Homework for Homological Algebra

Nicholas Camacho
Department of Mathematics
University of Iowa
Spring 2018

Beware: Some solutions may be incorrect!

HOMOLOGICAL ALGEBRA

NICHOLAS CAMACHO

1. Homework 1

Exercise 1.1.

(a) Suppose $F: \mathcal{C} \rightarrow \mathcal{D}$ is a functor (covariant or contravariant) and $f: A \rightarrow B$ is an isomorphism in \mathcal{C}. Show that $F(f)$ is an isomorphism in \mathcal{D}.
(b) Show that if f is an isomorphism, then f is both a monomorphism and an epimorphism in \mathcal{C}. How about the converse? (Prove it or give a counterexample).
(c) Let \mathcal{C} be a concrete category. Prove that every injective morphism in \mathcal{C} is a monomorphism, and every surjective morphism in \mathcal{C} is an epimorphism. Prove that in R-Mod, or Mod- R, every monomorphism is injective and every epimorphism is surjective. Give an example of a concrete category with non-surjective epimorphisms.

Proof.
(a) If $f^{\prime} \in \operatorname{Hom}_{\mathcal{C}}(B, A)$ is such that $f \circ f^{\prime}=\operatorname{id}_{B}$ and $f^{\prime} \circ f=\operatorname{id}_{A}$, then in \mathcal{D}

$$
\operatorname{id}_{F(B)}=F(f) \circ F\left(f^{\prime}\right) \quad \text { and } \quad \operatorname{id}_{F(A)}=F\left(f^{\prime}\right) \circ F(f)
$$

if F is covariant. Similar proof if F is contravariant.
(b) If $g, g^{\prime} \in \operatorname{Hom}_{\mathcal{C}}(X, A)$ and $f \circ g=f \circ g^{\prime}$, then

$$
g=\mathrm{id}_{A} \circ g=f^{\prime} \circ f \circ g=f^{\prime} \circ f \circ g^{\prime}=\operatorname{id}_{A} \circ g^{\prime}=g^{\prime}
$$

so f is a monomorphism. Similarly, if $h, h^{\prime} \in \operatorname{Hom}_{\mathcal{C}}(B, Y)$ and $h \circ f=h^{\prime} \circ f$, then

$$
h=h \circ \operatorname{id}_{B}=h \circ f \circ f^{\prime}=h^{\prime} \circ f \circ f^{\prime}=h^{\prime} \circ \operatorname{id}_{B}=h^{\prime},
$$

so f is an epimorphism.
The converse is not true. Consider the category of Rings with 1 (morphisms sending 1 to 1). The inclusion map $f: \mathbb{Z} \hookrightarrow \mathbb{Q}$ is non-surjective, but is an epimorphism and a monomorphism: If $h, h^{\prime}: \mathbb{Q} \rightarrow R$ for any ring R and $h f=h^{\prime} f$, then $h=h^{\prime}$ since

$$
h\left(\frac{a}{b}\right)=\frac{h f(a)}{h f(b)}=\frac{h^{\prime} f(a)}{h^{\prime} f(b)}=h^{\prime}\left(\frac{a}{b}\right) .
$$

If $g, g^{\prime}: R \rightarrow \mathbb{Z}$ and $f g=f g^{\prime}$, then $f(g(r))=f\left(g^{\prime}(r)\right)$ implies $g(r)=g^{\prime}(r)$ for all $r \in R$ since f is injective. So $g=g^{\prime}$.
(c) In a concrete category \mathcal{C} :

If $f \in \operatorname{Hom}_{\mathcal{C}}(A, B)$ is injective and $f \circ g=f \circ g^{\prime}$ for $g, g^{\prime} \in \operatorname{Hom}_{\mathcal{C}}(X, A)$, then for all $x \in X$ we have $f(g(x))=f\left(g^{\prime}(x)\right)$, which implies $g(x)=g^{\prime}(x)$ for all $x \in X$, and hence $g=g^{\prime}$. So f is a monomorphism.

[^0]If $f \in \operatorname{Hom}_{\mathcal{C}}(A, B)$ is surjective and $h \circ f=h^{\prime} \circ g$ for $h, h^{\prime} \in \operatorname{Hom}_{\mathcal{C}}(B, Y)$, then for all $b \in B$ there exists $a \in A$ so that $f(a)=b$. So we have $h(b)=$ $h(f(a))=h^{\prime}(f(a))=h^{\prime}(b)$, and hence $h=h^{\prime}$. So f is an epimorphism.

In R-Mod :

If $f \in \operatorname{Hom}_{R}(A, B)$ is a monomorphism, let $i: \operatorname{Ker}(f) \hookrightarrow A$ be the inclusion. Then $f \circ i=f \circ \mathbf{0}$ so $i=\mathbf{0}$, i.e. f is injective. If $f \in \operatorname{Hom}_{R}(A, B)$ is an epimorphism and $p: B \rightarrow B / \operatorname{im} f$ is the natural projection, then $p f=\mathbf{0}=\mathbf{0} f$, which implies $p=\mathbf{0}$, so $B=\operatorname{im} f$.

Counter-example:
The example given in part (b) is an example of a concrete category with a non-surjective epimorphism.

Exercise 1.2. Let $F: \mathrm{R}-\mathrm{Mod} \rightarrow \mathrm{Ab}$ be an additive functor (covariant or contravariant). Suppose $0 \rightarrow A \xrightarrow{i} B \xrightarrow{p} C \rightarrow 0$ is a split short exact sequence of (unital) left R-modules. Prove that $F(B) \cong F(A \oplus C)$ and that $F(A \oplus C) \cong$ $F(A) \oplus F(C)$.

Proof. Since the sequence is short exact, $B \cong A \oplus C$, and so the isomorphism $F(B) \cong F(A \oplus C)$ follows from Exercise 1.1, part (a).

Let $p_{A}: A \oplus C \rightarrow A$ and $p_{C}: A \oplus C \rightarrow A$ be the projection maps, and let $i_{A}: A \rightarrow A \oplus C$ and $i_{C}: C \rightarrow A \oplus C$ be the inclusions. First assume that F is covariant. Define maps

$$
\begin{aligned}
f: F(A \oplus C) & \rightarrow F(A) \oplus F(C) \\
x & \mapsto\left(F\left(p_{A}\right)(x), F\left(p_{C}\right)(x)\right), \quad \text { and } \\
g: F(A) \oplus F(C) & \rightarrow F(A \oplus C) \\
(u, v) & \mapsto F\left(i_{A}\right)(u)+F\left(i_{C}\right)(v) .
\end{aligned}
$$

Since they are defined in terms of morphisms in Ab , both f and g are themselves group homomorphisms. Since $p_{A} i_{A}=\mathrm{id}_{A}$ and $p_{C} i_{C}=\mathrm{id}_{C}$, we get

$$
\begin{aligned}
f g(u, v) & =f\left(F i_{A}(u)+F i_{C}(v)\right) \\
& =\left(F p_{A}\left(F i_{A}(u)+F i_{C}(v)\right), F p_{C}\left(F i_{A}(u)+F i_{C}(v)\right)\right) \\
& =\left(F p_{A} F i_{A}(u)+F p_{A} F i_{C}(v), F p_{C} F i_{A}(u)+F p_{C} F i_{C}(v)\right) \\
& =\left(u+F\left(p_{A} i_{C}\right)(v), F\left(p_{C} i_{A}\right)(u)+v\right) .
\end{aligned}
$$

Let $\mathbf{0}$ denote the zero map in R-Mod or Ab. Since F is additive, $F(\mathbf{0})=\mathbf{0}$. Hence it follows that $f g=\operatorname{id}_{F(A) \oplus F(C)}$. Using the additivity of F and the fact that $i_{A} p_{A}+i_{C} p_{C}=\operatorname{id}_{A \oplus C}$, we get

$$
g f(x)=F i_{A} F p_{A}(x)+F i_{C} F p_{C}(x)=F\left(i_{A} p_{A}+i_{C} p_{C}\right)(x)=x
$$

So $g f=\operatorname{id}_{F(A \oplus C)}$, which shows that $F(A \oplus C) \cong F(A) \oplus F(C)$.
If F is contravariant, the following maps give the desired isomorphism:

$$
f: x \mapsto\left(F\left(i_{A}\right)(x), F\left(i_{C}\right)(x)\right) \quad \text { and } \quad g:(u, v) \mapsto F\left(p_{A}\right)(u)+F\left(p_{C}\right)(v) .
$$

2. Homework 2

Exercise 2.1. Let $\mathcal{C}=\mathrm{R}-\mathrm{Mod}$ or $\operatorname{Mod}-\mathrm{R}$, let (I, \leq) be a directed partially ordered set, and let K be a cofinal subset (for all $i \in I$, there exists $k \in K$ with $i \leq k$).
(a) If $\left(\left\{A_{i}\right\}_{i \in I},\left\{\varphi_{j}^{i}\right\}_{i \leq j}\right)$ is a direct system in \mathcal{C} with index set I, prove that $\left(\left\{A_{k}\right\}_{k \in K},\left\{\varphi_{\ell}^{k}\right\}_{k \leq \ell}\right)$ is a direct system in \mathcal{C} with index set K. Moreover prove that the direct limits of both these direct systems are isomorphic. Show that this may be false if I is not directed.
(b) Same question, but for an inverse system.

Proof of (a). Since $K \subset I,\left\{A_{k}\right\}_{k \in K}$ is a collection of modules in \mathcal{C}, and moreover, $\varphi_{k_{3}}^{k_{1}}=\varphi_{k_{3}}^{k_{2}} \varphi_{k_{2}}^{k_{1}}$ for all $k_{1} \leq k_{2} \leq k_{3}$ in K. So $\left(\left\{A_{k}\right\}_{k \in K},\left\{\varphi_{\ell}^{k}\right\}_{k \leq \ell}\right)$ is a direct system in \mathcal{C} with index set K.

Let $\left(\iota_{j}: A_{j} \rightarrow \coprod_{i \in I} A_{i}\right)$ be the inclusions for the coproduct (direct sum). Define

$$
S:=\left\langle\left\{\iota_{j} \varphi_{j}^{i} a_{i}-\iota_{i} a_{i} \mid i \leq j \text { in I, and } a_{i} \in A_{i}\right\}\right\rangle \subset \coprod A_{i} .
$$

Now let $\alpha:=\left(\alpha_{j}: A_{j} \rightarrow \coprod A_{i} / S\right)_{j \in I}$ be the collection of morphisms defined by precomposing the natural projection with the inclusions. Let $\xrightarrow{\lim } A_{k}$ be the direct limit of the direct system which is indexed over K. We know that

$$
\underset{\longrightarrow}{\lim } A_{i}=\left(\coprod A_{i} / S, \alpha\right),
$$

and hence to show $\underset{\longrightarrow}{\lim } A_{i} \cong \underset{\longrightarrow}{\lim } A_{k}$, we will show that $\underset{\longrightarrow}{\lim } A_{i}$ satisfies the universal mapping property of $\overrightarrow{\lim } A_{k}$. To that end, suppose $\vec{X} \in \mathrm{Ob}(\mathcal{C})$ and $\left(f_{k}: A_{k} \rightarrow\right.$ $X)_{k \in K}$ is a collection of morphisms in \mathcal{C} satisfying $f_{k}=f_{\ell} \varphi_{\ell}^{k}$ for all $k \leq \ell$ in K.

Let $i \in I$. Since K is cofinal, there exists $k_{i} \in K$ such that $i \leq k_{i}$. Define a map

$$
\psi: \coprod_{i \in I} A_{i} \longrightarrow X, \quad\left(a_{i}\right)_{i} \longmapsto \sum_{i \in I} f_{k_{i}} \varphi_{k_{i}}^{i} a_{i}
$$

Since all but finitely many coordinates of $\left(a_{i}\right)_{i}$ are zero, ψ is well-defined. Also, ψ is a module homomorphism since it is defined in terms of module homomorphisms. Notice that for $i \leq j$ in I,

$$
\iota_{j} \varphi_{j}^{i} a_{i}-\iota_{i} a_{i}=:\left(\tilde{a}_{m}\right)_{m \in I} \quad \text { where } \quad \tilde{a}_{m}= \begin{cases}\varphi_{j}^{i} a_{i} & \text { if } m=j \\ -a_{i} & \text { if } m=i \\ 0 & \text { if } m \neq i, j\end{cases}
$$

So

$$
\begin{equation*}
\psi\left(\tilde{a}_{m}\right)_{m}=f_{k_{j}} \varphi_{k_{j}}^{j} \varphi_{j}^{i} a_{i}-f_{k_{i}} \varphi_{k_{i}}^{i} a_{i} . \tag{2.1.1}
\end{equation*}
$$

Now, the hypostheses that I is directed and K is cofinal together imply that there exists $\ell \in K$ so that $k_{i} \leq \ell$ and $k_{j} \leq \ell$. Hence we get the following diagram in \mathcal{C} :

Notice that since k_{i}, k_{j} and ℓ are all in K, the top two triangles commute. Hence the entire diagram commutes. In particular,

$$
f_{k_{j}} \varphi_{k_{j}}^{j} \varphi_{j}^{i}=f_{k_{i}} \varphi_{k_{i}}^{i}
$$

and so Equation 2.1 .1 becomes $\psi\left(\tilde{a}_{m}\right)_{m}=0$. Since elements of the form $\left(\tilde{a}_{m}\right)_{m}$ generate S, we have $\psi(S)=0$, and hence ψ induces a well defined morphism $\Psi: \coprod A_{i} / S \longrightarrow X$. Moreover, for ℓ in K and $a_{\ell} \in A_{\ell}, \Psi \alpha_{\ell} a_{\ell}=f_{k_{\ell}} \varphi_{k_{\ell}}^{\ell} a_{\ell}=f_{\ell} a_{\ell}$, so Ψ makes the diagram commute:

Now if $\tilde{\Psi}: \lim _{\rightarrow} A_{i} \rightarrow X$ is another morphism in \mathcal{C} making the diagram commute, then $\tilde{\Psi} \alpha_{k_{i}}=\vec{f}_{k_{i}}$ for all $k_{i} \in K$, and so

$$
\Psi\left(\left(a_{i}\right) i+S\right)=\sum_{i} f_{k_{i}} \varphi_{k_{i}}^{i} a_{i}=\sum_{i} \tilde{\Psi} \alpha_{k_{i}} \varphi_{k_{i}}^{i} a_{i}=\tilde{\Psi} \sum_{i} \alpha_{i} a_{i}=\tilde{\Psi}\left(\left(a_{i}\right)_{i}+S\right)
$$

Therefore, Ψ is unique, and hence $\underset{\longrightarrow}{\lim } A_{i} \cong \underset{\longrightarrow}{\lim } A_{k}$.

Consider $I=\{0,1,2\}$ with partial order $0<1$ and $0<2$. We get the pushout as our direct limit, so $\xrightarrow{\lim } A_{i}=A_{1} \coprod A_{2} / S$ where $S:=\left\{\left(\varphi_{1}^{0}\left(a_{0}\right),-\varphi_{2}^{0}\left(a_{0}\right)\right): a_{0} \in A_{0}\right\}$.

The subset $K=\{1,2\}$ is cofinal and its associated direct system has direct limit $\xrightarrow{\lim } A_{k}=A_{1} \amalg A_{2}$, which is not isomorphic to $\xrightarrow{\lim } A_{i}=A_{1} \amalg A_{2} / S$, (unless of course $S=0$, in which case φ_{1}^{0} and φ_{1}^{0} are both the zero map. So just assume they're not).

Exercise 2.2. Let R, S be rings, let (I, \leq) be a partially ordered set.
(a) If $\left(\left\{A_{i}\right\}_{i \in K},\left\{\varphi_{j}^{i}\right\}_{i \leq j}\right)$ is a direct system in R-Mod with index set I, prove that there is an exact sequence in R -Mod

$$
\coprod_{i \in I} \coprod_{\substack{j \in I \\ i \leq j}} B_{i j} \stackrel{f}{\rightarrow} \coprod_{i \in I} A_{i} \xrightarrow{p} \xrightarrow{\lim } A_{i} \rightarrow 0
$$

where $B_{i j}=A_{i}$ for all $i \leq j$.
If $\left(\left\{C_{i}\right\}_{i \in K},\left\{\psi_{i}^{j}\right\}_{i \geq j}\right)$ is an inverse system in \mathcal{C} with index set I, prove that there is an exact sequence

$$
0 \rightarrow \lim _{\hookleftarrow} C_{i} \xrightarrow{\iota} \prod_{i \in I} C_{i} \xrightarrow{g} \prod_{i \in I} \prod_{\substack{j \in I \\ i \leq j}} D_{i j}
$$

where $D_{i j}=C_{i}$ for all $i \leq j$.
(b) Let $F:$ R-Mod \longrightarrow S-Mod be an additive left exact functor.

If F is covariant and preserves direct products, prove that F preserves inverse limits.

If F is contravariant and converts direct sums into direct products, prove that F converts direct limits into inverse limits.

Proof.
(a) First, p is the natural projection, and ι is inclusion. Let $\iota_{j}: A_{j} \rightarrow \coprod_{i \in I} A_{i}$ be the j th inclusion for the coproduct. Define f by the rule

$$
\left(\left(a_{i j}\right)_{j \in I, i \leq j}\right)_{i \in I} \longmapsto \sum_{i \in I} \sum_{\substack{j \in I \\ i \leq j}} \iota_{j} \varphi_{j}^{i} a_{i j}-\iota_{i} a_{i j}
$$

The sum is well-defined since we are working over coproducts, and so only finitely many components of tuples are nonzero. By definition of $\underset{\longrightarrow}{\lim } A_{i}$, an element $\left(a_{i}\right)_{i} \in \coprod A_{i}$ is in ker p if and only if it is a finite sum of elements of the form $\iota_{j} \varphi_{j}^{i} a_{i}-\iota_{i} a_{i}$, and so $\operatorname{im} f=\operatorname{ker} p$. Next, define g by the rule

$$
\left(c_{i}\right)_{i \in I} \longmapsto\left(\left(\psi_{i}^{j} c_{j}-c_{i}\right)_{j \in I, i \leq j}\right)_{i \in I}
$$

An element $\left(c_{i}\right)_{i} \in \prod C_{i}$ is in $\operatorname{ker} g$ is and only if $\psi_{i}^{j} c_{j}=c_{i}$ for all $i \leq j$ in I. This is precisely the definition of the elements of $\lim _{\leftrightarrows} C_{i}$.
(b)

Exercise 2.3. Let G be a group and let \mathcal{N} be the family of all normal subgroups of finite index in G.
(a) If $N^{\prime} \subseteq N$ in \mathcal{N} then there is a homomorphism $\psi_{N}^{N^{\prime}}: G / N^{\prime} \rightarrow G / N$. Show that the family of all such quotients together with the maps $\psi_{N}^{N^{\prime}}$ forms an inverse system over \mathcal{N} where $N \leq N^{\prime}$ iff $N^{\prime} \subseteq N$.
(b) The inverse limit of the system in (a), $\lim G / N$, is denoted by \hat{G} and is called the profinite completion of G. There is a natural homomorphism $f: G \rightarrow \hat{G}$ sending g to $(g N)_{N \in \mathcal{N}}$. Show that f is injective if and only if G is residually finite, i.e. $\bigcap_{N \in \mathcal{N}} N=\left\{1_{G}\right\}$.
(c) Write down the profinite completion of \mathbb{Z}, viewed as a subgroup under addition.

Proof.
(a) The $\operatorname{map} \psi_{N}^{N^{\prime}}: G / N^{\prime} \rightarrow G / N$ given by $g N^{\prime} \mapsto g N$ is a well-defined group homomorphism since $N^{\prime} \subseteq N$. Moreover, when $N \leq N^{\prime} \leq N^{\prime \prime}$

$$
\psi_{N}^{N^{\prime}} \psi_{N^{\prime}}^{N^{\prime \prime}}\left(g N^{\prime \prime}\right)=\psi_{N}^{N^{\prime}}\left(g N^{\prime}\right)=g N=\psi_{N}^{N^{\prime \prime}}\left(g N^{\prime \prime}\right)
$$

so $\left(\{G / N\}_{N \in \mathcal{N}},\left\{\psi_{N}^{N^{\prime}}\right\}_{N \leq N^{\prime}}\right)$ forms an inverse system over \mathcal{N}.
(b) Follows from the fact that

$$
\operatorname{ker} f=\left\{g:(g N)_{N \in \mathcal{N}}=(N)_{N \in \mathcal{N}}\right\}=\{g: g \in N \forall N \in \mathcal{N}\}=\bigcap_{N \in \mathcal{N}} N
$$

(c) The normal subgroups of \mathbb{Z} with finite index are all nonzero subgroups since \mathbb{Z} is abelian, i.e. $\mathcal{N}=\left\{n \mathbb{Z} \mid n \in \mathbb{Z}^{+}\right\}$. Moreover

$$
n \mid m \Longleftrightarrow m \mathbb{Z} \subseteq n \mathbb{Z} \Longleftrightarrow n \mathbb{Z} \leq m \mathbb{Z}
$$

So

$$
\begin{aligned}
\lim _{\rightleftarrows} \mathbb{Z} / n \mathbb{Z} & =\left\{\left(a_{n}+n \mathbb{Z}\right)_{n \in \mathbb{Z}^{+}} \in \prod_{n \in \mathbb{Z}^{+}} \mathbb{Z} / n\left|\psi_{n \mathbb{Z}}^{m \mathbb{Z}}\left(a_{m}+n \mathbb{Z}\right)=a_{n}+n \mathbb{Z}, \forall n\right| m\right\} \\
& =\left\{\left(a_{n}+n \mathbb{Z}\right)_{n \in \mathbb{Z}^{+}} \in \prod_{n \in \mathbb{Z}^{+}} \mathbb{Z} / n\left|a_{m}+n \mathbb{Z}=a_{n}+n \mathbb{Z}, \forall n\right| m\right\} \\
& =\left\{\left(a_{n}+n \mathbb{Z}\right)_{n \in \mathbb{Z}^{+}} \in \prod_{n \in \mathbb{Z}^{+}} \mathbb{Z} / n\left|a_{m}-a_{n} \in n \mathbb{Z}, \forall n\right| m\right\}
\end{aligned}
$$

3. Homework 3

Exercise 3.1.

(a) Show that the \mathbb{Z}-module $\mathbb{Z} / 2$ does not have a projective cover. (You can use without proof that over a PID every projective module, whether or not it is finitely generated, is free.)
(b) Let R be a left Artinian ring, and let M be a finitely generated left R module. Prove that M has a projective cover.
Proof.
(a) Suppose there exists an essential epimorphism $\epsilon: P \rightarrow \mathbb{Z} / 2$ for a projective, hence free, \mathbb{Z}-module $P \cong \bigoplus_{i \in I} \mathbb{Z}$, where I is some index set. Since ϵ is not the zero map, at least of the group generators for $\bigoplus_{i} \mathbb{Z}$ maps to $1+2 \mathbb{Z}$, say x. But $\epsilon(\langle 3 x\rangle)=\mathbb{Z} / 2$ and $\langle 3 x\rangle \lesseqgtr \bigoplus_{i} \mathbb{Z}$, contradicting that ϵ is essential.
(b) Let $L \in \mathrm{Ob}\left({ }_{\mathrm{R}} \mathbf{p r o j}\right)$ with an epimorphism $f: L \rightarrow M$. Let \mathcal{S} be the set of all submodules $N \subseteq \operatorname{Ker}(f)$ so that $f_{N}: L / N \rightarrow M$ is an essential epimorphism. Now $\mathcal{S} \neq \varnothing$ since $L / \operatorname{Ker}(f) \cong M$. Since R is Artinian and L is finitely generated, then L is Artinian and hence \mathcal{S} has a minimal element, say X. It remains to show that L / X is projective.

If $\pi: L \rightarrow L / X$, then $f=\pi \circ f_{X}$. So if π is essential, then f is essential, and we are done. If not, let $Y \subsetneq L$ be a minimal submodule such that $\pi(Y)=L / X$. Then $\left.\pi\right|_{Y}: Y \rightarrow L / X$ is essential, and since L is projective, we find a surjective map $g: L \rightarrow Y$ so that $\pi=\left.\pi\right|_{Y} \circ g$.

Since g is surjective, then \tilde{g} is an isomorphism. So the composition $\left.f_{X} \circ \pi\right|_{Y} \circ \tilde{g}$ is an essential epimorphism. By the minimality of X in \mathcal{S}, $X \subseteq \operatorname{Ker} g$. Now if $\ell \in \operatorname{Ker} g$, then $\ell+X=\pi(\ell)=0+X$, so $X=\operatorname{Ker} g$. Hence the map $h: L / X \rightarrow L$ given by $\ell+X \mapsto g(\ell)$ is a well-defined R-module homomorphism. Moreover

$$
(\pi \circ h)(\ell+X)=\pi(g(\ell))=\left.\pi\right|_{Y}(g(\ell))=\pi(\ell)=\ell+X
$$

hence $\pi \circ h=\operatorname{id}_{L / X}$, and so $X \oplus L / X \cong L$, implying L / X is projective.

Exercise 3.2. This exercise gives an example of a direct system ($\left\{B_{i}\right\}_{i \in I},\left\{\varphi_{j}^{i}\right\}_{i \leq j}$) of right R-modules over a directed partially ordered set (I, \leq) such that $\xrightarrow{\lim } B_{i}$ is flat, but not all B_{i} are flat.

Let k be a field and let $R=k[x, y]$ be the polynomial ring over k in two commuting variables x, y.
(a) Let $\mathfrak{m}=(x, y)$ be the maximal ideal of R. Prove that \mathfrak{m} is not a flat R module by showing that the inclusion map $\iota: \mathfrak{m} \rightarrow R$ does not stay injective when tensoring with \mathfrak{m} over R.
(b) Let $I=\{1,2\}$ with $1<2$, so I is a directed partially ordered set. Consider the direct system $m \hookrightarrow R$ of R-modules, indexed by I. Show that the direct limit of this direct system is isomorphic to R. Since R is flat over R but \mathfrak{m} is not flat over R, this gives an example of the desired kind.

Proof.

(a) The map $\mathfrak{m} \otimes_{R} \mathfrak{m} \xrightarrow{\mathrm{id}_{\mathfrak{m}} \otimes \iota} \mathfrak{m} \otimes_{R} R$ sends $x \otimes y-y \otimes x$ to

$$
x \otimes y-y \otimes x=x y \otimes 1-y x \otimes 1=(x y-y x) \otimes 1=0 .
$$

We claim $x \otimes y-y \otimes x$ is not zero in $\mathfrak{m} \otimes_{R} \mathfrak{m}$, so $\mathrm{id}_{\mathfrak{m}} \otimes \iota$ is not injective, i.e., \mathfrak{m} is not a flat R-module.

Let $\bar{a}:=a+\mathfrak{m}^{2}$, for all $a \in \mathfrak{m}$. From the natural map $\pi: \mathfrak{m} \rightarrow \mathfrak{m} / \mathfrak{m}^{2}$, we obtain

$$
\mathfrak{m} \otimes_{R} \mathfrak{m} \xrightarrow{\mathrm{id}_{\mathfrak{m}} \otimes \pi} \mathfrak{m} \otimes_{R} \mathfrak{m} / \mathfrak{m}^{2}
$$

which sends $x \otimes y-y \otimes x$ to the element $x \otimes \bar{y}-y \otimes \bar{x}$. Hence to prove our claim, it suffices to show that $x \otimes \bar{y}-y \otimes \bar{x}$ is not zero in $\mathfrak{m} \otimes_{R} \mathfrak{m} / \mathfrak{m}^{2}$.

Let $a x+b y \in \mathfrak{m}$, where $a, b \in R$ have constant terms a_{0}, b_{0}, respectively. Since \mathfrak{m}^{2} contains all monomials of degree at least 2 , then

$$
\overline{a x+b y}=a_{0} \bar{x}+b_{0} \bar{y},
$$

and hence \bar{x} and \bar{y} span $\mathfrak{m} / \mathfrak{m}^{2}$ over k. Moreover if $a_{0} x+b_{0} y \in \mathfrak{m}^{2}$, then $a_{0} x+b_{0} y=0_{K}$, implying $a_{0}=b_{0}=0$ and hence $\mathfrak{m} / \mathfrak{m}^{2}=k \bar{x} \oplus k \bar{y}$.

Notice that in $\mathfrak{m} \otimes_{R} \mathfrak{m} / \mathfrak{m}^{2}$, a simple tensor $(a x+b y) \otimes\left(c_{0} \bar{x}+d_{0} \bar{y}\right)$, where $a, b \in R, c_{0}, d_{0} \in k$, equals $\left(a_{0} x+b_{0} y\right) \otimes\left(c_{0} \bar{x}+d_{0} \bar{y}\right)$ where a_{0}, b_{0} are the constant terms of a, b, respectively. It follows that $\pi \otimes \mathrm{id}_{\mathfrak{m} / \mathfrak{m}^{2}}$ is an isomorphism. Since $-\otimes_{R} \mathfrak{m} / \mathfrak{m}^{2}$ preserves direct limits, we get

$$
\begin{aligned}
\mathfrak{m} \otimes_{R} \mathfrak{m} / \mathfrak{m}^{2} & \cong \mathfrak{m} / \mathfrak{m}^{2} \otimes_{R} \mathfrak{m} / \mathfrak{m}^{2} \cong(k \bar{x} \oplus k \bar{y}) \otimes_{R}(k \bar{x} \oplus k \bar{y}) \\
& \cong k\left(\bar{x} \otimes_{R} \bar{x}\right) \oplus k\left(\bar{x} \otimes_{R} \bar{y}\right) \oplus k\left(\bar{y} \otimes_{R} \bar{x}\right) \oplus k\left(\bar{y} \otimes_{R} \bar{y}\right)
\end{aligned}
$$

Via this isomorphism, $x \otimes \bar{y}-y \otimes \bar{x} \longmapsto \bar{x} \otimes \bar{y}-\bar{y} \otimes \bar{x}$, the latter of which cannot be zero since $\bar{x} \otimes \bar{y}$ and $\bar{y} \otimes \bar{x}$ are members of a k-basis.
(b) Given a diagram

define $\Phi:=f_{R}$. Then Φ makes the diagram commute and is unique, so $R \cong \underset{\longrightarrow}{\lim }(\mathfrak{m} \hookrightarrow R)$.

Exercise 3.3.

(a) Given two exact sequences of R-modules (all left or all right R-modules)

$$
\begin{aligned}
& 0 \rightarrow B \rightarrow E^{0} \rightarrow E^{1} \rightarrow \cdots \rightarrow E^{n} \rightarrow X \rightarrow 0 \quad \text { and } \\
& 0 \rightarrow B \rightarrow D^{0} \rightarrow D^{1} \rightarrow \cdots \rightarrow D^{n} \rightarrow Y \rightarrow 0
\end{aligned}
$$

where all E^{i} and D^{i} are injective, prove that

$$
X \oplus D^{n} \oplus E^{n-1} \oplus D^{n-2} \oplus \cdots \cong Y \oplus E^{n} \oplus D^{n-1} \oplus E^{n-2} \oplus \cdots
$$

(b) Given two exact sequences of R-modules (all left or all right R-modules)

$$
\begin{aligned}
& 0 \rightarrow K \rightarrow P_{n} \rightarrow P_{n-1} \rightarrow \cdots \rightarrow P_{0} \rightarrow B \rightarrow 0 \quad \text { and } \\
& 0 \rightarrow L \rightarrow Q_{n} \rightarrow Q_{n-1} \rightarrow \cdots \rightarrow Q_{0} \rightarrow B \rightarrow 0
\end{aligned}
$$

where all P_{i} and Q_{i} are projective, prove that

$$
K \oplus Q_{n} \oplus P_{n-1} \oplus Q_{n-2} \oplus \cdots \cong L \oplus P_{n} \oplus Q_{n-1} \oplus P_{n-2} \oplus \cdots
$$

Proof.
(a) By induction on n. The case $n=0$ is the dual statement of Schanuel's Lemma. Now suppose the statement is true for $n>0$. For all i, let $f^{i}: E^{i-1} \rightarrow E^{i}$ and $g^{i}: D^{i-1} \rightarrow D^{i}$. From the dual statement of Schanuel's Lemma, using the short exact sequences

$$
\begin{aligned}
& 0 \rightarrow B \xrightarrow{f^{0}} E^{0} \rightarrow E^{0} / \operatorname{Ker} f^{1} \rightarrow 0 \quad \text { and } \\
& 0 \rightarrow B^{\prime} \xrightarrow{g^{0}} D^{0} \rightarrow D^{0} / \operatorname{Ker} g^{1} \rightarrow 0
\end{aligned}
$$

we have $E^{0} \oplus\left(D^{0} / \operatorname{Ker} g^{1}\right) \cong D^{0} \oplus\left(E^{0} / \operatorname{Ker} f^{1}\right)$. This gives sequences

$$
\begin{aligned}
& 0 \rightarrow D^{0} \oplus \frac{E^{0}}{\operatorname{Ker} f^{1}} \xrightarrow{\left(\begin{array}{cc}
\operatorname{id}_{D^{0}} & 0 \\
0 & \tilde{f}^{1}
\end{array}\right)} D^{0} \oplus E^{1} \xrightarrow{\left(0 f^{2}\right)} E^{2} \rightarrow \cdots \rightarrow E^{n+1} \rightarrow X \rightarrow 0 \\
& 0 \rightarrow E^{0} \oplus \frac{D^{0}}{\operatorname{Ker} g^{1}} \xrightarrow{\left(\begin{array}{cc}
\operatorname{id}_{E^{0}} & 0 \\
0 & \tilde{g}^{1}
\end{array}\right)} E^{0} \oplus D^{1} \xrightarrow{\left(0 g^{2}\right)} D^{2} \rightarrow \cdots \rightarrow D^{n+1} \rightarrow Y \rightarrow 0
\end{aligned}
$$

Note that $D^{0} \oplus E^{1}$ and $E^{0} \oplus D^{1}$ are injective, since the product of injective modules is injective. Moreover we have

$$
\begin{aligned}
\operatorname{Ker}\left(\begin{array}{cc}
\operatorname{id}_{D^{0}} & 0 \\
0 & \tilde{f}^{1}
\end{array}\right) & \cong \operatorname{Ker} \tilde{f}^{1} \cong \operatorname{Ker} f^{1} / \operatorname{Ker} f^{1}=0 \\
\operatorname{Ker}\left(0 f^{2}\right) & =D^{0} \oplus \operatorname{Ker} f^{2} \\
& =D^{0} \oplus \operatorname{Im} f^{1} \\
& \cong D^{0} \oplus \frac{\operatorname{Im} f^{1}+\operatorname{Ker} f^{1}}{\operatorname{Ker} f^{1}} \\
& =\operatorname{Im}\left(\begin{array}{cc}
\operatorname{id}_{D^{0}} & 0 \\
0 & \tilde{f}^{1}
\end{array}\right) \\
\operatorname{Im}\left(0 f^{2}\right) & \cong \operatorname{Im} f^{2}=\operatorname{Ker} f^{3}
\end{aligned}
$$

with similar statements for the second sequence. So the sequences are exact and we are in the situation of our induction hypothesis, hence

$$
X \oplus D^{n+1} \oplus E^{n} \oplus D^{n-1} \oplus \cdots \cong Y \oplus E^{n+1} \oplus D^{n} \oplus E^{n-1} \oplus \cdots
$$

(b) By induction on n. The case $n=0$ is Schanuel's Lemma. Now suppose the statement is true for $n>0$. For all i, let $f_{i}: P_{i} \rightarrow P_{i-1}$ and $g_{i}: Q_{i} \rightarrow Q_{i-1}$. From Schanuel's Lemma, using the short exact sequences

$$
\begin{aligned}
& 0 \rightarrow \operatorname{Im} f_{1} \hookrightarrow P_{0} \xrightarrow{f_{0}} B \rightarrow 0 \quad \text { and } \\
& 0 \rightarrow \operatorname{Im} g_{1} \hookrightarrow Q_{0} \xrightarrow{g_{0}} B^{\prime} \rightarrow 0,
\end{aligned}
$$

we have $\operatorname{Im} f_{1} \oplus Q_{0} \cong \operatorname{Im} g_{1} \oplus P_{0}$. This gives sequences

$$
\begin{aligned}
& 0 \rightarrow K \rightarrow P_{n+1} \rightarrow \cdots \rightarrow P_{2} \xrightarrow{\binom{f_{2}}{0}} P_{1} \oplus Q_{0} \xrightarrow{\left(\begin{array}{cc}
f_{1} & 0 \\
0 & \mathrm{id}_{Q_{0}}
\end{array}\right)} \operatorname{Im} f_{1} \oplus Q_{0} \rightarrow 0 \\
& 0 \rightarrow L \rightarrow Q_{n+1} \rightarrow \cdots \rightarrow Q_{2} \xrightarrow{\binom{g_{2}}{0}} Q_{1} \oplus P_{0} \xrightarrow{\left(\begin{array}{cc}
g_{1} & 0 \\
0 & \mathrm{id}_{P_{0}}
\end{array}\right)} \operatorname{Im} g_{1} \oplus P_{0} \rightarrow 0
\end{aligned}
$$

Note that $Q_{1} \oplus P_{0}$ and $P_{1} \oplus Q_{0}$ are projective since the coproduct of projective modules is projective. Moreover we have

$$
\begin{aligned}
\operatorname{Im}\left(\begin{array}{cc}
f_{1} & 0 \\
0 & \operatorname{id}_{Q_{0}}
\end{array}\right) & =\operatorname{Im} f_{1} \oplus Q_{0}, \\
\operatorname{Im}\binom{f_{2}}{0} & \cong \operatorname{Im} f_{2}=\operatorname{Ker} f_{1} \cong \operatorname{Ker}\left(\begin{array}{cc}
f_{1} & 0 \\
0 & \text { id } Q_{Q_{0}}
\end{array}\right), \\
\operatorname{Ker}\binom{f_{2}}{0} & \cong \operatorname{Ker} f_{2}=\operatorname{Im} f_{3},
\end{aligned}
$$

with similar statements for the second sequence. So the sequences are exact and we are in the situation of our induction hypothesis, hence

$$
K \oplus Q_{n+1} \oplus P_{n} \oplus Q_{n-1} \oplus \cdots \cong L \oplus P_{n+1} \oplus Q_{n} \oplus P_{n-1} \oplus \cdots
$$

4. Homework 4

Exercise 4.1. A full subcategory \mathcal{C}_{0} of \mathcal{C} is said to be a skeleton of \mathcal{C} if every object in \mathcal{C} is isomorphic to exactly one object in \mathcal{C}_{0}. Assuming the Axiom of Choice (e.g., using the Gödel-Bernays system), prove that \mathcal{C} and \mathcal{C}_{0} are equivalent categories. Show that \mathcal{C} and \mathcal{C}_{0} need not be isomorphic categories (give an example).
Proof. For all $X \in \operatorname{Ob}(\mathcal{C})$, let \tilde{X} denote the object in \mathcal{C}_{0} for which $X \cong \tilde{X}$, and choose an isomorphism $f_{X}: X \rightarrow \tilde{X}$. Define

$$
\begin{aligned}
F: \mathcal{C} & \longrightarrow \mathcal{C}_{0} \\
X & \longmapsto \tilde{X} \\
\left(f: X \rightarrow X^{\prime}\right) & \longmapsto F f:=f_{X^{\prime}} \circ f \circ f_{X}^{-1}
\end{aligned}
$$

For all $X, X^{\prime} \in \mathrm{Ob}(\mathcal{C})$, define

$$
\begin{aligned}
\hat{F}_{X, X^{\prime}}: \operatorname{Hom}_{\mathcal{C}_{0}}\left(\tilde{X}, \tilde{X}^{\prime}\right) & \longrightarrow \operatorname{Hom}_{\mathcal{C}}\left(X, X^{\prime}\right) \\
g & \longmapsto f_{X^{\prime}}^{-1} \circ g \circ f_{X}
\end{aligned}
$$

Then

$$
F \hat{F}(g)=F\left(f_{X^{\prime}}^{-1} \circ g \circ f_{X}\right)=f_{X^{\prime}} \circ f_{X^{\prime}}^{-1} \circ g \circ f_{X} \circ f_{X}^{-1}=g
$$

and

$$
\hat{F} F(f)=\hat{F}\left(f_{X^{\prime}} \circ f \circ f_{X}^{-1}\right)=f_{X^{\prime}}^{-1} \circ f_{X^{\prime}} \circ f \circ f_{X}^{-1} \circ f_{X}=f .
$$

So F is fully faithful. Moreover, since \mathcal{C}_{0} is a skeleton of \mathcal{C}, if $Y \in \mathcal{C}_{0}$, there exists $X \in O b(\mathcal{C})$ so that $\tilde{X}=Y$, hence $Y=F(X)$, implying F is dense. Hence F is an equivalence.

The category \mathcal{C} of finite ordered sets is equivalent to the full subcategory \mathcal{C}_{0} of finite ordered sets of the form $[n]:=\{1<2<\cdots<n\}$ for $n \in \mathbb{Z}^{+}$. Let $N \in \mathrm{Ob}(\mathcal{C})$ and suppose $|N|=n$. Let N_{j} denote the j th element in N. Then $N \cong[n]$ via the $\operatorname{map} N_{j} \mapsto j$, and moreover, $[n]$ is the only object in \mathcal{C}_{0} isomorphic to N, since $[n]$ is the only set in \mathcal{C}_{0} of cardinality n. So \mathcal{C}_{0} is a skeleton of \mathcal{C}. However, $\mathcal{C} \neq \mathcal{C}_{0}$, since any isomorphism would need to uniquely identify the object in \mathcal{C}_{0} with, say, cardinality n, with an object in \mathcal{C} with, say, cardinality m. But there are many such objects in \mathcal{C}, so any choice would leave other objects in \mathcal{C} with cardinality m unaccounted for.

Exercise 4.3. Let $F, F^{\prime}: \mathcal{C} \rightarrow \mathcal{D}$ and $G, G^{\prime}: \mathcal{C} \rightarrow \mathcal{C}$ be covariant functors.
(a) Prove: If (F, G) and $\left(F^{\prime}, G\right)$ are adjoint pairs, then F and F^{\prime} are naturally isomorphic.
(b) Prove: If (F, G) and $\left(F, G^{\prime}\right)$ are adjoint pairs, then G and G^{\prime} are naturally isomorphic.
(c) Prove: If F and G are quasi-inverses of each other, then (F, G) and (G, F) are adjoint pairs.

Proof.
(a) For all $X \in \mathrm{Ob}(\mathcal{C})$ and for all $Y \in \mathrm{Ob}(\mathcal{D})$, there exists a natural bijection

$$
\Phi_{X, Y}: \operatorname{Hom}_{\mathcal{D}}\left(F^{\prime}(X), Y\right) \longrightarrow \operatorname{Hom}_{\mathcal{D}}(F(X), Y)
$$

For all $X \in \mathrm{Ob}(\mathcal{C})$, define $\eta_{X}: F(X) \rightarrow F^{\prime}(X)$ by

$$
\eta_{X}:=\Phi_{X, F^{\prime}(X)}\left(\operatorname{id}_{F^{\prime}(X)}\right)
$$

Then for all $f \in \operatorname{Hom}_{\mathcal{C}}(X, Z)$ we have a diagram, each square commutative:

So

$$
\begin{aligned}
F^{\prime} f \circ \eta_{X}=\left(F^{\prime} f\right)_{*}\left(\eta_{X}\right) & =\left(\Phi_{X, F^{\prime}(Z)} \circ\left(F^{\prime} f\right)_{*}\right)\left(\operatorname{id}_{F^{\prime}(X)}\right) \\
& =\Phi_{X, F^{\prime}(Z)}\left(F^{\prime} f\right) \\
& =\left(\Phi_{X, F^{\prime}(Z)} \circ\left(F^{\prime} f\right)^{*}\right)\left(\operatorname{id}_{F^{\prime}(Z)}\right) \\
& =(F f)^{*}\left(\eta_{Z}\right) \\
& =\eta_{Z} \circ F f .
\end{aligned}
$$

Hence $\eta=\left\{\eta_{X}\right\}_{X \in \mathrm{Ob}(\mathcal{C})}$ is natural. In a similar manner we may define a natural transformation $\epsilon=\left\{\epsilon_{X}\right\}_{X \in \mathrm{Ob}(\mathbb{C})}: F^{\prime} \rightarrow F$ by

$$
\epsilon_{X}:=\Phi_{X, F(X)}^{-1}\left(\operatorname{id}_{F(X)}\right)
$$

Using the diagram

we have

$$
\begin{aligned}
\epsilon_{X} \circ \eta_{X} & =\left(\left(\epsilon_{X}\right)_{*} \circ \Phi_{X, F^{\prime}(X)}\right)\left(\operatorname{id}_{F^{\prime}(X)}\right) \\
& =\left(\Phi_{X, F(X)} \circ\left(\epsilon_{X}\right)_{*}\right)\left(\operatorname{id}_{F^{\prime}(X)}\right) \\
& =\Phi_{X, F(X)}\left(\epsilon_{X}\right) \\
& =\operatorname{id}_{F(X)} .
\end{aligned}
$$

Similarly, $\eta_{X} \circ \epsilon_{X}=\operatorname{id}_{F^{\prime}(X)}$. So η is a natural isomorphism.
(b) For all $X \in \mathrm{Ob}(\mathcal{C})$ and for all $Y \in \mathrm{Ob}(\mathcal{D})$, there exists a natural bijection

$$
\Psi_{X, Y}: \operatorname{Hom}_{\mathcal{C}}\left(X, G^{\prime}(Y)\right) \longrightarrow \operatorname{Hom}_{\mathcal{C}}(X, G(Y))
$$

For all $Y \in \mathrm{Ob}(\mathcal{D})$, define $\eta_{Y}: G(Y) \rightarrow G^{\prime}(Y)$ by

$$
\eta_{Y}:=\Psi_{G^{\prime}(Y), Y}\left(\operatorname{id}_{G^{\prime}(Y)}\right)
$$

Then for all $g \in \operatorname{Hom}_{\mathcal{D}}(Y, W)$ we have a diagram, each square commutative:

So

$$
\begin{aligned}
G g \circ \eta_{Y}=(G g)_{*}\left(\eta_{Y}\right) & =\left(\Psi_{G^{\prime}(Y), W} \circ\left(G^{\prime} g\right)_{*}\right)\left(\operatorname{id}_{G^{\prime}(Y)}\right) \\
& =\Psi_{G^{\prime}(Y), W}\left(G^{\prime} g\right) \\
& =\left(\Psi_{G^{\prime}(Y), W} \circ\left(G^{\prime} g\right)^{*}\right)\left(\operatorname{id}_{G^{\prime}(W)}\right) \\
& =\left(G^{\prime} g\right)^{*}\left(\eta_{W}\right) \\
& =\eta_{W} \circ G^{\prime} g
\end{aligned}
$$

Hence $\eta=\left\{\eta_{Y}\right\}_{Y \in \mathrm{Ob}(\mathcal{D})}$ is natural. In a similar manner we may define a natural transformation $\epsilon=\left\{\epsilon_{Y}\right\}_{Y \in \operatorname{Ob}(\mathcal{D})}: G^{\prime}(Y) \rightarrow G(Y)$ by

$$
\epsilon_{Y}:=\Psi_{G^{\prime}(Y), Y}^{-1}\left(\operatorname{id}_{G(Y)}\right)
$$

As in part (a), we have $\eta_{Y} \circ \epsilon_{Y}=\operatorname{id}_{G^{\prime}(Y)}$ and $\epsilon_{Y} \circ \eta_{Y}=\operatorname{id}_{G(Y)}$. So η is a natural isomorphism.
(c) There exists a natural isomorphism $\tau: \operatorname{Id}_{\mathcal{C}} \rightarrow G F$. Since G is fully faithful, for all $X \in \mathrm{Ob}(\mathcal{C})$ and for all $Y \in \mathrm{Ob}(\mathcal{D})$, there are maps between the classes

$$
\operatorname{Hom}_{\mathcal{C}}(G F(X), G(Y)) \longleftrightarrow \operatorname{Hom}_{\mathcal{D}}(F(X), Y)
$$

which are two-sided inverses to one another. In particular, for all $\beta \in$ $\operatorname{Hom}_{\mathcal{C}}(X, G(Y))$, there exists a unique $\tilde{\beta} \in \operatorname{Hom}_{\mathcal{D}}(F(X), Y)$ so that

$$
G \tilde{\beta}=\beta \circ \tau_{X}^{-1}
$$

So for all $X \in \mathrm{Ob}(\mathcal{C})$ and for all $Y \in \mathrm{Ob}(\mathcal{D})$, define maps

$$
\begin{aligned}
\left.\Phi_{X, Y}: \operatorname{Hom}_{\mathcal{D}}(F(X), Y)\right) & \rightleftarrows \operatorname{Hom}_{\mathcal{C}}(X, G(Y)): \Psi_{X, Y} \\
\alpha & \longmapsto G \alpha \circ \tau_{X}, \\
\tilde{\beta} & \longleftrightarrow \beta
\end{aligned}
$$

Then $\Psi_{X, Y}\left(\Phi_{X, Y}(\alpha)\right)=\widetilde{G \alpha \circ \tau_{X}}$. Since $G \alpha=G \alpha \circ \tau_{X} \circ \tau_{X}^{-1}$, then $\alpha=$ $\widehat{G \alpha \circ \tau_{X}}$. Moreover, $\Phi_{X, Y}\left(\Psi_{X, Y}(\beta)\right)=G \tilde{\beta} \circ \tau_{X}^{-1}=\beta$. Hence (F, G) is an adjoint pair. Exchanging the roles of F and G, we see also that (G, F) is an adjoint pair.

5. Homework 5

Exercise 5.1. Let $m \in \mathbb{Z}^{+}$, and let $R=\mathbb{Z} / m$.
(a) Let $A=\mathbb{Z} / d$ where $d \mid m$, and let B be an arbitrary R-module. Determine $\operatorname{Tor}_{n}^{R}(A, B)$ for all $n \geq 0$.
(b) Let C be an arbitrary R-module, and let $D=\mathbb{Z} / p$ where $p \mid m$. Determine $\operatorname{Ext}_{R}^{n}(C, D)$ for all $n \geq 0$ in terms of $\operatorname{Hom}_{R}(C, R)$. Moreover, show that if $p^{2} \mid m$, then $\operatorname{Ext}_{R}^{n}(D, D) \cong D$ for all n.
Proof.
(a) Consider the maps $R \xrightarrow{m / d} R$ and $R \xrightarrow{d} R$, multiplication by m / d and d, respectively. We have $d((m / d)(a+m \mathbb{Z})=0+m \mathbb{Z}$, hence $\operatorname{Im}(m / d) \subseteq$ $\operatorname{Ker}(d)$. If $d b+m \mathbb{Z}=0+m \mathbb{Z}$, then there exists $c \in \mathbb{Z}$ with $d b=c m$. So $(m / d)(c+m \mathbb{Z})=b+m \mathbb{Z}$, which shows $\operatorname{Ker}(d)=\operatorname{Im}(m / d)$. Similarly, we get $\operatorname{Ker}(m / d)=\operatorname{Im}(d)$.

Now let $R \xrightarrow{\epsilon} A$ be the canonical surjection. Then

$$
\epsilon(d a+m \mathbb{Z})=d a+d \mathbb{Z}=0+m \mathbb{Z}
$$

and if $\epsilon(b+m \mathbb{Z})=0+d \mathbb{Z}$, then $b=d a$ for some $a \in \mathbb{Z}$, so $d a+m \mathbb{Z}=b+m \mathbb{Z}$. Hence $\operatorname{Ker}(\epsilon)=\operatorname{Im}(d)$. So we get a periodic free resolution of A :

$$
\cdots \xrightarrow{d} R \xrightarrow{m / d} R \xrightarrow{d} R \xrightarrow{\epsilon} A \rightarrow 0 .
$$

For $n \geq 1$, let $\partial_{n}=m / d$ if n is even, and $\partial_{n}=d$ if n is odd. Then

$$
\left(P_{A}\right) .: \quad \cdots \xrightarrow{\partial_{3}} R \xrightarrow{\partial_{2}} R \xrightarrow{\partial_{1}} R \rightarrow 0 .
$$

We have commutative diagram, where the vertical arrows are each the map $\sum r_{i} \otimes b_{i} \mapsto \sum r_{i} b_{i}:$

Hence

$$
\operatorname{Tor}_{0}^{n}(A, B) \cong B / d B \cong A \otimes_{R} B
$$

(n odd)

$$
\operatorname{Tor}_{n}^{R}(A, B) \cong\{b \in B \mid d b=0\} /(m / d) B
$$

(n even)

$$
\operatorname{Tor}_{n}^{R}(A, B) \cong\{b \in B \mid(m / d) b=0\} / d B
$$

(b) Consider the maps $R \xrightarrow{p} R$ and $R \xrightarrow{m / p} R$, multiplication by p and m / p, respectively. Similarly as in part (a), we get that $\operatorname{Ker}(p)=\operatorname{Im}(m / p)$ and $\operatorname{Ker}(m / p)=\operatorname{Im}(p)$. Since $p \mid m$, let $m=p a$, and consider the map

$$
\iota: D \rightarrow R, \quad 1+p \mathbb{Z} \mapsto a+m \mathbb{Z}
$$

Since $p a+m \mathbb{Z}=0+m \mathbb{Z}$, then $p \iota=0$ and hence $\operatorname{Im}(\iota) \subseteq \operatorname{Ker}(p)$. Conversely, if $p b+m \mathbb{Z}=0+m \mathbb{Z}$, there exists $c \in \mathbb{Z}$ with $p b=\mathrm{cm}$. Then $m b=$ $a p b=a c m$, implying $b=a c$. So $\iota(c+p \mathbb{Z})=a c+m \mathbb{Z}=b+m \mathbb{Z}$, and so $\operatorname{Ker}(p)=\operatorname{Im}(\iota)$. So we get a periodic injective resolution of D :

$$
0 \rightarrow D \xrightarrow{\iota} R \xrightarrow{p} R \xrightarrow{m / p} R \xrightarrow{p} \cdots .
$$

For $n \geq 0$, let $\delta^{n}=p$ if $n \equiv 0 \bmod 2$ and let $\delta^{n}=m / p$ if $n \equiv 1 \bmod 2$. Then we get a truncated cochain complex for D

$$
E_{D}^{\cdot}: \quad 0 \rightarrow R \xrightarrow{\delta^{0}} R \xrightarrow{\delta^{1}} R \xrightarrow{\delta^{2}} \cdots
$$

Then
$\operatorname{Hom}_{R}\left(C, E_{D}^{\cdot}\right): \quad 0 \rightarrow \operatorname{Hom}_{R}(C, R) \xrightarrow{\delta_{*}^{0}} \operatorname{Hom}_{R}(C, R) \xrightarrow{\delta_{*}^{1}} \operatorname{Hom}_{R}(C, R) \xrightarrow{\delta_{*}^{2}} \cdots$
So

$$
\operatorname{Ext}_{R}^{0}(C, D)=\{\alpha: C \rightarrow R \mid p \alpha=0\} \cong \operatorname{Hom}_{R}(C, D)
$$

(n odd)

$$
\operatorname{Ext}_{R}^{n}(C, D)=\{\beta: C \rightarrow R \mid(m / p) \beta=0\} / p \operatorname{Hom}_{R}(C, R)
$$

(n even)

$$
\operatorname{Ext}_{R}^{n}(C, D)=\{\gamma: C \rightarrow R \mid p \gamma=0\} /(m / p) \operatorname{Hom}_{R}(C, R)
$$

Now consider the periodic free resolution of D, where ϵ is the canonical surjection

$$
\cdots \xrightarrow{p} R \xrightarrow{m / p} R \xrightarrow{p} R \xrightarrow{\epsilon} D \rightarrow 0 .
$$

For $n \geq 1$, let $\partial_{n}=m / p$ if n is even, and $\partial_{n}=p$ if n is odd. Then

$$
\left(P_{D}\right) .: \quad \cdots \xrightarrow{\partial_{3}} R \xrightarrow{\partial_{2}} R \xrightarrow{\partial_{1}} R \rightarrow 0
$$

and we have a commutative diagram, where the vertical arrows are all the $\operatorname{map} \alpha \mapsto \alpha(1+m \mathbb{Z})$:

Suppose that $p^{2} \mid m$, so $m=p^{2} c$ for some $c \in \mathbb{Z}$ and $m / p=p c$. Hence

$$
\begin{aligned}
& \operatorname{Ker}(m / p: D \rightarrow D)=\{a+p \mathbb{Z} \mid(p c) a \in p \mathbb{Z}\}=D \\
& \operatorname{Im}(p: D \rightarrow D)=p D=0 \\
& \text { and } \operatorname{Ker}(p: D \rightarrow D)=D \\
& \operatorname{Im}(m / p: D \rightarrow D)=(m / p) D=(p c) D=0 .
\end{aligned}
$$

So $\operatorname{Ext}_{R}^{n}(D, D) \cong D$ for all $n \geq 0$.

Exercise 5.3. Use the definition of abelian category from lecture, i.e. \mathcal{A} is an abelian category if \mathcal{A} is an additive category, every morphism in \mathcal{A} has a kernel and cokernel, every monomorphism in \mathcal{A} is the kernel of its cokernel, and every epimorphism in \mathcal{A} is the cokernel of its kernel.

Using only this definition and the definitions of kernel and cokernel in an additive categroy, prove that every morphism $f: A \rightarrow B$ in \mathcal{A} factors as $f=m \alpha$ for an empimorphism $\alpha: A \rightarrow K$ and a monomorphism $m: K \rightarrow B$ (where K is a suitable object in \mathcal{A}).

Proof. Let $(C, \pi)=\operatorname{Coker}(f)$ and $(K, m)=\operatorname{Ker}(\operatorname{Coker}(f))=\operatorname{Ker}(\pi)$. Since $\pi f=0$ and $(K, m)=\operatorname{Ker} \pi$, there exists a unique α such that $f=m \alpha$.

Since m is a kernel, m is monic. We will show that α is epic.
Suppose $r \alpha=s \alpha$. Let $(X, \iota)=\operatorname{Ker}(r-s)$. Since $(r-s) \alpha=0$, there exists a unique $\beta: A \rightarrow X$ such that $\alpha=\iota \beta$. Let $(D, \tilde{\pi})=\operatorname{Coker}(m \iota)$.

Since $\tilde{\pi} m \iota=0$, we have

$$
0=\tilde{\pi} m \iota \beta=\tilde{\pi} m \alpha=\tilde{\pi} f
$$

So, since $\operatorname{Coker}(f)=(C, \pi)$, there exists a unique $\gamma: C \rightarrow D$ with $\tilde{\pi}=\gamma \pi$. Since $m \iota$ is monic,

$$
(X, m \iota)=\operatorname{Ker}(\operatorname{Coker}(m \iota))=\operatorname{Ker}(\tilde{\pi})
$$

So the equation

$$
\tilde{\pi} m=\gamma \pi m=0
$$

implies that there exists a unique map $\delta: K \rightarrow X$ so that $m=m \iota \delta$.

But m is monic, so $\iota \delta=\operatorname{id}_{K}$. Hence ι is a monic retraction, implying ι is an isomorphism (we proved this fact on a homework last semester in Algebra). Hence $(r-s) \iota=0$ implies $r=s$, so α is epic.

Department of Mathematics, University of Iowa, Iowa City, IA 52242
E-mail address: nicholas-camacho@uiowa.edu

[^0]: Date: Spring 2018.

