
ALGEBRA II – MIDTERM

NICHOLAS CAMACHO

Exercise 1. Prove that the following are equivalent for an algebraic set V , where
K is algebraically closed.

(a) V is connected in the Zariski topology.
(b) K[V ] cannot be written as K[V ] ∼= R1×R2 for two proper ideals R1, R2 ⊆

K[V ].

Proof. Suppose K[V ] ∼= R1×R2 for two proper ideals R1, R2 ⊆ K[V ]. So R1, R2 ⊆
K[V ] are such that R1 ∩R2 = I(V ) and R1 +R2 = K[V ]. Since K is algebraically
closed, the equality R1 + R2 = K[V ] occurs if and only if

Z(R1) ∩ Z(R2) = Z(R1 + R2) = ∅,

so Z(R1) and Z(R2) are disjoint, and since they are also contained in V , we have

Z(R1) t Z(R2) ⊆ V.

From R1 ∩R2 = I(V ), we obtain

Z(R1) t Z(R2) = Z(R1 ∩R2) = Z(I(V )) ⊇ V

Hence V = Z(R1) t Z(R2) and hence (a) =⇒ (b).
Conversely, if V = Z(R1)tZ(R2) for two ideals R1, R2 ⊆ K[V ], then R1 and R2

are proper ideals since Z(R1) and Z(R2) are disjoint. From V = Z(R1) t Z(R2),
we have

I(V ) = I(Z(R1) t Z(R2)) = I(Z(R1)) ∩ I(Z(R2)) ⊇ R1 ∩R2,

since Ri ⊆ I(Z(Ri)) for i = 1, 2. And since we already have I(V ) ⊆ R1 ∩ R2, we
have I(V ) = R1 ∩R2, and therefore K[V ] ∼= R1 ×R2. Hence (b) =⇒ (a) �
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Exercise 2. Let R be a commutative ring and I, J ⊆ R ideals. The ideal quotient
is defined as

(I : J) = {r ∈ R | rJ ⊂ I}.
Prove the following statements which kind of explain the name.

(a) Show that Z(I)−Z(J) ⊆ Z((I : J)).
(b) Show that if K is algebraically closed and I is radical then Z((I : J)) is

exactly the Zariski closure of Z(I)−Z(J).
(c) Show that if V and W are affine algebraic sets, then (I(V ) : I(W )) =
I(V −W ).

Proof.

(a) Let a ∈ Z(I) − Z(J) and f ∈ (I : J). Since a is not in Z(J), there exists
h ∈ J with h(a) 6= 0. Since fh ∈ I, then f(a)h(a) = 0, which implies
f(a) = 0, i.e., a ∈ Z((I : J)).

(b) We need to show Z((I : J)) is the smallest algebraic set containing Z(I)−
Z(J), i.e., for any set S of polynomials over K for which Z(I) − Z(J) ⊆
Z(S), we have Z((I : J)) ⊆ Z(S). Since Z is inclusion reversing, it suffices
to show

(2.1) S ⊆ (I : J).

Let h ∈ S and g ∈ J . We need to show that hg ∈ I, proving (2.1).
Suppose there exists b ∈ Z(I) for which h(b)g(b) 6= 0. In particular,

b ∈ Z(I) − Z(J), so hg 6∈ I(Z(I) − Z(J)). On the other hand, for all
c ∈ Z(S), h(c)g(c) = 0 since h ∈ S. So

hg 6∈ I(Z(I)−Z(J)) and hg ∈ I(Z(S)).

But and I is inclusion reversing, meaning

I(Z(S)) ⊆ I(Z(I)−Z(J)).

So we have a contradiction, meaning h(b)g(b) = 0 for all b ∈ Z(I). Hence

hg ∈ I(Z(I)) =
√
I = I,

where the first equality follows from Hilbert’s Nullstellensatz (since K is
algebraically closed) and the second equality follows since I is radical.

(c) If V = W then (I(V ) : I(W )) = K[An], since I(W ) is an ideal, and
I(V −W ) = I(∅) = K[An], so we are done. Assume V 6= W .

“ ⊆ ” :
Let f ∈ (I(V ) : I(W )) and a ∈ V −W . If g(a) = 0 for all g ∈ I(W ),

then I(W ) ⊆ I({a}) which implies

a ∈ {a} ⊆ Z(I({a})) ⊆ Z(I(W )) = W,

which gives a contradiction. So there exists h ∈ I(W ) with h(a) 6= 0. Then
f(a)h(a) = 0 since fh ∈ I(V ), and since h(a) 6= 0, we must have f(a) = 0.
Hence f ∈ I(V −W ).

“ ⊇ ” :
Let f ∈ I(V − W ), let g ∈ I(W ), and let a ∈ V . If a ∈ W , then

f(a)g(a) = 0 since g(a) = 0. If a ∈ V − W , then f(a)g(a) = 0 since
f(a) = 0. In either case, fg ∈ I(V ), so f ∈ (I(V ) : I(W )).
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Exercise 3. For any point in an algebraic set x ∈ X, let mx ⊂ K[X] be the
maximal ideal of all functions on X vanishing at x. Let ϕ : V →W be a morphism
of algebraic sets, v ∈ V , and w = ϕ(v). Check on your own that ϕ̃(mw) ⊆ mv, and
therefore that ϕ induces a map f : mw/m

2
w → mv/m

2
v (don’t include this in what

you turn in). Assume now that K is algebraically closed, so K[X]/mx ' K for any
algebraic set X over K and point x ∈ X. Check that mx/m

2
x is a K-vector space

and the map f above is K-linear (again don’t include this in what you turn in).
In one of the presentations, it is shown that if ϕ is an isomorphism of algebraic

sets, then each f as described above is an isomorphism of K-vector spaces. We
use the contrapositive of this below to show that certain algebraic sets can’t be
isomorphic, since it’s relatively much easier to show that two vector spaces are not
isomorphic.

(a) Let X = A1
K . Find the dimension of mx/m

2
x for any point x ∈ X.

(b) Let V = Z(y2 − x3) ⊂ A2. Determine a point v ∈ V which you suspect is
not like any point of A1. Compute mv/m

2
v and use what you found in (a)

to determine that V 6' A1.
(c) Do the same for W = Z(y2 − x3 − x2) ⊂ A2.
(d) Use what you learned above to show that Z(xy − z2) 6' A2.

Solution. Let’s be really fancy by stating and proving more general facts:

Lemma 3.1. Let n ∈ Z+ and K be an algebraically closed field. Let f ∈ K[x1, . . . , xn]
be a polynomial with no linear term, and for which (f) is a radical ideal. Suppose
V := Z(f) ⊆ An

K contains 0An
K

. Then m0/m
2
0 is a K-vector space of dimension n.

Proof. Write xi for the image of xi in K[V ]. Since (f) is radical and K is alge-
braically closed, then I(Z(f)) = (f), so K[V ] = K[An

K ]/(f).
Consider a nonconstant monomial term m := cxe1

1 · · ·xen
n in K[x], where c ∈ K

and ei ∈ Z≥0. For any i, mxi + m2
0 = 0 + m2

0. So if f1, . . . , fn ∈ K[An
K ] and

f1x1 + · · ·+ fnxn is in m0, then
n∑

i=1

f ixi + m2
0 =

n∑
i=1

aixi + m2
0

where ai is the constant term of fi for all 1 ≤ i ≤ n. This shows

SpanK{x1 + m2
0, . . . , xn + m2

0} = m0/m
2
0.

Our assumptions on f ensure that, for all 1 ≤ i ≤ n,

xi + m2
0 6∈ SpanK{xj + m2

0 : j 6= i}
Indeed, if the this were not true for some xi + m2

0, then we have an expression

xi +
∑
j 6=i

ajxj + m2
0 = 0 + m2

0,

for some {aj} ⊂ K, which means

xi +
∑
j 6=i

ajxj ∈ (xixj)1≤i,j≤n + (f)

However, the ideals (xixj), (f) ⊂ K[An
k ] do not contain polynomials with linear

terms, implying that the above expression is equal to 0K . But since the xi are
algebraically independent over K, this means ai = 0 for all 1 ≤ i ≤ n. Hence
{xi + m2

0}mi=1 is a linearly independent set, and hence a K-basis for m0/m
2
0. �
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Lemma 3.2. Let m ∈ Z+, let K be an algebraically closed field, let W = Am
K .

Then for all w ∈W , mw/m
2
w is a K-vector space of dimension m.

Proof. Write w = (w1, . . . , wm). Define a map

ϕw : W −→W

(u1, . . . , um) 7−→ (u1 − w1, . . . , un − wm).

Now ϕw is a morphism since it is defined in terms of the polynomials {yi−wi}mi=1

in K[y1, . . . , ym]. Moreover, ϕw has an obvious inverse morphism, and so ϕw is an
isomorphism. Since ϕ(w) = 0Am

K
, the isomorphism ϕw induces an isomorphism of

K-vector spaces, m0/m
2
0
∼= mw/m

2
w. Using f = 0 and n = m in Lemma 3.1, we

know m0/m
2
0
∼= mw/m

2
w, has dimension m. �

Corollary 3.3. Let m,n ∈ Z+ be distinct, let K be an algebraically closed field,
let V ⊆ An

K be an algebraic set as in Lemma 3.1, let W = Am
K . Then V 6∼= W .

Proof. By Lemma 3.1 and Lemma 3.2, for any w ∈W ,

dimK(m0/m
2
0) = n and dimK(mw/m

2
w) = m.

Since n 6= m, then V 6∼= W by the discussion in the exercise statement. �

The exercise now follows:

(a) Lemma 3.2 implies mx/m
2
x has dimension 1 over K.

(b) Since f(x, y) = y2 − x3 satisfies the criteria of Lemma 3.1, we can apply
Corollary 3.3.

(c) Since f(x, y) = y2 − x3 − x2, satisfies the criteria of Lemma 3.1, we can
apply Corollary 3.3.

(d) Since f(x, y, z) = xy− z2, satisfies the criteria of Lemma 3.1, we can apply
Corollary 3.3.
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