ALGEBRA II - FINAL

NICHOLAS CAMACHO

Exercise 1. Prove that the following are equivalent for a ring R (commutative with identity).
(a) $\operatorname{Spec} R$ is disconnected in the Zariski topology.
(b) R can be written as $R=R_{1} \times R_{2}$ for two proper ideals $R_{1}, R_{2} \subseteq R$.

Lemma 1.1. Let R be a ring and $N \subset R$ an ideal such that every element of N is nilpotent. If $\bar{e} \in R / N$ is idempotent, then there exists $e \in R$ which is also idempotent and $\bar{e}=e+N$.

Proof of Exercise 1. (a) \Longrightarrow (b): Suppose $\operatorname{Spec} R$ is disconnected, so $\operatorname{Spec} R=$ $\mathcal{Z}(I) \sqcup \mathcal{Z}(J)$ for two proper ideals $I, J \subsetneq R$. Since $\mathcal{Z}(I) \sqcup \mathcal{Z}(J)=\mathcal{Z}(I \cap J)$,

$$
\sqrt{0}=\bigcap_{P \in \operatorname{Spec} R} P=\mathcal{I}(\operatorname{Spec} R)=\mathcal{I}(\mathcal{Z}(I \cap J))=\sqrt{I \cap J}
$$

Since $I \cap J \subseteq \sqrt{I \cap J}$, then the images of I and J in $R / \sqrt{0}$ intersect trivially. If $I+J$ is a proper ideal, then $I+J$ is contained in a maximal ideal M, and in particular, M contains both I and J, contradicting that $\mathcal{Z}(I)$ and $\mathcal{Z}(J)$ are disjoint. Hence $I+J=R$, and so $\bar{I}+\bar{J}=R / \sqrt{0}$, where \bar{I} and \bar{J} denote the images of I and J in $R / \sqrt{0}$, respectively. Hence

$$
\bar{R}:=R / \sqrt{0}=\bar{I} \times \bar{J}
$$

and we find an idempotent ${ }^{1} \bar{e} \in R / \sqrt{0}$ so that $\bar{R}=\bar{R} \bar{e} \times \bar{R}(\overline{1}-\bar{e})$, with $\bar{e} \in I$ and $\overline{1}-\bar{e} \in J$. By the lemma, \bar{e} corresponds to an idempotent $e \in R$, giving $R=R e \times R(1-e)$.

If $e=0$, then $\overline{1}=\overline{1}-\bar{e} \in \bar{J}$, so $\bar{J}=\bar{R}$, a contradiction. Similarly, if $e=1$, then $\overline{1} \in \bar{I}$, again a contradiction. Hence $R e$ and $R(1-e)$ are proper ideals of R.
$(\mathrm{b}) \Longrightarrow(\mathrm{a}):$ If $R=R_{1} \times R_{2}$, then

$$
\mathcal{Z}\left(R_{1}\right) \cap \mathcal{Z}\left(R_{2}\right)=\mathcal{Z}\left(R_{1} \cup R_{1}\right)=\mathcal{Z}(R)=\varnothing
$$

and

$$
\mathcal{Z}\left(R_{1}\right) \cup \mathcal{Z}\left(R_{2}\right)=\mathcal{Z}\left(R_{1} \cap R_{1}\right)=\mathcal{Z}(\varnothing)=\operatorname{Spec} R,
$$

and so $\operatorname{Spec} R=\mathcal{Z}\left(R_{1}\right) \sqcup \mathcal{Z}\left(R_{2}\right)$. For $i=1,2$, since R_{i} is a proper ideal, it is contained in a maximal ideal, and hence $\mathcal{Z}\left(R_{i}\right) \neq \varnothing$.

[^0]Exercise 2. Let \mathcal{C} be a category, and let $\phi_{X}: X \rightarrow Z$ and $\phi_{Y}: Y \rightarrow Z$ be morphisms in \mathcal{C}. Let $X \times_{Z} Y$ be the pullback of ϕ_{X} and ϕ_{Y}.

(a) Assume Z is a terminal object of \mathcal{C} (for example, a 1 element set when \mathcal{C} is the category of sets) and that $X \times Y$ exists in \mathcal{C}. Prove that $X \times{ }_{Z} Y \cong X \times Y$.
(b) Suppose that \mathcal{C} is the category of sets, and f and g are inclusions of subsets. Determine $X \times{ }_{Z} Y$.
(c) Let R be a ring and $f: R \rightarrow S, g: R \rightarrow T$ two R-algebras. Let $Z=\operatorname{Spec} R$, $X=\operatorname{Spec} S$, and $Y=\operatorname{Spec} T$. Consider the morphisms and $\phi_{X}=f^{*}$ and $\phi_{Y}=g^{*}$. Determine if a pullback of ϕ_{X} and ϕ_{Y} always exists in the category of affine schemes. If not, give a counterexample. If so, explicitly describe the pulllback.

Proof. (a) Since any two pullbacks of the same diagram are isomorphic, we show that $X \times Y$ satisfies the universal property of the pullback. The product $X \times Y$ comes with morphisms $\pi_{X}: X \times Y \rightarrow X$ and $\pi_{Y}: X \times Y \rightarrow$ Y. Since Z is terminal, there exists a unique morphism from $X \times Y$ to Z. This implies $\pi_{X} \circ \phi_{X}=\pi_{Y} \circ \phi_{Y}$.

Moreover, if there exists an object W in \mathcal{C} with morphisms $\psi_{X}: W \rightarrow X$ and $\psi_{Y}: W \rightarrow Y$ satisfying $\phi_{X} \circ \psi_{X}=\phi_{Y} \circ \psi_{Y}$, then by the universal property of the product $X \times Y$, there exists a unique morphism $\eta: W \rightarrow$ $X \times Y$ so that $\psi_{X}=\pi_{X} \circ \eta$ and $\psi_{Y}=\pi_{Y} \circ \eta$. Hence $X \times Y$ satisfies the universal property of the pullback of ϕ_{X} and ϕ_{Y}.
(b) We claim $X \times{ }_{Z} Y \cong X \cap Y$. Let both $\widetilde{\phi_{X}}: X \cap Y \rightarrow X$ and $\widetilde{\phi_{Y}}: X \cap Y \rightarrow Y$ be inclusion. Then $f\left(\widetilde{\phi_{Y}}(u)\right)=f(u)=u=g(u)=g\left(\widetilde{\phi_{X}}(u)\right)$.

If W is a set, with set maps $h: W \rightarrow X$ and $j: W \rightarrow Y$ satisfying $f \circ h=g \circ j$, then $h(w)=f(h(w))=g(j(w))=j(w)$, so $h=j$.

Then $k: W \rightarrow X \cap Y, w \mapsto j(w)=h(w)$ is such that $h=\widetilde{\phi_{X}} \circ k$ and $j=\widetilde{\phi_{Y}} \circ k$. The map k is unique with this property, since any map ℓ satisfying $h=\widetilde{\phi_{X}} \circ \ell$ and $j=\widetilde{\phi_{Y}} \circ \ell$ also satisfies $\ell(w)=h(w)=k(w)$.
(c) Since the category of affine schemes is equivalent to the opposite category of rings, we will show that the pushout of the two given R-algebras always exists.

Starting with two R algebras $f: R \rightarrow S$ and $g: R \rightarrow T$, we claim that $S \otimes_{R} T$ together with the maps

$$
\begin{aligned}
& \tilde{g}: S \rightarrow S \otimes_{R} T \\
& s \mapsto s \otimes 1 \\
& \text { and } \\
& \tilde{f}: T \rightarrow S \otimes_{R} T \\
& t \mapsto 1 \otimes t
\end{aligned}
$$

is the pushout of f and g. First, recall that the (standard) R-action on S and T is respectively given by $r . s:=f(r) s$ and $r . t:=g(r) s$. In particular, this means that the simple tensors $f(r) \otimes 1$ and $1 \otimes g(r)$ are equal, implying $\tilde{g}(f(r))=\tilde{f}(g(r))$.

Now suppose A is an S-algebra and a T-algebra via ring homomorphisms $\psi: S \rightarrow A$ and $\phi: T \rightarrow A$, and suppose these morphisms satisfy $\psi \circ f=\phi \circ g$. Note that A is then an R-algebra by the action r. $a:=\phi(g(r)) a=\psi(f(r)) a$.

Define a map $\omega: S \times T \rightarrow A$ by $(s, t) \mapsto \psi(s) \phi(t)$. The reader will have no difficulty checking that ω is bilinear... Just kidding. This is a final exam, so let's at least check linearity in the first component: Let $r_{1}, r_{2} \in R, s_{1}, s_{2} \in S$, and $t \in T$. Then

$$
\begin{aligned}
\omega\left(r_{2} \cdot s_{1}+r_{2} \cdot s_{2}, t\right) & =\left(\psi\left(r_{1} \cdot s_{1}\right)+\psi\left(r_{2} \cdot s_{2}\right)\right) \phi(t) \\
& =\left(\psi\left(f\left(r_{1}\right) s_{1}\right)+\psi\left(f\left(r_{2}\right) s_{2}\right)\right) \phi(t) \\
& =\left(\psi\left(f\left(r_{1}\right)\right) \psi\left(s_{1}\right)+\psi\left(f\left(r_{2}\right)\right) \psi\left(s_{2}\right)\right) \phi(t) \\
& =\left(r_{1} \cdot \psi\left(s_{1}\right)+r_{2} \cdot \psi\left(s_{2}\right)\right) \phi(t) \\
& =r_{1} \cdot \psi\left(s_{1}\right) \phi(t)+r_{2} \cdot \psi\left(s_{2}\right) \phi(t) \\
& =r_{1} \cdot \omega\left(s_{1}, t\right)+r_{2} \cdot \omega\left(s_{2}, t\right) .
\end{aligned}
$$

Linearity in the second component is similar. Hence there exists a unique, well-defined morphism (which we again denote by ω)

$$
\begin{aligned}
\omega: S \otimes_{R} T & \rightarrow A \\
s \otimes t & \rightarrow \psi(s) \phi(t)
\end{aligned}
$$

Then $\omega(\tilde{g}(s))=\omega(s \otimes 1)=\psi(s)$ and $\omega(\tilde{f}(t))=\omega(\underset{\tilde{f}}{1} \otimes t)=\phi(t)$. If ν : $S \otimes_{R} T \rightarrow A$ is a morphism satisfying $\nu \tilde{g}=\psi$ and $\nu \tilde{f}=\phi$, then

$$
\nu(s \otimes t)=\nu(s \otimes 1) \nu(1 \otimes t)=\psi(s) \phi(t)=\omega(s \otimes t)
$$

Since ω agrees with ν on simple tensors, then $\omega=\nu$. Hence $\left(S \otimes_{R} T, \tilde{f}, \tilde{g}\right)$ is the pushout of f and g.

[^0]: Date: May 7, 2018.
 ${ }^{1}$ In particular, $\overline{1}=\bar{i}+\bar{j}$ for $\bar{i} \in \bar{I}$ and $\bar{j} \in \bar{J}$. Then $\bar{e}:=\bar{i}$ is an idempotent.

