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HOMOLOGICAL ALGEBRA

NICHOLAS CAMACHO

1. Homework 1

Exercise 1.1.

(a) Suppose F : C! D is a functor (covariant or contravariant) and f : A! B

is an isomorphism in C. Show that F (f) is an isomorphism in D.
(b) Show that if f is an isomorphism, then f is both a monomorphism and an

epimorphism in C. How about the converse? (Prove it or give a counter-
example).

(c) Let C be a concrete category. Prove that every injective morphism in C is
a monomorphism, and every surjective morphism in C is an epimorphism.
Prove that in R-Mod, or Mod-R, every monomorphism is injective and
every epimorphism is surjective. Give an example of a concrete category
with non-surjective epimorphisms.

Proof.

(a) If f 0 2 HomC(B,A) is such that f � f 0 = idB and f
0 � f = idA, then in D

idF (B) = F (f) � F (f 0) and idF (A) = F (f 0) � F (f)

if F is covariant. Similar proof if F is contravariant.
(b) If g, g0 2 HomC(X,A) and f � g = f � g0, then

g = idA �g = f
0 � f � g = f

0 � f � g0 = idA �g0 = g
0
,

so f is a monomorphism. Similarly, if h, h0 2 HomC(B, Y ) and h�f = h
0�f ,

then

h = h � idB = h � f � f 0 = h
0 � f � f 0 = h

0 � idB = h
0
,

so f is an epimorphism.
The converse is not true. Consider the category of Rings with 1 (mor-

phisms sending 1 to 1). The inclusion map f : Z ,! Q is non-surjective,
but is an epimorphism and a monomorphism: If h, h0 : Q! R for any ring
R and hf = h

0
f , then h = h

0 since

h

⇣
a

b

⌘
=

hf(a)

hf(b)
=

h
0
f(a)

h0f(b)
= h

0
⇣
a

b

⌘
.

If g, g0 : R! Z and fg = fg
0, then f(g(r)) = f(g0(r)) implies g(r) = g

0(r)
for all r 2 R since f is injective. So g = g

0.
(c) In a concrete category C :

If f 2 HomC(A,B) is injective and f � g = f � g0 for g, g0 2 HomC(X,A),
then for all x 2 X we have f(g(x)) = f(g0(x)), which implies g(x) = g

0(x)
for all x 2 X, and hence g = g

0. So f is a monomorphism.
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2 NICHOLAS CAMACHO

If f 2 HomC(A,B) is surjective and h�f = h
0�g for h, h0 2 HomC(B, Y ),

then for all b 2 B there exists a 2 A so that f(a) = b. So we have h(b) =
h(f(a)) = h

0(f(a)) = h
0(b), and hence h = h

0. So f is an epimorphism.
In R-Mod :
If f 2 HomR(A,B) is a monomorphism, let i : Ker(f) ,! A be the

inclusion. Then f � i = f �0 so i = 0, i.e. f is injective. If f 2 HomR(A,B)
is an epimorphism and p : B ! B/ im f is the natural projection, then
pf = 0 = 0f , which implies p = 0, so B = im f .

Counter-example:
The example given in part (b) is an example of a concrete category with

a non-surjective epimorphism.

⇤

Exercise 1.2. Let F : R-Mod ! Ab be an additive functor (covariant or con-

travariant). Suppose 0 ! A
i�! B

p�! C ! 0 is a split short exact sequence of
(unital) left R-modules. Prove that F (B) ⇠= F (A � C) and that F (A � C) ⇠=
F (A)� F (C).

Proof. Since the sequence is short exact, B ⇠= A � C, and so the isomorphism
F (B) ⇠= F (A� C) follows from Exercise 1.1, part (a).

Let pA : A � C ! A and pC : A � C ! A be the projection maps, and let
iA : A ! A � C and iC : C ! A � C be the inclusions. First assume that F is
covariant. Define maps

f : F (A� C)! F (A)� F (C)

x 7! (F (pA)(x), F (pC)(x)), and

g : F (A)� F (C)! F (A� C)

(u, v) 7! F (iA)(u) + F (iC)(v).

Since they are defined in terms of morphisms in Ab, both f and g are themselves
group homomorphisms. Since pAiA = idA and pCiC = idC , we get

fg(u, v) = f(FiA(u) + FiC(v))

= (FpA(FiA(u) + FiC(v)), FpC(FiA(u) + FiC(v)))

= (FpAFiA(u) + FpAFiC(v), FpCFiA(u) + FpCFiC(v))

= (u+ F (pAiC)(v), F (pCiA)(u) + v).

Let 0 denote the zero map in R-Mod or Ab. Since F is additive, F (0) = 0. Hence
it follows that fg = idF (A)�F (C). Using the additivity of F and the fact that
iApA + iCpC = idA�C , we get

gf(x) = FiAFpA(x) + FiCFpC(x) = F (iApA + iCpC)(x) = x.

So gf = idF (A�C), which shows that F (A� C) ⇠= F (A)� F (C).
If F is contravariant, the following maps give the desired isomorphism:

f : x 7! (F (iA)(x), F (iC)(x)) and g : (u, v) 7! F (pA)(u) + F (pC)(v).

⇤
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2. Homework 2

Exercise 2.1. Let C = R-Mod or Mod-R, let (I,) be a directed partially ordered
set, and let K be a cofinal subset (for all i 2 I, there exists k 2 K with i  k).

(a) If ({Ai}i2I , {'i
j}ij) is a direct system in C with index set I, prove that

({Ak}k2K , {'k
` }k`) is a direct system in C with index set K. Moreover

prove that the direct limits of both these direct systems are isomorphic.
Show that this may be false if I is not directed.

(b) Same question, but for an inverse system.

Proof of (a). Since K ⇢ I, {Ak}k2K is a collection of modules in C, and moreover,
'
k1
k3

= '
k2
k3
'
k1
k2

for all k1  k2  k3 in K. So ({Ak}k2K , {'k
` }k`) is a direct system

in C with index set K.
Let (◆j : Aj !

`
i2I Ai) be the inclusions for the coproduct (direct sum). Define

S :=
⌦
{◆j'i

jai � ◆iai | i  j in I, and ai 2 Ai}
↵
⇢

a
Ai.

Now let ↵ := (↵j : Aj !
`

Ai

�
S)j2I be the collection of morphisms defined by

precomposing the natural projection with the inclusions. Let lim�!Ak be the direct
limit of the direct system which is indexed over K. We know that

lim�!Ai =
⇣a

Ai

.
S, ↵

⌘
,

and hence to show lim�!Ai
⇠= lim�!Ak, we will show that lim�!Ai satisfies the universal

mapping property of lim�!Ak. To that end, suppose X 2 Ob(C) and (fk : Ak !
X)k2K is a collection of morphisms in C satisfying fk = f`'

k
` for all k  ` in K.

Let i 2 I. Since K is cofinal, there exists ki 2 K such that i  ki. Define a map

 :
a

i2I

Ai �! X, (ai)i 7�!
X

i2I

fki'
i
ki
ai.

Since all but finitely many coordinates of (ai)i are zero,  is well-defined. Also,  
is a module homomorphism since it is defined in terms of module homomorphisms.
Notice that for i  j in I,

◆j'
i
jai � ◆iai =: (ãm)m2I where ãm =

8
><

>:

'
i
jai if m = j,

�ai if m = i,

0 if m 6= i, j.

So

(2.1.1)  (ãm)m = fkj'
j
kj
'
i
jai � fki'

i
ki
ai.
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Now, the hypostheses that I is directed and K is cofinal together imply that there
exists ` 2 K so that ki  ` and kj  `. Hence we get the following diagram in C:

X

A`

Aki Akj

Ai Aj

f`

'
ki
`

fki

'
kj
`

fkj

'i
ki

'i
j

'i
`

'j
kj

'j
`

Notice that since ki, kj and ` are all in K, the top two triangles commute. Hence
the entire diagram commutes. In particular,

fkj'
j
kj
'
i
j = fki'

i
ki
,

and so Equation 2.1.1 becomes  (ãm)m = 0. Since elements of the form (ãm)m
generate S, we have  (S) = 0, and hence  induces a well defined morphism
 :

`
Ai/S �! X. Moreover, for ` in K and a` 2 A`,  ↵`a` = fk`'

`
k`
a` = f`a`,

so  makes the diagram commute:

X lim�!Ai

Ak

A`

 

fk ↵k

'k
`

f` ↵`

Now if  ̃ : lim�!Ai ! X is another morphism in C making the diagram commute,

then  ̃↵ki = fki for all ki 2 K, and so

 ((ai)i+ S) =
X

i

fki'
i
ki
ai =

X

i

 ̃↵ki'
i
ki
ai =  ̃

X

i

↵iai =  ̃((ai)i + S).

Therefore,  is unique, and hence lim�!Ai
⇠= lim�!Ak. ⇤

Consider I = {0, 1, 2} with partial order 0 < 1 and 0 < 2. We get the pushout as
our direct limit, so lim�!Ai = A1

`
A2/S where S := {('0

1(a0),�'0
2(a0)) : a0 2 A0}.

A0 A1

A2 A1
`

A2/S

'0
1

'0
2

The subset K = {1, 2} is cofinal and its associated direct system has direct limit
lim�!Ak = A1

`
A2, which is not isomorphic to lim�!Ai = A1

`
A2/S, ( unless of

course S = 0, in which case '0
1 and '

0
1 are both the zero map. So just assume

they’re not).
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Exercise 2.2. Let R,S be rings, let (I,) be a partially ordered set.

(a) If ({Ai}i2K , {'i
j}ij) is a direct system in R-Mod with index set I, prove

that there is an exact sequence in R-Mod
a

i2I

a

j2I
ij

Bij
f�!

a

i2I

Ai
p�! lim�!Ai ! 0

where Bij = Ai for all i  j.

If ({Ci}i2K , { j
i }i�j) is an inverse system in C with index set I, prove

that there is an exact sequence

0! lim �Ci
◆�!
Y

i2I

Ci
g�!

Y

i2I

Y

j2I
ij

Dij

where Dij = Ci for all i  j.
(b) Let F : R-Mod �! S-Mod be an additive left exact functor.

If F is covariant and preserves direct products, prove that F preserves
inverse limits.

If F is contravariant and converts direct sums into direct products, prove
that F converts direct limits into inverse limits.

Proof.

(a) First, p is the natural projection, and ◆ is inclusion. Let ◆j : Aj !
`

i2I Ai

be the jth inclusion for the coproduct. Define f by the rule

((aij)j2I,ij)i2I 7�!
X

i2I

X

j2I
ij

◆j'
i
jaij � ◆iaij .

The sum is well-defined since we are working over coproducts, and so only
finitely many components of tuples are nonzero. By definition of lim�!Ai, an
element (ai)i 2

`
Ai is in ker p if and only if it is a finite sum of elements

of the form ◆j'
i
jai � ◆iai, and so im f = ker p. Next, define g by the rule

(ci)i2I 7�!
⇣
( j

i cj � ci)j2I,ij

⌘

i2I
.

An element (ci)i 2
Q

Ci is in ker g is and only if  j
i cj = ci for all i  j in

I. This is precisely the definition of the elements of lim �Ci.
(b)

⇤
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Exercise 2.3. Let G be a group and let N be the family of all normal subgroups
of finite index in G.

(a) If N 0 ✓ N in N then there is a homomorphism  
N 0

N : G/N
0 ! G/N . Show

that the family of all such quotients together with the maps  N 0

N forms an
inverse system over N where N  N

0 i↵ N
0 ✓ N .

(b) The inverse limit of the system in (a), lim �G/N , is denoted by Ĝ and is
called the profinite completion of G. There is a natural homomorphism
f : G ! Ĝ sending g to (gN)N2N . Show that f is injective if and only if
G is residually finite, i.e.

T
N2N N = {1G}.

(c) Write down the profinite completion of Z, viewed as a subgroup under
addition.

Proof.

(a) The map  N 0

N : G/N
0 ! G/N given by gN

0 7! gN is a well-defined group
homomorphism since N

0 ✓ N . Moreover, when N  N
0  N

00

 
N 0

N  
N 00

N 0 (gN 00) =  
N 0

N (gN 0) = gN =  
N 00

N (gN 00),

so ({G/N}N2N , { N 0

N }NN 0) forms an inverse system over N .
(b) Follows from the fact that

ker f = {g : (gN)N2N = (N)N2N } = {g : g 2 N 8N 2 N} =
\

N2N
N

(c) The normal subgroups of Z with finite index are all nonzero subgroups since
Z is abelian, i.e. N = {nZ | n 2 Z+}. Moreover

n|m () mZ ✓ nZ () nZ  mZ
So

lim �Z/nZ =

(
(an + nZ)n2Z+ 2

Y

n2Z+

Z/n
��� mZ

nZ (am + nZ) = an + nZ, 8n|m
)

=

(
(an + nZ)n2Z+ 2

Y

n2Z+

Z/n
���am + nZ = an + nZ, 8n|m

)

=

(
(an + nZ)n2Z+ 2

Y

n2Z+

Z/n
���am � an 2 nZ, 8n|m

)
.

⇤



HOMOLOGICAL ALGEBRA 7

3. Homework 3

Exercise 3.1.

(a) Show that the Z-module Z/2 does not have a projective cover. (You can
use without proof that over a PID every projective module, whether or not
it is finitely generated, is free.)

(b) Let R be a left Artinian ring, and let M be a finitely generated left R-
module. Prove that M has a projective cover.

Proof.

(a) Suppose there exists an essential epimorphism ✏ : P ⇣ Z/2 for a projective,
hence free, Z-module P ⇠=

L
i2I Z, where I is some index set. Since ✏ is not

the zero map, at least of the group generators for
L

i Z maps to 1+2Z, say
x. But ✏(h3xi) = Z/2 and h3xi �

L
i Z, contradicting that ✏ is essential.

(b) Let L 2 Ob(Rproj) with an epimorphism f : L ⇣ M . Let S be the set
of all submodules N ✓ Ker(f) so that fN : L/N ! M is an essential
epimorphism. Now S 6= ? since L/Ker(f) ⇠= M . Since R is Artinian
and L is finitely generated, then L is Artinian and hence S has a minimal
element, say X. It remains to show that L/X is projective.

If ⇡ : L⇣ L/X, then f = ⇡ � fX . So if ⇡ is essential, then f is essential,
and we are done. If not, let Y ( L be a minimal submodule such that
⇡(Y ) = L/X. Then ⇡|Y : Y ⇣ L/X is essential, and since L is projective,
we find a surjective map g : L⇣ Y so that ⇡ = ⇡|Y � g.

L/Ker g

L

Y L/X M

g̃

 ⇡
g

⇡|Y fX

Since g is surjective, then g̃ is an isomorphism. So the composition
fX � ⇡|Y � g̃ is an essential epimorphism. By the minimality of X in S,
X ✓ Ker g. Now if ` 2 Ker g, then ` +X = ⇡(`) = 0 +X, so X = Ker g.
Hence the map h : L/X ! L given by ` + X 7! g(`) is a well-defined
R-module homomorphism. Moreover

(⇡ � h)(`+X) = ⇡(g(`)) = ⇡|Y (g(`)) = ⇡(`) = `+X,

hence ⇡ � h = idL/X , and so X � L/X ⇠= L, implying L/X is projective.

⇤



8 NICHOLAS CAMACHO

Exercise 3.2. This exercise gives an example of a direct system ({Bi}i2I , {'i
j}ij)

of right R-modules over a directed partially ordered set (I,) such that lim�!Bi is
flat, but not all Bi are flat.

Let k be a field and let R = k[x, y] be the polynomial ring over k in two com-
muting variables x, y.

(a) Let m = (x, y) be the maximal ideal of R. Prove that m is not a flat R-
module by showing that the inclusion map ◆ : m! R does not stay injective
when tensoring with m over R.

(b) Let I = {1, 2} with 1 < 2, so I is a directed partially ordered set. Consider
the direct system m ,! R of R-modules, indexed by I. Show that the direct
limit of this direct system is isomorphic to R. Since R is flat over R but m
is not flat over R, this gives an example of the desired kind.

Proof.

(a) The map m⌦R m
idm ⌦ ◆�����! m⌦R R sends x⌦ y � y ⌦ x to

x⌦ y � y ⌦ x = xy ⌦ 1� yx⌦ 1 = (xy � yx)⌦ 1 = 0.

We claim x⌦ y� y⌦x is not zero in m⌦R m, so idm⌦ ◆ is not injective,
i.e., m is not a flat R-module.

Let a := a + m2, for all a 2 m. From the natural map ⇡ : m ⇣ m/m2,
we obtain

m⌦R m
idm ⌦ ⇡�����! m⌦R m/m2

,

which sends x⌦ y� y⌦ x to the element x⌦ y� y⌦ x. Hence to prove our
claim, it su�ces to show that x⌦ y � y ⌦ x is not zero in m⌦R m/m2.

Let ax+ by 2 m, where a, b 2 R have constant terms a0, b0, respectively.
Since m2 contains all monomials of degree at least 2, then

ax+ by = a0x+ b0y,

and hence x and y span m/m2 over k. Moreover if a0x + b0y 2 m2, then
a0x+ b0y = 0K , implying a0 = b0 = 0 and hence m/m2 = kx� ky.

Notice that in m ⌦R m/m2, a simple tensor (ax + by) ⌦ (c0x + d0y),
where a, b 2 R, c0, d0 2 k, equals (a0x + b0y) ⌦ (c0x + d0y) where a0, b0

are the constant terms of a, b, respectively. It follows that ⇡⌦ idm/m2 is an
isomorphism. Since �⌦R m/m2 preserves direct limits, we get

m⌦R m/m2 ⇠= m/m2 ⌦R m/m2 ⇠= (kx� ky)⌦R (kx� ky)
⇠= k(x⌦R x)� k(x⌦R y)� k(y ⌦R x)� k(y ⌦R y).

Via this isomorphism, x⌦y�y⌦x 7�! x⌦y�y⌦x, the latter of which
cannot be zero since x⌦ y and y ⌦ x are members of a k-basis.

(b) Given a diagram

X R

m

R

�

�
fm

fR idR

define � := fR. Then � makes the diagram commute and is unique, so
R ⇠= lim�!(m ,! R).

⇤
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Exercise 3.3.

(a) Given two exact sequences of R-modules (all left or all right R-modules)

0! B ! E
0 ! E

1 ! · · ·! E
n ! X ! 0 and

0! B ! D
0 ! D

1 ! · · ·! D
n ! Y ! 0,

where all Ei and D
i are injective, prove that

X �D
n � E

n�1 �D
n�2 � · · · ⇠= Y � E

n �D
n�1 � E

n�2 � · · ·

(b) Given two exact sequences of R-modules (all left or all right R-modules)

0! K ! Pn ! Pn�1 ! · · ·! P0 ! B ! 0 and

0! L! Qn ! Qn�1 ! · · ·! Q0 ! B ! 0,

where all Pi and Qi are projective, prove that

K �Qn � Pn�1 �Qn�2 � · · · ⇠= L� Pn �Qn�1 � Pn�2 � · · ·

Proof.

(a) By induction on n. The case n = 0 is the dual statement of Schanuel’s
Lemma. Now suppose the statement is true for n > 0. For all i, let
f
i : Ei�1 ! E

i and g
i : Di�1 ! D

i. From the dual statement of Schanuel’s
Lemma, using the short exact sequences

0! B
f0

�! E
0 ⇣ E

0
/Ker f1 ! 0 and

0! B
0 g0

�! D
0 ⇣ D

0
/Ker g1 ! 0,

we have E
0 � (D0

/Ker g1) ⇠= D
0 � (E0

/Ker f1). This gives sequences

0! D
0 � E

0

Ker f1

✓
idD0 0

0 f̃1

◆

��������! D
0 � E

1 ( 0 f2 )����! E
2 ! · · ·! E

n+1 ! X ! 0

0! E
0 � D

0

Ker g1

✓
idE0 0

0 g̃1

◆

�������! E
0 �D

1 ( 0 g2 )����! D
2 ! · · ·! D

n+1 ! Y ! 0

Note that D
0 � E

1 and E
0 � D

1 are injective, since the product of
injective modules is injective. Moreover we have

Ker
⇣

idD0 0

0 f̃1

⌘
⇠= Ker f̃1 ⇠= Ker f1

/Ker f1 = 0,

Ker ( 0 f2 ) = D
0 �Ker f2

= D
0 � Im f

1

⇠= D
0 � Im f

1 +Ker f1

Ker f1

= Im
⇣

idD0 0

0 f̃1

⌘
,

Im ( 0 f2 ) ⇠= Im f
2 = Ker f3

,

with similar statements for the second sequence. So the sequences are exact
and we are in the situation of our induction hypothesis, hence

X �D
n+1 � E

n �D
n�1 � · · · ⇠= Y � E

n+1 �D
n � E

n�1 � · · · .
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(b) By induction on n. The case n = 0 is Schanuel’s Lemma. Now suppose the
statement is true for n > 0. For all i, let fi : Pi ! Pi�1 and gi : Qi ! Qi�1.
From Schanuel’s Lemma, using the short exact sequences

0! Im f1 ,! P0
f0�! B ! 0 and

0! Im g1 ,! Q0
g0�! B

0 ! 0,

we have Im f1 �Q0
⇠= Im g1 � P0. This gives sequences

0! K ! Pn+1 ! · · ·! P2

⇣
f2
0

⌘

���! P1 �Q0

✓
f1 0
0 idQ0

◆

�������! Im f1 �Q0 ! 0

0! L! Qn+1 ! · · ·! Q2
( g20 )
���! Q1 � P0

✓
g1 0
0 idP0

◆

�������! Im g1 � P0 ! 0

Note that Q1 � P0 and P1 � Q0 are projective since the coproduct of
projective modules is projective. Moreover we have

Im
⇣

f1 0
0 idQ0

⌘
= Im f1 �Q0,

Im
�
f2
0

� ⇠= Im f2 = Ker f1 ⇠= Ker
⇣

f1 0
0 idQ0

⌘
,

Ker
�
f2
0

� ⇠= Ker f2 = Im f3,

with similar statements for the second sequence. So the sequences are exact
and we are in the situation of our induction hypothesis, hence

K �Qn+1 � Pn �Qn�1 � · · · ⇠= L� Pn+1 �Qn � Pn�1 � · · · .
⇤
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4. Homework 4

Exercise 4.1. A full subcategory C0 of C is said to be a skeleton of C if every object
in C is isomorphic to exactly one object in C0. Assuming the Axiom of Choice (e.g.,
using the Gödel-Bernays system), prove that C and C0 are equivalent categories.
Show that C and C0 need not be isomorphic categories (give an example).

Proof. For all X 2 Ob(C), let X̃ denote the object in C0 for which X ⇠= X̃, and
choose an isomorphism fX : X ! X̃. Define

F : C �! C0

X 7�! X̃

(f : X ! X
0) 7�! Ff := fX0 � f � f�1

X

For all X,X
0 2 Ob(C), define

F̂X,X0 : HomC0(X̃, X̃ 0) �! HomC(X,X
0)

g 7�! f
�1
X0 � g � fX .

Then
FF̂ (g) = F (f�1

X0 � g � fX) = fX0 � f�1
X0 � g � fX � f�1

X = g,

and
F̂F (f) = F̂ (fX0 � f � f�1

X ) = f
�1
X0 � fX0 � f � f�1

X � fX = f.

So F is fully faithful. Moreover, since C0 is a skeleton of C, if Y 2 C0, there exists
X 2 Ob(C) so that X̃ = Y , hence Y = F (X), implying F is dense. Hence F is an
equivalence.

The category C of finite ordered sets is equivalent to the full subcategory C0 of
finite ordered sets of the form [n] := {1 < 2 < · · · < n} for n 2 Z+. Let N 2 Ob(C)
and suppose |N | = n. Let Nj denote the jth element in N . Then N ⇠= [n] via the
map Nj 7! j, and moreover, [n] is the only object in C0 isomorphic to N , since [n]
is the only set in C0 of cardinality n. So C0 is a skeleton of C. However, C 6⇠= C0,
since any isomorphism would need to uniquely identify the object in C0 with, say,
cardinality n, with an object in C with, say, cardinality m. But there are many
such objects in C, so any choice would leave other objects in C with cardinality m

unaccounted for. ⇤
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Exercise 4.3. Let F, F 0 : C! D and G,G
0 : C! C be covariant functors.

(a) Prove: If (F,G) and (F 0
, G) are adjoint pairs, then F and F

0 are naturally
isomorphic.

(b) Prove: If (F,G) and (F,G0) are adjoint pairs, then G and G
0 are naturally

isomorphic.
(c) Prove: If F and G are quasi-inverses of each other, then (F,G) and (G,F )

are adjoint pairs.

Proof.

(a) For all X 2 Ob(C) and for all Y 2 Ob(D), there exists a natural bijection

�X,Y : HomD(F 0(X), Y ) �! HomD(F (X), Y ).

For all X 2 Ob(C), define ⌘X : F (X)! F
0(X) by

⌘X := �X,F 0(X)(idF 0(X)).

Then for all f 2 HomC(X,Z) we have a diagram, each square commutative:

HomD(F 0(X), F 0(X)) HomD(F (X), F 0(X))

HomD(F 0(X), F 0(Z)) HomD(F (X), F 0(Z))

HomD(F 0(Z), F 0(Z)) HomD(F (Z), F 0(Z))

�X,F 0(X)

(F 0f)⇤ (F 0f)⇤

�X,F 0(Z)

�Z,F 0(Z)

(F 0f)⇤ (Ff)⇤

So

F
0
f � ⌘X = (F 0

f)⇤(⌘X) = (�X,F 0(Z) � (F 0
f)⇤)(idF 0(X))

= �X,F 0(Z)(F
0
f)

= (�X,F 0(Z) � (F 0
f)⇤)(idF 0(Z))

= (Ff)⇤(⌘Z)

= ⌘Z � Ff.

Hence ⌘ = {⌘X}X2Ob(C) is natural. In a similar manner we may define a
natural transformation ✏ = {✏X}X2Ob(C) : F

0 ! F by

✏X := ��1
X,F (X)(idF (X))

Using the diagram

HomD(F 0(X), F 0(X)) HomD(F (X), F 0(X))

HomD(F 0(X), F (X)) HomD(F (X), F (X))

�X,F 0(X)

(✏X)⇤ (✏X)⇤

�X,F (X)
,
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we have

✏X � ⌘X = ((✏X)⇤ � �X,F 0(X))(idF 0(X))

= (�X,F (X) � (✏X)⇤)(idF 0(X))

= �X,F (X)(✏X)

= idF (X) .

Similarly, ⌘X � ✏X = idF 0(X). So ⌘ is a natural isomorphism.

(b) For all X 2 Ob(C) and for all Y 2 Ob(D), there exists a natural bijection

 X,Y : HomC(X,G
0(Y )) �! HomC(X,G(Y )).

For all Y 2 Ob(D), define ⌘Y : G(Y )! G
0(Y ) by

⌘Y :=  G0(Y ),Y (idG0(Y )).

Then for all g 2 HomD(Y,W ) we have a diagram, each square commutative:

HomC(G0(Y ), G0(Y )) HomC(G0(Y ), G(Y ))

HomC(G0(Y ), G0(W )) HomC(G0(Y ), G(W ))

HomC(G0(W ), G0(W )) HomC(G0(W ), G(W ))

 G0(Y ),Y

(G0g)⇤ (Gg)⇤

 G0(Y ),W

 G0(W ),W

(G0g)⇤ (G0g)⇤

So

Gg � ⌘Y = (Gg)⇤(⌘Y ) = ( G0(Y ),W � (G0
g)⇤)(idG0(Y ))

=  G0(Y ),W (G0
g)

= ( G0(Y ),W � (G0
g)⇤)(idG0(W ))

= (G0
g)⇤(⌘W )

= ⌘W �G0
g.

Hence ⌘ = {⌘Y }Y 2Ob(D) is natural. In a similar manner we may define a
natural transformation ✏ = {✏Y }Y 2Ob(D) : G

0(Y )! G(Y ) by

✏Y :=  �1
G0(Y ),Y (idG(Y )).

As in part (a), we have ⌘Y � ✏Y = idG0(Y ) and ✏Y � ⌘Y = idG(Y ). So ⌘ is a
natural isomorphism.
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(c) There exists a natural isomorphism ⌧ : IdC ! GF . Since G is fully faithful,
for all X 2 Ob(C) and for all Y 2 Ob(D), there are maps between the
classes

HomC(GF (X), G(Y )) ! HomD(F (X), Y ).

which are two-sided inverses to one another. In particular, for all � 2
HomC(X,G(Y )), there exists a unique �̃ 2 HomD(F (X), Y ) so that

G�̃ = � � ⌧�1
X .

So for all X 2 Ob(C) and for all Y 2 Ob(D), define maps

�X,Y : HomD(F (X), Y )) ��! �� HomC(X,G(Y )) :  X,Y

↵ 7�! G↵ � ⌧X ,

�̃  � [ �.

Then  X,Y (�X,Y (↵)) = Ĝ↵ � ⌧X . Since G↵ = G↵ � ⌧X � ⌧�1
X , then ↵ =

Ĝ↵ � ⌧X . Moreover, �X,Y ( X,Y (�)) = G�̃ � ⌧�1
X = �. Hence (F,G) is an

adjoint pair. Exchanging the roles of F and G, we see also that (G,F ) is
an adjoint pair.

⇤
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5. Homework 5

Exercise 5.1. Let m 2 Z+, and let R = Z/m.

(a) Let A = Z/d where d|m, and let B be an arbitrary R-module. Determine
TorRn (A,B) for all n � 0.

(b) Let C be an arbitrary R-module, and let D = Z/p where p|m. Determine
ExtnR(C,D) for all n � 0 in terms of HomR(C,R). Moreover, show that if
p
2|m, then ExtnR(D,D) ⇠= D for all n.

Proof.

(a) Consider the maps R
m/d���! R and R

d�! R, multiplication by m/d and
d, respectively. We have d((m/d)(a + mZ) = 0 + mZ, hence Im(m/d) ✓
Ker(d). If db + mZ = 0 + mZ, then there exists c 2 Z with db = cm. So
(m/d)(c +mZ) = b +mZ, which shows Ker(d) = Im(m/d). Similarly, we
get Ker(m/d) = Im(d).

Now let R
✏�! A be the canonical surjection. Then

✏(da+mZ) = da+ dZ = 0 +mZ,
and if ✏(b+mZ) = 0+dZ, then b = da for some a 2 Z, so da+mZ = b+mZ.
Hence Ker(✏) = Im(d). So we get a periodic free resolution of A:

· · · d�! R
m/d���! R

d�! R
✏�! A! 0.

For n � 1, let @n = m/d if n is even, and @n = d if n is odd. Then

(PA)· : · · · @3�! R
@2�! R

@1�! R! 0.

We have commutative diagram, where the vertical arrows are each the mapP
ri ⌦ bi 7!

P
ribi:

((PA)· ⌦R B) : · · · R⌦R B R⌦R B R⌦R B 0

· · · B B B 0

@3⌦idB

⇠=

@2⌦idB

⇠=

@1⌦idB

⇠=

d m/d d

Hence

Torn0 (A,B) ⇠= B/dB ⇠= A⌦R B

TorRn (A,B) ⇠= {b 2 B | db = 0}
.
(m/d)B(n odd)

TorRn (A,B) ⇠= {b 2 B | (m/d)b = 0}
.
dB(n even)

(b) Consider the maps R
p�! R and R

m/p���! R, multiplication by p and m/p,
respectively. Similarly as in part (a), we get that Ker(p) = Im(m/p) and
Ker(m/p) = Im(p). Since p|m, let m = pa, and consider the map

◆ : D ! R, 1 + pZ 7! a+mZ.
Since pa+mZ = 0+mZ, then p◆ = 0 and hence Im(◆) ✓ Ker(p). Conversely,
if pb + mZ = 0 + mZ, there exists c 2 Z with pb = cm. Then mb =
apb = acm, implying b = ac. So ◆(c + pZ) = ac + mZ = b + mZ, and so
Ker(p) = Im(◆). So we get a periodic injective resolution of D:

0! D
◆�! R

p�! R
m/p���! R

p�! · · · .
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For n � 0, let �n = p if n ⌘ 0 mod 2 and let �n = m/p if n ⌘ 1 mod 2.
Then we get a truncated cochain complex for D

E·D : 0! R
�0�! R

�1�! R
�2�! · · · .

Then

HomR(C,E·D) : 0! HomR(C,R)
�0⇤�! HomR(C,R)

�1⇤�! HomR(C,R)
�2⇤�! · · ·

So

Ext0R(C,D) = {↵ : C ! R | p↵ = 0} ⇠= HomR(C,D)

ExtnR(C,D) = {� : C ! R | (m/p)� = 0}
.
pHomR(C,R)(n odd)

ExtnR(C,D) = {� : C ! R | p� = 0}
.
(m/p)HomR(C,R)(n even)

Now consider the periodic free resolution of D, where ✏ is the canonical
surjection

· · · p�! R
m/p���! R

p�! R
✏�! D ! 0.

For n � 1, let @n = m/p if n is even, and @n = p if n is odd. Then

(PD)· : · · · @3�! R
@2�! R

@1�! R! 0

and we have a commutative diagram, where the vertical arrows are all the
map ↵ 7! ↵(1 +mZ):

HomR((PD)·, D) : 0 HomR(R,D) HomR(R,D) HomR(R,D) · · ·

0 D D D · · ·

@⇤
1

⇠= ⇠=

@⇤
2

⇠=
m/p p

Suppose that p2|m, so m = p
2
c for some c 2 Z and m/p = pc. Hence

Ker(m/p : D ! D) = {a+ pZ | (pc)a 2 pZ} = D

Im(p : D ! D) = pD = 0

and Ker(p : D ! D) = D

Im(m/p : D ! D) = (m/p)D = (pc)D = 0.

So ExtnR(D,D) ⇠= D for all n � 0.

⇤
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Exercise 5.3. Use the definition of abelian category from lecture, i.e. A is an
abelian category if A is an additive category, every morphism in A has a kernel
and cokernel, every monomorphism in A is the kernel of its cokernel, and every
epimorphism in A is the cokernel of its kernel.

Using only this definition and the definitions of kernel and cokernel in an additive
categroy, prove that every morphism f : A ! B in A factors as f = m↵ for an
empimorphism ↵ : A! K and a monomorphism m : K ! B (where K is a suitable
object in A).

Proof. Let (C,⇡) = Coker(f) and (K,m) = Ker(Coker(f)) = Ker(⇡). Since ⇡f = 0
and (K,m) = Ker⇡, there exists a unique ↵ such that f = m↵.

A B C

K

f

↵

⇡

m

Since m is a kernel, m is monic. We will show that ↵ is epic.
Suppose r↵ = s↵. Let (X, ◆) = Ker(r � s). Since (r � s)↵ = 0, there exists a

unique � : A! X such that ↵ = ◆�. Let (D, ⇡̃) = Coker(m◆).

D

A B C

X K Y

�

f

↵

⇡

⇡̃

◆

m

r�s

Since ⇡̃m◆ = 0, we have

0 = ⇡̃m◆� = ⇡̃m↵ = ⇡̃f.

So, since Coker(f) = (C,⇡), there exists a unique � : C ! D with ⇡̃ = �⇡. Since
m◆ is monic,

(X,m◆) = Ker(Coker(m◆)) = Ker(⇡̃).

So the equation
⇡̃m = �⇡m = 0,

implies that there exists a unique map � : K ! X so that m = m◆�.

K

C

X B D

�
m

�

m◆

⇡

⇡̃

But m is monic, so ◆� = idK . Hence ◆ is a monic retraction, implying ◆ is an
isomorphism (we proved this fact on a homework last semester in Algebra). Hence
(r � s)◆ = 0 implies r = s, so ↵ is epic. ⇤
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