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1. HOMEWORK 1

Exercise 1.1.

(a)
(b)

Suppose F': € — D is a functor (covariant or contravariant) and f : A — B
is an isomorphism in €. Show that F'(f) is an isomorphism in D.

Show that if f is an isomorphism, then f is both a monomorphism and an
epimorphism in €. How about the converse? (Prove it or give a counter-
example).

Let C be a concrete category. Prove that every injective morphism in C is
a monomorphism, and every surjective morphism in € is an epimorphism.
Prove that in R-Mod, or Mod-R, every monomorphism is injective and
every epimorphism is surjective. Give an example of a concrete category
with non-surjective epimorphisms.

If f/ € Home(B, A) is such that fo f' =idp and f’' o f = id4, then in D
idpp) = F(f)o F(f') and idpa) = F(f') o F(f)

if F'is covariant. Similar proof if F' is contravariant.
If g,¢' € Home(X, A) and fog= fog, then

g=idaog=f'ofog=fofog =idaog =g,
so f is a monomorphism. Similarly, if h, h’ € Home(B,Y) and hof = h/of,
then

hZhOidBZhOfOf/:h/OfOf/:h'oidB:h”

so f is an epimorphism.

The converse is not true. Consider the category of Rings with 1 (mor-
phisms sending 1 to 1). The inclusion map f : Z — Q is non-surjective,
but is an epimorphism and a monomorphism: If 4, ' : Q — R for any ring
R and hf = h'f, then h = h’ since

B (g) _Nfla) _Wfla) _ (g)
b/ hf(b) (D) b/
Ifg,9': R— Z and fg = fg', then f(g(r)) = f(g'(r)) implies g(r) = g'(r)
for all r € R since f is injective. So g = ¢'.
In a concrete category C :

If f € Home(A, B) is injective and fog = fog for g,¢' € Home(X, A),
then for all x € X we have f(g(z)) = f(¢'(x)), which implies g(z) = ¢'(z)
for all z € X, and hence g = ¢’. So f is a monomorphism.
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If f € Home(A, B) is surjective and ho f = h/og for h, h’ € Home(B,Y),
then for all b € B there exists a € A so that f(a) =b. So we have h(b) =
h(f(a)) =h'(f(a)) = W' (b), and hence h = h’. So f is an epimorphism.

In R-Mod :

If f € Hompg(A, B) is a monomorphism, let i : Ker(f) < A be the
inclusion. Then foi = fo0soi=0,ie. fisinjective. If f € Hompg(A4, B)
is an epimorphism and p : B — B/im f is the natural projection, then
pf =0=0f, which implies p =0, so B =im f.

Counter-example:

The example given in part (b) is an example of a concrete category with
a non-surjective epimorphism.

O

Exercise 1.2. Let F' : R-Mod — Ab be an additive functor (covariant or con-

travariant). Suppose 0 — A L BBCS50isa split short exact sequence of
(unital) left R-modules. Prove that F(B) & F(A @ C) and that F(A® C) =
F(A)e® F(C).

Proof. Since the sequence is short exact, B = A @ C, and so the isomorphism
F(B) 2 F(A @ C) follows from Exercise 1.1, part (a).

Let py : A@C — A and poc : A® C — A be the projection maps, and let
ig: A— A®C and ic : C — A ® C be the inclusions. First assume that F' is
covariant. Define maps

f:F(A®C)— F(A)e F(C)
z = (F(pa)(z), F(pc)(x)), and
g:F(A)e F(C)— FAa(C)
(u,v) — F(ia)(u) + F(ic) ).
Since they are defined in terms of morphisms in Ab, both f and g are themselves
group homomorphisms. Since pais = ida and poic = idg, we get
fg(u,v) = f(Fia(u) + Fic(v))

= (Fpa(Fia(u) + Fic(v)), Fpc(Fia(u) + Fic(v)))

= (FpaFia(u) + FpaFic(v), FpcFia(u) + FpcFic(v))

= (u+ F(paic)(v), F(pcia)(u) +v).
Let 0 denote the zero map in R-Mod or Ab. Since F' is additive, F'(0) = 0. Hence

it follows that fg = idpa)er(c)- Using the additivity of F' and the fact that
iapa +icpc = idagc, we get

9f(x) = FiaFpa(x) + FicFpc(x) = F(iapa +icpc)(z) = .

So gf = idp(agc), which shows that F(A® C) = F(A) @ F(C).
If F is contravariant, the following maps give the desired isomorphism:

[z (F(ia)(x), Flic)(z)) and g : (u,v) = F(pa)(u) + F(pc)(v).
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2. HOMEWORK 2

Exercise 2.1. Let € = R-Mod or Mod-R, let (I, <) be a directed partially ordered
set, and let K be a cofinal subset (for all ¢ € I, there exists k € K with ¢ < k).

(a) If ({As}ier, {¥}}i<j) is a direct system in € with index set I, prove that
({Axtker, {¢f tr<e) is a direct system in € with index set K. Moreover
prove that the direct limits of both these direct systems are isomorphic.
Show that this may be false if I is not directed.

(b) Same question, but for an inverse system.

Proof of (a). Since K C I, {Ag}rek is a collection of modules in €, and moreover,
ept = @2 for all ky < ko < ks in K. So ({A}rex, {¢f br<e) is a direct system
in € with index set K.

Let (¢ : Aj — [1;c; Ai) be the inclusions for the coproduct (direct sum). Define

S = <{ng0§»ai —a;|i<jinl and a; € Az}> C HAi'

Now let a := (o : Aj = [[A;/S)jer be the collection of morphisms defined by
precomposing the natural projection with the inclusions. Let lim Ax be the direct
limit of the direct system which is indexed over K. We know that

lig 4; = (JT 4 /5. @),

and hence to show lim A; = ligAk, we will show that lim A; satisfies the universal

mapping property of li_n}Ak. To that end, suppose X € Ob(C) and (fy : Ax —

X)kex is a collection of morphisms in € satisfying fj = fggo;? forall k </ in K.
Let i € I. Since K is cofinal, there exists k; € K such that i < k;. Define a map

i [TA — X (@) — Y frbh,a

el i€l

Since all but finitely many coordinates of (a;); are zero, 1 is well-defined. Also, v
is a module homomorphism since it is defined in terms of module homomorphisms.
Notice that for ¢ < jin I,

Liota; — via; =: (am) where a4, =4¢—a; ifm=i1
j%oj 7 1 tq . m)mel m 7 — b
0 if m #£ 1, j.

So

(2.1.1) G(@m)m = fi, h, P50 = frih, @i
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Now, the hypostheses that I is directed and K is cofinal together imply that there
exists £ € K so that k; </ and k; < £. Hence we get the following diagram in €:

Notice that since k;, k; and £ are all in K, the top two triangles commute. Hence
the entire diagram commutes. In particular,

fkj%j@; = fr,h,
and so Equation 2.1.1 becomes ¢ (dm)m = 0. Since elements of the form (@,)m
generate S, we have ¥(S) = 0, and hence 9 induces a well defined morphism

U :]J]Ai/S — X. Moreover, for £ in K and a; € Ay, Yaya, = f;w(pf;eag = fray,
so ¥ makes the diagram commute:

Y
X e lim A,
N
Ay
f a
14 pr; 14
Ay

Now if U : liﬂAi — X is another morphism in € making the diagram commute,
then \i'aki = fi, for all k; € K, and so
\Il((al)z + S) = Z fkicpf;iai = Z \ilakigoiiai = \ifz o;a; = \i/((al)l + S)

K2

Therefore, ¥ is unique, and hence li_r)nAi = @Ak. [l

Consider I = {0,1,2} with partial order 0 < 1 and 0 < 2. We get the pushout as
our direct limit, so liglAi = A1 [[A2/S where S := {(¥9(ag), —¢3(ao)) : ag € Ao}

0
©
Ay ——— Ay

4

AQ —_— Al HAQ/S

The subset K = {1,2} is cofinal and its associated direct system has direct limit
ligAk = A; ][] A2, which is not isomorphic to @Ai = A1 [[A2/S, ( unless of
course S = 0, in which case ¢ and ¢ are both the zero map. So just assume
they’re not).
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Exercise 2.2. Let R, S be rings, let (I, <) be a partially ordered set.

(a)

Proof.

(b)

If ({Ai}iex, {@}}icy) is a direct system in R-Mod with index set I, prove
that there is an exact sequence in R-Mod

I]:IJ:Z%j l; I]:fh f; E23/4i4$ 0
icl jel i€l
i<j
where B;; = A; for all ¢ < j.
If ({Ciliek, {wg}izj) is an inverse system in € with index set I, prove
that there is an exact sequence
O‘%LEECE-;'IICE'291]:IIIDU
el i€l jel
i<j
where D;; = C; for all ¢ < j.
Let F : R-Mod — S-Mod be an additive left exact functor.
If F' is covariant and preserves direct products, prove that F' preserves
inverse limits.
If F is contravariant and converts direct sums into direct products, prove
that F' converts direct limits into inverse limits.

First, p is the natural projection, and ¢ is inclusion. Let ¢; : A; — [],c; A
be the jth inclusion for the coproduct. Define f by the rule
(@i)jeric)ics — D D tihas — Lidi.
iel jel
1<
The sum is well-defined since we are working over coproducts, and so only
finitely many components of tuples are nonzero. By definition of lim A4;, an
element (a;); € [ A; is in ker p if and only if it is a finite sum of elements
of the form ¢jpja; — t;a;, and so im f = ker p. Next, define g by the rule
(ci)ier — ((¢ng - Ci)je],igj)l .
el
An element (¢;); € [[C; is in ker g is and only if z/chj =¢; foralli <jin
I. This is precisely the definition of the elements of LiilCi.
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Exercise 2.3. Let G be a group and let A/ be the family of all normal subgroups
of finite index in G.
(a) If N/ C N in NV then there is a homomorphism ¥ : G/N’ — G/N. Show
that the family of all such quotients together with the maps wjj\\,’/ forms an
inverse system over ' where N < N’ iff N’ C N.
(b) The inverse limit of the system in (a), lim G/N, is denoted by G and is
called the profinite completion of G. There is a natural homomorphism
f:G — G sending g to (¢N)nen- Show that f is injective if and only if
G is residually finite, i.e. yen N ={1a}-
(¢c) Write down the profinite completion of Z, viewed as a subgroup under
addition.

Proof.
(a) The map w%l : G/N' = G/N given by gN' — gN is a well-defined group
homomorphism since N’ € N. Moreover, when N < N’ < N”
'(/}N/wN’N (gN") = wz]\\;/ (gN') = gN = 1/’1\1” (gN"),
50 ({G/NYyen; {N Y n<n-) forms an inverse system over .
(b) Follows from the fact that
ker f = {g: (gN)ven = (N)ven} ={g:g e NYNeN} = (| N
NeN

(¢) The normal subgroups of Z with finite index are all nonzero subgroups since
Z is abelian, i.e. N = {nZ | n € Z*}. Moreover

nlm <= mZ CnZ <= nZ <mZ
So
Jim Z/nZ = {(an +nZl)pez+ € H Z/n| v (@, +nZ) = ay, + nZ,Vnm}

nezZ+

{(an +nZ)pez+ € H Z/n|am + nZ = ay, + nZ, Vn|m}

neZt

= {(an +nZl)pez+ € H Z/n|ay, — an, € nZ, Vn|m} .

nezZt
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3. HOMEWORK 3

Exercise 3.1.

(a)

(b)

Proof.
(a)

(b)

Show that the Z-module Z/2 does not have a projective cover. (You can
use without proof that over a PID every projective module, whether or not
it is finitely generated, is free.)

Let R be a left Artinian ring, and let M be a finitely generated left R-
module. Prove that M has a projective cover.

Suppose there exists an essential epimorphism € : P — Z/2 for a projective,
hence free, Z-module P = EBZ-GI Z, where [ is some index set. Since € is not
the zero map, at least of the group generators for @, Z maps to 1+ 27Z, say
x. But €((3z)) = Z/2 and (3z) < €, Z, contradicting that e is essential.
Let L € Ob(gproj) with an epimorphism f : L - M. Let S be the set
of all submodules N C Ker(f) so that fy : L/N — M is an essential
epimorphism. Now § # @ since L/Ker(f) = M. Since R is Artinian
and L is finitely generated, then L is Artinian and hence S has a minimal
element, say X. It remains to show that L/X is projective.

Ifn:L— L/X,then f =mo fx. So if 7 is essential, then f is essential,
and we are done. If not, let Y C L be a minimal submodule such that
m(Y)=L/X. Then 7|y : Y — L/X is essential, and since L is projective,
we find a surjective map g : L — Y so that 7 = 7]y o g.

L/Kerg

el
L
Ir

Y%L/XT»M

TK“y

g

Since g is surjective, then ¢ is an isomorphism. So the composition
fx om|y o g is an essential epimorphism. By the minimality of X in S,
X CKerg. Now if £ € Kerg, then £+ X = 7({) =0+ X, so X = Kerg.
Hence the map h : L/X — L given by £ + X — g¢(¢) is a well-defined
R-module homomorphism. Moreover

(moh)(l+X) =m(g(£)) = wly(9(£)) = m(£) = £ + X,
hence o h =idz,x, and so X @ L/X = L, implying L/X is projective.
O
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Exercise 3.2. This exercise gives an example of a direct system ({B;}icr, {©}}i<;)
of right R-modules over a directed partially ordered set (I, <) such that thi is
flat, but not all B; are flat.

Let k be a field and let R = k[z,y] be the polynomial ring over &k in two com-
muting variables x, y.

(a)

Let m = (z,y) be the maximal ideal of R. Prove that m is not a flat R-
module by showing that the inclusion map ¢ : m — R does not stay injective
when tensoring with m over R.

Let I = {1,2} with 1 < 2, so I is a directed partially ordered set. Consider
the direct system m — R of R-modules, indexed by I. Show that the direct
limit of this direct system is isomorphic to R. Since R is flat over R but m
is not flat over R, this gives an example of the desired kind.

Themapm@RmM)m(@RRsendstby—y@xto

2RYy—yRr=zy®l—-yz®l=(y—yzr)®1=0.

We claim 2 ® y — y ®  is not zero in m ® g m, so idy, ® ¢ is not injective,
i.e., m is not a flat R-module.

Let @ := a +m?, for all @ € m. From the natural map 7 : m — m/m?
we obtain ‘

mepm T op m/m?,

which sends z ® y — y ® x to the element * ® §y — y ® T. Hence to prove our
claim, it suffices to show that 2 ® § — y ® T is not zero in m ®z m/m2.

Let ax + by € m, where a,b € R have constant terms ag, by, respectively.
Since m? contains all monomials of degree at least 2, then

ax + by = apT + boy,
and hence T and 7 span m/m? over k. Moreover if agx + boy € m?2, then
aox + boy = Ok, implying ag = by = 0 and hence m/m? = kT @ k7.

Notice that in m ®z m/m?, a simple tensor (az + by) ® (coT + do¥),
where a,b € R, co,dy € k, equals (apx + boy) ® (coT + doy) where ag, by
are the constant terms of a, b, respectively. It follows that 7 ® idy /2 is an
isomorphism. Since — ® g m/m? preserves direct limits, we get

m®rm/m? 2 m/m? @gm/m? 2 (kT @ kj) @r (kT @ k7))
=hTOrT)OKTORY) ORI ORT) DY ORT).

Via this isomorphism, TRy —y®T — TR Y — Y R T, the latter of which

cannot be zero since T ® ¥ and ¥ ® T are members of a k-basis.

Given a diagram

D
X €70 "R

I A
fr O IE idr
R

define @ := fr. Then ® makes the diagram commute and is unique, so
R hg(m — R).
O
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Exercise 3.3.

(a) Given two exact sequences of R-modules (all left or all right R-modules)
0-B—-E"-FE' —-...5E" X -0 and
0+B—=D"—-D'—-...5D" Y =0,

where all E¢ and D? are injective, prove that
XeD'oE" 'eoD"?0---2YQE"OD" 'QOE" ?®- -
(b) Given two exact sequences of R-modules (all left or all right R-modules)

0O-K—+PFP,—-P,_1—--—Fp—->B—0 and
0=+L—=>Qn—=>Qp1— —Qy—B—=0,

where all P; and @); are projective, prove that
K@Qn@Pnfl@Qn72@gL@Pn@anl@Pn72®
Proof.

(a) By induction on n. The case n = 0 is the dual statement of Schanuel’s
Lemma. Now suppose the statement is true for n > 0. For all i, let
fi: B! - E'and ¢* : D'~! — D%, From the dual statement of Schanuel’s
Lemma, using the short exact sequences

0
0> B3 EY » E°/Ker f' 50 and
0
0— B 25 D" - D°/Kerg' — 0,
we have E° @ (D°/Kerg') = D% @ (E°/ Ker f!). This gives sequences

e (5 7)

2
0D 7i Dert O pe Lt L x
er
DO <idE0~01> ,
0—>EO@Ke - 0 9 prept 09 p2 oy prtl Ly g
rg

Note that D° @ E' and E° @ D! are injective, since the product of
injective modules is injective. Moreover we have

Ker(idDO 0 ) =~ Ker f! = Ker !/ Ker f' =0,

0o f?
Ker (0 r2) = D° @ Ker f?
=D®Im f*
Im f! + Ker f!
~*pleg —f ——
@ Ker f!

o idho O
flm( (’)3 f1>’
Im (o0 f2) = Im f? = Ker f3,

with similar statements for the second sequence. So the sequences are exact
and we are in the situation of our induction hypothesis, hence

XoD"""eoE oD ... XY E" ' D"®E" ...
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(b) By induction on n. The case n = 0 is Schanuel’s Lemma. Now suppose the

statement is true forn > 0. For all i, let f; : P, - P,y and g; : Q; — Qi_1.
From Schanuel’s Lemma, using the short exact sequences

0=Tmfie P 2% B0 and
0—Img — Qo 2% B — 0,
we have Im f; & Qg = Im g1 ® Py. This gives sequences

(%) (% 2,)

0=-K—=>P1— =P —>P®Q ———=ImfidQo—0
g1 0
(902) <%1id1’0)
O—>L—>Qn+1—>"'—>Q2—>Q1@P0—>Img1@Po—>O

Note that Q1 & Py and P; & @y are projective since the coproduct of
projective modules is projective. Moreover we have

Im({)l id(;0> =1Im f; © Qo,
Im (f2) = Im fo = Ker f; %Ker(% idg())’
Ker(%) %Kerfg :Imf?))

with similar statements for the second sequence. So the sequences are exact
and we are in the situation of our induction hypothesis, hence

K@Qn+1@Pn@Qn—l@%L@Pn—i-l@Qn@Pn—l@
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4. HOMEWORK 4

Exercise 4.1. A full subcategory Cq of C is said to be a skeleton of C if every object
in € is isomorphic to exactly one object in Cy. Assuming the Axiom of Choice (e.g.,
using the Godel-Bernays system), prove that € and € are equivalent categories.
Show that € and €y need not be isomorphic categories (give an example).

Proof. For all X € Ob(C), let X denote the object in €y for which X = X, and
choose an isomorphism fx : X — X. Define

F:C— Cy
Xr— X
(f: X = X)—— Ff:=fxofofx'
For all X, X’ € Ob(€), define
Fx x+ : Home, (X, X') — Home(X, X')

g— fxlogo fx.
Then

FFE(g) = F(fx!ogofx)=fxofx/ ogofxofx' =g
and R R

FE(f)=F(fxrofofx')=fx/ofxofofx ofx =1
So F ' is fully faithful. Moreover, since Cg is a skeleton of €, if Y € €y, there exists
X € Ob(€) so that X =Y, hence Y = F(X), implying F is dense. Hence F is an
equivalence.

The category € of finite ordered sets is equivalent to the full subcategory €y of
finite ordered sets of the form [n] := {1 <2 < --- <n} forn € Z*. Let N € Ob(C)
and suppose |N| = n. Let N, denote the jth element in N. Then N = [n] via the
map N; — j, and moreover, [n] is the only object in €y isomorphic to N, since [n]
is the only set in Cy of cardinality n. So €y is a skeleton of €. However, € 2 Cy,
since any isomorphism would need to uniquely identify the object in Cy with, say,
cardinality n, with an object in € with, say, cardinality m. But there are many
such objects in €, so any choice would leave other objects in € with cardinality m
unaccounted for. O
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Exercise 4.3. Let F, F’ : € — D and G,G’ : € — C be covariant functors.

(a)
(b)
(c)

Proof.
(a)

Prove: If (F,G) and (F’,G) are adjoint pairs, then F' and F’ are naturally
isomorphic.

Prove: If (F,G) and (F,G’) are adjoint pairs, then G and G’ are naturally
isomorphic.

Prove: If F' and G are quasi-inverses of each other, then (F,G) and (G, F)
are adjoint pairs.

For all X € Ob(€) and for all Y € Ob(D), there exists a natural bijection
Py : Homp (F'(X),Y) — Homp (F(X),Y).
For all X € Ob(C), define nx : F(X) — F'(X) by
nx = Px prx)(idp(x))-
Then for all f € Home(X, Z) we have a diagram, each square commutative:

<I>x,F’(x)

Homp (F'(X), F'(X)) Homap (F(X), F'(X))

(F/f){ J(F/f)*
oo ’
Homy (F/'(X), F'(Z)) —=“ Homyp (F(X), F'(Z))
(F' f)* T(Ff)*
ol ’
Homy, (F'(2), F'(Z)) —=2% Homy (F(Z), F'(Z))

So

F'fonx = (F'f)«(nx) = (Px,pr(z) 0 (F' f)«)(idr (x))
= ®x pr(z)(F'f)
= (‘I’X,F'(Z) o (F,f)*)(idF’(Z))
= (Ff)*(nz)
=nzoFf.

Hence 17 = {7x } xcob(e) is natural. In a similar manner we may define a
natural transformation € = {ex }xcon(e) : £ — F by

€Ex = (D)_(,lF(X)(ldF(X))
Using the diagram

Px rr(x)

Homqp (F'(X), F/ (X)) Homq (F(X), F'(X))

(ex )« l(ex)*

Homa (F/(X), F(X)) —2%% Homp (F(X), F(X))

)
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we have
ex onx = ((ex)« o Px pr(x))(idpr(x))
= (‘I’X,F(X) © (eX)*)(idF’(X))
= ®x pix)(ex)
= idF(X)

Similarly, nx o ex = idp/(x). So 7 is a natural isomorphism.

For all X € Ob(€) and for all Y € Ob(D), there exists a natural bijection
Uxy : Home (X, G'(Y)) — Home(X, G(Y)).
For all Y € Ob(D), define ny : G(Y) — G'(Y) by
ny = Yaryy,y (idervy)-
Then for all g € Homq, (Y, W) we have a diagram, each square commutative:

Yaryy),y

Home(G'(Y),G'(Y)) ————— Home(G'(Y), G

(G/g)*J J Gg)*

Home (G (Y), /(W) —Z0%, Home (G

o] ]

Y),
Home (G (W), G/(W)) “Z2% Home (G/(W),
So
Ggony = (Gg)«(nv) = (Yar(v)w o (G'9).) (idar(v))
= Ve (v),w(G'g)
= (Yo (v),w © (G'9)")(ider(w))
= (G'9)"(nw)
=nwoGg.
Hence n = {1y }ycob(p) is natural. In a similar manner we may define a
natural transformation € = {ey }ycon(n) : G'(Y) = G(Y) by
€y = \I’é}(y)’y(idG(y)).

As in part (a), we have ny o ey = idg/(y) and ey ony =idgy). Sonis a
natural isomorphism.



14

NICHOLAS CAMACHO

(¢) There exists a natural isomorphism 7 : Ide — GF. Since G is fully faithful,

for all X € Ob(€) and for all Y € Ob(D), there are maps between the
classes

Home (GF(X),G(Y)) «— Homp (F(X),Y).

which are two-sided inverses to one another. In particular, for all 8 €
Home (X, G(Y)), there exists a unique 8 € Homqp (F(X),Y) so that

G =Borx’
So for all X € Ob(€) and for all Y € Ob(D), define maps
Oy y : Homp(F(X),Y)) = Home(X,G(Y)) : ¥xy
a+— Gaory,
B p.
TE(_%\D/\I/X’y(@X’y(a)) = GE;;)(. Since Ga = Ga o Tx © T§17 then o =

GaoTx. Moreover, xy(Uxy(B)) = GBorx' = f. Hence (F,G) is an
adjoint pair. Exchanging the roles of F' and G, we see also that (G, F) is
an adjoint pair.

O
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5. HOMEWORK 5

Exercise 5.1. Let m € Z*, and let R = Z/m.
(a) Let A = Z/d where d|lm, and let B be an arbitrary R-module. Determine
TorZ(A, B) for all n > 0.
(b) Let C be an arbitrary R-module, and let D = Z/p where p|m. Determine
Extk(C, D) for all n > 0 in terms of Hompg(C, R). Moreover, show that if
p?|m, then Ext}(D, D) = D for all n.

(a) Consider the maps R ™% R and R % R, multiplication by m/d and
d, respectively. We have d((m/d)(a + mZ) = 0 + mZ, hence Im(m/d) C
Ker(d). If db + mZ = 0 + mZ, then there exists ¢ € Z with db = ¢m. So
(m/d)(c + mZ) = b+ mZ, which shows Ker(d) = Im(m/d). Similarly, we
get Ker(m/d) = Im(d).

Now let R < A be the canonical surjection. Then
e(da +mZ) =da+ dZ =0+ mZ,
and if e(b+mZ) = 04dZ, then b = da for some a € Z, so da+mZ = b+mZ.
Hence Ker(¢) = Im(d). So we get a periodic free resolution of A:

LR™MLRAL RS A0,

For n > 1, let 8,, = m/d if n is even, and 9,, = d if n is odd. Then

(Pa).: - BREZERI R0

We have commutative diagram, where the vertical arrows are each the map
ZTZ' ®b1 — Zribi:

(P4). @ B): - 2998 o299 pe,. B2 e, B — 0
i ,p_™* ,p d B 0
Hence

Tor (A, B) = B/dB = Ay B
(n odd) Tor®(A,B) = {be B | db = 0}/(m/d)B
(n even) Tor®(A,B) = {be B | (m/d)b = 0}/dB

(b) Consider the maps R £ R and R LN R, multiplication by p and m/p,
respectively. Similarly as in part (a), we get that Ker(p) = Im(m/p) and

Ker(m/p) = Im(p). Since p|m, let m = pa, and consider the map
t:D—= R, 14+pZ— a+mZ.

Since pa+mZ = 0+mZ, then pt = 0 and hence Im(¢) C Ker(p). Conversely,
if pb + mZ = 0 + mZ, there exists ¢ € Z with pb = ¢cm. Then mb =
apb = acm, implying b = ac. So (¢ + pZ) = ac + mZ = b+ mZ, and so
Ker(p) = Im(¢). So we get a periodic injective resolution of D:

0sDSRERTPRE ...
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Forn >0, let 6" =pif n =0 mod 2 and let 6" = m/pif n =1 mod 2.
Then we get a truncated cochain complex for D

. 50 1 62
Erp: 0R—R—R—---.
Then

2

0 1
Homp(C,E}): 0 — Homp(C, R) 2= Homp(C, R) 2= Homp(C,R) 25 - -

So
Ext%(C,D) = {a:C — R | pa = 0} = Homp(C, D)
(n odd) Ext™(C,D) = {3:C — R | (m/p)S = O}/pHomR(C’, R)
(n even) Extg(C,D)={y:C = R|py= O}/(m/p) Hompg(C, R)

Now consider the periodic free resolution of D, where € is the canonical
surjection

LR RY RS D 0.
For n > 1, let 8,, = m/p if n is even, and 9,, = p if n is odd. Then
(Pp).: - EBRZRI R0

and we have a commutative diagram, where the vertical arrows are all the
map a — a1l +mZ):

Homp((Pp).,D): 0 — Homp(R,D) 2 Homp(R,D) 2 Homp(R,D) — ---
0 p—"" . p P D

Suppose that p%|m, so m = p?c for some ¢ € Z and m/p = pc. Hence
Ker(m/p: D — D) ={a+pZ | (pc)a € pZ} = D
Im(p: D — D)=pD =0
and Ker(p: D — D)=D
Im(m/p: D — D) = (m/p)D = (pc)D = 0.
So Ext’s(D, D) = D for all n > 0.
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Exercise 5.3. Use the definition of abelian category from lecture, i.e. A is an
abelian category if A is an additive category, every morphism in A has a kernel
and cokernel, every monomorphism in A is the kernel of its cokernel, and every
epimorphism in A is the cokernel of its kernel.

Using only this definition and the definitions of kernel and cokernel in an additive
categroy, prove that every morphism f : A — B in A factors as f = ma for an
empimorphism « : A — K and a monomorphism m : K — B (where K is a suitable
object in A).

Proof. Let (C, ) = Coker(f) and (K, m) = Ker(Coker(f)) = Ker(r). Since 7f =0
and (K, m) = Ker, there exists a unique « such that f = ma.

At ,p_m,¢

X T
m
K
Since m is a kernel, m is monic. We will show that « is epic.

Suppose ra = sa. Let (X,t) = Ker(r — s). Since (r — s)a = 0, there exists a
unique 5 : A — X such that o = 5. Let (D, 7) = Coker(mu).

D

At .p ¢

ﬁl me

X 5 K%Y

Since mme = 0, we have
0=7mmuf =7ma="f.
So, since Coker(f) = (C, ), there exists a unique v : C — D with # = 7. Since
me is monic,
(X, me) = Ker(Coker(mt)) = Ker(7).
So the equation
mm = yrm = 0,

implies that there exists a unique map ¢ : K — X so that m = mud.

K
1N e
X e B/ﬁ\‘D

But m is monic, so td = idg. Hence ¢ is a monic retraction, implying ¢ is an
isomorphism (we proved this fact on a homework last semester in Algebra). Hence
(r —s)¢ =0 implies r = s, so « is epic. O
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