 1, of the solution as
seen in the graphs of the solution?

(b) For which value of k is the convergence more rapid? Does this show up in
the estimate of Exercise 4.3.1?

Solution.

(a) After a change of variables y = x� 5, we get 1
10

R 10
0 f(x)dx =

p
⇡

10 erf(5) =
.1772. We see from the following plots that as t ! 1, u ! .1772, and this
agrees with the value of the integral we found above. The first plot is when
k = 1 and the second is when k = 5.

(b) We see from the following plots that as k increases, the convergence is
more rapid. In Exercise 4.3.1, our estimate shows that |u(x, t)� f | decays
exponentially as k ! 1. The plots are given in the order k = 1, 5, 10, 15.

⇤
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Homework 9

4. Boundary Value Problems for the Heat Equation.

4.4. Inhomogeneous problems and asymptotic behavior.

Exercise 4.4.1. Consider the IBVP

ut � kuxx = q(x, t), u(x, 0) = f(x)

with f(x) = 0, boundary conditions u(0, t) = u(L, t) = 0, and

q(x, t) = e
�t sin(⇡x/L)� sin(3⇡x/L).

(a) Solve this problem. Note that the solution will contain only a few terms.
(b) Change the equation to

ut � kuxx + 2u = q,

and solve with the same boundary conditions, initial conditions, and the
same q as in part (a).

Solution.

(a) We know that

u(x, t) =
1X

n=1

[Ane
��nkt +

Z t

0
qn(s)e

��nk(t�s)
ds]'n(x),

where 'n = sin
�
n⇡x
L

�
, An = hf,'ni

h'n,'ni , and qn(s) =
hq(x,s),'ni
h'n,'ni . Since f(x) =

0, An = 0 for all n. Notice that q(x, t) = e
�t
'1(x)� '3(x). We have

qn(s) =
hq(x, s),'ni
h'n,'ni

= e
�t h'1,'ni

h'n,'ni
� h'3,'ni

h'n,'ni
.

Recall that 'n is orthogonal to 'm for n 6= m, so if n 6= 1, 3, then qn = 0.
So

q1(s) = e
�s h'1,'1i

h'1,'1i
� h'3,'1i

h'1,'1i
= e

�s
,

q3(s) = e
�s h'1,'3i

h'3,'3i
� h'3,'3i

h'3,'3i
= �1.

Hence

u(x, t) = sin
⇣
⇡x

L

⌘Z t

0
e
��1k(t�s)�s

ds+ sin

✓
3n⇡x

L

◆Z t

0
e
��3k(t�s)

ds.

(b) Suppose, just as at the beginning of this section, that we can expand u and
q in terms of the eigenfunctions 'n(x):

u(x, t) =
1X

1

un(t)'n(x) and q(x, t) =
1X

1

qn(t)'n(x)

where

qn(t) =
hq(x, t),'ni
h'n,'ni

.
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Substituting this into our PDE,

0 = ut � kuxx + 2u� q

=
1X

1

u
0
n(t)'n(x)� kun(t)'

00(x) + 2un(t)'n(x)� qn(t)'n(x)

=
1X

1

[u0
n(t)� kun(t)�n + 2un(t)� qn(t)]'n(x).

Because the eigenfunctions 'n are orthogonal, the above implies

u
0
n(t)� (k�n + 2)un(t) = qn(t)

for all n. As in the computation at the beginning of this section, we get
that un(0) = An = 0 for all n. Solving the above ODE, we have

un(t) =

Z t

0
e
�(2+k�n)(t�s)

qn(s)ds.

From our computation in part (a), we have q1(s) = e
�s

, q3(s) = �1 and
qn = 0 if n 6= 1, 3. So

u(x, t) =
1X

1

Z t

0
e
�(2+k�n)(t�s)

qn(s)ds

�
'n(x)

= sin
⇣
⇡x

L

⌘Z t

0
e
�(2+k�1)(t�s)�s

qn(s)ds

� sin

✓
3⇡x

L

◆Z t

0
e
�(2+k�3)(t�s)

ds.

⇤
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Exercise 4.4.2. Solve the problem

ut � kuxx = q, u(x, 0) = 0

with q(x, t) = sin(t)r(x) and with boundary conditions u(0, t) = u(L, t) = 0. How
does the solution behave as t ! 1? Does it oscillate, or does it tend to zero?

Solution. We have

qn(s) =
hsin(s)r(x),'n(x)i
h'n(x),'n(x)i

= sin(s)
hr(x),'n(x)i
h'n(x),'n(x)i

= sin(s)
2

L
hr(x),'n(x)i .

So

u(x, t) =
1X

n=1

Z t

0
qn(s)e

��nk(t�s)
ds

�
'n(x).

=
1X

n=1

Z t

0
sin(s)e��nk(t�s)

ds

�
hr(x),'n(x)i

2

L
'n(x)

=
1X

n=1


e
�t�nk + �nk sin(t)� cos(t)

(�nk)2 + 1

�
hr(x),'n(x)i

2

L
'n(x).

If r = 0, then u(x, t) = 0, so u ! 0 as t ! 1. If r 6= 0, u oscillates as t ! 1, since
e
�t�nk ! 0 as t ! 1, and its other terms with t oscillate as t ! 1. Since r(x)
doesn’t depend on t, nothing changes if we assume that

r(x) =

(
x, 0  x  L

2

L� x
L
2  x  L

.

In which case, we get

qn(s) = sin(s)
hr(x),'n(x)i
h'n(x),'n(x)i

= sin(s)
4L

(n⇡)2
sin
⇣
n⇡

2

⌘
.

Whence

u(x, t) =
1X

n=1

[
e
�t�nk + �nk sin(t)� cos(t)

(�nk)2 + 1
]

4L

(n⇡)2
sin
⇣
n⇡

2

⌘
sin
⇣
n⇡x

L

⌘

⇤
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Exercise 4.4.3. Consider the heat problem

ut � kuxx = x, 0 < x < L, t > 0

u(0, t) = 1, u(L, t) = 2, t � 0

u(x, 0) = 1 + (x/L)2, 0  x  L.

(a) Find the steady-state solution U(x) to this problem. Look for U in the
form U(x) = Ax

3 +Bx+ C; find the coe�cients A,B,C.
(b) Write the desired solution u(x, t) = v(x, t)+U(x), and determine the IBVP

satisfied by v. What is the initial condition of v?
(c) Find v in terms of an eigenfunction expansion. You do not need to calculate

the coe�cients An. Show that v(x, t) ! 0 as t ! 1. Finally, write the
complete expression for u.

Solution.

(a) We have C = U(0) = 1 and

x = Ut � kUxx = �kUxx = �6kAx =) A = � 1

6K
.

Then

AL
3 +BL+ 1 = U(L) = 2 =) � L

3

6K
+BL = 1. =) B =

1

L
+

L
2

6K
.

(b) We have v(x, t) = u(x, t)� U(x) and v satisfies the following IBVP:

vt � kvxx = 0 0 < x < L, t > 0

v(0, t) = 0, v(L, t) = 0, t � 0

v(x, 0) = 1 + (x/L)2 � U(x).

(c) Now,

v(x, t) =
1X

n=1

An'n(x) n(t)

and in Exercise 4.3.1(a), we showed that v(x, t) decays exponentially as
t ! 1, since there exists M so that |An|  M for all n, since u(x, 0)�U(x)
is continuous and [0, L] is compact. We have

u(x, t) =
1X

n=1

An'n(x) n(t) + U(x)

and limt!1 u(x, t) = U(x).

⇤
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6. Fourier Series and Fourier Transform.

6.1. Fourier Series.

Exercise 6.1.2. Verify the equation

c±n =
1

2
[An ⌥ iBn], n = 1, 2, . . . .

Solution. We use that sine is odd and cosine is even to obtain

1

2
[An ⌥ iBn] =

1

2L

Z L

�L
f(x)

⇣
cos
⇣
n⇡x

L

⌘
⌥ i sin

⇣
n⇡x

L

⌘⌘

=
1

2L

Z L

�L
f(x)

✓
cos

✓
(⌥n)⇡x

L

◆
+ i sin

✓
(⌥n)⇡x

L

◆◆

=
1

2L

Z L

�L
f(x)ei

(⌥n)⇡x
L

= c±n.

⇤
Exercise 6.1.3. Suppose that f(x) is a C

1 function with period 2L. Let dn be the
complex Fourier coe�cient of f 0 and cn the complex Fourier coe�cient of f . Show
that

dn =

✓
in⇡

L

◆
cn.

Solution.

dn =
1

2L

Z L

�L
f
0(x)e�in⇡x/L

dx

=
1

2L

 ⇣
e
�in⇡x/L

f(x)
⌘ ���

L

�L
�
✓
�in⇡

L

◆Z L

�L
f(x)e�in⇡x/L

dx

!

=
1

2L

�
e
�in⇡

f(L)� e
in⇡

f(�L)
�
+

✓
in⇡

L

◆
cn

=
f(L)

2L

�
e
�in⇡ � e

in⇡
�
+

✓
in⇡

L

◆
cn (since f(L) = f(�L))

=

✓
in⇡

L

◆
cn,

where the last equality follows since

e
�in⇡ � e

in⇡ = (cos(�n⇡) + i sin(�n⇡))� (cos(n⇡) + i sin(n⇡))

= cos(�n⇡)� cos(n⇡)

= 0.

⇤



54 NICHOLAS CAMACHO

Homework 10

6. Fourier Series and Fourier Transform.

6.2. Convergence of Fourier Series.

Exercise 6.2.3. Let '̃n(x) =
1p
2L

exp[(in⇡x/L)] be the normalized eigenfunctions

( note that ||'̃n(x)|| = 1 for all n). Let

c̃n = hf, '̃ni =
Z L

�L
f(x)'̃n(x)dx.

Use Parseval’s equality to show that

||f ||2 =
1X

�1
|c̃n|2.

Solution. We have

cn =
1

2L

Z L

�L
f(x)e�in⇡x/L

,

and since '̃n(x) =
1p
2L

e
�in⇡x/L, we have

c̃n =
1p
2L

Z L

�L
f(x)e�in⇡x/L

dx =
p
2Lcn.

Hence |c̃n|2 = 2L|cn|2, and so by Parseval’s equality,

||f ||2 = 2L
1X

�1
|cn|2 =

1X

�1
|c̃n|2.

⇤
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Exercise 6.2.5. Use data choice (1) in the program fseries. In example 3 of
Section 4.2 we expanded f in terms of a sine series:

f(x) =
1X

1

Bn sin(
n⇡x

L
), Bn =

4L

(n⇡)2
sin(

n⇡

2
),

and that the series converged uniformly.

(a) Instead expand f in a cosine series

f(x) =
A0

2
+

1X

1

An cos(
n⇡x

L
).

Calculate the coe�cients An.
(b) Does the cosine series converge uniformly?
(c) Run the program fseries with data choice (1). This will sum the Fourier

series (with L = 2) of the odd or even extension of f to [�2, 2]. Sum the
series with the number of terms N = 4, 8, 16, 32 and the odd extension
to get the sine series. How rapidly does �2

N decrease? Make an analytic
estimate of p, such that �2

N ⇡ N
�p. Then check your power p with the

numbers computed by the program fseries.
(d) Run the program fseries with data choice (1) and sum the cosine series

by choosing an even extension. Let the number of terms N = 4, 8, 16, 32.
Does this series fit the data di↵erently? How rapidly does �2

N decrease?

Solution.

(a) We have

An =
hf,'ni
h'n,'ni

=
2

L

Z L/2

0
x cos(

n⇡x

L
)dx+

2

L

Z L

L/2
(L� x) cos(

n⇡x

L
)dx

=
2L

(n⇡)2
(2 cos(

n⇡

L
)� cos(n⇡)� 1).

(b) Since |An|  C(n�2), the series converges uniformly to f .
(c) Since |Bn|  C(n�2)

�
2
N =

X

|n|�N+1

|Bn|  C

1X

N+1

1

n4
⇡ C

Z 1

N

1

x4
dx = O(N�3).

So �2
N decreases at a rate on the order of N�3, and so we suspect that

p = 3. Using MATLAB’s values for �2
N , we get

4�p = �
2
4 = .00076620 =) p = 5.175

8�p = �
2
8 = .00010376 =) p = 4.4118

16�p = �
2
16 = .00001326 =) p = 4.0505

32�p = �
2
32 = .00000167 =) p = 3.839.

So it seems p ! 3 as N ! 1.
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(d) Since |An|  C(n�2)

�
2
N =

X

|n|�N+1

|An|  C

1X

N+1

1

n4
⇡ C

Z 1

N

1

x4
dx = O(N�3).

So �2
N decreases at a rate on the order of N�3, and so we suspect that

p = 3. Using MATLAB’s values for �2
N , we get

4�p = �
2
4 = .00120548 =) p = 4.848

8�p = �
2
8 = .0019155 =) p = 4.1166

16�p = �
2
16 = .00002594 =) p = 3.808

32�p = �
2
32 = .0000332 =) p = 3.6404.

So it seems p ! 3 as N ! 1.

⇤
6.3. The Fourier transform.

Exercise 6.3.1. Show that f is even and real valued if and only if f is even and
real valued.

Proof. If f is even an real valued then

f̂(�⇠) =
Z 1

�1
f(x)eix⇠dx = �

Z �1

1
f(�y)e�iy⇠

dy =

Z 1

�1
f(y)e�iy⇠

dy = f̂(⇠),

where we set x = �y at the second equality. Also,

f̂(⇠) =

Z 1

�1
f(x)e�ix⇠dx =

Z 1

�1
f(x)e�ix⇠dx

=

Z 1

�1
f(x)eix⇠dx

=

Z 1

�1
f(y)e�iy⇠

dx

= f̂(⇠).

So f̂ is even and real-valued. Conversely, assuming f̂ is even and real valued,

f(�x) =
1

2⇡

Z 1

�1
f̂(⇠)e�ix⇠

d⇠ = � 1

2⇡

Z �1

1
f̂(��)eix�d� =

1

2⇡

Z 1

�1
f̂(�)eix�d� = f(x),

where we set ⇠ = �� at the second equality. Also,

f(x) =
1

2⇡

Z 1

�1
f̂(⇠)eix⇠d⇠ =

1

2⇡

Z 1

�1
f̂(⇠)eix⇠d⇠

=
1

2⇡

Z 1

�1
f̂(⇠)e�ix⇠

d⇠

=
1

2⇡

Z 1

�1
f̂(�)eix�d�

= f(x),

so f is even and real-valued. ⇤
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Exercise 6.3.2. Verify rule (5):

d⌧af(⇠) = exp(�ia⇠)f̂(⇠).

Proof. Making the substitution y = x� a,

d⌧af(⇠) =
Z 1

�1
f(x� a)e�ix⇠

dx =

Z 1

�1
f(y)e�i(y+a)⇠

dy

= e
�ia⇠

Z 1

�1
f(y)e�iy⇠

dy

= e
�ia⇠

f̂(⇠).

⇤
Exercise 6.3.3. Let

f(x) =

(
1/2, |x� a|  b

0, |x� a| > b
.

Find f̂ . What is the rate of decay of f̂(⇠) as ⇠ ! 1?

Solution.

f̂(⇠) =

Z 1

�1
f(x)e�ix⇠

dx =
1

2

Z a+b

a�b
e
�ix⇠

dx

= � 1

2i⇠

⇣
e
�i(a+b)⇠ � e

�i(a�b)⇠
⌘

=
e
�ia⇠

2i⇠

�
e
ib⇠ � e

�ib⇠
�

=
sin(b⇠)

⇠eia⇠
.

Hence |f̂(⇠)|  ⇠
�1 and so f̂(⇠) = O(⇠�1). ⇤
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Exercise 6.3.5. Let

fn(x) =

(
0, |x| > 1/n

n/2, |x| < 1/n
.

(a) Find f̂n(⇠).
(b) Show that limn!1 f̂n(⇠) = 1 for all ⇠.

Since formally fn(x) ! �(x) as n ! 1, this calculation indicates that
we may define the Fourier transform of the generalized function �(x) by
(i) �̂(⇠) = limn!1 f̂n(⇠) ⌘ 1.

This is consistent with another formal definition
(ii) �̂(⇠) =

R
�(x) exp(�ix⇠)dx ⌘ 1.

(c) Find the Fourier transform of the generalized function �(x�a) using both (i)
and (ii) above and show that they are again consistent, and also consistent
with the general rule (5) as above.

Solution.

(a)

f̂n(⇠) =

Z 1

�1
f(x)e�ix⇠

dx =
n

2

Z 1
n

� 1
n

e
�ix⇠

dx = � n

2i⇠

⇣
e
�i(1/n)⇠ � e

�i(�1/n)⇠
⌘

=
n

2i⇠

⇣
e
i(1/n)⇠ � e

�i(1/n)⇠
⌘

=
n

⇠
sin(

⇠

n
).

(b)

lim
n!1

f̂n(⇠) = lim
n!1

sin( ⇠
n )

⇠
n

= lim
x!0

sin(x)

x
= 1.

(c) Using (i),

c⌧a�(⇠) = lim
n!1

d⌧afn(⇠) = lim
n!1

e
�ia⇠

f̂n(⇠) = e
�ia⇠

.

Using (ii),

c⌧a�(⇠) =
Z 1

�1
�(x� a)e�ix⇠

dx

=

Z 1

�1
�(y)e�i(y+a)⇠

dy(y = x� a)

= e
�ia⇠

Z 1

�1
�(y)e�iy⇠

dy

= e
�ia⇠

�̂(⇠)

= e
�ia⇠

.

These are consistent with rule (5).

⇤
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Homework 11

6. Fourier Series and Fourier Transform.

6.5. The discrete Fourier Transform.

Exercise 6.5.1. Show that if f(x) has period 2⇡ and is real-valued, then the
Fourier coe�cients satisfy c�k = ck, and the DFT coe�cients satisfy dN�k = dk

for 0  k < N/2.

Solution. We have

c�k =
1

2⇡

Z 2⇡

0
f(x)eikxdx =

1

2⇡

Z 2⇡

0
f(x)e�ikxdx =

1

2⇡

Z 2⇡

0
f(x)e�ikxdx = ck,

and for W = e
2⇡i/N ,

dN�k =
1

N

N�1X

j=0

f(xj)W
(N�k)j

=
1

N

N�1X

j=0

f(xj)W
Nj

W
�kj

=
1

N

N�1X

j=0

f(xj)W
�kj

=
1

N

N�1X

j=0

f(xj)W
kj

=
1

N

N�1X

j=0

f(xj)W
kj

= dk

⇤
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Exercise 6.5.2. Let
f(x) = 2eix + 1 + 3eix.

Here the Fourier coe�cients are c1 = 3, c0 = 1, and c�1 = 2. Use

dk = ck +
1X

m=�1
ck+mN , 0  k < N/2

and

dN�k = c�k +
1X

m=�1
c�k+mN , 1  k  N/2

to find the DFT coe�cients for N = 2, then for N = 4.

Solution.

• N = 2:

d0 = c0 +
1X

m=�1
cm2 = c0 = 1

d1 = d2�1 = c�1 +
1X

m=�1
c�1+m2 = c�1 + c1 = 5

• N = 4:

d0 = c0 +
1X

m=�1
cm4 = c0 = 1

d1 = c1 +
1X

m=�1
c1+m4 = c1 = 3

d2 = d4�2 = c�2 +
1X

m=�1
c�2+m4 = 0

d3 = d4�1 = c�1 +
1X

m=�1
c�1+m4 = c�1 = 2.

⇤
Exercise 6.5.3. Write an mfile, h.m, for

f̂(⇠) ⇡ hN (⇠) =
N�1X

j=0

f(xj)e
�ixj⇠�x.

Write is as a function h(s,N). Let f(x) = 1 for 0 < x < 2 and f(x) = 0 elsewhere.

(a) Compute the Fourier transform of f , and plot it on the interval �4⇡  ⇠ 
4⇡. Let the transform variable be s.

(b) The function mfile for this kind of discontinuous function is

function y = f(x)

y = (x<2) - (x<= 0)

Using the mfiles h.m and f.m, plot the graphs of hN for various values of
N against the graph of f̂ . Describe how the period of hN lengthens, and
how the fit gets better as N increases. Note that, unless told otherwise,
MATLAB plots the real part of a complex valued function.
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Solution.

(a) We have

f̂(⇠) =

Z 1

�1
f(x)e�ix⇠

dx =

Z 2

0
e
�ix⇠

dx =
1� e

�i2⇠

i⇠

Real and imaginary parts of f̂ , respectively:

(b) The left column displays the real parts of the plots for f̂ and hN , and
the right column displays the imaginary parts of said plots. The rows
correspond to N = 1, 2, 3, 4, 5, 10, 20, 50:
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As N increases, the period of hN lengthens, and hence hN better fits the
plot for f̂ .

⇤
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6.6. The fast Fourier Transform (FFT).

Exercise 6.6.1. Let f(x) = x on [0, 2⇡], and then assume f is extended periodically
to R.

(a) Calculate the complex Fourier coe�cients ck of f according to (6.36).
(b) Make the mfile f.m for this function. Run program fast with N = 4, 8, 16,

32, 64, 256. For each N compare the DFT coe�cients with the Fourier
coe�cients. The program automatically prints out d0. To see the four
DFT coe�cients d1, d2, d3, d4, enter the command d(1:4). Note the rate
of convergence of dk to ck for a fixed k as N ! 1. In particular, note how
slowly Re(dk) ! 0.

(c) Because the periodic extension of f is discontinuous, the Fourier series for f
will converge (at x = 0) to the average value (f(0+)+f(2⇡�))/2 = ⇡. After
the command u=f(xsample) in the script mfile above, insert the command
u(1)=pi. Does this make the DFT coe�cients converge more rapidly to
the Fourier coe�cients?

Solution.

(a) For k 6= 0,

ck =
1

2⇡

Z 2⇡

0
xe

�ikx
dx =

1

2⇡


xe

�ikx

�ik

���
2⇡

0
+

1

ik

Z 2⇡

0
e
�ikx

dx

�
=

i

k
.

For k = 0,

c0 =
1

2⇡

Z 2⇡

0
f(x)e�ikx

dx =
1

2⇡

Z 2⇡

0
xdx = ⇡.

(b) Let dNk denote the kth DFT coe�cient corresponding to a fixed N .

k = 0 k = 1 k = 2 k = 3 k = 4

d
4
k 2.356 �0.7854+

0.75854i
�0.7854+
0.0000i

�0.7854�
0.7854i

d
8
k 2.7489 �0.3927+

0.9481i
�0.3927+
0.3927i

�0.3927+
0.1627i

�0.3927+
0.0000i

d
16
k 2.9452 �0.1963+

0.9871i
�0.1963+
0.4740i

�0.1963+
0.2939i

�0.1963+
0.1963i

d
32
k 3.0434 �0.0982+

0.9968i
�0.0982+
0.4936i

�0.0982+
0.3236i

�0.0982+
0.2370i

d
64
k 3.0925 �0.0491+

0.9992i
�0.0491+
0.4984i

�0.0491+
0.3309i

�0.0491+
0.2468i

d
256
k 3.1293 �0.0123+

0.9999i
�0.0123+
0.4999i

�0.0123+
0.3332i

�0.0123+
0.2498i

ck ⇡ i i/2 i/3 i/4

For fixed k, we see that dNk ! ck as N increases.
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(c)

k = 0 k = 1 k = 2 k = 3 k = 4

d
4
k 3.1416 0.0000 +

0.7854i
0.0000 +
0.0000i

0.0000 �
0.7854i

d
8
k 3.1416 0.0000 +

0.9481i
0.0000 +
0.3927i

0.0000 +
0.1627i

0.0000 +
0.0000i

d
16
k 3.1416 0.0000 +

0.9871i
0.0000 +
0.4740i

0.0000 +
0.2939i

0.0000 +
0.1963i

d
32
k 3.1416 0.0000 +

0.9968i
0.0000 +
0.4936i

0.0000 +
0.3236i

�0.0000+
0.2370i

d
64
k 3.1416 �0.0000+

0.9992i
0.0000 +
0.4984i

�0.0000+
0.3309i

0.0000 +
0.2468i

d
256
k 3.1416 �0.0000+

0.9999i
0.0000 +
0.4999i

0.0000 +
0.3332i

0.0000 +
0.2498i

ck ⇡ i i/2 i/3 i/4

We have Re(dNk ) converging faster than before to Re(ck) as N increases,
but the same rate of convergence for the imaginary parts as before.

⇤
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Homework 12

5. Waves Again.

5.3. The wave equation without boundaries.

Exercise 5.3.3. Consider the IVP

utt = c
2
uxx, x, t 2 R

u(x, 0) = f(x), ut(x, 0) = g(x), x 2 R
with f(x) = 0 and

g(x) =

(
e
�x

, x > 0

�e
x
, x < 0

(a) Sketch the graph of g, how is it similar to the data of exercise 2? Do you
expect the solutions to be similar?

(b) The data g has a singularity at x = 0. In the x, t plane, sketch two charac-
teristics emanating from x = 0. They divide the x, t plane for (t � 0) into
three regions. The singularity in the initial data will propogate along these
lines. You can see that the solution has a jump in ux there.

(c) Find the solution using d’Alembert’s formula. You will need to evaluate
the integral in three di↵erent ways, yielding three di↵erent formulas, one
for each of the three regions.

(d) Show that the solution of this IVP can also be represented

u(x, t) = F (x� ct) +G(x+ ct),

where

F (x) =

(
1
2c (e

�x � 1), x � 0
1
2c (e

x � 1), x < 0

and G(x) = �F (x).
(e) Assume that c = 1. Write an mfile bigf.m for F . Then use the com-

mand plot(x, bigf(x-t)-bigf(x+t)) to plot snapshots of the solution
on [�5, 5] for several values of t > 0.
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Solution.

(a)

The graphs are similar as |x| ! 1, but di↵erent around 0, so we’d
expect the solutions to be similar.

(b)

(c) We have

Z x+ct

x�ct
g(y)dy =

8
>>>>>><

>>>>>>:

R x+ct
x�ct �e

y
dy, x < �ct, t � 0

R x+ct
0 e

�y
dy +

R 0
x�ct �e

y
dy, �ct < x < ct, t � 0

R x+ct
x�ct e

�y
dy, x > ct, t � 0

=

8
><

>:

e
x�ct � e

x+ct
, x < �ct, t � 0

�e
�(x+ct) + e

x�ct
, �ct < x < ct, t � 0

e
�(x�ct) � e

�(x+ct)
, x > ct, t � 0

.

Since f(x) = 0,

u(x, t) =
1

2
[f(x+ ct) + f(x� ct)] +

1

2c

Z x+ct

x�ct
g(y)dy

=

8
><

>:

1
2c (e

x�ct � e
x+ct), x < �ct, t � 0

1
2c (�e

�(x+ct) + e
x�ct), �ct < x < ct, t � 0

1
2c (e

�(x�ct) � e
�(x+ct)), x > ct, t � 0

(d) With the change of variables z = x� ct and w = x+ ct, we have

F (z) = F (x� ct) =

(
1
2c (e

�(x�ct) � 1), x� ct � 0
1
2c (e

x�ct � 1), x� ct < 0

and

G(w) = �F (w) = �F (x+ ct) =

(
1
2c (1� e

�(x+ct)), x+ ct � 0
1
2c (1� e

x+ct), x+ ct < 0
.
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When x < �ct, t � 0, then z = x� ct < 0 and w = x+ ct < 0, so

F (z) +G(w) =
1

2c
(ex�ct � e

x+ct).

When �ct < x < ct, t � 0, then z = x� ct < 0 and w = x+ ct > 0, so

F (z) +G(w) =
1

2c
(�e

�(x+ct) + e
x�ct).

When x > ct, t � 0, then z = x� ct > 0 and w = x+ ct > 0, so

F (z) +G(w) =
1

2c
(e�(x�ct) � e

�(x+ct)).

These match u(x, t) on all three regions.
(e)

⇤

Exercise 5.3.5. Let F (x) = exp[�(x+5)2] and G(x) = exp[�(x�5)2]. Assuming
that c = 1, let u(x, t) = F (x� t) +G(x+ t).

(a) What is the data pair f(x) = u(x, 0), and g(x) = ut(x, 0)?
(b) Write the mfile bigf.m for this F (x). Plot the solution on [�10, 10] for

values of t ranging from 1 to 7. In particular observe snapshots at t = 4.5, 5,
and 5.5. What happens as the two waves interact? Are the waves intact
after this interaction?

Solution.

(a) We have

f(x) = u(x, 0) = F (x) +G(x) = e
�(x+5)2 � 2e�(x�5)2

and

g(x) = ut(x, 0) = �F
0(x) +G

0(x) = 2(x+ 5)e�(x+5)2 + 4(x� 5)e�(x�5)2
.

(b)
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As the two waves interact at t = 5, they become one wave, and after the
interaction, they continue to move intact.

⇤

Exercise 5.3.7.

(a) If a solution of the wave equation is in the form u(x, t) = F (x� ct)+G(x+
ct), show that the energy is

e(t) = e(0) = c
2

Z

R
[(F 0(x))2 + (G0(x))2]dx,

provided this integral converges.
(b) Which of the solutions in exercises 1-6 is a finite-energy solution?

Solution.

(a) We have

u
2
t (x, t) = �c

2
F

02(x� ct)� 2c2F 0(x� ct)G0(x+ ct) + c
2
G

02(x+ ct)

= c
2[F 02(x� ct)� 2F 0(x� ct)G0(x+ ct) +G

02(x+ ct)]

and

c
2
u
2
x(x, t) = c

2 (F 0(x) +G
0(x))

2
= c

2[F 02(x) + 2F 0(x)G0(x) +G
02(x)].

Hence

e(t) =
1

2

Z

R
c
2[F 02(x� ct)� 2F 0(x� ct)G0(x+ ct) +G

02(x+ ct)]

+ c
2[F 02(x) + 2F 0(x)G0(x) +G

02(x)]dx

=
1

2

Z

R
2c2[F 02(z) +G

02(z)]dz

= c
2

Z

R
[(F 0(x))2 + (G0(x))2]dx.
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(b) For Exercise 5.3.3, since f(x) = 0 and
Z

R
g
2(x)dx = �

Z 0

�1
e
2y
dy +

Z 1

0
e
�2y

dy = �1

2
+

1

2
= 0,

and so by Theorem 5.2, e(t) is finite.
For Exercise 5.3.5, we find that

e(t) =

Z

R
[(F 0(x))2 + (G0(x))2]dx = 5

r
⇡

2
< 1.

⇤
Exercise 5.3.9. Consider the equation

utt + 2dut � uxx + d
2
u = 0 x, t 2 R

with initial conditions

u(x, 0) = f(x), ut(x, 0) = g(x), x 2 R.
(a) Let v(x, t) = exp(dt)u(x, t). Show that v satisfies vtt � vxx = 0. What is

the initial data of v?
(b) Solve for v using d’Alembert’s formula. Then find u(x, t) = exp(�dt)v(x, t).
(c) If

R
R |f(x)|dx, max |f(x)|, and

R
R |g(x)|dx are all finite, show that |u(x, t)| 

C exp(�dt), where C is a constant determined by the initial data f, g.

Solution.

(a) We have

vtt � vxx = d
2
e
dt
u+ de

dt
ut + de

dt
ut + e

dt
utt � e

dt
uxx(x, t)

= e
dt(utt + 2dut � uxx + d

2
u)

= 0

(b) We have

v(x, t) =
1

2
[f(x� ct) + f(x+ ct)] +

1

2c

Z

R
df(y) + g(y)dy

and so

u(x, t) = e
�dt

✓
1

2
[f(x� ct) + f(x+ ct)] +

1

2c

Z

R
df(y) + g(y)dy

◆

(c) Based on the hypothesis in (c), the expression in parenthesis immediately
above this sentence is finite in absolute value. So |u(x, t)|  Ce

�dt.

⇤
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Homework 13

5. Waves Again.

5.4. Boundary value problems on the half-line.

Exercise 5.4.1. Consider the IBVP

utt � c
2
uxx = 0, x > 0, t 2 R(5.30)

u(x, 0) = f(x), ut(x, 0) = g(x), x � 0(5.30)

u(0, t) = 0, t 2 R(5.31)

with g(x) ⌘ 0 In this case we have

u(x, t) =
1

2
[f(x+ ct) + f(x� ct)� f(ct� x)].

Let the function f be

f(x) =

8
><

>:

0 0  x < 2

1 2  x < 4

0 x > 4

The initial data has singularities at x = 2 and x = 4.

(a) In the quarter plane {(x, t) : x > 0, t > 0}, sketch the characteristics ema-
nating from x = 2 and x = 4. At what times do the leftward leaning charac-
teristics reach the boundary x = 0? Draw rightward leaning characteristics
from these points on the t axis. These are the reflected characteristics.

(b) The collection of characteristics emanating from x = 2, x = 4 and the
reflected characteristics emanating from the t axis divide the quarter-plane
into nine regions. Use the formula above to find the values of the (weak)
solution u in each of these nine regions. When using this formula, keep in
mind that you are assuming that f(x) = 0 when x < 0.

(c) If you are an observer standing at x = 6, what motion of the string do you
see as t increases?
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Solution.

(a)

The leftward characteristics have equations x = �ct + x0 or t = (x0 �
x)/c, and hence intercept the t axis at t = x0/c (for x0 = 2 and x0 = 4).

(b) In Region 1, we have

�2 < x� ct < 2, x+ ct < 2, �2 < ct� x < 2

so u(x, t) = 1/2(0 + 0� 0) = 0.
In Region 2, we have

2 < x� ct < 4, 2 < x+ ct < 4, �4 < ct� x < �2

so u(x, t) = 1/2(1 + 1� 0) = 1.
In Region 3, we have

x� ct > 4, x+ ct > 4, �4 < ct� x

so u(x, t) = 1/2(0 + 0� 0) = 0.
In Region 4, we have

�2 < x� ct < 2, 2 < x+ ct < 4, �2 < ct� x < 2

so u(x, t) = 1/2(1 + 0� 0) = 1/2.
In Region 5, we have

2 < x� ct < 4, 4 < x+ ct, �4 < ct� x < �2

so u(x, t) = 1/2(0 + 1� 0) = 1/2.
In Region 6, we have

�4 < x� ct < �2, 2 < x+ ct < 4, 2 < ct� x < 4

so u(x, t) = 1/2(1 + 0� 1) = 0.
In Region 7, we have

�2 < x� ct < 2, 4 < x+ ct, �2 < ct� x < 2

so u(x, t) = 1/2(0 + 0� 0) = 0.
In Region 8, we have

x� ct < �4, 4 < x+ ct, 4 < ct� x

so u(x, t) = 1/2(0 + 0� 0) = 0.
In Region 9, we have

�4 < x� ct < �2, 4 < x+ ct, 2 < ct� x < 4

so u(x, t) = 1/2(0 + 0� 1) = �1/2.
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(c) Using (b), we see that the observer would see the motion as follows:

u(6, t) =

8
>>>>>><

>>>>>>:

0 0 < t < 2/c

1/2 2/c < t < 4/c

0 4/c < t < 8/c

�1/2 8/c < t < 10/c

0 t > 10/c

⇤
Exercise 5.4.4.

(a) Make a calculation similar to that made in Section 5.3 to show that the
energy

e(t) =
1

2

Z 1

0
[u2

t + c
2
u
2
x]dx

is conserved for solutions of the (5.30), (5.31), and of (5.30) with the Neu-
mann boundary condition.

(b) What energy quantity is conserved by solutions of (5.30) with the Robin
condition (ux(0, t)� hu(0, t) = 0)?

Solution. First, we have

d

dt
e(t) =

Z 1

0
[uttut + c

2
uxuxt]dx

=

Z 1

0
uttutdx+ c

2

✓
uxut

���
1

0
�
Z 1

0
uxxutdx

◆

=

Z 1

0
ut(utt � c

2
uxx)dx+ c

2
uxut

���
1

0

= c
2
uxut

���
1

0
.

(a) Assuming (5.30), (5.31), and that ux ! 0 as x ! 1, we get that

uxut

���
1

0
= 0,

so our calculation above shows that energy is conserved.
Now assuming (5.30) and the Neumann boundary condition and that

ux ! 0 as x ! 1, we again get that

uxut

���
1

0
= 0,

so our calculation above shows that energy is conserved.
(b) Assuming that ux ! 0 as x ! 1, and the Robin conditions, we get

d

dt
e(t) = c

2
uxut

���
1

0
= c

2(ux(0, t)ut(0, t))

= c
2(hu(0, t)ut(0, t))

= �c
2
h

2

d

dt
u
2(0, t),

so that ẽ(t) = e(t) + (c2h/2)u2(0, t) is the conserved energy.

⇤
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Exercise 5.4.11. Consider the IBVP

utt � c
2
uxx = 0, x > 0

u(x, 0) = ut(x, 0) = 0,

ux(0, t) = h(t),

(a) Again look for the solution in the form of a wave moving to the right down
the string u(x, t) = F (x � ct). Impose the boundary condition, deriving a
simple ODE that F must satisfy. Solve the ODE for F as an integral of h.

(b) Suppose that h(t) = t/(1+t
2) for t > 0 and h(t) = 0 for t < 0. Find u(x, t).

What is limt!1 u(0, t)?

Solution.

(a) We have h(t) = ux(0, t) = F
0(�ct). So with y = �ct,

F (s) = F (s)� F (0) =

Z s

0
F

0(y)dy =

Z s

0
h(�y/c)dy.

(b) When s > 0, then h = 0 so F = 0. If h(�y/c) 6= 0, then �y/c > 0 so when
s < 0,

F (s) =

Z s

0
h(�y/c)dy

=

Z s

0

�y/c

1 + y2/c2
dy

= � c

2

Z 1+s2/c2

c

1

w
dw(w = 1 + y

2
/c)

= � c

2
ln |1 + s

2
/c|

So u = 0 when x � ct, and when x < ct, we have

u(x, t) = F (x� ct) = � c

2
ln |1 + (x� ct)2/c2|

and

lim
t!1

u(0, t) = lim
t!1

� c

2
ln |1 + (�ct)2/c2| = lim

t!1
� c

2
ln |1 + t

2| = �1.

⇤
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Homework 14

5. Waves Again.

5.5. Boundary value problems on a finite interval.

Exercise 5.5.1. Solve the IBVP

utt � c
2
uxx = 0, 0 < x < L, t 2 R
u(0, t) = u(L, t) = 0, t 2 R

u(x, 0) = f(x), ux(x, 0) = g(x), 0 < x < L

with initial data

f(x) = 7 sin(2⇡x/L)� 2 sin(5⇡x/L), g(x) = �4 sin(3⇡x/L).

Think!! You will not need the full expansion of the solution. What frequencies are
present in the solution? What is the period of the motion?

Solution. Since
1X

1

An sin(
n⇡x

L
) = f(x) = 7 sin(2⇡x/L)� 2 sin(5⇡x/L),

we see that An = 0 if n 6= 2 or n 6= 5, and A2 = 7, A5 = �2. Since

1X

1

c(n⇡/L)Bn sin(
n⇡x

L
) = g(x) = �4 sin(3⇡x/L),

we see that c(n⇡/L)Bn = 0 if n 6= 3 and c(3⇡/L)B3 = �4 gives B3 = �4L/3c⇡. So

u(x, t) =
1X

1

[An cos(
cn⇡t

L
) +Bn sin(

cn⇡t

L
)] sin(

n⇡x

L
)

= 7 cos(
c2⇡t

L
) sin(

2⇡x

L
)� 2 cos(

c5⇡t

L
) sin(

5⇡x

L
)

+
�4L

3c⇡
sin(

c3⇡t

L
) sin(

3⇡x

L
)

The frequencies (in cycles per second) which are present in the solution are v2 =
c/L, v3 = c3/2L, v5 = c5/2L. The period of the motion is 2L/c in t. ⇤

Exercise 5.5.2. Solve the IBVP as in Exercise 5.5.1 with homogeneous Neumann
boundary conditions ux(0, t) = ux(L, t) = 0. Take f(x) = 0 and g(x) = x. Use the
formulas

An =
2

L

Z L

0
f(x) cos(

n⇡x

L
)dx n = 0, 1, . . .

!nBn =
2

L

Z L

0
g(x) cos(

n⇡x

L
)dx, n = 1, 2, . . .

B0 =
2

L

Z L

0
g(x)dx.

What frequencies !n = c(n⇡/L) are present in the solution?
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Solution. We see immediately from the formula that An = 0 for all n since f(x) = 0.
Then

B0 =
2

L

Z L

0
xdx = L.

cn⇡

L
Bn =

2

L

Z L

0
x cos(

n⇡x

L
)dx

=
2

L

L

n⇡

 
x sin(

n⇡x

L
)
���
L

0
�
Z L

0
sin(

n⇡x

L
)dx

!

=
2L

(n⇡)2
(cos(n⇡)� 1) .

So

Bn =
2L2

(n⇡)3
(cos(n⇡)� 1) =

(
0 if n ⌘ 0 mod 2

� 4L2

(n⇡)3 if n ⌘ 1 mod 2
.

Hence the frequencies (in cycles per second) which are present in the solution are
vn = c(n/2L) for n ⌘ 1 mod 2. The solution is

u(x, t) =
Lt

2
+

1X

1

� 4L2

(n⇡)3
sin(

cn⇡t

L
) cos(

n⇡x

L
)

⇤

Exercise 5.5.3. Consider the IBVP as in Exercise 5.5.1 with initial data f(x) =
sin(2⇡x/10) and g(x) = 0.

(a) What is the period of the motion?
(b) Write mfiles f.m and g.m with are array-smart. Now run program wave1

with data choice 3, d = k = 0. The time step for wave1 is �t = .025.
Choose the number of time steps n1, n2, n3, n4 so that snap1 is 1/8 period,
snap2 is 1/4 period, etc. Make a number of plots so that you get a complete
picture of the motion. What are the node(s)?

(c) Do the same for the initial data of exercise 1.

Solution.

(a) Based on our initial data, we get that A2 = 1 and An = 0 for all n 6= 2. So
the period of motion is 1/⌫2 = 1/(2c/2L) = L/c = 10/1 = 10.

(b)
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The nodes are at x = 0, 5, 10.
(c)

The nodes are at x = 0, 10.

⇤

Exercise 5.5.12. Solve the inhomogeneous equation

utt � c
2
uxx = q(x, t)

u(x, 0) = f(x), ut(x, 0) = g(x)

with boundary conditions u(0, t) = u(0, L) = 0.

(a) Set f(x) = g(x) = 0 and q(x, t) = e
t sin(2⇡x/L). You will not need a full

eigenfunction expansion.
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(b) Again set f(x) = g(x) = 0 and now set

q(x, t) = sin(2⇡x/L) for 0  t  T, q(x, t) = 0 for t > T.

Solve the equation. What happens to the solution as t ! 1? Does it damp
out, or does it continue to oscillate?

Solution. (a) We have

e
t sin(

2⇡x

L
) = q(x, t) =

1X

1

qn(t) sin(
n⇡x

L
),

so q2(t) = e
t. Since f(x) = g(x) = 0, we get

u(x, t) = sin(
2⇡x

L
)
L

2c⇡

Z t

0
sin(

c2(t� s)⇡

L
))esds

= sin(
2⇡x

L
)
L

2c⇡

 
1

1 +
�
2c⇡
L

�2

!✓
2c⇡

L
e
t � sin(

2c⇡t

L
)� 2c⇡

L
cos(

2c⇡t

L
)

◆

(b) We have

sin(
2⇡x

L
) = q(x, t) =

1X

1

qn(t) sin(
n⇡x

L
),

so q2(t) = 1. Since f(x) = g(x) = 0, we get

u(x, t) = sin(
2⇡x

L
)
L

2c⇡

Z t

0
sin(

c2(t� s)⇡

L
))ds =

L
2

2(c⇡)2
sin(

2⇡x

L
) sin2(

c⇡t

L
).

when 0  t  T , and

u(x, t) = sin(
2⇡x

L
)
L

2c⇡

Z T

0
sin(

c2(t� s)⇡

L
))ds =

L
2

2(c⇡)2
sin(

2⇡x

L
) sin2(

c⇡T

L
)

when t > T . So as t ! 1, the solution continues to oscillate.
⇤

Exercise 5.5.14. Calculate the conserved energy quantity e(t) for the solution of

utt � c
2
uxx = 0

with boundary conditions

ux(0, t) = hu(0, t), ux(L, t) = 0, t 2 R

Solution. Assuming that ux ! 0 as x ! 1, we get

d

dt
e(t) = c

2
uxut

���
1

0
= c

2(ux(0, t)ut(0, t)) = c
2(hu(0, t)ut(0, t)) = �c

2
h

2

d

dt
u
2(0, t),

so that ẽ(t) = e(t) + (c2h/2)u2(0, t) is the conserved energy. ⇤
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