Homework for Homological Algebra

Nicholas Camacho Department of Mathematics University of Iowa Spring 2018

Beware: Some solutions may be incorrect!

NICHOLAS CAMACHO

1. Homework 1

Exercise 1.1.

- (a) Suppose $F : \mathcal{C} \to \mathcal{D}$ is a functor (covariant or contravariant) and $f : A \to B$ is an isomorphism in \mathcal{C} . Show that F(f) is an isomorphism in \mathcal{D} .
- (b) Show that if f is an isomorphism, then f is both a monomorphism and an epimorphism in \mathcal{C} . How about the converse? (Prove it or give a counter-example).
- (c) Let C be a concrete category. Prove that every injective morphism in C is a monomorphism, and every surjective morphism in C is an epimorphism. Prove that in *R*-Mod, or Mod-*R*, every monomorphism is injective and every epimorphism is surjective. Give an example of a concrete category with non-surjective epimorphisms.

Proof.

(a) If $f' \in \operatorname{Hom}_{\mathbb{C}}(B, A)$ is such that $f \circ f' = \operatorname{id}_B$ and $f' \circ f = \operatorname{id}_A$, then in \mathcal{D} $\operatorname{id}_{F(B)} = F(f) \circ F(f')$ and $\operatorname{id}_{F(A)} = F(f') \circ F(f)$

if F is covariant. Similar proof if F is contravariant.

(b) If $g, g' \in \operatorname{Hom}_{\mathfrak{C}}(X, A)$ and $f \circ g = f \circ g'$, then

$$g = \mathrm{id}_A \circ g = f' \circ f \circ g = f' \circ f \circ g' = \mathrm{id}_A \circ g' = g',$$

so f is a monomorphism. Similarly, if $h, h' \in \operatorname{Hom}_{\operatorname{\mathcal C}}(B, Y)$ and $h \circ f = h' \circ f$, then

$$h = h \circ \mathrm{id}_B = h \circ f \circ f' = h' \circ f \circ f' = h' \circ \mathrm{id}_B = h',$$

so f is an epimorphism.

The converse is not true. Consider the category of Rings with 1 (morphisms sending 1 to 1). The inclusion map $f : \mathbb{Z} \hookrightarrow \mathbb{Q}$ is non-surjective, but is an epimorphism and a monomorphism: If $h, h' : \mathbb{Q} \to R$ for any ring R and hf = h'f, then h = h' since

$$h\left(\frac{a}{b}\right) = \frac{hf(a)}{hf(b)} = \frac{h'f(a)}{h'f(b)} = h'\left(\frac{a}{b}\right).$$

If $g, g': R \to \mathbb{Z}$ and fg = fg', then f(g(r)) = f(g'(r)) implies g(r) = g'(r) for all $r \in R$ since f is injective. So g = g'.

(c) In a concrete category \mathcal{C} :

If $f \in \operatorname{Hom}_{\mathbb{C}}(A, B)$ is injective and $f \circ g = f \circ g'$ for $g, g' \in \operatorname{Hom}_{\mathbb{C}}(X, A)$, then for all $x \in X$ we have f(g(x)) = f(g'(x)), which implies g(x) = g'(x)for all $x \in X$, and hence g = g'. So f is a monomorphism.

Date: Spring 2018.

If $f \in \text{Hom}_{\mathbb{C}}(A, B)$ is surjective and $h \circ f = h' \circ g$ for $h, h' \in \text{Hom}_{\mathbb{C}}(B, Y)$, then for all $b \in B$ there exists $a \in A$ so that f(a) = b. So we have h(b) = h(f(a)) = h'(f(a)) = h'(b), and hence h = h'. So f is an epimorphism.

In R-Mod :

If $f \in \operatorname{Hom}_R(A, B)$ is a monomorphism, let $i : \operatorname{Ker}(f) \hookrightarrow A$ be the inclusion. Then $f \circ i = f \circ \mathbf{0}$ so $i = \mathbf{0}$, i.e. f is injective. If $f \in \operatorname{Hom}_R(A, B)$ is an epimorphism and $p : B \to B/\operatorname{im} f$ is the natural projection, then $pf = \mathbf{0} = \mathbf{0}f$, which implies $p = \mathbf{0}$, so $B = \operatorname{im} f$.

Counter-example:

The example given in part (b) is an example of a concrete category with a non-surjective epimorphism.

Exercise 1.2. Let $F : \text{R-Mod} \to \text{Ab}$ be an additive functor (covariant or contravariant). Suppose $0 \to A \xrightarrow{i} B \xrightarrow{p} C \to 0$ is a split short exact sequence of (unital) left *R*-modules. Prove that $F(B) \cong F(A \oplus C)$ and that $F(A \oplus C) \cong F(A) \oplus F(C)$.

Proof. Since the sequence is short exact, $B \cong A \oplus C$, and so the isomorphism $F(B) \cong F(A \oplus C)$ follows from Exercise 1.1, part (a).

Let $p_A : A \oplus C \to A$ and $p_C : A \oplus C \to A$ be the projection maps, and let $i_A : A \to A \oplus C$ and $i_C : C \to A \oplus C$ be the inclusions. First assume that F is covariant. Define maps

$$f: F(A \oplus C) \to F(A) \oplus F(C)$$
$$x \mapsto (F(p_A)(x), F(p_C)(x)), \text{ and}$$
$$g: F(A) \oplus F(C) \to F(A \oplus C)$$
$$(u, v) \mapsto F(i_A)(u) + F(i_C)(v).$$

Since they are defined in terms of morphisms in Ab, both f and g are themselves group homomorphisms. Since $p_A i_A = id_A$ and $p_C i_C = id_C$, we get

$$\begin{split} fg(u,v) &= f(Fi_A(u) + Fi_C(v)) \\ &= (Fp_A(Fi_A(u) + Fi_C(v)), Fp_C(Fi_A(u) + Fi_C(v))) \\ &= (Fp_AFi_A(u) + Fp_AFi_C(v), Fp_CFi_A(u) + Fp_CFi_C(v)) \\ &= (u + F(p_Ai_C)(v), F(p_Ci_A)(u) + v). \end{split}$$

Let **0** denote the zero map in R-Mod or Ab. Since F is additive, $F(\mathbf{0}) = \mathbf{0}$. Hence it follows that $fg = \mathrm{id}_{F(A)\oplus F(C)}$. Using the additivity of F and the fact that $i_A p_A + i_C p_C = \mathrm{id}_{A\oplus C}$, we get

$$gf(x) = Fi_A Fp_A(x) + Fi_C Fp_C(x) = F(i_A p_A + i_C p_C)(x) = x.$$

So $gf = id_{F(A \oplus C)}$, which shows that $F(A \oplus C) \cong F(A) \oplus F(C)$.

If F is contravariant, the following maps give the desired isomorphism:

$$f: x \mapsto (F(i_A)(x), F(i_C)(x))$$
 and $g: (u, v) \mapsto F(p_A)(u) + F(p_C)(v)$.

2. Homework 2

Exercise 2.1. Let C = R-Mod or Mod-R, let (I, \leq) be a directed partially ordered set, and let K be a cofinal subset (for all $i \in I$, there exists $k \in K$ with $i \leq k$).

- (a) If $(\{A_i\}_{i \in I}, \{\varphi_j^i\}_{i \leq j})$ is a direct system in \mathcal{C} with index set I, prove that $(\{A_k\}_{k \in K}, \{\varphi_\ell^k\}_{k \leq \ell})$ is a direct system in \mathcal{C} with index set K. Moreover prove that the direct limits of both these direct systems are isomorphic. Show that this may be false if I is not directed.
- (b) Same question, but for an inverse system.

Proof of (a). Since $K \subset I$, $\{A_k\}_{k \in K}$ is a collection of modules in \mathcal{C} , and moreover, $\varphi_{k_3}^{k_1} = \varphi_{k_3}^{k_2} \varphi_{k_2}^{k_1}$ for all $k_1 \leq k_2 \leq k_3$ in K. So $(\{A_k\}_{k \in K}, \{\varphi_{\ell}^k\}_{k \leq \ell})$ is a direct system in \mathcal{C} with index set K.

Let $(\iota_j : A_j \to \coprod_{i \in I} A_i)$ be the inclusions for the coproduct (direct sum). Define

$$S := \left\langle \{\iota_j \varphi_j^i a_i - \iota_i a_i \mid i \leq j \text{ in I, and } a_i \in A_i\} \right\rangle \subset \coprod A_i.$$

Now let $\alpha := (\alpha_j : A_j \to \coprod A_i/S)_{j \in I}$ be the collection of morphisms defined by precomposing the natural projection with the inclusions. Let $\varinjlim A_k$ be the direct limit of the direct system which is indexed over K. We know that

$$\varinjlim A_i = \left(\coprod A_i \middle/ S, \alpha\right),$$

and hence to show $\varinjlim A_i \cong \varinjlim A_k$, we will show that $\varinjlim A_i$ satisfies the universal mapping property of $\varinjlim A_k$. To that end, suppose $X \in \operatorname{Ob}(\mathcal{C})$ and $(f_k : A_k \to X)_{k \in K}$ is a collection of morphisms in \mathcal{C} satisfying $f_k = f_\ell \varphi_\ell^k$ for all $k \leq \ell$ in K.

Let $i \in I$. Since K is cofinal, there exists $k_i \in K$ such that $i \leq k_i$. Define a map

$$\psi : \prod_{i \in I} A_i \longrightarrow X, \quad (a_i)_i \longmapsto \sum_{i \in I} f_{k_i} \varphi^i_{k_i} a_i.$$

Since all but finitely many coordinates of $(a_i)_i$ are zero, ψ is well-defined. Also, ψ is a module homomorphism since it is defined in terms of module homomorphisms. Notice that for $i \leq j$ in I,

$$\iota_j \varphi_j^i a_i - \iota_i a_i =: (\tilde{a}_m)_{m \in I} \quad \text{where} \quad \tilde{a}_m = \begin{cases} \varphi_j^i a_i & \text{if } m = j, \\ -a_i & \text{if } m = i, \\ 0 & \text{if } m \neq i, j. \end{cases}$$

 So

(2.1.1)
$$\psi(\tilde{a}_m)_m = f_{k_j} \varphi_{k_j}^j \varphi_j^i a_i - f_{k_i} \varphi_{k_i}^i a_i.$$

Now, the hypostheses that I is directed and K is cofinal together imply that there exists $\ell \in K$ so that $k_i \leq \ell$ and $k_j \leq \ell$. Hence we get the following diagram in \mathcal{C} :

Notice that since k_i, k_j and ℓ are all in K, the top two triangles commute. Hence the entire diagram commutes. In particular,

$$f_{k_j}\varphi^j_{k_i}\varphi^i_j = f_{k_i}\varphi^i_{k_i},$$

and so Equation 2.1.1 becomes $\psi(\tilde{a}_m)_m = 0$. Since elements of the form $(\tilde{a}_m)_m$ generate S, we have $\psi(S) = 0$, and hence ψ induces a well defined morphism $\Psi : \coprod A_i/S \longrightarrow X$. Moreover, for ℓ in K and $a_\ell \in A_\ell$, $\Psi \alpha_\ell a_\ell = f_{k_\ell} \varphi_{k_\ell}^\ell a_\ell = f_\ell a_\ell$, so Ψ makes the diagram commute:

Now if $\tilde{\Psi} : \varinjlim A_i \to X$ is another morphism in \mathfrak{C} making the diagram commute, then $\tilde{\Psi}\alpha_{k_i} = f_{k_i}$ for all $k_i \in K$, and so

$$\Psi((a_i)i+S) = \sum_i f_{k_i} \varphi_{k_i}^i a_i = \sum_i \tilde{\Psi} \alpha_{k_i} \varphi_{k_i}^i a_i = \tilde{\Psi} \sum_i \alpha_i a_i = \tilde{\Psi}((a_i)_i + S).$$

Therefore, Ψ is unique, and hence $\varinjlim A_i \cong \varinjlim A_k$.

Consider $I = \{0, 1, 2\}$ with partial order 0 < 1 and 0 < 2. We get the pushout as our direct limit, so $\varinjlim A_i = A_1 \coprod A_2 / S$ where $S := \{(\varphi_1^0(a_0), -\varphi_2^0(a_0)) : a_0 \in A_0\}$.

The subset $K = \{1, 2\}$ is cofinal and its associated direct system has direct limit $\varinjlim A_k = A_1 \coprod A_2$, which is not isomorphic to $\varinjlim A_i = A_1 \coprod A_2/S$, (unless of course S = 0, in which case φ_1^0 and φ_1^0 are both the zero map. So just assume they're not).

Exercise 2.2. Let R, S be rings, let (I, \leq) be a partially ordered set.

(a) If $(\{A_i\}_{i \in K}, \{\varphi_j^i\}_{i \leq j})$ is a direct system in R-Mod with index set I, prove that there is an exact sequence in R-Mod

$$\coprod_{i \in I} \coprod_{\substack{j \in I \\ i \leq j}} B_{ij} \xrightarrow{f} \coprod_{i \in I} A_i \xrightarrow{p} \varinjlim_{i \in I} A_i \to 0$$

where $B_{ij} = A_i$ for all $i \leq j$.

If $({C_i}_{i \in K}, {\psi_i^j}_{i \ge j})$ is an inverse system in \mathcal{C} with index set I, prove that there is an exact sequence

$$0 \to \varprojlim C_i \xrightarrow{\iota} \prod_{i \in I} C_i \xrightarrow{g} \prod_{i \in I} \prod_{\substack{j \in I \\ i \leq j}} D_{ij}$$

where $D_{ij} = C_i$ for all $i \leq j$.

(b) Let $F : \mathbb{R}\text{-}Mod \longrightarrow \mathbb{S}\text{-}Mod$ be an additive left exact functor.

If F is covariant and preserves direct products, prove that F preserves inverse limits.

If F is contravariant and converts direct sums into direct products, prove that F converts direct limits into inverse limits.

Proof.

(a) First, p is the natural projection, and ι is inclusion. Let $\iota_j : A_j \to \coprod_{i \in I} A_i$ be the *j*th inclusion for the coproduct. Define f by the rule

$$((a_{ij})_{j\in I,i\leq j})_{i\in I}\longmapsto \sum_{i\in I}\sum_{\substack{j\in I\\i< j}}\iota_j\varphi_j^i a_{ij}-\iota_i a_{ij}.$$

The sum is well-defined since we are working over coproducts, and so only finitely many components of tuples are nonzero. By definition of $\varinjlim A_i$, an element $(a_i)_i \in \coprod A_i$ is in ker p if and only if it is a finite sum of elements of the form $\iota_j \varphi_j^i a_i - \iota_i a_i$, and so im $f = \ker p$. Next, define g by the rule

$$(c_i)_{i\in I} \longmapsto \left((\psi_i^j c_j - c_i)_{j\in I, i\leq j} \right)_{i\in I}$$

An element $(c_i)_i \in \prod C_i$ is in ker g is and only if $\psi_i^j c_j = c_i$ for all $i \leq j$ in I. This is precisely the definition of the elements of $\lim C_i$.

(b)

NICHOLAS CAMACHO

Exercise 2.3. Let G be a group and let \mathcal{N} be the family of all normal subgroups of finite index in G.

- (a) If $N' \subseteq N$ in \mathcal{N} then there is a homomorphism $\psi_N^{N'} : G/N' \to G/N$. Show that the family of all such quotients together with the maps $\psi_N^{N'}$ forms an inverse system over \mathcal{N} where $N \leq N'$ iff $N' \subseteq N$.
- (b) The inverse limit of the system in (a), <u>lim</u> G/N, is denoted by Ĝ and is called the *profinite completion* of G. There is a natural homomorphism f: G → Ĝ sending g to (gN)_{N∈N}. Show that f is injective if and only if G is residually finite, i.e. ∩_{N∈N} N = {1_G}.
 (c) Write down the profinite completion of Z, viewed as a subgroup under
- (c) Write down the profinite completion of Z, viewed as a subgroup under addition.

Proof.

(a) The map $\psi_N^{N'}: G/N' \to G/N$ given by $gN' \mapsto gN$ is a well-defined group homomorphism since $N' \subseteq N$. Moreover, when $N \leq N' \leq N''$

$$\psi_N^{N'}\psi_{N'}^{N''}(gN'') = \psi_N^{N'}(gN') = gN = \psi_N^{N''}(gN''),$$

- so $(\{G/N\}_{N\in\mathcal{N}}, \{\psi_N^{N'}\}_{N\leq N'})$ forms an inverse system over \mathcal{N} .
- (b) Follows from the fact that

$$\ker f = \{g : (gN)_{N \in \mathcal{N}} = (N)_{N \in \mathcal{N}}\} = \{g : g \in N \ \forall N \in \mathcal{N}\} = \bigcap_{N \in \mathcal{N}} N$$

(c) The normal subgroups of \mathbb{Z} with finite index are all nonzero subgroups since \mathbb{Z} is abelian, i.e. $\mathcal{N} = \{n\mathbb{Z} \mid n \in \mathbb{Z}^+\}$. Moreover

$$n|m \iff m\mathbb{Z} \subseteq n\mathbb{Z} \iff n\mathbb{Z} \le m\mathbb{Z}$$

So

$$\underbrace{\lim_{n \in \mathbb{Z}^{+}} \mathbb{Z}/n\mathbb{Z}} = \left\{ (a_{n} + n\mathbb{Z})_{n \in \mathbb{Z}^{+}} \in \prod_{n \in \mathbb{Z}^{+}} \mathbb{Z}/n \Big| \psi_{n\mathbb{Z}}^{m\mathbb{Z}}(a_{m} + n\mathbb{Z}) = a_{n} + n\mathbb{Z}, \forall n | m \right\}$$

$$= \left\{ (a_{n} + n\mathbb{Z})_{n \in \mathbb{Z}^{+}} \in \prod_{n \in \mathbb{Z}^{+}} \mathbb{Z}/n \Big| a_{m} + n\mathbb{Z} = a_{n} + n\mathbb{Z}, \forall n | m \right\}$$

$$= \left\{ (a_{n} + n\mathbb{Z})_{n \in \mathbb{Z}^{+}} \in \prod_{n \in \mathbb{Z}^{+}} \mathbb{Z}/n \Big| a_{m} - a_{n} \in n\mathbb{Z}, \forall n | m \right\}.$$

3. Homework 3

Exercise 3.1.

- (a) Show that the Z-module Z/2 does not have a projective cover. (You can use without proof that over a PID every projective module, whether or not it is finitely generated, is free.)
- (b) Let R be a left Artinian ring, and let M be a finitely generated left R-module. Prove that M has a projective cover.

Proof.

- (a) Suppose there exists an essential epimorphism $\epsilon : P \to \mathbb{Z}/2$ for a projective, hence free, \mathbb{Z} -module $P \cong \bigoplus_{i \in I} \mathbb{Z}$, where I is some index set. Since ϵ is not the zero map, at least of the group generators for $\bigoplus_i \mathbb{Z}$ maps to $1 + 2\mathbb{Z}$, say x. But $\epsilon(\langle 3x \rangle) = \mathbb{Z}/2$ and $\langle 3x \rangle \lneq \bigoplus_i \mathbb{Z}$, contradicting that ϵ is essential.
- (b) Let $L \in Ob({}_{\mathbb{R}}\mathbf{proj})$ with an epimorphism $f: L \twoheadrightarrow M$. Let S be the set of all submodules $N \subseteq \operatorname{Ker}(f)$ so that $f_N: L/N \to M$ is an essential epimorphism. Now $S \neq \emptyset$ since $L/\operatorname{Ker}(f) \cong M$. Since R is Artinian and L is finitely generated, then L is Artinian and hence S has a minimal element, say X. It remains to show that L/X is projective.

If $\pi: L \to L/X$, then $f = \pi \circ f_X$. So if π is essential, then f is essential, and we are done. If not, let $Y \subsetneq L$ be a minimal submodule such that $\pi(Y) = L/X$. Then $\pi|_Y: Y \to L/X$ is essential, and since L is projective, we find a surjective map $g: L \to Y$ so that $\pi = \pi|_Y \circ g$.

Since g is surjective, then \tilde{g} is an isomorphism. So the composition $f_X \circ \pi|_Y \circ \tilde{g}$ is an essential epimorphism. By the minimality of X in S, $X \subseteq \text{Ker } g$. Now if $\ell \in \text{Ker } g$, then $\ell + X = \pi(\ell) = 0 + X$, so X = Ker g. Hence the map $h : L/X \to L$ given by $\ell + X \mapsto g(\ell)$ is a well-defined *R*-module homomorphism. Moreover

$$(\pi \circ h)(\ell + X) = \pi(g(\ell)) = \pi|_Y(g(\ell)) = \pi(\ell) = \ell + X,$$

hence $\pi \circ h = \mathrm{id}_{L/X}$, and so $X \oplus L/X \cong L$, implying L/X is projective.

Exercise 3.2. This exercise gives an example of a direct system $(\{B_i\}_{i \in I}, \{\varphi_j^i\}_{i \leq j})$ of right *R*-modules over a directed partially ordered set (I, \leq) such that $\varinjlim B_i$ is flat, but not all B_i are flat.

Let k be a field and let R = k[x, y] be the polynomial ring over k in two commuting variables x, y.

- (a) Let $\mathfrak{m} = (x, y)$ be the maximal ideal of R. Prove that \mathfrak{m} is not a flat R-module by showing that the inclusion map $\iota : \mathfrak{m} \to R$ does not stay injective when tensoring with \mathfrak{m} over R.
- (b) Let I = {1,2} with 1 < 2, so I is a directed partially ordered set. Consider the direct system m → R of R-modules, indexed by I. Show that the direct limit of this direct system is isomorphic to R. Since R is flat over R but m is not flat over R, this gives an example of the desired kind.

Proof.

(a) The map $\mathfrak{m} \otimes_R \mathfrak{m} \xrightarrow{\operatorname{id}_{\mathfrak{m}} \otimes \iota} \mathfrak{m} \otimes_R R$ sends $x \otimes y - y \otimes x$ to

$$x \otimes y - y \otimes x = xy \otimes 1 - yx \otimes 1 = (xy - yx) \otimes 1 = 0.$$

We claim $x \otimes y - y \otimes x$ is not zero in $\mathfrak{m} \otimes_R \mathfrak{m}$, so $\mathrm{id}_{\mathfrak{m}} \otimes \iota$ is not injective, i.e., \mathfrak{m} is not a flat *R*-module.

Let $\overline{a} := a + \mathfrak{m}^2$, for all $a \in \mathfrak{m}$. From the natural map $\pi : \mathfrak{m} \twoheadrightarrow \mathfrak{m}/\mathfrak{m}^2$, we obtain

$$\mathfrak{m} \otimes_R \mathfrak{m} \xrightarrow{\mathrm{id}_\mathfrak{m} \otimes \pi} \mathfrak{m} \otimes_R \mathfrak{m}/\mathfrak{m}^2$$

which sends $x \otimes y - y \otimes x$ to the element $x \otimes \overline{y} - y \otimes \overline{x}$. Hence to prove our claim, it suffices to show that $x \otimes \overline{y} - y \otimes \overline{x}$ is not zero in $\mathfrak{m} \otimes_R \mathfrak{m}/\mathfrak{m}^2$.

Let $ax + by \in \mathfrak{m}$, where $a, b \in R$ have constant terms a_0, b_0 , respectively. Since \mathfrak{m}^2 contains all monomials of degree at least 2, then

$$\overline{ax + by} = a_0\overline{x} + b_0\overline{y},$$

and hence \overline{x} and \overline{y} span $\mathfrak{m}/\mathfrak{m}^2$ over k. Moreover if $a_0x + b_0y \in \mathfrak{m}^2$, then $a_0x + b_0y = 0_K$, implying $a_0 = b_0 = 0$ and hence $\mathfrak{m}/\mathfrak{m}^2 = k\overline{x} \oplus k\overline{y}$.

Notice that in $\mathfrak{m} \otimes_R \mathfrak{m}/\mathfrak{m}^2$, a simple tensor $(ax + by) \otimes (c_0 \overline{x} + d_0 \overline{y})$, where $a, b \in R, c_0, d_0 \in k$, equals $(a_0 x + b_0 y) \otimes (c_0 \overline{x} + d_0 \overline{y})$ where a_0, b_0 are the constant terms of a, b, respectively. It follows that $\pi \otimes \operatorname{id}_{\mathfrak{m}/\mathfrak{m}^2}$ is an isomorphism. Since $- \otimes_R \mathfrak{m}/\mathfrak{m}^2$ preserves direct limits, we get

 $\mathfrak{m} \otimes_R \mathfrak{m}/\mathfrak{m}^2 \cong \mathfrak{m}/\mathfrak{m}^2 \otimes_R \mathfrak{m}/\mathfrak{m}^2 \cong (k\overline{x} \oplus k\overline{y}) \otimes_R (k\overline{x} \oplus k\overline{y})$

$$\cong k(\overline{x} \otimes_R \overline{x}) \oplus k(\overline{x} \otimes_R \overline{y}) \oplus k(\overline{y} \otimes_R \overline{x}) \oplus k(\overline{y} \otimes_R \overline{y}).$$

Via this isomorphism, $x \otimes \overline{y} - y \otimes \overline{x} \longrightarrow \overline{x} \otimes \overline{y} - \overline{y} \otimes \overline{x}$, the latter of which cannot be zero since $\overline{x} \otimes \overline{y}$ and $\overline{y} \otimes \overline{x}$ are members of a k-basis.

(b) Given a diagram

define $\Phi := f_R$. Then Φ makes the diagram commute and is unique, so $R \cong \lim(\mathfrak{m} \hookrightarrow R)$.

Exercise 3.3.

(a) Given two exact sequences of R-modules (all left or all right R-modules)

$$0 \to B \to E^0 \to E^1 \to \dots \to E^n \to X \to 0 \text{ and} \\ 0 \to B \to D^0 \to D^1 \to \dots \to D^n \to Y \to 0,$$

where all E^i and D^i are injective, prove that

$$X \oplus D^n \oplus E^{n-1} \oplus D^{n-2} \oplus \cdots \cong Y \oplus E^n \oplus D^{n-1} \oplus E^{n-2} \oplus \cdots$$

(b) Given two exact sequences of *R*-modules (all left or all right *R*-modules)

$$0 \to K \to P_n \to P_{n-1} \to \dots \to P_0 \to B \to 0 \text{ and} 0 \to L \to Q_n \to Q_{n-1} \to \dots \to Q_0 \to B \to 0,$$

where all P_i and Q_i are projective, prove that

$$K \oplus Q_n \oplus P_{n-1} \oplus Q_{n-2} \oplus \cdots \cong L \oplus P_n \oplus Q_{n-1} \oplus P_{n-2} \oplus \cdots$$

Proof.

(a) By induction on n. The case n = 0 is the dual statement of Schanuel's Lemma. Now suppose the statement is true for n > 0. For all i, let $f^i: E^{i-1} \to E^i$ and $g^i: D^{i-1} \to D^i$. From the dual statement of Schanuel's Lemma, using the short exact sequences

$$\begin{split} 0 &\to B \xrightarrow{f^0} E^0 \twoheadrightarrow E^0 / \operatorname{Ker} f^1 \to 0 \quad \text{and} \\ 0 &\to B' \xrightarrow{g^0} D^0 \twoheadrightarrow D^0 / \operatorname{Ker} g^1 \to 0, \end{split}$$

we have $E^0 \oplus (D^0 / \operatorname{Ker} g^1) \cong D^0 \oplus (E^0 / \operatorname{Ker} f^1)$. This gives sequences

$$0 \to D^{0} \oplus \frac{E^{0}}{\operatorname{Ker} f^{1}} \xrightarrow{\begin{pmatrix} \operatorname{id}_{D^{0}} & 0\\ 0 & \tilde{f}^{1} \end{pmatrix}} D^{0} \oplus E^{1} \xrightarrow{(0 f^{2})} E^{2} \to \dots \to E^{n+1} \to X \to 0$$
$$0 \to E^{0} \oplus \frac{D^{0}}{\operatorname{Ker} g^{1}} \xrightarrow{\begin{pmatrix} \operatorname{id}_{E^{0}} & 0\\ 0 & \tilde{g}^{1} \end{pmatrix}} E^{0} \oplus D^{1} \xrightarrow{(0 g^{2})} D^{2} \to \dots \to D^{n+1} \to Y \to 0$$

Note that $D^0 \oplus E^1$ and $E^0 \oplus D^1$ are injective, since the product of injective modules is injective. Moreover we have

$$\operatorname{Ker} \begin{pmatrix} \operatorname{id}_{D^0} & 0 \\ 0 & \tilde{f}^1 \end{pmatrix} \cong \operatorname{Ker} \tilde{f}^1 \cong \operatorname{Ker} f^1 / \operatorname{Ker} f^1 = 0,$$

$$\operatorname{Ker} \left(0 \ f^2 \right) = D^0 \oplus \operatorname{Ker} f^2$$

$$= D^0 \oplus \operatorname{Im} f^1$$

$$\cong D^0 \oplus \frac{\operatorname{Im} f^1 + \operatorname{Ker} f^1}{\operatorname{Ker} f^1}$$

$$= \operatorname{Im} \begin{pmatrix} \operatorname{id}_{D^0} & 0 \\ 0 & \tilde{f}^1 \end{pmatrix},$$

$$\operatorname{Im} \left(0 \ f^2 \right) \cong \operatorname{Im} f^2 = \operatorname{Ker} f^3,$$

with similar statements for the second sequence. So the sequences are exact and we are in the situation of our induction hypothesis, hence

$$X \oplus D^{n+1} \oplus E^n \oplus D^{n-1} \oplus \cdots \cong Y \oplus E^{n+1} \oplus D^n \oplus E^{n-1} \oplus \cdots$$

(b) By induction on n. The case n = 0 is Schanuel's Lemma. Now suppose the statement is true for n > 0. For all i, let $f_i : P_i \to P_{i-1}$ and $g_i : Q_i \to Q_{i-1}$. From Schanuel's Lemma, using the short exact sequences

$$0 \to \operatorname{Im} f_1 \hookrightarrow P_0 \xrightarrow{f_0} B \to 0 \quad \text{and} \\ 0 \to \operatorname{Im} g_1 \hookrightarrow Q_0 \xrightarrow{g_0} B' \to 0,$$

we have $\operatorname{Im} f_1 \oplus Q_0 \cong \operatorname{Im} g_1 \oplus P_0$. This gives sequences

$$0 \to K \to P_{n+1} \to \dots \to P_2 \xrightarrow{\begin{pmatrix} f_2 \\ 0 \end{pmatrix}} P_1 \oplus Q_0 \xrightarrow{\begin{pmatrix} f_1 & 0 \\ 0 & \mathrm{id}_{Q_0} \end{pmatrix}} \operatorname{Im} f_1 \oplus Q_0 \to 0$$
$$0 \to L \to Q_{n+1} \to \dots \to Q_2 \xrightarrow{\begin{pmatrix} g_2 \\ 0 \end{pmatrix}} Q_1 \oplus P_0 \xrightarrow{\begin{pmatrix} g_1 & 0 \\ 0 & \mathrm{id}_{P_0} \end{pmatrix}} \operatorname{Im} g_1 \oplus P_0 \to 0$$

Note that $Q_1 \oplus P_0$ and $P_1 \oplus Q_0$ are projective since the coproduct of projective modules is projective. Moreover we have

$$\operatorname{Im} \begin{pmatrix} f_1 & 0\\ 0 & \operatorname{id}_{Q_0} \end{pmatrix} = \operatorname{Im} f_1 \oplus Q_0,$$
$$\operatorname{Im} \begin{pmatrix} f_2\\ 0 \end{pmatrix} \cong \operatorname{Im} f_2 = \operatorname{Ker} f_1 \cong \operatorname{Ker} \begin{pmatrix} f_1 & 0\\ 0 & \operatorname{id}_{Q_0} \end{pmatrix},$$
$$\operatorname{Ker} \begin{pmatrix} f_2\\ 0 \end{pmatrix} \cong \operatorname{Ker} f_2 = \operatorname{Im} f_3,$$

with similar statements for the second sequence. So the sequences are exact and we are in the situation of our induction hypothesis, hence

$$K \oplus Q_{n+1} \oplus P_n \oplus Q_{n-1} \oplus \cdots \cong L \oplus P_{n+1} \oplus Q_n \oplus P_{n-1} \oplus \cdots$$

11		
1 1		
	_	

4. Homework 4

Exercise 4.1. A full subcategory C_0 of C is said to be a *skeleton* of C if every object in C is isomorphic to exactly one object in C_0 . Assuming the Axiom of Choice (e.g., using the Gödel-Bernays system), prove that C and C_0 are equivalent categories. Show that C and C_0 need not be isomorphic categories (give an example).

Proof. For all $X \in Ob(\mathcal{C})$, let \tilde{X} denote the object in \mathcal{C}_0 for which $X \cong \tilde{X}$, and choose an isomorphism $f_X : X \to \tilde{X}$. Define

$$F: \mathcal{C} \longrightarrow \mathcal{C}_{0}$$

$$X \longmapsto \tilde{X}$$

$$(f: X \to X') \longmapsto Ff := f_{X'} \circ f \circ f_{X}^{-1}$$

For all $X, X' \in Ob(\mathcal{C})$, define

$$\hat{F}_{X,X'} : \operatorname{Hom}_{\mathcal{C}_0}(\tilde{X}, \tilde{X}') \longrightarrow \operatorname{Hom}_{\mathcal{C}}(X, X')$$
$$g \longmapsto f_{X'}^{-1} \circ g \circ f_X.$$

Then

$$F\hat{F}(g) = F(f_{X'}^{-1} \circ g \circ f_X) = f_{X'} \circ f_{X'}^{-1} \circ g \circ f_X \circ f_X^{-1} = g,$$

and

$$\hat{F}F(f) = \hat{F}(f_{X'} \circ f \circ f_X^{-1}) = f_{X'}^{-1} \circ f_{X'} \circ f \circ f_X^{-1} \circ f_X = f.$$

So F is fully faithful. Moreover, since \mathcal{C}_0 is a skeleton of \mathcal{C} , if $Y \in \mathcal{C}_0$, there exists $X \in Ob(\mathcal{C})$ so that $\tilde{X} = Y$, hence Y = F(X), implying F is dense. Hence F is an equivalence.

The category \mathcal{C} of finite ordered sets is equivalent to the full subcategory \mathcal{C}_0 of finite ordered sets of the form $[n] := \{1 < 2 < \cdots < n\}$ for $n \in \mathbb{Z}^+$. Let $N \in Ob(\mathcal{C})$ and suppose |N| = n. Let N_j denote the *j*th element in N. Then $N \cong [n]$ via the map $N_j \mapsto j$, and moreover, [n] is the only object in \mathcal{C}_0 isomorphic to N, since [n] is the only set in \mathcal{C}_0 of cardinality n. So \mathcal{C}_0 is a skeleton of \mathcal{C} . However, $\mathcal{C} \ncong \mathcal{C}_0$, since any isomorphism would need to uniquely identify the object in \mathcal{C}_0 with, say, cardinality n, with an object in \mathcal{C} with, say, cardinality m. But there are many such objects in \mathcal{C} , so any choice would leave other objects in \mathcal{C} with cardinality m unaccounted for.

NICHOLAS CAMACHO

Exercise 4.3. Let $F, F' : \mathcal{C} \to \mathcal{D}$ and $G, G' : \mathcal{C} \to \mathcal{C}$ be covariant functors.

- (a) Prove: If (F,G) and (F',G) are adjoint pairs, then F and F' are naturally isomorphic.
- (b) Prove: If (F, G) and (F, G') are adjoint pairs, then G and G' are naturally isomorphic.
- (c) Prove: If F and G are quasi-inverses of each other, then (F, G) and (G, F) are adjoint pairs.

Proof.

(a) For all $X \in Ob(\mathcal{C})$ and for all $Y \in Ob(\mathcal{D})$, there exists a natural bijection

$$\Phi_{X,Y} : \operatorname{Hom}_{\mathcal{D}}(F'(X), Y) \longrightarrow \operatorname{Hom}_{\mathcal{D}}(F(X), Y).$$

For all $X \in Ob(\mathcal{C})$, define $\eta_X : F(X) \to F'(X)$ by

$$\eta_X := \Phi_{X,F'(X)}(\mathrm{id}_{F'(X)}).$$

Then for all $f \in \operatorname{Hom}_{\mathfrak{C}}(X, Z)$ we have a diagram, each square commutative:

$$\begin{split} \operatorname{Hom}_{\mathcal{D}}(F'(X), F'(X)) & \xrightarrow{\Phi_{X, F'(X)}} \operatorname{Hom}_{\mathcal{D}}(F(X), F'(X)) \\ & (F'f)_* & \downarrow (F'f)_* \\ \operatorname{Hom}_{\mathcal{D}}(F'(X), F'(Z)) & \xrightarrow{\Phi_{X, F'(Z)}} \operatorname{Hom}_{\mathcal{D}}(F(X), F'(Z)) \\ & (F'f)^* & \uparrow (Ff)^* \\ \operatorname{Hom}_{\mathcal{D}}(F'(Z), F'(Z)) & \xrightarrow{\Phi_{Z, F'(Z)}} \operatorname{Hom}_{\mathcal{D}}(F(Z), F'(Z)) \end{split}$$

 So

$$F'f \circ \eta_X = (F'f)_*(\eta_X) = (\Phi_{X,F'(Z)} \circ (F'f)_*)(\mathrm{id}_{F'(X)})$$

= $\Phi_{X,F'(Z)}(F'f)$
= $(\Phi_{X,F'(Z)} \circ (F'f)^*)(\mathrm{id}_{F'(Z)})$
= $(Ff)^*(\eta_Z)$
= $\eta_Z \circ Ff.$

Hence $\eta = {\eta_X}_{X \in Ob(\mathcal{C})}$ is natural. In a similar manner we may define a natural transformation $\epsilon = {\epsilon_X}_{X \in Ob(\mathcal{C})} : F' \to F$ by

$$\epsilon_X := \Phi_{X,F(X)}^{-1}(\mathrm{id}_{F(X)})$$

Using the diagram

,

we have

$$\begin{aligned} \epsilon_X \circ \eta_X &= ((\epsilon_X)_* \circ \Phi_{X,F'(X)})(\mathrm{id}_{F'(X)}) \\ &= (\Phi_{X,F(X)} \circ (\epsilon_X)_*)(\mathrm{id}_{F'(X)}) \\ &= \Phi_{X,F(X)}(\epsilon_X) \\ &= \mathrm{id}_{F(X)} \,. \end{aligned}$$

Similarly, $\eta_X \circ \epsilon_X = \mathrm{id}_{F'(X)}$. So η is a natural isomorphism.

(b) For all $X \in Ob(\mathcal{C})$ and for all $Y \in Ob(\mathcal{D})$, there exists a natural bijection $\Psi_{X,Y} : \operatorname{Hom}_{\mathcal{C}}(X, G'(Y)) \longrightarrow \operatorname{Hom}_{\mathcal{C}}(X, G(Y)).$

$$\Psi_{X,Y} : \operatorname{Hom}_{\mathbb{C}}(X, G'(Y)) \longrightarrow \operatorname{Hom}_{\mathbb{C}}(X, G(Y))$$

For all $Y \in Ob(\mathcal{D})$, define $\eta_Y : G(Y) \to G'(Y)$ by

$$\eta_Y := \Psi_{G'(Y),Y}(\mathrm{id}_{G'(Y)}).$$

Then for all $g \in \operatorname{Hom}_{\mathcal{D}}(Y, W)$ we have a diagram, each square commutative:

$$\begin{array}{c|c}\operatorname{Hom}_{\mathbb{C}}(G'(Y),G'(Y)) \xrightarrow{\Psi_{G'(Y),Y}} \operatorname{Hom}_{\mathbb{C}}(G'(Y),G(Y)) \\ & (G'g)_* & (Gg)_* \\ \operatorname{Hom}_{\mathbb{C}}(G'(Y),G'(W)) \xrightarrow{\Psi_{G'(Y),W}} \operatorname{Hom}_{\mathbb{C}}(G'(Y),G(W)) \\ & (G'g)^* & (G'g)^* \\ \operatorname{Hom}_{\mathbb{C}}(G'(W),G'(W)) \xrightarrow{\Psi_{G'(W),W}} \operatorname{Hom}_{\mathbb{C}}(G'(W),G(W)) \end{array}$$

 So

$$Gg \circ \eta_{Y} = (Gg)_{*}(\eta_{Y}) = (\Psi_{G'(Y),W} \circ (G'g)_{*})(\mathrm{id}_{G'(Y)})$$

= $\Psi_{G'(Y),W}(G'g)$
= $(\Psi_{G'(Y),W} \circ (G'g)^{*})(\mathrm{id}_{G'(W)})$
= $(G'g)^{*}(\eta_{W})$
= $\eta_{W} \circ G'g.$

Hence $\eta = {\eta_Y}_{Y \in Ob(\mathcal{D})}$ is natural. In a similar manner we may define a natural transformation $\epsilon = {\epsilon_Y}_{Y \in Ob(\mathcal{D})} : G'(Y) \to G(Y)$ by

$$\epsilon_Y := \Psi_{G'(Y),Y}^{-1}(\mathrm{id}_{G(Y)}).$$

As in part (a), we have $\eta_Y \circ \epsilon_Y = \mathrm{id}_{G'(Y)}$ and $\epsilon_Y \circ \eta_Y = \mathrm{id}_{G(Y)}$. So η is a natural isomorphism.

NICHOLAS CAMACHO

(c) There exists a natural isomorphism $\tau : \operatorname{Id}_{\mathfrak{C}} \to GF$. Since G is fully faithful, for all $X \in \operatorname{Ob}(\mathfrak{C})$ and for all $Y \in \operatorname{Ob}(\mathfrak{D})$, there are maps between the classes

$$\operatorname{Hom}_{\mathcal{C}}(GF(X), G(Y)) \longleftrightarrow \operatorname{Hom}_{\mathcal{D}}(F(X), Y)$$

which are two-sided inverses to one another. In particular, for all $\beta \in \operatorname{Hom}_{\mathfrak{C}}(X, G(Y))$, there exists a unique $\tilde{\beta} \in \operatorname{Hom}_{\mathfrak{D}}(F(X), Y)$ so that

$$G\tilde{\beta} = \beta \circ \tau_X^{-1}.$$

So for all $X \in Ob(\mathcal{C})$ and for all $Y \in Ob(\mathcal{D})$, define maps

$$\Phi_{X,Y} : \operatorname{Hom}_{\mathcal{D}}(F(X), Y)) \rightleftharpoons \operatorname{Hom}_{\mathfrak{C}}(X, G(Y)) : \Psi_{X,Y}$$
$$\alpha \longmapsto G\alpha \circ \tau_X,$$
$$\tilde{\beta} \longleftrightarrow \beta.$$

Then $\Psi_{X,Y}(\Phi_{X,Y}(\alpha)) = \widetilde{G\alpha \circ \tau_X}$. Since $G\alpha = G\alpha \circ \tau_X \circ \tau_X^{-1}$, then $\alpha = \widetilde{G\alpha \circ \tau_X}$. Moreover, $\Phi_{X,Y}(\Psi_{X,Y}(\beta)) = G\tilde{\beta} \circ \tau_X^{-1} = \beta$. Hence (F,G) is an adjoint pair. Exchanging the roles of F and G, we see also that (G,F) is an adjoint pair.

11	
_	

5. Homework 5

Exercise 5.1. Let $m \in \mathbb{Z}^+$, and let $R = \mathbb{Z}/m$.

- (a) Let $A = \mathbb{Z}/d$ where d|m, and let B be an arbitrary R-module. Determine $\operatorname{Tor}_n^R(A, B)$ for all $n \ge 0$.
- (b) Let C be an arbitrary R-module, and let $D = \mathbb{Z}/p$ where p|m. Determine $\operatorname{Ext}_{R}^{n}(C, D)$ for all $n \geq 0$ in terms of $\operatorname{Hom}_{R}(C, R)$. Moreover, show that if $p^{2}|m$, then $\operatorname{Ext}_{R}^{n}(D, D) \cong D$ for all n.

Proof.

(a) Consider the maps $R \xrightarrow{m/d} R$ and $R \xrightarrow{d} R$, multiplication by m/d and d, respectively. We have $d((m/d)(a + m\mathbb{Z}) = 0 + m\mathbb{Z}$, hence $\operatorname{Im}(m/d) \subseteq \operatorname{Ker}(d)$. If $db + m\mathbb{Z} = 0 + m\mathbb{Z}$, then there exists $c \in \mathbb{Z}$ with db = cm. So $(m/d)(c + m\mathbb{Z}) = b + m\mathbb{Z}$, which shows $\operatorname{Ker}(d) = \operatorname{Im}(m/d)$. Similarly, we get $\operatorname{Ker}(m/d) = \operatorname{Im}(d)$.

Now let $R \xrightarrow{\epsilon} A$ be the canonical surjection. Then

$$\epsilon(da + m\mathbb{Z}) = da + d\mathbb{Z} = 0 + m\mathbb{Z},$$

and if $\epsilon(b+m\mathbb{Z}) = 0+d\mathbb{Z}$, then b = da for some $a \in \mathbb{Z}$, so $da+m\mathbb{Z} = b+m\mathbb{Z}$. Hence $\operatorname{Ker}(\epsilon) = \operatorname{Im}(d)$. So we get a periodic free resolution of A:

$$\cdots \xrightarrow{d} R \xrightarrow{m/d} R \xrightarrow{d} R \xrightarrow{\epsilon} A \to 0.$$

For $n \ge 1$, let $\partial_n = m/d$ if n is even, and $\partial_n = d$ if n is odd. Then

 $(P_A)_{\bullet}: \cdots \xrightarrow{\partial_3} R \xrightarrow{\partial_2} R \xrightarrow{\partial_1} R \to 0.$

We have commutative diagram, where the vertical arrows are each the map $\sum r_i \otimes b_i \mapsto \sum r_i b_i$:

Hence

$$\operatorname{Tor}_0^n(A,B) \cong B/dB \cong A \otimes_R B$$

(n odd)

$$\operatorname{Tor}_{n}^{R}(A,B) \cong \left\{ b \in B \mid db = 0 \right\} / (m/d)B$$

(*n* even)
$$\operatorname{Tor}_{n}^{R}(A, B) \cong \left\{ b \in B \mid (m/d)b = 0 \right\} / dB$$

(b) Consider the maps $R \xrightarrow{p} R$ and $R \xrightarrow{m/p} R$, multiplication by p and m/p, respectively. Similarly as in part (a), we get that $\operatorname{Ker}(p) = \operatorname{Im}(m/p)$ and $\operatorname{Ker}(m/p) = \operatorname{Im}(p)$. Since p|m, let m = pa, and consider the map

$$\iota: D \to R, \quad 1 + p\mathbb{Z} \mapsto a + m\mathbb{Z}.$$

Since $pa+m\mathbb{Z} = 0+m\mathbb{Z}$, then $p\iota = 0$ and hence $\operatorname{Im}(\iota) \subseteq \operatorname{Ker}(p)$. Conversely, if $pb + m\mathbb{Z} = 0 + m\mathbb{Z}$, there exists $c \in \mathbb{Z}$ with pb = cm. Then mb = apb = acm, implying b = ac. So $\iota(c + p\mathbb{Z}) = ac + m\mathbb{Z} = b + m\mathbb{Z}$, and so $\operatorname{Ker}(p) = \operatorname{Im}(\iota)$. So we get a periodic injective resolution of D:

$$0 \to D \xrightarrow{\iota} R \xrightarrow{p} R \xrightarrow{m/p} R \xrightarrow{p} \cdots$$

For $n \ge 0$, let $\delta^n = p$ if $n \equiv 0 \mod 2$ and let $\delta^n = m/p$ if $n \equiv 1 \mod 2$. Then we get a truncated cochain complex for D

$$E_D^{\bullet}: \quad 0 \to R \xrightarrow{\delta^0} R \xrightarrow{\delta^1} R \xrightarrow{\delta^2} \cdots$$

Then

$$\operatorname{Hom}_{R}(C, E_{D}^{\bullet}): \quad 0 \to \operatorname{Hom}_{R}(C, R) \xrightarrow{\delta_{*}^{0}} \operatorname{Hom}_{R}(C, R) \xrightarrow{\delta_{*}^{1}} \operatorname{Hom}_{R}(C, R) \xrightarrow{\delta_{*}^{2}} \cdots$$

So

$$\operatorname{Ext}_{R}^{0}(C,D) = \{ \alpha : C \to R \mid p\alpha = 0 \} \cong \operatorname{Hom}_{R}(C,D)$$

(*n* odd)
$$\operatorname{Ext}_{R}^{n}(C, D) = \{\beta : C \to R \mid (m/p)\beta = 0\} / p \operatorname{Hom}_{R}(C, R)$$

(*n* even)
$$\operatorname{Ext}_{R}^{n}(C,D) = \{\gamma: C \to R \mid p\gamma = 0\} / (m/p) \operatorname{Hom}_{R}(C,R)$$

Now consider the periodic free resolution of D, where ϵ is the canonical surjection

 $\cdots \xrightarrow{p} R \xrightarrow{m/p} R \xrightarrow{p} R \xrightarrow{\epsilon} D \to 0.$

For $n \ge 1$, let $\partial_n = m/p$ if n is even, and $\partial_n = p$ if n is odd. Then

 $(P_D)_{\bullet}: \cdots \xrightarrow{\partial_3} R \xrightarrow{\partial_2} R \xrightarrow{\partial_1} R \to 0$

and we have a commutative diagram, where the vertical arrows are all the map $\alpha \mapsto \alpha(1 + m\mathbb{Z})$:

Exercise 5.3. Use the definition of abelian category from lecture, i.e. \mathcal{A} is an abelian category if \mathcal{A} is an additive category, every morphism in \mathcal{A} has a kernel and cokernel, every monomorphism in \mathcal{A} is the kernel of its cokernel, and every epimorphism in \mathcal{A} is the cokernel of its kernel.

Using only this definition and the definitions of kernel and cokernel in an additive category, prove that every morphism $f : A \to B$ in \mathcal{A} factors as $f = m\alpha$ for an empimorphism $\alpha : A \to K$ and a monomorphism $m : K \to B$ (where K is a suitable object in \mathcal{A}).

Proof. Let $(C, \pi) = \operatorname{Coker}(f)$ and $(K, m) = \operatorname{Ker}(\operatorname{Coker}(f)) = \operatorname{Ker}(\pi)$. Since $\pi f = 0$ and $(K, m) = \operatorname{Ker} \pi$, there exists a unique α such that $f = m\alpha$.

$$\begin{array}{ccc} A & \stackrel{f}{\longrightarrow} B & \stackrel{\pi}{\longrightarrow} C \\ & & & & \uparrow \\ & & & & & K \end{array}$$

Since m is a kernel, m is monic. We will show that α is epic.

Suppose $r\alpha = s\alpha$. Let $(X, \iota) = \text{Ker}(r - s)$. Since $(r - s)\alpha = 0$, there exists a unique $\beta : A \to X$ such that $\alpha = \iota\beta$. Let $(D, \tilde{\pi}) = \text{Coker}(m\iota)$.

$$\begin{array}{cccc}
 & D \\
 & & \hat{\pi} \uparrow \\
 A & \xrightarrow{f} & B & \xrightarrow{\pi} & C \\
 & \beta \downarrow & \searrow^{\alpha} & m \uparrow \\
 & X & \xrightarrow{\iota} & K & \xrightarrow{r-s} & Y
\end{array}$$

Since $\tilde{\pi}m\iota = 0$, we have

$$0 = \tilde{\pi}m\iota\beta = \tilde{\pi}m\alpha = \tilde{\pi}f.$$

So, since $\operatorname{Coker}(f) = (C, \pi)$, there exists a unique $\gamma : C \to D$ with $\tilde{\pi} = \gamma \pi$. Since $m\iota$ is monic,

$$(X, m\iota) = \operatorname{Ker}(\operatorname{Coker}(m\iota)) = \operatorname{Ker}(\tilde{\pi}).$$

So the equation

$$\tilde{\pi}m = \gamma\pi m = 0,$$

implies that there exists a unique map $\delta: K \to X$ so that $m = m\iota \delta$.

But *m* is monic, so $\iota \delta = \mathrm{id}_K$. Hence ι is a monic retraction, implying ι is an isomorphism (we proved this fact on a homework last semester in Algebra). Hence $(r-s)\iota = 0$ implies r = s, so α is epic.

Department of Mathematics, University of Iowa, Iowa City, IA 52242 $E\text{-}mail\ address:\ \texttt{nicholas-camacho@uiowa.edu}$