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Exercise 1. Prove Cauchy’s Mean Value Theorem: If f, g : [a,b] — R are continuous on
[a,b] and differentiable on (a,b), then there exists a ¢ € (a,b) such that

h(a) = f(a)lg(b) — g(a)] — g(a)[f(b) — f(a)]
= f(a)g(b) — g(a) f(b)
= f(a)g(b) — g(a)f(b) + f(b)g(b) — g(b) £ ()
= f(®)[g(b) = g(a)] = g()[f(b) — f(a)]
= h(b).

By Rolle’s Theorem, there exists ¢ € (a,b) so that h'(c) = 0. That is,
0="n(c) = f'(0)g(b) — g(a)] — ¢'(c)[f () — f(a)],
and so f'(c)[g(b) — g(a)] = g'(c)[f(b) — f(a)]. *

Exercise 2. Prove L’Hopital’s Rule: Let f,g : [a,b] — R be continuous on [a,b] and
differentiable on (a,b) and ¢’ # 0 on (a,b). If there exists a ¢ € (a,b) for which f(¢) =
g(c)=0and f',¢" : (a,b) — R are continuous, then

L f@ @)
alrl—>mc g(x) 471?—>C 9'(x)

Proof. For x not equal to ¢ but close to ¢, we have

fl@)  fla)—fle) =L
glx)  g(x)—g(c) goolo)’

r—c

Applying the limit to both sides as x approaches ¢, and we get f/(c)/g’(c). Since f’ and ¢’
are both continuous at ¢, then f'(¢) = lim, . f'(z) and ¢'(¢) = lim,;—. ¢’(x) and the result

follows. -*
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Ezercises from Spivak

Exercise 2-1. Prove that if f: R™ — R™ is differentiable at a € R"™, then it is continuous
at a.

Proof. We begin by proving the following (Exercise 1-10): If 7' : R™ — R™ is a linear
transformation, show that there is a number M such that |T'(h)| < M|h| for h € R™.
First, let [t;;] be the matrix associated with T with i, j-entry ¢;; for 1 < ¢ < n and
1<j<m. For heR",
t11 - tlm hl Z;ﬂzl tthJ
RS I N I )
tni oo tam/ \hm S tnghy

Let #; denote the i-th row in [t;;]. Then by the Cauchy-Schwartz inequality, we have for

fixed %
1/2 1/2

(fih) =Y tizhy <|Gillhl = [ Yt Do
Jj=1 j=1 j=1

and so

Now,

T < (D taghy |+ 4 | D tashy | = > tijh
=1 ‘

3
3
3

B DD (by (+))
=1 ] ]

DD thlnf

i=1 j=1

1/2

n

Sy enr] = (e |

i=1 j=1 i=1 j=1

IN

Whew! Now, onto the proof.
Let M be the bound described above for the linear map Df(a). For nonzero h € R™
but close to 0,

|f(a+n) = fla)l = [f(a+h) = f(a) = Df(a)(h) + Df(a)(h)]
<|[fla+h) = fla) = Df(a)(h)| + M|h|

~ fla)—D
(oD =HO=DIDEN)
Certainly M|h| — 0 as h — 0, and by hypothesis, |h|7![|f(a + h) — f(a) — Df(a)(h)]] = 0
as h — 0. Thus, |f(a+h) — f(a)] = 0 as h — 0 and so f is continuous at a. ®
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Exercise 2-5. Let f: R? = R be defined by
Al (g 0,0
f(%y):{m (z,y) # (0,0)
0 (z,y) = (0,0).

Show that f is a function of the kind considered in Problem 2-4 so that f is not differentiable
at (0,0).

Proof. Define a function g on the unit circle by (a,b) — a|b|. Then g(0,1) = ¢g(1,0) = 0 and
g(—z,—y) = —z| —y| = —zly| = —g(x,y). Moreover, for (x,y) # (0,0)

o)l (w,y)> poar SR R | B | B
( ,y)|g<(x,y)| +y ViR Ry VR f(z,y),

ans so g satisfies the properties described in Exercise 2-4, which means f is not differentiable
at (0,0). ®

Exercise 2-6. Let f : R? — R be defined by f(x,y) = v/|zy|. Show that f is not differen-
tiable at (0, 0).

Proof. If f were differentiable at (0,0), then its derivative would be 0. To see this, we use
the hint given in Exercise 2-4 to compute the following:

= im = im ——
(h,0)=(0,0) (R, 0)] (h,0)—(0,0) Vh?
_ BIIDF(0,0)(1,0)
(1,0)~(0,0) |h]
Similarly,

=|Df(0,0)(0,1)|.
(0,k)—(0,0) [(0, k)| ‘ f(0,0)(0,1)]

So Df(0,0)(1,0) = Df(0,0)(0,1) = 0, and so for any (a,b) € R™

Df(0,0)(a,b) = ab[Df(0,0)(1,1)] = ab[Df(0,0)(1,0) + Df(0,0)(0,1)] = 0.

However,
(h,h)—(0,0) [(h,h)| (h,h)—=(0,0) VA2 + h2  (hh)—=(0,0) V2VR2 2
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Exercise 2-10. Find f’.
We give the matrix representation for D f in terms of the standard basis for R™.

(a) flz,y,2) =2
Df(z,y,2) = (ya:y_l zYIny O).

(b) f(z,y,2) = (2%, 2) y—1 Y1
Df(z,y,2) = (yxo ’ ony (1)>

(¢) f(x,y) =sin(zsiny)

Df(x,y) = (cos(x siny)siny cos(xsiny)z cos? y) .

(d) f(z,y,z) = sin(zsin(ysin z))

Df(x,y,z) = (cos(xsin(ysin z)) - sin(y sin 2),
cos(z sin(ysin z)) - x cos(y sin z) - sin z,

cos(z sin(ysin z)) - x cos(y sin z) - y cos z)
Exercise 2-12.

(a) Prove that if f is bilinear, then

. |f(h, k)|
111’1’1 —_— = 0
(h,k)—(0,0) |(h, k)]

Proof. We first prove the following Lemma:

Lemma. Let f and E; be as described in Exercise 2-14 below; let hy € Ey and fix
Qm, € By for all m # €. Then there exists a v € Ey so that

[flar, ... heyo . yar)| < |he||lf(ar,...;7y oy ar)]

Proof of Lemma. Define

gf(x): |f(a17“.7x7.”7ak)| ‘f(ala"wl:;'a'“aak>‘-

]

If S is the sphere in Ey,, then we let g, := g¢|s. Then g, is a continuous function
on S and since S is compact, there exists v € S so that gs(y) < ge(v) for all y € S by
the Mean Value Theorem. So, ge(he) = Ge(he/|he]) < go(7y) and we get

|f(at,... hey. . ar)] < [flar, ...,y . ar)]
|he - il

=|flar, ...,y ... ap)l|
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Ounto the proof of the exercise. Note that |h| = /|h|2 < /|h]?2 + |2 = |(h, k)]

Now it’s just a simple application of the Lemma:

| f(h, k)| . Al f(v, B) _ _
(h,k)l—>m(o,o) [(h, k)| = (h,k%1—>rn(0,0) |h| o (h,k%1—>m(0,0) £ )l = 1£ (3, 0)] = 0.
®
(b) Prove that Df(a,b)(z,y) = f(a,y) + f(z,b).
Proof.
L fat b+ E)  f(ab) — Df(a,b)(h,E)
(h.k)=(0,0) (R, k)|
_ lim ‘f(a7b)+f(a7k)+f(hab)+f(hvk)_f(a7b)_f(a7y)+f(va)|
(h.k)—(0,0) |(h, k)|
L |f(h, k)|
= 0o (B

(¢) Show that the formula for Dp(a,b) in Theorem 2-3 is a special case of (b).

Proof. Notice that

p(z + h,y) = zy + hy = p(x,y) + p(h,y),
p(z,h + k) = xh + 2k = p(x, h) + p(x,y), and
plax,y) = axy = ap(z,y) = zay = p(z, ay)

So, p is bilinear. By (b), Dp(a,b)(x,y) = p(z,b) + p(a,y) = bx + ay, which is precisely

W

what is shown in Theorem 2-3. -

Exercise 2-14. Let E; for i = 1, k be euclidean spaces of various dimensions.
(a) If f is multilinear and 7 # j, show that for h = (hq,..., hg), with hy € Ey, we have

hm |f(a1,...,hi,...,hj,...,ak)\
h—0 |h‘

=0

Proof. Notice that

|(Ris hj)l = A1l + [R5 12 < VIR P+ -+ (Bl = (B, - )| = (B

Let g(hi, hj) = f(a1,..., hi, ..., hj,...,a). Then g is bilinear and by Exercise 2-12(a)

m ‘f(alv"'7hi7"~7hj7'~~7ak)| S lim |g(h1ahj)|:0
h—0 |h] (hishy)=(0,0) |(hi, hy)l
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(b) Prove that

k
Df(a,...,ax)(x1,...,2) = g flay, ... a;—1, %5 G111, .-, Q).
i=1
Proof. For notational convenience, let I, denote i; < --- < 4, for indices i1,...,%,.

We have
fla+h)= flar + h1,...,ax + hi)

= f(ala"'aak) + Z f(al,-'~7ai1—1ahi17ai1+la"'7ak)
1<I; <k

+ E f(a17~-‘>ai1717h7;17a7,‘1+17"'7ai2717hi27ai2+17'-~7ak)

+ E f(ah .- -7ai1—17hz‘1,ai1+1, vy Giy—1, higvaig-Ha .- -7@i3—17h13,ai3+17 cee 7ak)

1<I13<k
+ ...
+ Z f(al,...,ail_l,hil,ai1+1,...,aikil_l,hikfl,aikfﬁl,...,ak)
1<I_1<k
+ f(h,. .. hg).
This gives

fla+h) = f(a) = Df(a)(h)

= § f(alﬂ"'7ai1717hi17ai1+17~-‘7ai2717hi27ai2+17"'7ak)
1<I><k

+

P +
E f(ala ey Qg —1, hilvai1+17 ey Qg —1, hik_lvaik_1+17 ) ak)
1<y 1<k

+ f(hy,. .o hg).
Now for any I,., by the Lemma in Exercise 2-12, there exists -, such that
|f(ar, .- i =1, hiys @iy g1y s Gipm1, By Gy - a)|

S |h'i1||f(a17 ey Qg 15 Yy By 1y e B — 1, hiTaair-‘rla .. '7a'k)|'

Moreover, notice that |h;,| = v/|hi, |2 < /|hi, [T+ [hi, |2 = [(hiy, .- hi )| = |B],
and so

\f(ah .- -7ai1—17hi1,ai1+17 e >air—17hi,‘7ai7‘+17 cee 7Gk)|

|h
< Ihi1||f(ala sy Qg 15 Yy Qg 41y - - ’air—lahiraair—l-la cee aak)|
- ‘h21|
= |flar, i1,V @iy 155 Q15 iy GG 1y - A

If we let h — 0, then the right-hand-side goes to

|f(a15 ceey @iy 15 Yy By 41,y - - - 7air—1a07aiT+13 .. 'aak)‘ = 07
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since the value of a multilinear function is zero whenever any input vector is 0. So,

5 flay, ... a5 —1,hiy a5, 41,0506, 1, hi s a4, 41,0 ag)

iy IISTrSH
B0 7]
o flans i —1 by aig s s @i —1, Ry G - ag)|
< 1 1 1 1 r T T
< D Jm 7]
1<1,<k
S Z }lLil&)Lf(ala"'aai1—1a’7’!‘7ai1+17"'7air—1ah’ir7a”ir+17"-7ak)|
1<I,<k
=0
Let v be such that |f(hy,...,hg)| < |ha||f(y, hay ..., hg)|. Finally, we compute the

limit:

i @+ 1) = Fa) = DI (@) ()

h—0 ||
= lm DA DD flan, a1, iy @1 Qi1 iy iy g1, -5 )
1< <k
+...
+ Z f(ala“'7a‘i1—17hi1aai1+17"'7aik,1—17h’ik,17aik,1+l7"~7ak)
1<I,_1<k
+f(h1,...,hk)‘

< Z hm ‘f(a17"'7ai1717h’i17ai1+17"‘7ai2717h’i27ai2+17'"7ak)|
- 0

1<I,<k U
+..
. |f(a17...7ai1—1ahi17ai1+1a-~-aaik—l—l’hikfl’aik*1+1"”’ak)‘
+ > lm A
1<I; 1<k
o+ Jim [(Ballf (s B /1]
h—0

< Z hr%‘f(ah"'7ai1717'72aai1+1w~oaai2717hi27ai2+1a~~aak)‘

1<I,<k

+...
+ E Illii%u.(alw~'7ai171a’7kflaai1+1,~"7aik,1717hik717aik71+1w~'aak)|
1<I 1<k
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Exercise 1. Recall that if f, : [a,b] — R is a sequence of continuous functions on |[a, b]
that converges uniformly to f : [a,b] — R then f is continuous and

b

b
lim fn(z)dxz/ f(z)dz.

n—roo a

Suppose that f: U — R is in C*(U), where U C R? is open, and [a,b] x [¢,d] C U. Let

b
F(y) = / £ y)d.

Prove that %F(y) = f: (%f(x,y)da:.

Proof. Fix © € [a,b]. Let {a,} be a sequence converging to 0 with a, # 0 for all n and
define ¢y, : [¢,d] = R by
f(x7y+an) *f(l’,y)

on(y) = P .

For the sake of rigor, assume |a,| < 1 for all n, and extend f to [d,d+1] by f(z,y) := f(z,d)
for all y € [d,d + 1].

Let € > 0. We wish to show that {¢,} converges uniformly to %f(x,y) on [e,d]. That
is, we wish to find suitable IV such that

on(y) — ;yf(x,y)’ <e

for all n > N and for all y € [c,d].

Since f € C1(U), 8% (x,y) is continuous on [¢, d], and therefore uniformly continuous on
¢, d] since [c, d] is compact. So there exists § > 0 such that for all w, z € [c,d], if |lw—2z| < ¢
then

0 0
) = (@) < ()
Let y € [c,d] and choose N so that for all n > N, |(y + a,) — y| = |an| < 6. For all
n > N, there exists ¢, between y and y + a,, so that

R

an

by the Mean Value Theorem. Since ¢, is between y and y + ay, then |c¢, — y| < ¢ for all
n > N. Therefore, we can apply (x) to the points ¢, and y for all n > N to obtain

_ f(xay+an)_f(m>y) 9
- o) - o)

0
on(y) — ayf(ﬂc,y)‘
_ ;g’ymcn) - gyf(x,y)‘ <.

Therefore, {p,} — a% f uniformly on [¢,d]. Then

b b b
lim gondx:/a a—yf(x,y)dx

n—oo
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Moreover, we have

b
L 1 R L)
dy n—oo an
b p—
oy [y tan) — f(zy)
n—oo J, an
b
= lim On
n— o0 a
b
:/a agyf(xay)dx
Whew! -*

Exercise 2. Let C be a commutative algebra with unity over R. Since homomorphisms of
commutative algebras are linear and send 1 to 1, it is easy to see that any homomorphism
¢ : C — R is onto, and the kernel of ¢,

m={ceC |o(c) =0}

is a maximal ideal. In particular, m is a linear subspace of C' as a vector space, and if ¢ € C
and m € m, then em € m. Also if m C [ and [ satisfies these two conditions given for m,
then I = C. A homomorphism like ¢ is called a place of the commutative algebra. If C was
an algebra of functions on a set X, then ¢ would be evaluation at a point in X. The places
of a commutative algebra play the role of points of the algebra.

Remark: In general, for algebras that are not necessarily commutative, the points of
the algebra correspond to onto homomorphisms where the image is n X n matrices with
coefficients in R. Such a homomorphism is called an irreducible representation.

Define D : C — R to be a derivation centered at the place ¢ if D is R-linear and for any
g€,

D(fg) = o(f)D(g) + ¢(9)D(f)-

We denote the set of derivations of C' centered at the place ¢ by T5C.
By (m/m?)*, we mean linear maps L : m — R so that if m;, mg € m, then L(myms) = 0.
The goal of this exercise is to prove that

T,C = (m/m?)*.

(a) Prove that if D € T,,C then the restriction of D to m defines an element of (m/m?)*.
Hence there is a map defined by restriction,

res : TyC — (m/m?)*.

Proof. The proof is straight forward. If D € T,C, and f,g € m, then ¢(f) = ¢(g) =0
and so

D(fg) = ¢(f)D(g) + ¢(9)D(f) = 0.

Thus D|y : m — R is a linear map so that f,¢g € m implies D(fg) = 0, and hence
Dlm € (m/m)*. *
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(b)

Prove that if L € (m/m?)*, then the extension of L to L : C — R given by L(f) =
L(f — #(f)) is a derivation centered at ¢. (This depends on the fact that if f € C

then f — ¢(f) € m).

Proof. Given L € (m/m?)*, let E : C — R be the extension of L to C given by
E(f) = L(f —¢(f)). We show that E is R-linear, vanishes on m?, and sends constants
to 0. Let a, 8 € R and f,g € C. Then

E(af +Bg) = L(af + Bg — ¢(af + B9g))

(af + Bg — ag(f) — Bd(g))

(af —ad(f)) + L(Bg — Bo(g))

(a(f = o(f))) + L(B(g — ¢(9)))

L(f — &(f)) + BL(g — ¢(9))
E(f) + BE(g).

For h,k € m, ¢(hk) = ¢(h)p(k) = 0. So,
E(hk) = L(hk — ¢(hk)) = L(hk) — L(¢(hk)) =0 — L(0) = 0.
And finally

L
L
L
o
o

E(a) = Ll — a¢(1)) = L(0) = 0.
Therefore for f,g € C, we get

E(fg) E(fg) — E((f — o(f))(g — ¢(9)))

E(fg) — E(fg— fo(g) — go(f) + ¢(9)o(f))
E(fg—(fg— folg) — go(f) + #(9)8(f)))
E( o(9) + go(f) — ¢(9)9(1)))
E(fé(g)) + E(99(f)) — E(9(9)0(f)))
(9 E(f) + ¢(f)E(g).

*
Put it all together to prove that the two linear spaces T,,C and (m/m?)* are isomorphic.

Proof. Given L € (m/m?)*, use part (b) to extend L to a derivation E in T,C. Then
res(E) = L and so res is surjective.

Suppose res(D) = D|n = 0. Then if f € C, f — ¢(f) € m. Also, D(¢(f)) =
#(f)D(1) = 0 since derivations vanish on constants. Then

D(f) = D(f) = D(f — o(f)) = D(¢(f)) = 0,

and so D = 0 and res is injective. Moreover, res is a homomorphism since for «, 8 € R
and Dy, D, € T¢C

res(aD; + 8D3) = (aDy + BD3)|m = aD1|m + BD2|m = ares(Dy) + fres(Ds).
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Ezercises from Spivak

Exercise 2-17. Find the partial derivatives of the following functions.

(8) flz,y,2) = a¥.

of 1 of of _

5 = v By =a'Inz, == =0.
(b) f(z,y,2) == of of of
5 =0 3 = 0, 5-=1
(c) f(z,y) = sin(zsiny).
or _ cos(zsiny)siny, —= = cos(xsiny)xcos®y.
or oy

(d) f(z,y,z) =sin(zsin(ysinz)).

% = cos(zsin(ysin z)) - sin(y sin z),

of . : . .
- cos(xsin(ysin z)) - z cos(y sin z) - sin z,
of . . .

5, = cos(xsin(ysin z)) - z cos(y sin z) - y cos z.

Exercise 2-20. Find the partial derivatives of f in terms of the derivatives of ¢ and h.!
(a) f(z,y) = g(x)h(y)

Dif(x,y) = h(y)Dg(x), Daf(x,y) = g(x)Dh(y).

(b) f(a,y) = g(x)"¥)

D1 f(z,y) = h(y)g(x)" V' Dg(z), Daf(z,y) = g(=)"¥ Ing(z)Dh(y)

(c) f(z,y) =g(x)
le(x,y):Dg(x), Dgf(.l?,y):O

(d) f(z,y) = g(y)
Dyf(x,y) =0, Dif(x,y) = Dg(y).

(e) f(z,y) =gz +vy)

D f(x,y) = Dg(x +y), Da2f(z,y) = Dg(x +y).

Exercise 2-22. If f : R?> — R and Dyf = 0, show that f is independent of the second
variable. If D1 f = Do f = 0, show that f is constant.

1T am aware that I am switching my notation from that in Exercise 2-17. I just want to make sure I am
comfortable with both!
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Proof. Fix ¢ € R and let g(y) = f(zo,y). For y1,y2 € R, since g is differentiable, we have
by the mean value theorem that there exists ¢ between y; and yo such that

9(y1) — 9(y2) = Dg(c) =0,

and so g(y1) = g(y2); that is, f(zo,y1) = f(20,y2) and so f is independent of the second
variable and therefore constant in y. Similarly, we get D1 f = 0 and so f is independent of
the first variable and therefore constant in z, making f constant everywhere. ®

Exercise 2-24. Define f : R2 = R by

0 i (2,3) = (0,0).
(a) Show that Dyf(2,0) =z for all z and D, f(0,y) = —y for all y.

Proof. We have

x4 2203 — 05 .
Dif(z,y) = {W if (z,y) # (0,0)
0 if (z,y) = (0,0),
and
M if (I’ y) 7& (O 0)
Dgf(xvy) = (x2+y2)2 , ,
0 if (z,y) = (0) )7
from which it follows that
D 2 L
2f (2,0) = @2 = z and D;f(0,y) = o —y

(b) Show that Dy 5f(0,0) # Dy f(0,0).

Proof. We have
D12f(0,y) = D2(D1f(0,y)) = D2(—y) = —1

but
Dy 1 f(2,0) = D1(D2(,0)) = Di(z) = 1.

Exercise 2-28. Find expressions for the partial derivatives of the following functions:

In each of the following, let a be the argument of f. For example, a := g(z)k(y), g(x) + h(y)
in part (a). We use the formula of Theorem 2-9 to calculate D, F:

(a) F(z,y) = f(9(x)k(y), 9(x) + h(y))-

D1 F(z,y) = D1f(a) - Di(g(2)k(y)) + Daf(a) - Di(g(x) + h(y))
= D1f(a) - ¢'(x)k(y)) + D2f(a) - ¢'(x),
DaF(z,y) = D1f(a) - Da(g(2)k(y)) + D2f(a) - D2(g(x) + h(y))
= D1 f(a) - g(2)K' (y) + D2f(a) - I'(y).
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(b) F(z,y,2) = f(g(z +y), h(y + 2)).
D1 F(x,y) = D1f(a) - Di(g(x +y)) + D2f(a) - Di(h(y + 2))
=Dif(a)-g'(z +y),
DyF(z,y) = D1f(a) - D2(g(x +y)) + D2f(a) - Da(h(y + 2))
=Dif(a) g'(x+y)+ Daf(a) - B (y + 2),
D3F(x,y) = D1 f(a) - D3(g(z +y)) + D2f(a) - Da(h(y + 2))
=Dz f(a) - W' (y + 2).

DyF(z,y) = D1f(a) - Di(2¥) + D2f(a) - D1(y*) + D3 f(a) - D1(2")
=Dy f(a)-yzY"! + D3 f(a) - 2" In(z),

DyF(z,y) = D1 f(a) - D2(2¥) + Daf(a) - D2(y®) + D3 f(a) - D2(2")
= D1 f(a) - 2¥In(x) + Daf (a) - 24",

D3F(x,y) = Dy f(a) - D3(z¥) + Daf(a) - D3(y*) + Dsf(a) - D3(2")
= Dsf(a)-y*In(y) + Dsf(a) - x2""".

(d) F(l‘,y) = f(x,g(a:),h(x,y))

DyF(z,y) = D1 f(a) - D1(x) + D2f(a) - D1(g(x)) + D3 f(a) - Di(h(z,y))
= D1 f(a) + Do f(a) - ¢'(x) + D3 f(a) - D1(h(z,y)),

DyF(z,y) = D1f(a) - D2(x) + D2 f(a) - D2(g(z)) D3 f(a) - D2(h(z,y))
= Dsf(a) - Da(h(z,y)).

Exercise 2-29. Let f:R"™ — R. For x € R", the limit
L flatto) ~ f(a)

t—0 t ’

if it exists, is denoted D, f(a), and called the directional derivative of f at a, in the direction
of z.

(a) Show that D, f(a) = D; f(a).

Proof.
lim f(a+tei)7f(a) = lim f(ala ,CLl+t,. 7an) f(a) szf(a)
t—0 t t—0 t
(b) Show that Dy, f(a) =tDyf(a).
Proof.
h — hz) —
Dr) = iy JOEMED 1@ _ St ()= 10) _ g
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(c) If f is differentiable at a, show that D, f(a) = Df(a)(x) and therefore Dy, f(a) =
D, f(a) + Dy f(a).

Proof. If x = 0, the proof is trivial. For nonzero x € R", tx — 0 as t — 0. Since f is
differentiable, we have

fla+tx) — f(a) = Df(a)(tz)|

():lim|

t—0 |tx‘
i |f(a+tx) — fla) —tDf(a)(z)] 1
0 ] 2]
iy [Fl@t 1) = fla) —tDf(a) ()| T
t—0 t |x|
B fla+tz) — f(a) 1
= Jim | R - Df(@)@)| o

which implies

D, f(a) = tim LTI ),

t—0

Therefore,
Dyyyf(a) = Df(a)(z +y) = Df(a)(x) + Df(a)(y) = Dz f(a) + Dy f(a).

®

Exercise 2-34. A function f : R™ — R is homogeneous of degree m if f(tx) =t™ f(x) for
all z. If f is also differentiable, show that

lesz(m) =mf(z).
i=1

Hint: If g(t) = f(tx), find ¢'(1).

Proof. Using the hint, let g(t) = f(tx) = f(tx!,tz?, ... tz™). By Theorem 2-9, we have

n

§(t) = Dig(t) = " D;f(ta) - Da(ta’) = 3° D f(t) - .

j=1

Since g(t) = f(tz) = t™ f(z), then we also have ¢'(t) = mt™ 1 f(z). So ¢’(1) = mf(z) and

§(1) = Dif@)-a’
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Intro to Manifolds, Tu — Ezercises within the Text

Exercise 3.13. (Symmetrizing operator) Show that the k-linear function Sf is sym-
metric.

Proof. For 7 € S,

T(Sf)="71 ( Z af) (definition of Sf)
g€Sk
- Z (o f) (7 is linear)
g€ESk
= Z (TO'f) (Lemma 311)
o€SE
— Z wf (Sk is a group = {70}ses, = Sk)
HESK
=Sf (definition of Sf)
®

Exercise 3.15. (Alternating operator) If f is a 3-linear function on a vector space V
and v1,v9,v3 € V what is (Af)(v1,ve,v3)?

Proof. We have S5 = {(), (12), (13), (23), (123), (132)} with respective signs
{1,-1,-1,-1,1,1}. So

(Af)(v1,v2,v3) = Z (sgn.0) f (Vo (1), Vo (2)5 Vo (3))

o€Ss
= f(v1,v2,v3) — f(va,v1,v3) — f(v3,v2,01)
- f(Uh'U?,,'UQ) + f(U3,’U1,U2) + f(U2,’U3,U1)

=

Exercise 3.17. (Associativity of the tensor product) Check that the tensor product
of multilinear functions is associative: If f, g and h are multilinear functions on V', then

(fegeh=[f(geh).

Proof. Let f,g and h be k,¢ and m -linear on V', respectively. Then

(f@g)@h)(vi,- s Vererm) = (f @ 9)(V1, -+ s Vkr0) G(Vkros1s - - - Vkrttm)

= (f(vr,- )GVt 1, - Vkgt))R(Vkgeg1s - - s Vkptpm)
= f(vr,- k) (G(Vkg1s - - s Vgt (V15 - s Vkigtm))
= f(’l}l, ey vk)((g X h)(ka, . ,’l}k+g+m))

= (f & (g ® h))(’l)l, . ,’Uk+4+m).
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Exercise 3.20. (Wedge product of two 2-covectors) For f,g € A2(V), write out the
definition of f A g using (2, 2)-shuffles.

Proof. The (2,2) shuffles of Sy are:
1 2 3 4] |1 2 3 4 |1 2 3 4| (1 2 3 4| |1 2 3 4| |1 2 3 4
1 2 3 4|11 3 2 4|’'|1 4 2 3|12 3 1 4/’(2 4 1 3’3 4 1 2|’
with respective signs: 1, -1, 1, 1, -1, 1. Let vy, vo,v3,v4 € V. Then
1
fAg= ﬁA(f®9)(U1,U2,U37U4)

1
= 391 D (580.0) f(Va(1): Vo (2)9(Va(3), Vo (a))
o o€Sy

= Z (sgn0) f (Vo (1), Vo(2))9(Vo(3), Vo(a))

(2,2)-shuffles
0€Sy

= f(v1,v2)g(v3,va) — f(v1,v3)g(v2,va) + f(v1,04)g(v2, v3)
+ f(va,v3)g(v1,v4) — fv2,v4)g(v1,v3) + f(v3,04)g(v1,02).

Exercise 3.22. (Sign of a permutation) Let 7 € S;4, be given by

1 l {+1 ... I+k

TTlk+1 . k+e 1 ...k

Show that sgnT = (—1)*.

Proof. To determine the sign of 7, we need to determine how many transpositions to compose
with 7 to obtain the identity permutation. First, we need to perform exactly ¢ transpositions
to move 1 to the first position. In particular,

1 k+1][ 1 k+2][ 1 k+3 1 E+0—11[ 1 k+¢
E+1 1 ||k+2 1 ||k+3 1 | |k+e—1 1 k+e 1 |7

will result in the permutation

1 2 ¢ (+1 ... l+k
1 k+1 ... k+0-1 kE+0 ... k|’

This permutation has sign equal to (—1)*. To obtain the identity, we need to perform this
same process for all numbers 1 through k, resulting in a sign of ((—1))* = (—1)*. ®



Nicholas Camacho Intro to Smooth Manifolds — Homework 3 February 10, 2017

Exercise 4.3. (A basis for 3-covectors) Let 2!, 2%, 2%, #* be the coordinates on R* and

p a point in R?. Write down a basis for the vector space A3(T},(R?)).

Proof. Using the standard basis

0

dat

0

" D2
p

0

" O3
p

0

T Ozt
p

p

of T,(R*), we have by Proposition 4.1 the dual basis

{(dml)\p, (d$2)|pa (dx3)|p, (d$4)|p}

for the cotangent space T, (R"). By Proposition 3.29, we need to consider all strictly
increasing sets of indices of length 3 from the set {1,2,3,4}. We get

L=(1<2<3), L=(1<2<4), 3=(1<3<4), and I, =(2<3<4).
So we have as a basis for A3(T,(R%))
dazél = dle, A dxz A dxf,,
d:czlf = da:zl) A dxf, A dx;l,,
dxllf = dle, A da?fj A dx;l,,
dalt = dap A dxd A day.
®

Exercise 4.4. (Wedge product of a 2-form with a 1-form). Let w be a 2-form and 7 a
1- form on R3. If X, Y, Z are vector fields on M, find an explicit formula for (wAT)(X,Y, 2)
in terms of the values of w and 7 on the vector fields X,Y, Z.

Proof. Fix a point p € M. We consider the (2, 1)-shuffles of Ss:
{123]{123}[123}
1 2 3|’(1 3 2{’(2 3 1}’
These have respective signs 1, —1,1. So,
(WA T)p(Xp, Yy, Zp) = (wp A Tp)(Xp, Yy, Zp)

- ﬁ Z (sgno)o(wp(Xp, Yp)p(Zp))
T oeSs

= Z (sgno)ow,(Xyp, Yp)o,(Zp)

(2,1)-shuffles
oc€Ss3

= wp(Xp, Yp)7p(Zp) — wp(Xp, Zp)7p(Yp) + wp(Vp, Zp) 7 (Xp).
As p varies over all of M, we get

(WAT(X,Y,Z2)=w(X,Y)T(Z) — w(X, Z2)7(Y) + w(Y, Z)7(X).
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Exercise 4.9. (A closed 1-form on the punctured plane). Define a 1-form w on
R? — {0} by
1

w= m(—ydm + zdy).

Show that w is closed.

Proof. Let’s do this computation! To make it a bit cleaner, let

—y x
f(z,y) = 2+ and  g(z,y) = W
Then we have !
of _ 2wy - of_ w4y’
or  (x2 +y2)?’ oy (22 +y2)%’
and
dg —x2 4+ 92 dg 2wy
or (22 +y2)?’ oy (z2+y?)?’
Here we go:
_ —Y z
dw=d (x2 Jry2dsc—i- = +yZdy)
=d(fdx + gdy)
=df Ndz +dg Ndy
of of Jg 9g
= | —dr+ —=dy| Nd —dr+ —Zdy | Nd
(6‘1 x+8y y> $+<89: x+8yy Y
= 8—fdx/\dx+ﬂdy/\dx+ agdac/\cly—i—@dy/\oiy
ox oy ox oy
_of dg
—a—ydy/\dm‘—&-%da:/\dy
_of 9g
= a—ydx/\dy—f—a—zdx/\dy
of 0Oy
=——=+ "= )dxANd
( dy +3x) :
= (0)dx A dy
=0

INotice that these two functions satisfy the Cauchy-Riemann Equations!
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Intro to Manifolds, Tu — End of Section Exercises

Exercise 3.3. A basis for k-tensors
Let V be a vector space of dimension n with basis ey, ...e,. let a',...,a™ be the dual basis
for V*. Show that a basis for the space Ly (V') of k-linear functions on V is {a" ®...®@ o'}

for all multi-indices (i1, ...,4) (not just the strictly ascending multi-indices as for A (V)).

In particular, this shows that dim Ly, (V) = n*.

Proof. Let of = o @ ... ® o' and e; = (ej,,...,¢€;,). Let f € Li(V). We claim
f = >, fler)a!, where I ranges over all multi-indices {(i1,...,ix)} of length k. Let
g=>"; fler)al. Then

gles) =Y flen)a(es) =Y flend) = fley),
I I

and thus g = f since multi-linear functions are determined by their action on basis elements.
Hence {a!}r spans Ly (V).
Suppose 0 =), cral for some scalars ¢; for all I. Then applying both sides to e gives

022010/(6]) :Zc[§§ =cjJ.
I 1

And so ¢; = 0 for all I, and hence the o are linearly independent. =

Exercise 3.4. A characterization of alternating k-tensors

Let f be a k-tensor on a vector space V. Prove that f is alternating if and only if f changes

sign whenever two successive arguments are interchanged:
f(...,’l)i+1,1]i7...):—f<...,1}i,’l)i+1,...) (*)

fori=1,...,k—1.

Proof. (=) We have of = (sgno)f for all o € Si,. Given 4, let 0 = (4,7 + 1) € Si. Then

Flovig, v ) = foo V(i) Va(141)s - -+ )
=0of(..., 0, Vig1,.-.)

(sgno)f(..., 0, Vig1,--.)

=—f(...,0;,0i41,...).

(«<) Suppose (*) holds and let o € Sk. Since Sy, = ({(i,i + 1)}/7}'), then
g = (’il,il + 1)(i2,i2 + ].) N (Zm,lm + ].)
for some m € Z* and (ij,i; +1) € Sy all j =1,...,m. Now,

of (o1, o8) = (61,1 + 1) (s im + D] (01, - ., v0)
= [(’il,il + 1) N (imfl,imfl + 1)]f( s Um+1,Um,y - - )
= [(’il,il + 1) e (Z'mfl,imfl + 1)](—1)f( oy Umy Um41, - - )
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If o is even, then so is m, and
of(vr,...,v) = (=D f(v1,...,0%) = f(v1,...,08) = (sgno) f(vy,...,vL).
Similarly, if o is odd, then so is m, and
of(vr,...;vr) = (=) f(vy,...,05) = = f(v1,...,0k) = (sgno)f(vi,...,vx).
*®

Exercise 3.5. Another characterization of alternating k-tensors
Let f be a k-tensor on a vector space V. Prove that f is alternating if and only if
f(v1,...,vx) = 0 whenever two of the vectors vy, ..., v are equal.

Proof. (=) Suppose f is alternating and that v, = vy for 1 < m, ¢ < k. Let 0 = (mf) € S
and suppose without loss of generality that m < £. Then

f(vlw-wvfa"'7vm7"'7vk) :f(va(l)a"'7va(m)a"'aUU(Z)7"'7UJ(k))

=0f(.. 0y Uy eensy)
=—f(e ey 00y Uy ) (f is alternating)
=—f(e ' Vmy eV, ). (U = vg)

So

f( , Ve, » Ums ): _f(vh ; Ums , U, 7vk)
implies
f(vlv , Ve, -y Um, 7Uk) =0

(<) Notice that

flo v vigr, o)+ v, v ) = fon 0041, )+ 0,0, 1)
+ v, Vg, )+ v, V)
=f(... 05,0 +Vig1,-..)
+ f(e i1, v 4 Vg1, )
= f(. ., 0 + Vig1, Vi + Vig1,...)
=0.

So
f(...,vi,vi_,_l,...) :—f(...,vi+1,vi,...),

and by Exercise 3.4, f is alternating.
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Exercise 3.7. Transformation rule for a wedge product of covectors
Suppose two sets of covectors on a vector space V, A1, ..., 8% and 41, ... ~*, are related by

k
6i:Za§7ja i:l,...,]f,
j=1

for a k x k matrix A = [a%]. Show that
BYA - ABE = (det Ayt A - AR
Proof. Since A is distributive, we obtain
k k k k
BN ABF = Za}l,yh A A Za;?k,y]k :Z...Za;l...a§k731/\,_,/\,y]k
Jj1=1 Jrk=1 J1 Jk
Since 91 A -+ A7k = 0 if any of the indices j; are repeated, each set of indices j, - - - ji,

which have no repetition correspond to a bijection between the set {1,...,k} with itself;
that is, they correspond to a permutation in S;. So the above multi-sum becomes

Sl @by ® A A7 ®
o€Sk

Now since the wedge product is anticommutative, we obtain the desired formula:

BLA-ABE = Z sgn(a)a}j(l)~~~a§(k)71 Ao AR = (det Ayt A - AR
oc€Sy

Exercise 4.1. A 1-form on R3
Let w be the 1-form zdx — dz and let X be the vector field y% + xa% on R3. Compute

w(X) and dw.

Proof.
0 0 0 0] 0 0
w(X) = (zdx — dz) (yax +$&y> = zdx <y8x +x8y> —dz (yax +x8y>
(0o (05, 00
=2(v5, xay U m@y
=2y
dw = d(zdx — dz) = dz Ndx — d(1) Ndz

=dzANdr —0ANdz
=dz Ndx.
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Exercise 4.2. A 2-form on R3
At each point p € R?, define a bilinear function w, on T,(R3) by

al bt R
wp(a’v b) = W;D CL2 ) b2 = p3 det |:a2 b2:| )
a’ b3

for tangent vectors a, b € T,(R?), where p? is the third component of p = (p*, p?,p?). Since
w, is an alternating bilinear function on T,(R3), w is a 2-form on R3. Write w in terms of
the standard basis dz* A dx? at each point.

Proof. Since w is a 2-form on R?, we have
w = ada' Ada? + Bdx' A da? + yda® A da?
for some C*° functions a, 3,7. For p € R3 and a,b € T,(R?),
wp(a,b) = a(p)dz' Adaz?(a,b) + B(p)dz* A dx*(a,b) + v(p)dz? A dz®(a, b)
= a(p)[dz* (a)dz?(b) — dz' (b)dz?(a)]
+ B(p)[dz' (a)da?(b) — dz' (b)da®(a)]
+7(p)[de*(a)dz®(b) — da?(b)dz*(a)]
= a(p)[a'b? — b*a?] + B(p)[a'b® — b a®] + v(p)[a®b® — b%a?].

Since -
a b | _ 159 712
det |:a2 b2:| —a;b ba 5
we must have a(p) = p? and 8 = =0, and so w = adr! A da?. -
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Exercise 4.3. Exterior calculus

Suppose the standard coordinates on R? are called r and @ (this R? is the (r, #)-plane, not
the (z,y)-plane). If x = rcosf and y = rsin 6, calculate dz, dy, and dx A dy in terms of dr
and df.

Proof. We have maps x,y : R?> — R given by z(r,0) = rcos@ and y(r,0) = rsinf. By
Proposition 4.2, we can write dx and dy as

dx %dr + a—d@ and dy = Oy

dy
> 0 —Zdr + =—=d6.

or 00

Then
dx = cosfOdr —rsinfdf and dy = sinfdr + r cosfdf.

Now, we compute dz A dy :

MA@z( m+—%9 <@d+8ﬂ@

8m ay ay ox ay or 6y
oz Oy oz Jy oz Oy oz Oy
(Md ) (8 ) (m i)+ (22000

Oz 0y Ox Oy
0+<889d /\dﬂ) (agadé’/\dr)JrO
_ (0xdy Oz 0y
= (cosOrcosf — (—rsind)sinb)dr A df
= r(cos® 6 + sin” O)dr A d6
=rdr A\ df.
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Exercise 4.4. Exterior calculus
Suppose the standard coordinates on R? are called p, ¢, and 8. If x = psinf,cosf,y =

psingsinf, and z = pcos ¢, calculate dx, dy, dz, and dx A dy A dz in terms of dp, d¢, and
do.

Proof. We have maps z,y, z : R — R given by

z(p,9,0) = psingcost,  y(p,¢,0) =psingsind, and z(p,,0) = pcos¢

So by Proposition 4.2, we get
ox Ox ox

do = “—dp+ —do+ —

=5, 557 Bg

= sin ¢ cos Odp + p cos 6 cos pdp — psin ¢ sin Hd0,

do

0y dy 0y
@7W@+%®+%M

= sin ¢ sin Odp + p cos ¢ sin Od¢o + psin ¢ cos 6db
0z 0z 0z

—dp+ —d —df

9,7 T 559

= cos ¢pdp — psin ¢pdo.

Since 9z/96 = 0, we remove it from the following computation. Here. We. Go.

dz =

(9%, 9% OF W Oy Y
dx A dy A dz = <6pdp+3¢d¢+ 80d9) A (apdp—i— 8¢d¢+80d9)

0z 0z
AN =—dp+ —d
<3p P80 ¢)
_ 0r 0y 0z Oz 0y 0z
= 5656 9,10 " 40 Ndp+ 55505 do N do A dp
Oz Oy 0z Ox Oy 0z
Oroyo: Droyo: edyo:  dedyo
[aqbaeap 90069p  Dp 0096 90 9p 0| PN
[(oroy oroy\os  ( oxdy  oroy) o
[<a¢> 96 ~ 06 a¢>) op ( opa0 T a0 ap) 9g) P NIOND
= [(pcos 8 cos ppsin ¢ cos § + psin ¢ sin Op cos ¢ sin B) cos ¢
+ (—sin ¢ cos@psin ¢ cos § — psin @ sin O sin @ sin 0)(—psin ¢)|dp A dp A db
= [(p? cos? O cos? psin ¢ + p? sin? @ cos? Psin @)
+ (p%sin® ¢ cos? +p? sin? O sin® ¢)|dp A dop A db
= p*[cos? ¢sin ¢(cos? O + sin? 0) + sin® p(cos? 0 + sin? 0)]dp A dp A d6
= p*[cos? ¢ sin ¢ + sin® P|dp A dp A df
= p[sin ¢(cos? ¢psin? ¢)|dp A dp A df

= p*singdp A dp A df

10
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Exercise 4.5. Wedge product
Let o be a 1-form and 8 be a 2-form on R3. Then

a = ajdx’ + axdz® + agdx?’

B = bidz® Ada® + bada® A da' + bsda' A da?.
Simplify the expression a A 8 as much as possible.

Proof. As we distribute across the wedge product o A 3, we disregard terms which would
give dx' N dx* = 0.
a A B = (arde’ + agdx? + azgdx®) A (byda® A da® + byda® A dat + bzda' A dx?)
= a1bydzt A da? A da® 4 agbeda® A da® A dat + asbsda® A dat A da?
= a1bydzt A da® A da® 4 agbodat A da® A da® + agbgdxl A dx?® A da?
= (a1by + agbs + azbz)da' A dz? A da®.

11
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Getting to know SU(2) and SO(3)

The quaternions are just R* equipped with a multiplication. In order to make working
with quaternionic multiplication tractable, we denote the elements of R* as

H={a+zi+yj+zk |a,zy, 2z <R}

If ¢ = a+ 2t + yj + zk then the real part of ¢, denoted Re(q) is a and the imaginary
part of ¢, denoted, Im(q) is the vector x¢ + yj + zk. Suppose that ¢ = a+ ¥ and ¢’ = b+ @,
where a,b € R and ¥, € R3. Define the product gq’ by

q¢ = ab— U W+ aw + bv + T X w.

Quaternionic multiplication is associative and bilinear. Define the complex conjugate of
qgby g=a—17.
Exercise 1. Prove that Re(qq’) = ¢ - ¢’. Prove that ||q|| = v/qg. Compute ij, jk, ki, and
22 .2 12
1,7 ak .

Proof. Let g=a+ ¥ and ¢’ = b+ . Then

q¢ = (a+0)(b— W) =ab+ U W — awW + bV — U X W,

and so Re(qq’) = ab+ ¥ - . On the other hand, q- ¢ = (a + ) - (b+ @) = ab+ T - 0.
Now,

llall = Va2 + [[v]]> = a? +[[v]]> —a¥ + aT + Tx T = /g7
And finally, we have 1 =0+ (1,0,0), 5 =0+ (0,1,0), and &k =0+ (0,0,1). So,
ij = (0+ (1,0,0))(0+ (0,1,0)) = (1,0,0) x (0,1,0) = (0,0,1) = k.
Similarly we get jk = ¢ and k¢ = 3. Moreover,

i* = (0+(1,0,0))(0 4 (1,0,0)) = —((1,0,0) - (1,0,0)) = —1.

Similarly we get j° = —1 and k? = —1. :

-
Exercise 2. Prove that if ¢ # 0+ 0, then ¢ has a multiplicative inverse given by q/qq.
Proof. Let ¢ = a + U. Then
q L[ _a—T a+|[[v?]
q|\ — | =(a+v ( > = =1,
(&) =+ (5m) =
and similarly (g/qq)q = 1. -

Exercise 3. Prove that ¢,¢ € H commute if and only if their imaginary parts are linearly
dependent.

Proof. Recall that x is anticommutative. So

¢ =qq <= ab— T - W+ al +bU+ T x W =ba— W U+ bU+ aW + 0 x T
= UXW=wWxU
— UXxwW=—-Uxd
— Uxw=0
<= ¥, are linearly dependent.
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Exercise 4. Define SU(2) = {qg € H | qg =1}.

e Prove that SU(2) is a Lie group.

Proof. Let F : R* — R be given by ¢+ ||q||. Then

poo (OF OF OF OF\ _ (@ @ a3 1
© N0t 9227 9287 0xt ) \lal] lal] (] (]2l )
Then F, is never zero, and so all values of R are regular values of F'. In particular, 1
is a regular value of F' and so by the Regular Level Set Theorem,

F71(1) = SU(2)

is a regular submanifold of R* of dimension 4 — 1 = 3.

To see that SU(2) is a group, we note that 1 € SU(2) and so SU(2) # (). Moreover,
for p,q € SU(2),

llpg™ || = ||pd|| = Papq = pq Bq = pGqp = 1, (See the claim proven in Exercise 5!)

and so pg~t € SU(2), and hence SU(2) is a group.

Now, the multiplication map p : SU(2) x SU(2) — SU(2) — SU(2) is simply a
restriction of the multiplication map H x H — H, which is smooth since each of the
component functions of multiplication in H is a polynomial.

Similarly, the inversion map ¢ : SU(2) — SU(2) given by g — §/qq is the restriction
of the inversion map on H to SU(2). The inversion map on H is a rational expression
defined for all ¢ # 0, which is smooth, and since 0 & SU(2), then ¢ is smooth.

®

e Prove T1SU(2) = R3. Let c: (—¢,€) — SU(2) be a smooth curve starting at 1. Write
c(t) = aft) +iB(t) + jvy(t) + ké(t).

Then in the “calculus sense”, ¢/ (t) = o/ (t) +i8'(t) + 77/ (t) + ko' (t), which we can also

think of as an element of the quaternions. Prove that ¢/(0) is purely imaginary, i.e.,
o' (0) = 0.

Proof. Since ¢(t) € SU(2) for all t € (—e, €), then

1= c(t)e(t) = [le®)|]* = (a(t))* + (B(1)* + (v())* + (5(t))*.

The right hand side is now a function from R to R, and so taking the derivative of
both sides,

0=2(a(®)d (t) +BE)B'(L) + ()Y (t) + 6(1)0"(1)) -
Now, ¢(0) =1, and so 5(0) = v(0) = §(0) =0, and so

and hence o/(0) = 0. m
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e Show that the commutator of two vectors at the identity is twice the cross product of
those vectors.

[0, W] = 00 — WU
= (0+9)(0+ &) — (0 + W)(0 + V)
= (-0 - B+ 0Xx W) — (—W- 7+ x7)
= (¥ W+ 7T x W)
=¥ x W — (=¥ X W)
= 2(7 x W)
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Exercise 5. Any Lie group acts on its tangent space at the identity by conjugation. This
is called the adjoint representation. Given q € SU(2) and w € R? define

Ad(g)(w) = quig

Prove Ad(q) is a linear map from R3 to R3. Prove that Ad(q) : R?* — R3 preserves the dot
product.

Proof. Let a € R and ), % € R3. Then
Ad(q)(W + at) = (@ + at)g = qug + aquq = Ad(q)(@) + aAd(q)(1).

and hence Ad(q) is linear.
Now, we claim that for all s, € H, we have st =t 5: If s =a + @ and t = b + , then

St=ab— i 0 — (awW + bil + @ x ).

On the other hand,

which gives the claim. Now, let i, € R3. From Exercise 1, we have

o
=
=2
—
g

o
2
=2
—

g

) = Re (Ad(q) (@) Ad(q) (@)

So,

(by the claim)

I
- QFP = O’FP =
==
S
gy

@

@
/N /N /s /N

S

=}

<l

—

(=}

g,

~—
"

7)) (by the claim)
e ((7 @ q)q) (since Re(st) = Re(ts))
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Exercise 6. Recall that SU(3) is the Lie group of all linear maps from R3 to R? to that
preserve the dot product, and have determinant 1. Prove that the adjoint representation of
SU(2) defines a homomorphism,

0: SU(2) — SO(3)

and that homomorphism is a smooth mapping. (Here you could just write out a formula
for it and see it is smooth as both manifolds are submanifolds of Euclidean spaces.)

Proof. Since Ad(q) preserves the dot product, the matrix corresponding to Ad(q) is orthog-
onal by definition?, i.e., Ad(q) € O(3). So, we define § : SU(2) — O(3) by q — Ad(q). Since
1€ SU(2) and 0(1) = Ad(1) = I3, then (1) € SO(3).

Next, we show that 6 is a homomorphism and is smooth. Once we show this, we can
conclude that Im(f) C SO(3) since O(3) has two connected components: matrices with
determinant 1, and matrices with determinant —1. Since (1) € SO(3) and 6 is smooth, the
image of # must be connected, and hence lie completely in SO(3).

0 is a homomorphism: Let ¢,p € SU(2). Note that the multiplication in SU (2) is quater-
nion multiplication given above and the multiplication in O(3) is composition (viewing the
matrices in O(3) as linear maps.)

0(qp)(9) = Ad(qp)(?)
= qpUpq
= qpUq D (by the claim in Exercise 5)
= q(Ad(p)(v))q
= Ad(q) (Ad(p)(v))
= (6(q) 2 0(p)) (V)

6 is smooth: Per the hint, we give a formula for 6 as a map between R* and R?. This

amounts to giving a formula for Ad(q)(w) and showing that it is smooth. Let ¢ = a + 4.
We find that

Ad(q) (W) = a®w + 2a(it x @) — ||| |*.

The component functions of this map consist of smooth operations: multiplication, squaring,
adding, subtracting. Hence 6 is a smooth map between R* and R?, and hence is a smooth
map between the submanifolds SU(2) of R* and SO(3) of R. *

Iper Wikipedia
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Exercise 7. Recall that a roation of R? by an angle of ¢ is given by

cosp —singp

sinp cosy )
They are characterized by the fact that they are orthogonal and they have determinant +1.
A rotation by an angle ¢ about an axis? € R? has ¢ as an eigenvector of the eigenvalue +1
and acts as a rotation of angle ¢ on the copy of R? that is orthogonal to .

Prove Euler’s theorem, that every element of SO(3) is a rotation about some axis. How
can you compute the angle of rotation without changing bases?

Proof. Let A € SO(3). Then
det(I — A) = det(AT) det(I — A)
=det(AT — 1)
=det((A—-1)7T)
=det(A —1I)
= —det(I — A),

and so det(I — A) =0, i.e., 1 is an eigenvalue of A and hence A is a rotation. -*
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K Was not able to get to these problems. Sorry Jesse! ***

Exercise 8. Without great injury to yourself or those around you, prove that if ¢ = cos¢p+
sin ¢t € SU(2) then Ad(q) is rotation by an angle of 2¢ radians about the axis ¥. Use this
to conclude that the kernel of 8 : SU(2) — SO(3) is just +1.

Exercise 9. We say that p,q € SU(2) are conjugate if and only if there is r € SU(2) with
Tpr = q.

e Prove that p and ¢ are conjugate if and only if Re(p) = Re(q). To do this with as
little pain as possible, figure out where the axis of rpF is in terms of the axis of p and
the action of Ad(r) on R3.

e Describe the conjugacy classes of SU(2) as geometric objects. What are the different
conjugacy classes diffeomorphic to?

Exercise 10. Prove that 6 : SU(2) — SO(3) is onto, and the inverse image of each element
of SO(3) is two antipodal points on S% = SU(2). Use this to construct a homeomorphism
between RP(3) and SO(3).
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Intro to Manifolds, Tu — End of Section Exercises

Exercise 8.1. Differential of a map
Let F : R? — R? be the map

(w,v,w) = F(z,y) = (z,y,2y).
Let p = (z,y) € R2. Compute F*(%|p) as a linear combination of a%’ %, and % at F(p).

Proof. We have
r=uokF, y=wvokF, and zy=wolF.

Then
0 0 or
0 0 dy
F, (890‘;;) (v) = 5-(vo F) = 52 =0
0 0 ozy
F*<6xp>(w)_6x(wOF)_8:v_ )
and so 5 5 5

®

Exercise 8.2. Differential of a linear map
Let L : R — R™ be a linear map. For any p € R™ there is a canonical identification

T,(R™) = R™ given by
E a | »—>a——<a1...a>.
9 5P ) s Un

Show that the differential L., : T,(R™) — Tp,)(R™) is the map L : R™ — R™ itself, with
the identification of the tangent spaces as above.

Proof. Let
i 9 n
X,=Y a @‘p € T, (R™).
Then
Li(Xp)a' = Xp(a' o L) = X, L
i L+ ta) = Li(p)
t—0 t
iy L) +tL(a) — L*(p)
t—0 t
= L¥(a).
Since this is true for all coordinates z*, then L.(X,) = L(a). *®



Nicholas Camacho Intro to Smooth Manifolds — Homework 4 February 27, 2017

Exercise 8.3. Differential of a map
Fix a real number o and define F : R? — R? by

b =wo=rew = (G0 ) )

Let X = —y2 +xa% be a vector field on R%. If p = (z,y) € R? and Fy(X,) = (a2 +b2)],,

find a and b in terms of z,y, and a.
Proof. Note that

(wo F)(z,y) = F'(x,y) = xcosa — ysin

(vo F)(x,y) = F*(z,y) = xsina + ycosa.

Then

a= <a‘9 + b8> (1) = F.(X,)(u) = X,(uo F)

— g—i—xg (zcosa — ysina)
Yor oy 4

or dy

= —ycosa — xsina.

Similarly,

b= (aa + b8> (v) = Fu(X,)(v) = Xp(uo F) = —ysina + x cos a.

Exercise 8.6. Velocity vector
Let p = (z,y) be a point in R2. Then

cos2t —sin2t| |z
ep(t) = [sin 2t cos2t } {y] tER,

is a curve with initial point p in R2. Compute the velocity vector cp(0).

Proof. We have

cp = (011), cg) = (x cos 2t — ysin 2¢, x sin 2t + y cos 2t),
and so
eup(t) = —2xsin2t — 2y cos 2t
WP 2t cos 2t — 2ysin2t |
This gives

—2xsin0 —2ycos0| -2y
2tcos0 —2ysin0 | | 2z

cen0) = |

O(zcosa — ysina) n O(zcosa — ysina)
— x

.
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Exercise 8.7. Tangent space to a product
If M and N are manifolds, let 71 : M XN — M and 75 : M x N — N be the two projections.
Prove that for (p,q) € M x N,

Tiws T2x 2 L,y (M X N) — T, M x TyN
is an isomorphism.

Proof. *** Copied from the back of the book. I need some help understanding this. See
you in office hours! ***
If (U,¢) = (U,2',...,2™) and (V,¥) = (V,y',...,y") are charts about p in M and ¢ in
N respectively, then by Proposition 5.18, a chart about (p,q) in M x N is
U xV,¢px )= (UxV,(ri¢,m39)) = (U x V,T',....7" 7., 7"),
where 7¢ = 2! and w3y, Let m, (0/077) = Ea;-a/axi. Then

oz’

G=m\gg )T g @ om) = 50

. <‘9 )_3
1 oF’ (p,q) - Oz

0 0 0 0
o ()0 ()0 () - ”

A basis for T(,, ) (M x N) is

This really means that

p

Similarly,

9
ozt

0

) T

9
wa) Oy

(P.a)

(p,q)’ Tyl
A basis for T,M x TN is

0 9 9 )
(aurly)+ (amnl,) - (a5, ) - (55, )

By (1) and (2), the linear map (my,,72,) maps a basis of T(, (M x N) to a basis of

v

T,M x TyN, and is therefore an isomorphism. -

10
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Exercise 8.10. Local maxima
A real valued function f : M — R on a manifold M is said to have a local maximum at
p € M if there is a neighborhood U of p such that f(p) > f(¢) for all ¢ € U.

(a)

Prove that if a differentiable function f : I — R defined on an open interval I has a
local maximum at p € I, then f'(p) = 0.

Proof. Let {g»},{rn} C U be such that ¢, < p and p < r, for all n and {g, } and {r,}
converge to p. Then

f/(p) — lim f(%z) : f(p) >0,
n—0oo qn — P
and
n— oo Tn — D
Hence f'(p) = 0. *

Prove that a local maximum of a C*° function f : M — R is a critical point of f .
(Hint: Let X, be a tangent vector in T, M and let ¢(t) be a curve in M starting at p
with initial vector X,. Then f o c is a real-valued function with a local maximum at

0. Apply (a).)
Proof. Using the hint, we have (f o¢)(0) = f(c(0)) = f(p). Then

0=(f00)(0) = (f )0 = frec) ©Cx0 = fepc(0) = fup(Xp).

Since X, was an arbitrary tangent vector in T,M, f., = 0, and hence it is not
surjective. So p is a critical point of f. -

11
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Exercise 1. Suppose that S C M is a compact regular submanifold, and F : M — N is
smooth, so that F'|g is one-to-one, and for every p € S, F.p : T,M — Tp(,)N is a linear
isomorphism. Prove that there is U open with S C U so that F': U — N is a diffeomorphism
onto its image.

Proof. Thank you for your help on this one Jesse!

By the Inverse Function Theorem, F' is a local diffeomorphism on S. So at every p € S,
there exists a coordinate chart (Vj, ¢,) on which F' is a diffeomorphism. For all p, replace
V, with ¢, ' (B(¢(p), €p)) for some small ¢,. Notice that Upes Vp covers S, and since S is
compact, there exists V,,,...,V,, such that S C J;_, Vp, = V. Then V = |J_, V,, is
compact since it is a closed subset of a compact space.

Now for all p € S, choose €], small enough so that V, := ¢, (B(¢,(p),€,)) € V. Define
V"= UpesV, C V. Note that V' C V, and hence V' is compact.

We want to show that there exists some open set U containing S and contained in V' on
which F' is injective. Then, by the inverse function theorem, F' will be a diffeomorphism on
U. To that end, suppose such a U does not exist. Then for all U containing S and contained
in V, there exists distinct x,y € U such that F(z) = F(y). In light of this, we define

Ua=U o' (B (0. 2))

peS

for all n € N, where the €),s are the same ones from before where V, := ¢, (B(¢,(p), €),)).
Notice that we have U, C U, C V/ and U, C V. For all n, pick distinct x,,, y, € U, such
that F(x,) = F(yn). So {(xn,yn)} is a sequence in the compact space! V’ x V’, and so
there exists a convergent subsequence {(z,, yn, )} converging to some (xo,yo). Notice that
by construction of the U,’s, we have (z¢,y0) € S X S. Then since F is continuous,

F(ajo) = kll)H;oF(mnk) liH;oF(ynk) = F(yO)a

- k—
and since F' is injective on S, we have xy = yg. Now, there exists K € N such that for all
k> K, xn,,Yn, €V, But F|V1’,O is a diffeomorphism, and in particular, injective, and so
F(zp,) = F(yn,) for all k > K, a contradiction. *®

1Tychonoff’s Theorem!
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Exercise 2. Suppose that F' : M — N is smooth. M is compact, N is connected, and
at every p € M, F,p : T,M — Tpp) N is an isomorphism. Prove that F' is a covering
projection.

Proof. Since M is compact and nonempty, N is connected and Hausdorff, and F' is contin-
uous and open, then F is surjective.

Since F ;, is an isomorphism for all p € M, then dim M = dim N; say dim M = n. Since
F' is a submersion on all of M, then in particular, no point of N is a critical value of F.
Hence every point of N is a regular value of F'. So if b € N, then by the Regular Level Set
Theorem, S := F~1({b}) C M is a regular submanifold of dimension n —n =0, i.e., S is a
collection of points. Since N is Hausdorff, the set {b} is closed, and since F' is continuous,
S is closed. As a closed subset of a compact space, S is compact, and therefore S is a finite
collection of points.

For all p € S, since F. j, is an isomorphism, then F' is locally invertible at p by the Inverse
Function Theorem, i.e., there exists a neighborhood V), of p so that F' : V,, = F(V,) is a
diffeomorphism. Shrink each open set in the collection {V,},ecs if necessary so that they
are disjoint to obtain {Up}pes. Then S =|| g U,.

Define U := | ],cg F(Up). Then U is a neighborhood of b and F~H(U) = || cg Up-
Moreover, F|y, is a diffeomorphism for all p. Therefore F' is a covering map.

v
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Exercise 3. Suppose that p: E — B and ¢q : E/ — B are n-dimensional vector bundles,
where E, E’, B, p, q are all smooth. Suppose that F': E — E’ is a smooth bundle map. That
is, go F =pand for any b € B, F : p~1(b) — ¢~ 1(b) is a linear isomorphism. Prove that F'
is a homeomorphism. Hint: You meed to prove that the inverse is continuous, it suffices to
do this in a trivialization.

Proof. We first show that F is bijective. Every e € E’ is in some fiber ¢~ 1(b), and since
F(p=t(b)) = ¢ (b), then F is surjective. If F(a) = F(b), then this point in E’ is in some
fiber ¢~1(b) on which F is injective since F is an isomorphism, and hence a = b.

E—F L F

N A

Now by the hint, we need to show that F~! is continuous, i.e., that F is an open map
in a trivialization. Let b € B, and let W and V be respective trivializing open sets at b for
pand g. Thenlet U:=W NV and let ¢ : p~1(U) - U x R® and ¢ : ¢~ 1(U) — U x R™ be
the trivializations.

Define G : U x R® — xR" by ®po Fop~!. Then G~! = po F~! o4~ and since ¢ and
™1 are continuous, it follows that F~! is continuous precisely when G~! is continuous.

Let (z,v) € U x R". Then G(z,v) = (z, A(z) - v) for some matrix A(z). We get that
G is the identity on the first component since ¢!, F, and 1 are all linear isomorphisms on
the fibers and hence preserve base points. So G is also fiber-preserving.
Since p~!, F, and 1 are all smooth, then so is A : U — GL,(R), which means A~! :
U — GL,(R) is also smooth. Then G~1(y,w) = (y, (A(y))~! - w). Since A~! is smooth,
G~ is smooth and so a fortiori, G~ continuous.
-
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Exercise 4. Recall that a frame of a vector bundle p : F — B is a collection of smooth
sections s1,...8, : B — E, that is pos; = Idp, so that for every b € B, {s1(b),...,s,(b)} is
a basis for p~1(b). Prove that p : E — B is trivial if and only if it admits a smooth frame.

Proof. (=) Suppose p : E — B is trivial; that is, there exists a smooth map f : E — B xR"
such that the following diagram commutes, (p = 7 o f)

E—J . BxRrr

and such that f is a linear isomorphism on each fiber; i.e., for each b € B, p~1(b) = {b} xR"™.
Let ey, ..., e, be the standard basis for R”. For each i € {1,...,n} define

€ :B— BxR" by b (be;).

Then {€;}; defines a smooth frame over the vector bundle 7z : B x R" — B because:
mpoe; = lp, and, for all b € B, the set {€;(b)}; = {(b,e;)}; forms a basis for the vector
space {b} x R™.

Define s; : B— E by s; = f~to®; for alli € {1,...,n}. Then s; is smooth since both
f~! and &; are smooth, and

pos;=poflog =ngoe =1p,

which means the s; are sections of the vector bundle p : £ — B. Moreover, for all b € B
and for all ¢ € {1,...,n},

si(b) = f7H (&) = f(b,eq).
Since f is a linear isomorphism, it takes bases to bases, and hence {f~1(b,e;)}; = {s;(b)}; is
a basis for p~1(b). Hence {s;}; constitutes a smooth frame for the vector bundle p : E — B.

E— 1 . BxR"

(<) Now suppose p : E — B admits a smooth frame, say {s;};. Let e € E and p(e) = b.
Then {s;(b)}; is a basis for the vector space p~1(b) and so e can be written uniquely as
e =>a;s;(b) for some a; € R. Define

f:E—=BxR" by e (ple),ar,...,a,).
We first show that f is linear on the fibers of p. Let b € B and e,¢’ € p~!(b) with
e=>Y a;s;(b) and ¢’ =3 ¢;5;(b). For X € R,
fle+Xe)=f (Z(ai + )\Ci)si(b))
= (b,a1 + Act, -y an + Aep)

=(b,a1,...,an) + A(b,c1,...,¢n)
= f(e) + Af(€).
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Now if (b,a1,...,a,) € B x R™, then

f (Z aisi(b)) = (b,a1,...,an),

and so f is surjective. If f(e) = (b,0,...,0), then e = > 0s;(b) = 0, hence f is injective.
Finally, f is fiber-preserving because

m(f(e)) = mr(p(e), a1, ..., an) = ple),

ie,p=mpgof.

Finally, we show that f is smooth by showing that det(F,) # 0 in a trivializing open
set U. Then applying the Inverse Function Theorem, f is smooth on U. So, let ¢ be the
trivialization of U and let {t;}; be the frame of ¢. That is, for e € p~1(U), e = >_ a;t;(p(e)).
Now, relative to the char ¢, we get

I 0

f*:
* | TM

where TM stands for ”transition matrix”, which is the matrix which is the change of basis
matrix from U x R™ to U x R™. Then det(F}) # 0. Therefore, f makes p: E — B a trivial
bundle. m
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Exercise 5. There is an action of the group Z on R? given by n.(x,y) = (z + n, (—1)"y).
Denote the quotient space Mob = R?/ ~.

1. Prove that p : Mob — S* given by p([z,y]) = €27 is well defined and continuous.

Proof. Let ~ be the relation (x,y) ~ (2/,y’) if and only if there exists n € Z such
that (x +n, (=1)"y) = (2/,y'). Let ¢ : R?> = R?/ ~ be the quotient map induced by
this relation. Define f : R? — S by (z,y) — €*™®. Suppose (x,y) ~ (z',y') with
(x+n,(—1)"y) = («/,y'). Then

f(x’,y') _ ezm’x’ _ e27ri(z+n) — 2miw2min _ 2miv _ f(x,y),

which means f is constant on the fibers above R?/ ~. Hence f descends to a map
f:R?/ ~— S! which makes the following diagram commute:

R?/ ~
So f = fogq, and for all [z,y] € R?/ ~, we have

Fllzy)) = fla ([z.y) = &7

Notice that p = f, which is well defined. Moreover, because f is continuous, then so

W

is p. -

2. Prove that p : Mob — S! is a line bundle by supplying local trivializations.

3. Prove that p : Mob — S! is not trivial by proving it has no nonvanishing sections. Use
the intermediate value theorem on [0,1] where we map [0,1] to S' using exp(2rix).



Nicholas Camacho Intro to Smooth Manifolds — Homework 6 March 22, 2017

Exercise 1. Let p: F — B be a smooth n-plane bundle over the smooth manifold B. The
fibers p~1(b) are all n-dimensional vector spaces over R. A metric on E is an assignment

of an innerproduct
<, >yp ) xpTl() > R, 1)

This means the pairings < , >;, are bilinear, symmetric and positive definite. Also the
pairings are required to vary smoothly. If U C B, a local frame is a collection of smooth
sections si,...,s, : U — E, so that at each b € U, s1(b),...,s,(b) are a basis for p~1(b).
We form an n x n matrix valued function g : U — M, (R) whose entries are

9ij(c) =< s;(c),s(c) > .

We say the metric is smooth if for every b € B there is U open with b € U and a local
frame sq,..., S, so that the entries of the matrix g are smooth functions on U.

Prove that if p : E — B is a smooth n-plane bundle then it always admits a smooth
metric. Hint: Partition of unity. You need to check the convex sum of inner products is an
inner product.

Proof. We first argue that the vector bundle p : E — B admits local frames, for the purpose
of defining local inner products, which will then help us to define a metric on all of E.

If (U, o) is a trivialization of E over B, then the map ¢ : p~*(U) — U xR" (by definition)
causes the bundle p : p~*(U) — U to become trivial over U; that is, the following diagram
commutes

p Y U) —— 2 UxR®

and ¢ is a linear isomorphism on each fiber; i.e., for each b € U, p~1(b) = {b} x R™.
We saw in the previous homework that a trivial bundle always admits a smooth frame
{s;}. In particular, we showed that s; : U — p~1(U) is defined by s; = ¢! o¢;, where
€ : U — U x R" is given by b — (b, e;) and where {e;} is the standard basis for R™.

For b € U, we want to define an inner product on p~%(b). Well, we already have a
standard inner product (the dot product) on elements of R” and an isomorphism p~!(b) =
{b} x R™. Tt therefore seems reasonable to define an inner product <, >y on a fibers above
points in U in terms of the dot product in R™. To that end, if e,e’ € p~1(b), then we can
write e = > a’s;(b) and ¢’ = Y ¢'s;(b) for unique a;, ¢; € R. Then

(TR 0 @)(€) = Trn (p(€)) = TRn (b, ey ... ™) = (c'y ... ),
where mrn is projection onto R™. So we define < , >y ; by
< e >yp=(mrn 0 p)(e) - (rn 0 @)(¢/) = Y _a'd,

where - denotes the usual dot product in R™. Given this definition, we want to check that



Nicholas Camacho Intro to Smooth Manifolds — Homework 6 March 22, 2017

the entries g;;(b) =< s;(b), s;(b) >p,, are smooth functions on U:

< 5i(b), 85(b) >up = (mrn © ) (s:(b)) - (TRr © )(s5(b))

= (mRrn © p 0 54)(b) - (Trn © @ 0 5;) (D)

— (men oo p 0 )(b) - (mxn 0 906 02,) (D)
= (mgn 0 €;)(b) - (mrn 0 €;)(D)
= mrn (b, €;) - TR (b, €5)
&

Now that we’ve defined a metric locally on fibers above points in a trivializing open
set, we want to extend our definition to a global metric on all of E. First, cover B by
trivializing open sets {U,}, and let {p,} be a partition of unity subordinate to {U,}.
Define <, >3: p~1(b) x p~1(b) = R on E by

< Se= Y pald) <5 Sua= Y pald) < Suas= Y <, Suab
o

«a, beU, a, beU,

Then define a metric on F which assigns to each b € B the inner product < , >;. This
metric is positive definite since the sum of nonnegative scalings of positive definite inner
products is positive definite. This metric is symmetric since

<ee>b— Z <ee>Ua7 Z <é y€ >UL b= <e ,e >y .
a, beU, a, beU,

Finally, the metric is bilinear since

<e+ X, e >y = Z <e+ X' € >y
a, beU,

Z <e e >y v+ <A € >up
a, beU,
=<e e >, +A<e’ e >

(And similarly for the second factor of the pairing). ‘
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Exercise 2. Suppose that F': M — N is smooth and p : E — N is a smooth bundle define
F*E = {(m,%) € M x E | F(m) = p(#)}
Define py : F*E — M by p1(m,¥) = m. Use local trivializations U C N of p: E — N to

build local trivializations on p; : F*E — M so that the coordinate changes are smooth.

Proof. Let (U, ) be a trivialization of E over N. Since F is continuous, F~1(U) C M is
open. We want to define a homeomorphism
Y ip(FH(U)) = F1(U) x R™
so that (F~1(U),) can serve as a local trivialization on p; : F*E — M. To that end, we
make the following observation: If (m, @) € p; ' (F~'(U)), then
m = p1(m, ) € F~Y(U),

ie, F(m) € U. Hence p~}(F(m)) C p *(U) and since p(¥) = F(m), we have ¥ €
p~L(p(v)) € p~1(U). Since ¢ is defined on p~'(U), the above observation motives the
following definition for ¢):

¢(m7 ’U) = (m7 TR™ ((p(ﬁ))
Let 7y, mg be projection onto M and E. Notice that ¢) = (s, mrn 0 p 0 7g), and since all
of the component functions of 9 are continuous, so is . Now, we define ¥»~! and show that
it is continuous and that it is indeed an inverse for 1. Let
oL FTHU) xR = prH(FTHU))

be given by ¢~ 1(k, @) = (k,o ' (F(k),@)). Then as before, 1)~! is continuous since all of
its component functions are continuous.

Interlude: We want to check that (k, o~ (F(k), @) is actually an element of p; 1 (F~1(U)) C
F*E. Note that since @|,~1((ray) : 0 ({F(k)}) = {F(k)} x R™ is a linear map, then
¢ N (F(k), @) € p~ ({F(R)}),
and hence p(¢ = (F(k),@)) = F(k). In other words, the element (k, ' (F(k),@)) is indeed
in F*E. Moreover,
pi(k, o™ (F(k), @) = k € F7H(U),
and so (k, p~Y(F(k),)) is an element of p; *(F~*(U)).

Then we have:
(Yo~ (n, @) = p(n, o~ (F(n), @)
Note that ¢(7) = (p(7), men (2(7)). So,

Il
—~
S
3
=
3
2
B
=
N—
I
B
5



Nicholas Camacho Intro to Smooth Manifolds — Homework 6 March 22, 2017

Hence v is a homeomorphism. We now show that ¢ is a linear isomorphism on the fibers
above F~1(U); that is, if m € F~1(U), then the map

w‘l’l_l({m}) cprt({m}) — {m} x R"

is a linear isomorphism. If (m, ) € p; *({m}), then in particular p(7) = F(m). So when we
consider the definition of v, we get that

Pyt (gmy) = (WM’ (mgn 0 w)\pfw{F(m)}))’

and hence 1/)|p;1({m}) is a linear isomorphism since ¢|,-1({F(m)}) i @ linear isomorphism.

Now, if {(Ua,¢a)} is a collection of trivializations of E over N, let {(F~1(U,),v¥a)}
be a collection of homeomorphisms, where 1, corresponds to ¢, and is defined as in our
construction above. If F~1(U,), F~1(Ug) are two overlapping open sets in the collection
{(F7Y(Uy),%4)}, we want to show that the coordinate change

Yooyt i F1(Ua NUg) x R" = F~1(Ua NUp) x R"
is smooth. Notice that
g © wgl = (71'1, TRn © g 0 g (F o 771.7TRn)>,
We know that ¢, o g is smooth. This shows that the component functions of 1), o z/ng are

smooth, and hence so is ¥, o z/JB_l.

w
-
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Exercise 3. Suppose that p : E — B is a vector bundle. We say E’ C E is a subbundle
of dimension k if for every b € B, E' N p~1(b) is a vector subspace of dimension k and for
each b € B there is U open with b € U and k smooth sections s1,...,s; : U — FE so that
for each ¢ € U, s1(c), ..., sk(c) form a basis of E' Np~!(c). Prove that if £’ is a subbundle
of E there is a subbundle E” of F so that E' ® E” = FE in the sense at each b € B,
(E'np=t(b)) @ (E" Np~L(b)) = p~1(b). Hint: Use a metric, and orthogonal projection into
the perpendicular.

Notice that the restriction of the projection map to a subbundle is a bundle in its own
right.

Proof. Let b € B. By the same argument employed at the outset of Exercise 1, the vector
bundle p : E — B admits local frames; that is, there exists a neighborhood U of b so that
there exists n smooth sections s; : U — p~1(U), 1 < i < n, such that s1(b),...,s,(b) is
a basis for the vector space p~1(b). Applying Gram-Schmidt orthogonalization, we assume
without loss of generality that s;(b),...,s,(b) is an orthonormal basis for p~1(b) and that
51(b), ..., sx(b) form a basis of E' Np~1(b).

By Exercise 1, we have a smooth metric defined on E. So, we define the orthogonal
complement of E’ in E:

E":={"€E | <e' e >y en=0foralle € E'n(p~"(p(e"))}.
Certainly we have (E' Np~1(b)) + (E” Np~1(b)) C p~*(b). Now if e € p~1(b), then there
exists real numbers \;, 1 <14 < n so that e = A\151(b) + -+ + A8, (b). Define
k
e = Nsi(b) € E'npl(b),

i=1
and e’ := e —¢€’. For notational brevity, let s; denote s;(b) in the next computation. Recall
that since s1,...,s, is an orthonormal basis, < s;,s; >=67. For any j € {1,...,k}

< e”,sj >p=<e€,85; >p — < 6/,83‘ >

=<e,5; >p —)\1<81,Sj >b—-'-—>\j<8j78j >b_"'_/\k<5k7sj >y
=<e,5; >p 7)\]'
:O,

ie, e € E'Npl(b) and so e = ¢ +¢€” € (E'Np (b)) + (E” Nnp~L(b)), which gives
(E'0p= (b)) + (B" np~ ' (b)) = p~(b) -

Finally, it follows from the definition of E” that (E' N p~1(b)) N (E” Nnp~1(b)) = {0}.
Hence we've shown (E' Np~1(b)) & (E”" Np~1(b)) = p~1(b). ®
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Exercise 4. Suppose that i : M — N is the embedding of a smooth regular submanifold of
codimension k. Suppose further than TNV has a smooth metric on it. Define the normal space
vp to T (i(M)) to be the linear subspace of Tj,yN that is perpendicular to T,y (i(M)).
The normal bundle v is the subbundle of i*T'N whose fiber over p is v,. Prove that i*T'N =
(i*T(i(M))) ® v. Hint: Use the last problem.

Proof. We have the following diagram:
*TN —~ TN

’”l lﬂ

M4i>N

Let p € M. Since i*Ti(M) and v are subbundles of i*T N, we want to use Exercise 3 to
show

') = (7@ e Tion) @ (v () ).
First, we consider the set
7 p) = {(p,0) €ix TN | 7€ TN,i(p) = 7()}. (w)

By definition of the map 7, we have that @ € TN for all ¥ € TN. So if (p,7) € 7 (p),
then ¢ € T,y N. Now since T;,)i(M) is a subspace of Tj,) N, then we can write

Tz(p)N = Tl(p)Z(M) D (Tl(p)l(M))J' = Tl(p)Z(M) D I/p.

In particular, if o' € Tj,) N, there exists unique elements vy € Tj,yi(M) and vy € v, such
that ¥ = v; + vo. So then (=) becomes

ﬂfl(p) ={(p,v1 +v2) €I"TN |vy € Ty(p)i(M),v2 € vp,i(p) = m(V)}
= {(p,v1) + (p,v2) €i"T'N |« 7}

— (0} x Tuian)) & (19} x 1)
((m ®) & ((ml) ™ @)

(ﬂfl(p) N Z*TZ(M)> @ (Wfl(p) N l/))

-1

z‘*Ti(M))
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Exercise 5. Assume that M C R¥ is a smooth regular submanifold, and that M is com-
pact. Let p : v — M be the normal bundle. The elements of v consist or ordered pairs
(m, ¥) where m € M and @ € T,,M*. Define F : v — R~ given by F(m,v) = m + v.
Show that F' can be restricted to an open subset U C v containing M as the zero section,
such that F|y is a diffeomorphism onto an open neighborhood of M in RY. Hint: Your last
homework.

The last exercise is the Regular Neighborhood Theorem Here we can make a tube
lemma type argument to show we can choose U so that in each fiber of v it is an open ¢
ball.

Proof. Define My := {(m,0) | m € M} = so(M) C v, i.e.,, My is a copy of M in v as the
zero section. Notice that since the smooth section sg is continuous and M is compact, then
so is M. We want to show that the map F has the following properties: (1) F is smooth
on v; (2) Flp, is injective; (3) For m € M, F, (m0) : Tnov — T,,RY is an isomorphism.
Then using the first exercise of the previous homework, the result follows.

(1) follows from the fact that vector addition in RY is smooth. (2) follows trivially
from the fact that m +0 =n+0 <= m = n. For (3), it suffices to show that locally
in a trivialization say ¢, we have (F o ¢), (,0) is an isomorphism. To that end, we show
det((F o )+, (m,0)) is nonzero. Then the inverse function theorem gives that (F' o ), (m.0)
is an isomorphism. We have

-1
Fop ' : MxRY" 5 RN where (m,w)+—m + ((7T2 0<p)|p_1(m)) (w).

Now, defining y5 := 79 0 ¢, we have

Iy | 0

(F © <P)*,(m,0) =
* (@Q‘pfl(m))il

and hence det(F o ¢), (m,0)) is nonzero.

.
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Intro to Manifolds, Tu — End of Section Exercises
Exercise 15.9. Structure of a general linear group
(a) For r € R* :=R — {0}, let M, be the matrix
r
=[reiex... e,
1
where ey, es,...,e, is the standard basis for R™. Prove that the map

f:GL(n,R) = SL(n,R) x R*,
A (AMl/detA,detA)

is a diffeomorphism.

Proof. Since the component functions of f are matrix multiplication and the determi-
nant function, which are smooth, then f is smooth. Define a map

f~1:SL(n,R) x R* — GL(n,R),
(B,r) — (M,B).

Then f~! is smooth since it is defined by matrix multiplication and in an inverse for
f since

(f7h o f)(A) = fTH(AM ) qer 4, det A) = Maey AAM: ) eg 4
= [det Aey es... ey][(A/det A)ey es... ey)
= [Ae; Aey... Ae,)
=A,
(fo f Y(B,r) = f(M,B) = (M,B)M) det m,. 5, det M, B)

= ((M;B)Miy get B det M, B)
= ([re1 ea... ey|B[(1/r)er ea... ey],r)

= ([rBiex 3262 . Baen[(1/r)er ea... eyn],T)
= (B,r).

.
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(b)

Show that the center of GL(2,R) is isomorphic to R*, corresponding to the subgroup of
scalar matrices, and that the center of SL(2,R) x R* is isomorphic to {£1} x R*. The
group R* has two elements of order 2, while the group {£1} x R* has four elements
of order 2. Since their centers are not isomorphic, GL(2,R) and SL(2,R) x R* are
not isomorphic as groups.

Proof. An element of the center of GL(2,R) is a scalar multiple of the identity and

hence we define a map ¢ : (a 2) — a, which is clearly bijective and is linear since

0

Ao o) (0 8)=o=e (6 )2 (o 2)

Hence we have an isomorphism. Now, the center of SL(2,R) x R* are elements of the

form ((é (1]> 77‘) and ((_01 _01> 77“) for r € R*, which is clearly isomorphic to
{£1} x R*. *

Show that h : GL(3,R) — SL(3,R) x R* given by A — ((det A)~1/3A,det A) is a Lie
group isomorphism.

Proof. We have

det(A *1/3A,det(A)> (det(B)*l/ffB,det(B))

h(AB) = ((det(A) det(B)) "3 AB, det(A) det(B))
— ( et(A)
— h(A)h(B),

and hence h is a homomorphism. If ((det A)~*/3A,det A) = ((det B)~'/*B,det B),
then det A = det B and det A)~'/3A = det B)~'/3B, which together give A = B
and hence h is injective. Let (B,r) € SL(3,R) x R*. Then let A := 7'/3B. Then
det(A) = r and

h(A) = (det(A)"3r1 3B det A) = (r~/3r'3B,r) = (B, ).

Exercise 15.10. Orthogonal group

Show that the orthogonal group O(n) is compact by proving that it is a closed and bounded
subset of R™*".

Proof. We have that O(n) is closed since it is the preimage of the closed set {I} of under the
continuous map A — AA". If A = (a;;) € O(n), then (AAT);; = Y70 ajrar; = D j_y 035,
and since AA” = I, then Y7)'_ af; = 1. Hence

n n 1/2 n 1/2
14l = (zzazj) _ (m) e

=1 k=1 =1

and hence || 4| is bounded. *
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Exercise 15.11. Special orthogonal group SO(2)

The special orthogonal group SO(n) is defined to be the subgroup of O(n) consisting of
matrices of determinant 1. Show that every matrix A € SO(2) can be written in the form

A [a b] _ |:COS€ —sin@}
c

d sinf cos6

for some real number 6. Then prove that SO(2) is diffeomorphic to the circle S*.

Proof. Let A= [z Z} € SO(3). Then

~oar _Ja blfa e]  [a®+b* ac+bd
I=44 _{c d] [b d]_{ca—&—db A+d?)

which gives a? +b% = 1 = ¢? +d?. So there exists 0, ¢ € [0,27) so that cos = a, —sinf = b,
sin ¢ = ¢, and d = cos ¢. Since ac + bd = 0, we get

0 = cosfsin ¢ — sin f cos ¢ = sin(¢ — 0),
which gives ¢ — 0 =0, i.e., ¢ = 6. So A becomes

__|cosf —sinf
~ |sin@ cos@ |-

Conversely, we have

[cosé) sin@] [cos& sin&] B { cos? 0 + sin? 0 cosfsinf —sinfcosf] _

sinf cosf —sinf cosf sin @ cos @ — cos @ sin 0 sin? + cos? 0

and hence every matrix in SO(3) has the desired form. Now since every point in S! can be
written in the form cos?  + sin® §, we define a map

f:80(2) — St
(cosf,sin 6, —sin B, cosf) — (cosd,sinh),

cosf —sinf

sinf  cosd ] with the 4-tuple (cos #,sin 6, —sin 6, cos 6),

where we are identifying the matrix [

and a point p = cos?§ +sin? § € S! with the pair (cos#,sin#). Then f is simply the restric-
tion of the projection map on the first two factors, which is smooth. Then if we define

st = 50(2)
(cosf,sinf) — (cosb,sinf, —sin b, cos h),

then f~!is an inverse map for f. Then f~1 = (my, m,¢_10mo, 7 ), where £_; : R — R is left
multiplication by —1. So f~! is smooth since all of its component functions are smooth. s
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Exercise 15.12. Unitary Group

The unitary group U(n) is defined to be
Uln) = {A € GL(n,C) | A" A =T},

where A denotes the complex conjugate of A, the matrix obtained from A by conjugating

every entry of A : (4);; = @;;. Show that U(n) is a regular submanifold of GL(n,C) and
that dimU(n) = n? .

Proof. Using the map f : GL(n,C) — GL(n,C) given by A — ZTA, we have that f~1(I) =
U(n). Since U(n) is a subgroup of GL(n,C), f is continuous, and {I} is closed, then U(n)
is a closed subgroup, and hence an embedded Lie subgroup .

To find the dimension of U(n), we find the dimension of the tangent space at the identity.
Let X € T;U(n), and choose a curve ¢ : (—e, ) — U(n) starting at I with ¢/(0) = X. Then

T
c(t) c(t) = I for all ¢, and so applying the matrix product rule we have

At t = 0 we have X =X Thus X is skew-Hermitian. Since skew-Hermitian matrices
are completely determined by their entries in the upper triangle and their diagonal entries,

we have
#(matrix entries) — #(diagonal entries) n? —n

2 T2
complex numbers to choose for in the upper triangle, which is the same as choosing n? — n

real numbers. Now since we have X = —X for all skew-Hermitian X, this means that
the diagonal entries must be purely imaginary. Hence we have n?2 — n 4+ n = n? choices to

determine X. Hence the dimension of T;U(n) is n? and hence dim U(n) = n?. ®

Exercise 15.15. Symplectic Group

Let H be the skew field of quaternions. The symplectic group Sp(n) is defined to be
Sp(n) = {A € GL(n,H) | A" A =1},

where A denotes the quaternionic conjugate of A. Show that Sp(n) is a regular submanifold
of GL(n,H) and compute its dimension.

Proof. This proof is essentially the same as the one in Exercise 15.12, except when we
calculate the dimension of TySp(n):

Since skew-H matrices are completely determined by their entries in the upper triangle
and their diagonal entries, we have

matrix entries) — #(diagonal entries n?—n
g

2 2
quaternion numbers to choose for in the upper triangle, which is the same as choosing
4((n? —n)/2) = 2(n? — n) real numbers. Now since we have X' = —X for all skew-H X,
this means that the diagonal entries must be purely imaginary. The imaginary component of
elements in H consist of three components. Hence we have 2(n?—n)+3n = 2n2+n choices to

v

determine X. Hence the dimension of T7Sp(n) is 2n?+n and hence dim Sp(n) = 2n?+n. s
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Exercise 16.1. Skew-Hermitian matrices

A complex matrix X € C™*™ is said to be skew-Hermitian if its conjugate transpose X
is equal to —X. Let V be the vector space of n x n skew-Hermitian matrices. Show that
dimV = n?.

Proof. See Exercise 15.12. -
Exercise 16.2. Lie algebra of a unitary group

Show that the tangent space at the identity I of the unitary group U(n) is the vector space
of n x n skew-Hermitian matrices.

Proof. See Exercise 15.12. ®
Exercise 16.3. Lie algebra of a symplectic group

Show that the tangent space at the identity I of the symplectic group Sp(n)subsetGL(n,H)

. .. . T
is the vector space of all n x n quaternionic matrices X such that X~ = —X.

Proof. See Exercise 15.15. *
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Intro to Manifolds, Tu — End of Section Exercises
Exercise 17.1. A 1-form on R? — {(0,0)}

Let the standard coordinates on R? by z,y and let

0 0 0 0
Xffy%Jr:va—y and fo%era—y

be vector fields on R?. Find a 1-form w on R? — {(0,0)} such that w(X) =1 and w(Y) = 0.
Solution:

—y x
Let w = = —|—y2d$ + PO Then

-y x 9, 90 (—v)* x?
w(X) <x2+y2 $+x2+y2>< y8x+x8y) m2+y2+x2+y2

—y T 0 0 —yx xy
V) = d = ~Z )= =0
w(¥) <x2+y2 x+x2+y2) <x3$+y8y> PN R

Exercise 17.4. Liouville form on the cotangent bundle

(a) Let (U,¢) = (U,x',...,2") be a chart on a manifold M, and let
(77U, ¢) = (71U, Z, ..., T e, ..y )

be the induced chart on the cotangent bundle T* M. Find a formula for the Liouville
form A on 7~ 'U in terms of the coordinates T',...,Z", c1, ..., Cn.

Solution:

Let n* denote the dual of the differential of the projection « : T*M — M, i.e.,
™ = (m.)Y. Let p € U and w € TyU. Then A\,p) = wp o = 7°(wp). Let

w =" c¢;dz’. Now, using the fact that 7*(da?) = d(7*2%) = d(z* o 7) = dT*, we have
Au(p) =7 (wp) = 7 (Z Cz‘dafi) = emt(da’) =) cdz'.

(b) Prove that the Liouville form A on T*M is C*°. (Hint: Use (a) and Proposition 17.6)
Solution:

We can write Ay ) = Y eidT 4 5 0det. As coordinate functions, the coefficients ¢!
are all smooth relative to the frame {dZ’, dc;} and so X is smooth.
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Exercise 18.2. Linearity of the pullback
Prove Proposition 18.9

Proposition 1. If F: M — N is a C* map. If w,7 are k-forms on M and a is a real
number, then

(i) F*(w+7)=F*w+ F*r;

(i) F*(aw) = aF*w.
Proof. Let p € M and Xy,..., X, € T,M. Then

(F*(w+71)p(X1, ... Xi) = (W+T)rp) (Fep X1, -, Fip Xi)
= (Wrp) + Tr@p) FepX1,. o FipXi)
= wF(p)(F*prl, oo Fep X)) + TF(p)(F*’le, oo FepXe)
= (F*w)p(X1,... Xp) + (F*'71)p(X1,... X&).
(F*(aw))p(X1, ... Xp) = (aw) pp) (Fi p X1, - oo, Fap Xg)
= a(wpp) (FepX1,..., Fi p X))
= a(F*w)p(X1,... Xyg).

Exercise 18.3. Pullback of a wedge product
Prove Proposition 18.11

Proposition 2. If F': M — N is a C* map of manifolds and w and 7 are differential
forms on M, then

F*(wAT)=F'wAF*T.

Proof. Let w € A*(T*N) and 7 € A“(T*N). Let p € M and let X1,..., Xp, Xpi1,..., Xpie
be in T, M. Then

F*(w A T)p(Xl, e ,X]H_g) = (w A T)F(p) (F*)le, e ,F*)pXk_,_g)
= (WF(p) A TF(p))(F*’le, ceey F*’pXk»+€)
= > (sgn0) wp) (FepX1,- o, Fup X)) (Fep Xig1s -, Fup Xao)

0ESK4e

D (sgno) (Frw)p(X1,.. ., Xp) (F*7)p(Xps1, -, Xigr)

O'ESk+z
= ((F*w)p A F* T)p))( X1,y Xy Xig1s -+, Xioyr)
= (F*w /\F*T)p(Xl,. vy Xpgy Xpt1y - - ,Xk+g).
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Exercise 18.8. Pullback by a surjective submersion

In Subsection 19.5, we will show that the pullback of a C°° form is C*°. Assuming this
fact for now, prove that if 7 : M — M is a surjective submersion, then the pullback map
™ Q¥ (M) — Q*(M) is an injective algebra homomorphism.

Proof. Exercises 18.2 and 18.3 show that 7* is an algebra homomorphism. Now, suppose
7 (w) =0 for w € Q*(M). We want to show that w = 0. That is, if ¢ € M and Y1,...,Y} €
T, M, then wy(Y1,...,Ys) = 0. Since 7 is surjective, there exists p € M such that w(p) =q.
Since m, ;, is surjective, there exists X; € TpM such that F, ,X; =Y; forall 1 <i <k. So

0= (w*w)p(Xl, cen ,Xk) = wﬂ(p)(’fr*,le, cen ,W*,pXk) = wq(Yl, .. .,Yk),

as desired. Hence 7* is an injective algebra homomorphism.
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Exercise 19.1. Pullback of a differential form
Let U be the open set ]0, 00[x]0, 7[x]0, 27 in the (p, ¢, #)-space R3. Define F': U — R? by
F(p,¢,0) = (psin¢gcos b, psin ¢sin @, p cos ¢).
If z,y, z are the standard coordinates on the target R?, show that
F*(dz Ady Adz) = p*siné dp A do A df.

Solution:
We have

F*(dz) =d(F*z) =d(z o F) = d(psin¢ cosf) = sinpcosf dp + pcospcos dp — psin ¢siné db,
F*(dy) =d(F*y) =d(yo F) =d(psin¢sinf) = sin ¢sind dp + pcos psinf d¢ + psin ¢ cosf db,
F*(dz) =d(F*z) =d(zo F) =d(pcos¢) = cos ¢ dp — psin ¢ do.

Let’s do this:

F*(dx Ndy ANdz) = F*de AN F*dy A F*dz
= (sin¢cos 8 dp + pcos pcos dp — psin¢psin 6 d)
A (singsinf dp + pcos psinf dp + psin g cosf db)
A (cos ¢ dp — psin ¢ do)
= (sin¢cos@)(psin g cos@)(—psin¢) dp A df A dp
+ (pcos ¢ cosB)(psin ¢ cosb)(cos @) dp A dO A dp
+ (—psin¢sin6)(sin psin ) (—psin¢) dd A dp A d
+ (—psin¢sin@)(pcos ¢psinf)(cos @) dfd A dp A dp
= —p*(sin® ¢ cos? 0) dp A df A do
+ (p? cos® ¢ cos? Bsin @) dop A dh A dp
+ p%sin® ¢sin? 0 dO A dp A do
+ (=p?sin ¢ sin® O cos® ¢ dO A do A dp
= [p?(sin® ¢ cos® B) + (p* cos? ¢ cos® O sin ¢)

+ (p? sin® ¢ sin® 0) + (p? sin ¢ sin? O cos? ¢)] dp A dp A d
= [p? sin® $(cos? O + sin? 0) + p? sin ¢ cos? ¢(cos? O + sin” 0)] dp A dp A df
= [p? sin ¢(sin? ¢ + cos® ¢)] dp A do A db
= p%sing dp Adop A df

WHEW! And there you have it!
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Exercise 19.2. Pullback of a differential form
Let F : RZ = R? be given by
Fz,y) = (¢ + 9%, 2y).

If u, v are the standard coordinates on the target R%, compute F*(udu + vdv).
Solution:

F*(udu + vdv) = (F*u)F*du + (F*v)F*dv
F*u)dF*u + (F*v)dF*v

a? +y?)d(2® + ) + (zy)d(zy)

¥ +y )(2mdx+2ydy) (zy)(ydx + zdy)

= (22 + 3zy?)dx + (22°%y + 2y°)dy.

(
= (
= (2
= (a?

Exercise 19.3. Pullback of a differential form by a curve

Let 7 be the 1-form 7 = (—ydz+zdy)/(z*>+y*) on R?—{0} by v(¢) = (cost,sint). Compute
v*7. (This problem is related to Example 17.16 in that if i : S' < R? — {0} is inclusion,
then v =iocand w=i*7).

Solution:

Let a = —y/(2? + 4?) and b = z/(2? 4+ y?). Then

¥*'1 =~ (adx + bdy)
= (va)(dy"z) + (v"b)(dv"y)
= (ao)(d(z o))+ (boy)(d(y o))
d cost

( —sin ( t)+( )d(' )
= ——m—Mmm cos _ sin
cos?t + sin’t cos?t + sin®t

= (—sint)(—sint)dt + (cost) cos tdt

=dt

Exercise 19.5. Coordinate functions and differential forms

Let f1,..., f® be C* functions on a neighborhood U of a point p in a manifold of dimension
n. Show that there is a neighborhood W of p on which f!,..., f form a coordinate system
if and only if (df' A--- Adf™), # 0.

Proof. Define f := (f*,..., f") and let (U,z!,...,2™) be a chart at p. Suppose there exists
an open set W with p € W C U so that (W, f1,..., f") is a coordinate system at p. Then

(W, f1,..., f) is a coordinate system at p <= IW C U,p € W, f|w is a diffeomorphism
<~ f:U — R" is a locally invertible at p
= detlof /02 (p) 0
= (df' Ao Adf™),
= det[0f* /07 (p)|dz* A --- Adx™ #0
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Exercise 19.8. Nondegenerate 2-forms

A 2-covetor « on a 2n-dimensional vector space V is said to be nondegenerate if o™ =

a-

-+ A« (n times) is not the zero 2n-covector. A 2 form w on a 2n-dimensional manifold

M is said to be nondegenerate if at every point p € M, the 2-covector w,, is nondegenerate
on the tangent space T, M.

(a)

Prove that on C" with real coordinates z',y', ..., 2"y", the 2-form w = Y"1 | dz* Ady’
is nondegenerate.

Proof. We have w" = (Z dzt A dyi> A A <Z dz® A dyi> .
i=1 i=1

The expanded product of w™ will be a sum of wedge products. A single summand
in w" will be a wedge product corresponding to n choices: Each being a choice of
dxz® A dy®. So a generic summand in w™ has the form

(dz™ A dy™) A (dz' Ady'?)--- A (dz'™ A dy'™),

for some choice of i1,42,...,%,. So w™ be will be a sum of n” terms. However, a
summand in w” is nonzero if and only if all of the dx% A dy% are distinct. This
corresponds to choosing i1,12,...,4, by a permutation in S,,. So, a generic nonzero

summand has the form .

/\ dz@ A dy”(i) (O)
i=1
for some o € S,,. Hence

I Z /”\ dz®® A dye®. (?)

oeS, i=1

Since each term in (Q) is a 2-form, we may commute terms without introducing a
change in sign. Hence we can reorder each summand in w” so that the indices are in
increasing order, and rewrite (O) as

/"\ dz A dy'.
i=1

Hence () becomes

w" = Z /n\dxi/\dyi :n!/n\dzi/\dyi. (%)
i=1

oceS, i=1

®

Prove that if A is the Liouville form on the total space T* M of the cotangent bundle
of an n-dimensional manifold M, then d\ is a nondegenerate 2-form on 7M.
Solution:

Using the formula we found in Exercise 17.4(a) and using insight gained from Exercise
19.8(a), (in particular the formula in (%)), we have

(@) =d (Y cdr)" = (Y dendr) = A de; 1 d.
i=1
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Exercise 20.1. The limit of a family of vector fields

Let I be an open interval, M a manifold, and {X;} a 1-parameter family of vector fields on
M defines for all ¢t # ty € I. Show that the definition of lim; ,;, X; in (20.1), if the limit
exists is independent of coordinate charts.

Proof. Let (U,z,...,2") and (V,y!,...,y") be two overlapping charts in M about p. Then

for any t, we have
8
E § J
Xt|p a (t p | b (t,p)

Then for any k, applying both sides to z* gives

ak<t7p><2 (p)5 ) betp .zk;w,p)gﬂj (=)

i

Moreover, for any j, since /0y’ € T,U we have
0 ; 0
oy~ 2 o

Then for any k, applying both sides to z* gives

ok B 8x _ ok
oyl “ w0
and so 5 9t 3
z
o =2 =)

Hence we have

. S 0
lim Xy|, = Ztlir%a (t,p) p

t—to
P
. Ox? 0
_ ; J putedl
L tlg?o Zb (t, )ayj ) Iz
v J P P
- ort| 0
_ 1 J
N tllgt , b (t’p)z oyl | Oxt
J i p P
- 0
_ 1 J il
= tliglo ' b (t,p) 97 | -
J P
Therefore the limit, if it exists, is independent of coordinate charts. *
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Exercise 20.3. Derivative of a smooth family of vector fields

Shew that the definition (20.3) of the derivative of a smooth family of vector fields on M is
independent of the chart (U, z!,...,2™) containing p.

Proof. Using the same charts as in Exercise 20.1, by differentiating both sides of (&) with
respect to ¢ (and then evaluating at tp) we get

daFk b7 Oxk

——(to,p) =Y —-(to,p) 7

ot ( Oap) - ot ( Oap) ay]

(Note that we can do this since dz* /9y’ does not depend on t). Hence we have by (<)

d da’ 0
<dt t=t Xt) N Za(to,p)%
=t

i

P P
(v ] ) 2
T\ g o | | o
g J P P
_Zaibj(t ) 871,* 9
J i p P

Therefore the definition of the derivative of a smooth family of vector fields on M is inde-

W

pendent of coordinate charts. *®
Exercise 20.7. F-Linearity and the Lie Derivative

Let w be a differential form, X a vector field, and f a smooth function on a manifold. The
Lie derivative £ xw is not F-linear in either variable, but prove that is satisfies the following
identity:

Lixw= fLxw+df Nixw.

Proof. Starting with Cartan’s Magic Formula, we have

Lixw=d(txw)+ tx(dw)
=d(fixw) + fux(dw) (tyx = fix)
=df Nixw+ fd(ixw) + fix(dw)
=df Nixw+ f(d(txw) + tx(dw))
=df Nixw+ fLxw. (By Cartan’s Magic Formula)
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Exercise 20.9. Interior multiplication on R"

Let w = dz! A--- Adz™ be the volume of a form and X = 3" 2'9/dx the radial vector field
on R™. Compute the contraction ¢ w.
Solution:

For any 7,
ixda? = da'(X) = da? (Z xia/axi) =
Then by the formula in Proposition 20.7,

n

ixw = tx(dz' A+ Ndz") = Z(—l)i_ldl‘i(X)dl‘l Ao Adzi A A da”

= (1) tatdat A Adai A A da”,
i=1
Exercise 20.10. The Lie derivative on the 2-sphere
Let w = xdy A dz — ydx A dy + zdx A dy and X = —yd/dz + xd/0y on the unit 2-sphere S?
in R3.
Solution:
First we compute Lxx, Lxy, and Lx(z —y):

0 0
Lxz=X ( y% a>$=—y’

0 0
Exy—Xy—( y% 6y>y=w7

0 0
EXZ—Xy—< y% 8y)z:O,

0 0
Lx(z—y)=X(z—-y)= Yo T (z—y)=—z

Now,
Lxw = Lx(xzdy Ndz+ (z — y)dz A\ dy)
= Lx(xdy Ndz) + Lx((z — y)dz A dy)

= [(Lxa)dy A dz+ L (dy A d2)| + [(Lx (2 = y))da Ady + (2 = y)£x(dw A dy)]
- :(ﬁxx)dy A dz} ta [(ﬁxdy) Adz + dy A (cxdz)}

+[(ex(z = y)dz A dy] + (2 = y) [(£xda) A dy +da A (£xdy)]

= [(Lxa)dy A dz] + 2 ]d(Lxy) Adz+ dy A d(Lx2)]

+ :(cX(z —y))dz A dy] (2 —y) [d(cxx) Ady + dz A d(cxy)}

= :(—y)dy A dz} +x [d(m) ANdz + dy A d(O)]

+ -(—x)dx A dy} +(z—v) [d(—y) ANdy +dz A d(x)}
= —ydy Ndz + xdx N dz — xdz A dy.
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Intro to Manifolds, Tu — End of Section Exercises
Exercise 21.3. Equivalence of oriented atlases

Show that the relation in Definition 21.11 is an equivalence relation.
Definition 1. Two oriented atlases {(Uy, ¢o)} and {(V3,13)} on a manifold M are said
to be equivalent if the transition functions
$a 0 V5" Ya(Ua NVp) = ¢a(Ua N V)
have positive Jacobian determinant for all a, 3.

Proof. Reflexivity: If {(U,, ¢a)} is an oriented atlas, then for any two overlapping charts
(Uas $a) = (Ua,2t,...,2") and (Ug, ¢g) = (Us,y,...,y") , we have by definition of ori-
ented atlas that

oz’
det [ 8yj] >0

everywhere on U,NUgs. Let 71, ... 7™ be the standard coordinates in R™. Then (QSQOQSEl)i =
780 ¢y © ¢gl = 2% 0 ¢3. So for any point p € U, N Uz we have

O(¢a 0 ~y A(r? o ¢y © ~1 Axt ot »
W2 % ) uto = 22020 ) g0y = P ) = 25 ),

where the last equality follows by definition of the partial derivative of the coordinate func-
tions ' : Ug — R with respect to the coordinates y’. Hence we have

o) i
det [M] = det {5&% } >0

orJ oyl

everywhere on U, N Up.
Symmetry: Suppose {(Ua, ¢a)} ~ {(Va, )} If (Un,zt, ... 2") and (Vg,y',...,y")
are two overlapping charts, then

Opa 05" Oz

everywhere on U, N V. But then
(g o d 1) B [ Oy’ B Pk
det [ 577 = det 907 | = det By >0,

and hence {(Va,vs)} ~ {(Ua, ¢a)}-
Transitivity: Suppose { (U, ¢a)} ~ {(Va, )} and {(Vs,¥5)} ~ {(W,,0,)}. If (U, 2t ... 2"),
(Va,y',...,y"), and (W,,2',...,2") are overlapping charts, then

o -1 i 001\ i
det [M] = det [83:} >0 and det lﬁ(?ﬂ,@@)] = det [81} } > 0.

or oyl OrJ 07

Since ¢, © 9;1 = (¢a 01/1[;1) o(¢po 9;1), then

(@ 00;1) B o’

Oy’
82’3} >0,

and so {(Ua, ¢a)} ~ {(W5,0,)}. *
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Exercise 21.4. Orientation-preserving diffeomorphisms

Let F': (N, [wn]) = (M, [war]) be an orientation-preserving diffeomorphism. If {(V,, 1)} =
{(Va,yk,...,y")} is an oriented atlas on M that specifies the orientation on M, show that
{(F7WV,, F*o)} = {(F7'V,,EL, ..., F™)} is an oriented atlas on N that specifies the
orientation of N, where F =y’ o F.

Proof. We first show that the atlas {(F~1V,,, F*1,)} is orientable. Suppose (F~1V,, F*1,) =
(F~'Wa, (@l oF),...,(zhoF) and (F~'Vg, F*g) = (F~'Vp, (ysoF),..., (y5 o F)) are two
overlapping charts in N. Then

_ [e3

O(F*pg)i ori ori ori B ayé’

OF*Ya)' _ O((Ftba) o (Fripg))' _ OugoFoFoyy Olxyoyp) o

and so

o(Fp) . [oat

Now, the oriented atlas {(Va, %)} = {(Va, 4L, ..., 4?)} determines an orientation on M,
given by ppr == [(0/0yl,...,0/0y")]. The orientation uys is associated to the equivalence
class of the nowhere vanishing n-form wy; on M. Hence we have

wrt (D)L, 0/Oy2) > 0.

We need to show that the atlas {(F !V, F*1a)} = {(F~ 'V, (yL o F),...,(y? o F))}
on N specifies the orientation of N. That is, we need to show

9 0
WN<3(yéOF)""’8(ygoF)>>O' ()

Let (Va,yl,...,y") be a chart about a point ¢ € M. Then the chart (F~V,, (y} o
F),...,(y% o F)) contains p := F~!(g). Recall that {9/9y|,}", is a basis for T, M and
{8/0(yl, o F)|,}1, is a basis for T, N. So for some real numbers a?, we have

F., 0

9 y
"\ OhoF) ®

0
:Za?%

P k

q
Applying both sides to y¢,, we find that

0
A(yd o F)

B 0
A(yd o F)

%

: Y,

Yo = Fip

(ygoF):(S;-.
p

; 0
a; = ak—

q p

So our equation in (%) becomes

0
Ay o F)

0

8y£ .

;0
:Z‘Sjayg -
v q

F*,P

p
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Since F is orientation preserving, then [F*wps] = [wy]. So there exists a smooth function
f > 0on M such that fF*wy; = wy. Now, we have the following:

y ) ) P ) 9
MowhoF)| ot o )| ) T T\ 0tk o F)| 1T Bl o F)
p p p p
0 0
_f(,«)M F*7p W ,...7F*,p W
p p
0 0
—fOJM @ ,...787:%%.( >0,
q q

which gives (D).

m
-

Exercise 21.5. Orientation-preserving or orientation-reversing diffeomorphisms

Let U be the open set (0,00) x (0,27) in the (r,0)-plane R2. We define F': U C R? — R?
by F(r,0) = (rcos6,rsinf). Decide whether F' is orientation-preserving or orientation-
reversing as a diffeomorphism onto its image.

Solution:

Using Proposition 21.8, F' is orientation preserving if and only if
oFt OF!
Odr 0df | dot cosf —rsind
OF?  oF? o sinf  rcosf
adr  0df

det ] =rcos2f+rsin?0=r

is everywhere positive on U. Since r € (0,00), F' is orientation preserving.
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Exercise 21.6. Orientability of a regular level set in R"*!

Suppose f(z!,...,2"T1) is a C* function on R"*! with 0 as a regular value. Show that
the zero set of f is an orientable submanifold of R**!. In particular, the unit n-sphere S™
in R™*! is orientable.

Proof. By Theorem 21.5, the zero set of f is an orientable submanifold if and only if there
exists a C* nowehere-vanishing n-form on M := f~1({0}). For each i, define the set

Ui={p e R""" | 0f /92 (p) # 0}.

Since 0 is a regular value of f, every point p € R"™! satisfies 9 f/0z%(p) # 0 for some i. So
{Ul-}?:f is a cover of M. Define a top form w on U; by

dzt A Adai A A dzt T
of jox

By the implicit function theorem, in a neighborhood of a point p € U;, 2 is a function of

AT R iU

the n-form

w=(-1)

It follows that «',...,z% ..., 2" can be used as local coordinates, and

(71)de1 Ao Adzi Ao A dgnt
df o

is C* at p. Thus, w is C*° on U; and nowhere vanishing on M.

Exercise 21.7. Orientability of a Lie group

Show that every Lie group G is orientable by constructing a nowhere-vanishing top form on
G.

Proof. *** This proof belongs to Alex Bates ***
Let e € G be the identity and let {X!,..., X7} be a basis for T.G. Since for any g € G, left
multiplication £, is a diffeomorphism, we have an isomorphism ¢, .. : T.G — T,G. Hence we
have a left-invariant vector fields {X!,..., X"} on G (and therefore smooth, by Prop 16.8)
given by X'(e) = X! for all 1 <i < n. Let {al,...,a”} be dual to {X},..., X"}. Define a
top form we = al A--- Aa?. Then for any g € G, we can define

wy =L 1 (we) = Loa (@t Ao Aal).

Hence w is a top form on G. To see that w is nowhere-vanishing, first note that £y 0l -1 , =
17 . Now, for any g € G, we have
wo(Xg, -, X0 = (£ we) (L X0o o Ly o XT)

= We(ly1 by X}, b1 by X

=w (XL .. XD

=alA-na(XE L XD

— det[ad (X])]

=1.

*

Exercise 21.8. Orientability of a parallelizable manifold

Show that a parallelizable manifold is orientable. (In particular, this shows again that every
Lie group is orientable.)
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*** T obtained solutions from the back of the book for all those
problems in Section 22 which had them. Sorry Jesse, I did not

manage my time well on this assignment.***
Exercise 22.4. Smooth outward-pointing vector field along the boundary

Show that the vector field X = Y poX, defined in the proof of Proposition 22.10 is a
smooth outward-pointing vector field along OM.

Proof. Let p € OM and let (U,x!,...,2") be a coordinate neighborhood of p. Write
Xap = Z a (Xa,p)@

i=1

p

Then

Xy = 32 00) Xy = D03 a0)a (Xe) 5

i=1 « P

Since X, p, is outward pointing, the coefficient a™ (X, ;) is negative by Exercise 22.3. Because
pa(p) > 0 for all o with p,(p) positive for at lest on «, the coefficient Y pa(p)a’(Xa ) of
0/02™|, in X, is negative. Again by Exercise 22.3, this proves that X, is outward pointing.

The smoothness of the vector field X follows from the smoothness of the partition of
unity p, and of the coefficient functions a’(X, ;) as functions of p. *®

Exercise 22.5. Boundary orientation

Let M be an oriented manifold with boundary, w an orientation form for M, and X a C*°
outward-pointing vector field along OM.

(a) If 7 is another orientation form on M, then 7 = fw for a C*° everywhere-positive
function f on M. Show that tx7 = fixw and therefore, tx7 ~ txw on OM. (Here
“~” is the equivalence relation defined in Subsection 21.4.)

Solution: Since vx is C°°(M)-linear, we have 1x7 = tx(fw) = fixw.

(b) Prove that if Y is another C*° outward-pointing vector field along OM, then txw ~
tyw on OM.

Proof. By Proposition 22.11, both ¢ xw and ¢y w are smooth nowhere vanishing (n—1)-
forms on OM, i.e., ixw,iyw € A"~ HT*OM). Since OM is an (n — 1)-dimensional
manifold, both ¢ xw and tyw are top dimensional forms on M, and hence txw = fryw

v

for some nowhere-vanishing f € C*(M). *®
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Exercise 22.6. Induced atlas on the boundary

Assume n > 2 and let (U, ¢) and (V, 1) be two charts in an oriented atlas of an orientable
n- manifold M with boundary. Prove that if U NV NOM # &, then the restriction of the
transition function 1 o ¢! to the boundary B := ¢(U NV) N IH",

o™ p:dp(UNV)NIH" = (UNV)NIH",
has positive Jacobian determinant. (Hint: Let ¢ = (x1,...,2,) and ¥ = (y1,...,Yn). Show
that the Jacobian matrix of ¢y o¢~! in local coordinates is block triangular with J(¢¥o¢™1)|p

8 8 n
and y Y — > 0.) Thus, if {(Ua, ¢a)} is an oriented atlas

for a manlfold M with boundary, then the 1nduced atlas {(Uy NOM, dol|u.non)} for OM is
oriented.

Proof. Let v1,...,r™ be the standard coordinates on the upper half-space H™. As a short-
hand, we write a = (a',...,a™1) for the first nl coordinates of a point in H". Since the
transition function

Yoo l:p(UNV)=(UNV)CH?

takes boundary points to boundary points and interior points to interior points, (i) (r" oo
¢~ 1)(a,0) = 0 and (ii) (r" oo p=1)(a,t) > 0 for t > 0, where (a,0) and (a,t) are points in
p(UNV)CH™

Let 27 = 17 0 ¢ and y° = r® o ¢ be the local coordinates on the charts (U, ¢) and (V)
respectively. In particular, y™ o $~1 = r" o9 o ¢~ 1. Differentiating (i) with respect to rJ
gives

" _O0yrog )| _O(modos | .
i == == =0 forj=1,...,n—1.
$=1(a,0) (a,0) (a,0)
From (i) and (ii),
oy" _wes | e dT)(@h) — (50 ) (@, 0)
=7 = lim
oz" n t—0+ t
¢—1(a,0) (a,0
I VAL [0 P
t—0+ t

since both ¢ and (y™ o ¢~1)(a,t) are positive.
The Jacobian matrix of J = [Jy’/0z7] of the overlapping charts U and V at a point
p=0¢"1(a,0)in UNV NOM therefore has the form

oyt oyt oyt
dxt T Gznl Gan
S A
J = Oy 1 oyt oynl | T <0 8y">
ox! T gant gxz Oz
0 .. 0 o

where the upper left (n — 1) x (n — 1) block A = [0y*/0z7]1<; j<n—1 is the Jacobian matrix
od the induces charts U N OM and V N IM on the boundary. Since det J(p) > 0 and
Oy™/0x™(p) > 0, we have det A(p) > 0. ®
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Exercise 22.7. Boundary orientation of the left half-space
Let M be the left half-space
{(z',...,2") € R" | 2, <0},

with orientation form da' A --- A dx”. Show that an orientation form for the boundary
orientation on OM = {(0,22,...,2") € R"} is dx?® A Ada™.

Uunlike the upper half-space H"™, whose boundary orientation takes on a sign (Example
22.13), this exercise shows that the boundary orientation for the left half-space has no
sign. For this reason some authors use the left half-space as the model of a manifold with
boundary.

Proof. Because a smooth outward-pointing vector field along OM is 9/dx!, by definition an
orientation form of the boundary orientation on M is the contraction

La/axl(dxl ANdz® Ao Adx™) =dz? A - Ada™.

Exercise 22.8. Boundary orientation on a cylinder

Let M be the cylinder S x [0, 1] with the counterclockwise orientation when viewed from
the exterior. Describe the boundary orientation on Cy = S x {0} and C; = S* x {1}.
Solution:

Define f : R® — R by f(z,y,2) = 22 + y>. Then M is a compact subset of the regular
submanifold f~1(1). (Since f. = (2x 2y 0) fails to be surjective if and only if x = y = 0,
then 1 is a regular value of f.)

Now, the tangent space T, M at a point p € M can be identified with Ker df. We have
df = 2zdx+2ydy, and if X, = a0/0x+b0/0+c0/0z € T, M, then 0 = df (X,) = 2xa+ 2yb,
which is satisfied by ¢ = —y and b = —z. Since df(9/0z) = 0, we have an ordered basis
{—yd/0x 4+ x0/0,0/Dz} which gives the counterclockwise orientation of M.

Now, 0/0z is an outward pointing vector on Cy. We orient C; by —z9d/0y + y0d/0x. To
check that this coincides with the orientation on M, we check by using the outward vector

first rule:
9 90 +y 0 0 o 0
0z’ ay Yor By “Yor 82

and the latter is the orientation on M.
Similarly, —9/0z is an outward pointing vector on Cp, and we orient Cy by £0/0y—yd/0x
and see that this coincides with the orientation on M since

_3 0 0 0 o 0
0z’ 6y R ay “Yor 92
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Exercise 22.9. Boundary orientation on a sphere

Orient the unit sphere S™ in R™*! as the boundary of the closed unit ball. Show that on
orientation form on S™ is

n+1
w= Z(—l)’;lxidxl Ao ANdzt A Ada™TE
i=1

where the caret ~ over da® indicates that dx® is omitted. (Hint: An outward-pointing vector
field on S™ is the radial vector field X = > 2'9/0z". )

Proof. We have the standard orientation dz' A --- A dz”T! on R™*! and since the closed
unit ball is a subset of R"*!, this form can be used to orient its boundary S™. Using the
hint, an outward pointing vector field on S"*! is X = Y 2'0/0x%, and so an orientation
form on S™ is the contraction

n+1
w=1x(de' Ao Ada™T) = (=1)7dat (X)dat A Adat A A da T
i=1
n+1 ) ) g
= Z(—l)’_lxzdwl Ao Adxi A AN de T
i=1
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Exercise 22.10. Orientation on the upper hemisphere of a sphere

Orient the unit sphere S™ in R"*! as the boundary of the closed unit ball. Let U be the
upper hemisphere U = {x € " |z"*! > 0}. It is a coordinate chart on the sphere with

coordinates 2!, ..., z"
(a) Find an orientation form on U in terms of da',..., dx"™.
Solution:

As in Exercise 22.9, we have dz! A --- A d2™t! as an orientation form on the closed
unit ball. An outward pointing vector field on U is 9/9z"*!, and so an orientation
form on U is

n+1

+

L9/ oan+1 (dz' A= Ada™) =Y (=1)tda' (90" dxt A A dzi A+ A dg" !

(]

1
—1)P D=L (/92" Y dat A - A da™
~D)"dz* A Ada™,

—~ o~ .

where the second equality follows from the fact that dz?(9/0z" 1) = &',

Show that the projection map 7w : U — R",
m(xt,. 2™ 2" = (2h . 2,

is orientation-preserving if and only if n is even.

Proof. Let w = (=1)"dz' A---Adz" be the orientation form on U obtained in part (a).
Let 7 = dz! A---Adz™ be the standard orientation form on R™. Note that m(U) = D™,
where D™ is the unit disk in R".

We want to check that the diffeomorphism 7 : (U, [w]) — (D", 7) is orientation-
preserving when n is even. To that end, let p € U and let eq,...,e, be a basis for
T,U. Since is a linear map, m, = m, and so m.(e;) = ¢; for all 1 < ¢ < n, (since 7 is
the identity on the first n coordinates). Then

wp(ery .- oyen) = (=1)"dx' A--- Ada"(eq, ... en)

and
(T T)p(e1, .-y en) = Trip) (Tupll, -+, Tu pn)
=Tpler,...,en)
=dz' A ANdx"(eq,. .. en).
Hence [w] = [#*7] if and only if n is even. *
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Exercise 22.11. Antipodal map on a sphere and the orientability of RP"™

(a)

The antipodal map a : S™ — S™ on the n-sphere is defined by
a(x,. .. 2" = (=2t =™ ).
Show that the antipodal map is orientation-preserving if and only if n is odd.
Proof. Using the orientation form w = Z?;l(—l)i_lxidxl A---AdziA---Adz" T from
Exercise 22.9, we want to show that a : (S™, [w]) — (S, [w]) is orientation preserving,

i.e., that [a*w] = [w]. Let p € S™ and (es,...,en+1) be a basis for 7,5™. Note that
asx = a and so a.(e;) = —e; for all 1 <i <n+ 1. Then

(@@ (Erse s nt1) = Wi (@sers - azensn)
=w_p(—€1,..-s—€nt1)
= (=1)""w(er,. .., ent1),
and so [a*w] = [w] if and only if n is odd. *

Use part (a) and Problem 21.6 to prove that an odd-dimensional real projective space
RP™ is orientable.

10
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Intro to Manifolds, Tu — End of Section Exercises
Exercise 23.4. Stokess theorem

Prove Stokes’s theorem for R™ and for H™.

Proof. (Stokes’s theorem for R™)
Let w be an (n — 1)-form on R™ with compact support. Then w will have the form

W= fide' A Ade TN Adai AdzYA - A dat
7

Since w has compact support in R™, there exists a € R such that supp f; C [—a,a]™ for all
i. Then

dw:ZzgﬁdmiAdzlA~~Ad/§i/\~~-Ad:c"
i

of; . - —
— Z 8;2 de ANdxl A Adzt A - Adx™ (Wedge product is 0 unless j — Z)

Since OR" = @&, then faRn w = 0. Notice that for each i, we have

COfi i ["Ofi
oo O de’ = _g 02? de
=filo 27 a2 ) = fi 2t —a, 2T L) (*)

=0

since supp f; € [—a,a]™. So

;. 31
dw E ]1 1 1{1 In
/" /n i ( ) a.’L"L AN

=> (-1 OFi ot o

R™ 8{131

- ~ 1af _
= 1)t ! v ... Q... n
=> (-1 / (0)da? - da - - - da”
P Rn—1

=0

which gives Stoke’s Theorem in R".
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(Stokes’s theorem for H™)
We use the same (n — 1)-form w from the first part and consider it as a form on H". Notice
that dz™ = 0 on 8Hn/s\ince OH™ is defined by the equation z" = 0. So for i < n, we have
fidz' A - AdatT Adxt AdxTTU A - Ada™ =0 on OH™. So

/ w:/ 3" fudat A A de' T Adai AdaTEA - A da”
omn oM
=3  fda'--dai---da
— Jour

= fodat - dz™
OH™

On the other hand, first notice that we have

08 M5
0 5$” o 0 ax"

dz™ = fn(2z',..., 2" a) — fo(2t, ..., 2"t 0)

= _fn(xla cee 7xn—1’0).

So
- O fn - < of -
et [ Y g [ ([ Y an e
(-1) /’H" g 0% x (-1) A 8m"dw dx dx
_ “of _
—(—1)" 1 n n 1. .. n—1
(-1) /}Rni1 ( ; &Cndz )daz dx
=(-1" /]Rn_1 fu(@t, . o 2t 0)dat - da
Then

10
— E i—1-7J1 1 n

= z:(—l)i*1 a—fi,dxl ceedx™

Hn 61'7’

n—1
i >0 i i Y n —
= E (—1)1 / ( f,dx1> dae'---dxi- - da" 4 (1)1 %dxl coedx™!
B Hnr—1

oo 0° ayn 0T

Ofn 5
=0+ (-1)"! y G%dxl ceedx™ L (by (#) applied to all i < n)

= (—1)”/ folzt, . 2™t 0)det - da™ Tt
Rn—1

= fndxt - da™ !
OH"

where the last equality follows from the fact that (—1)"R"~! is precisely OH" with its
boundary orientation. -
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Exercise 23.5. Area form on the sphere S?
Prove that the area form w on S? in Example 23.11 is equal to the orientation form
xdy Ndz —ydxr Ndz + zdx A dy

of 52 in Problem 22.9.

Proof. The area form in Example 23.11 is

dy hdz forx #0
x

— dz N\ dx for y £ 0
Yy

dr A dy for 2 #£0
z

We can describe S? as all the points in R? which satisfy the equation 22 4+ y? + 22 = 1.
Taking the exterior derivative of this equation and dividing by 2 we obtain zdz+ydy+zdz =
0. So, dr = (—ydy — zdz)/x, which gives

dx/\dyzidy/\dz and dx/\dz:_—ydy/\dz.
x x

So

2 2
xdy/\dz—ydm/\dz—i—zda:/\dy:xdy/\dz—&—y—dy/\dz—i—z—dx/\dy
x T

2 2
:J;—i—y——i-z—dy/\dz
x x

2 2 2

fo—i—yf—i—zfdy/\dz
x x T

_dyNdz

oz

v

when z # 0. Similarly we obtain the other equations describing w when y # 0 and z # 0.
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Exercise 24.1. Nowhere-vanishing 1-forms

Prove that a nowhere-vanishing 1-form on a compact manifold cannot be exact.

Proof. We show the contrapositive statement. Let M be a compact manifold and suppose
w is an exact 1-form on M. Then there exists a smooth function f € C*°(M) such that
df = w. Since M is compact, f attains maximum (or minimum) value at on M by the
Extreme Value Theorem. Suppose f attains a maximum at p € M. Then w = df, = 0, and

W

S0 w is not nowhere vanishing. s
Exercise 24.2. Cohomology in degree zero

Suppose a manifold M has infinitely many connected components. Compute its de Rham
cohomology vector space H°(M) in degree 0. (Hint: By second countability, the number of
connected components of a manifold is countable.)

Proof. By the hint, the number connected components of M is countable. Since there are
no nonzero exact 0- forms on M, we have H*(M) = Z°(M) = {closed O-forms}. Suppose f
is a closed O-form on M and let (U, z,...,2") be a chart on M. Then

O:dfzzggidxi.

This means that the partial derivatives of f are all zero on U, i.e., f is constant on U.
Since f must be constant on each connected component of M, then f can be represented
by real-valued sequence: f = (ay,as,as,...). Thus H°(M) = RN -
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Vector Calculus, Colley — Ezercises

Exercise 8.2.4. A robot arm is constructed in R? by anchoring a rod of length 2 to the
origin (using a ball joint so that the rod may swivel freely) and attaching to the free end of
the rod another rod of length 1 (which may also swivel freely). Show that the set of states
of this robot arm may be described by a smooth parametrized 4-manifold in RS.

Solution:
A point (z1,y1, 21) in a state of the rod of length 2 can be described in spherical coordinates
by

(z1,y1,21) = (2sin 1 cos By, 2 sin 1 sin b1, 2 cos p1).

Similarly, a point (22, Y2, 22) in a state of the rod of length 1 can be described by

(z2,y2, 22) = (x1 + 28in g cos b2, y1 + 28in o sin ba, 21 + 2 cos p3)
= (2sin ¢ cos 1 + 2sin @y cos s, 2 8in 1 sin 6 + 2 sin g sin Oy, 2 cos 1 + 2 cos p2).

Let D = [0,7] x [0,27) x [0, 7] x [0,27), and define a map X : D — R® by

X(¢17017SD2;92) = (5517y1a217332ay2722)7

where 1, y1, 21, T2, Y2, and 2o are as above. Then X is smooth since each of its component
functions are smooth.

We now show that X in injective, except possibly on the boundary. Suppose X (1,01, 2, 603) =
X(<P~179~17952,9~2). This would imply that cos¢; = cos @y, and since 1,41 € [0, 7], we
must have @1 = ¢1. This then yields 2cosps = 2cos@a (from the last component),
which gives 2 = ¢2. Using these equations in the first and second components, we see
that 8, = 6, since we can restrict ourselves to values away from the boundary, i.e., on
(0,7) x (0,27) x (0,7) x (0,27). Finally, the fourth and fifth components are deduced to

cosfly = cosfy, and sinfy = sinfb,,

respectively, which gives 05 = 0~2. Then

T, = g—;(l = (2cos 1 cos by, 2cos p1 sin by, —2sin @1, 2 cos @1 cos by, 2 cos ¢ sin by, —2sin 1)
Ty, = ?)% = (—2sin g1, 2sin g cos By, 0, —2sin 1, 2 sin p; cos b1, 0)

T,, = g:: = (0,0, 0, cos 3 cos Bz, cos @3 sin Oz, — sin pa)

Ty, = ZTXQ = (0, 0,0, — sin ¢ sin O, sin 3 cos 63, 0).

Now, consider the equation ¢;Ty, 4+ 2T, + 3T, + 2Ty, = (0,0,0,0,0,0). Because
we are concerned about linear independence of T'y,,, Tg,, T ,,, T, on an open neighborhood
of a point in X (D), we can again restrict ourselves to points away from the boundary.
First, notice that our equation gives —2¢; sin¢; = 0, which means ¢; = 0 since sin¢; # 0
for ¢p; € (0,7). We then have —2c¢3singy = 0 and so ¢ = 0. Then —2casing; = 0 so
that co = 0, and then ¢4 = 0. Hence T',,,Ty,,T,,, Ty, are linearly independent, which
completes the problem.

P17 Y2
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Exercise 8.2.6. Let a,b, and ¢ be positive constants and x : [0, 7] — R? the smooth path
given by @(t) = (acost,bsint,ct). If w = bdx — ady + zydz, calculate [ w.

Solution:
First, we have

oT
Wg(t) = bdx — ady + abcostsintdz and Ty = o = (—asint,bcost, c),

and so
Wat)(Tt) = —absint — absint + abccostsint.

Then

/ w= / Wty (Tt)dt = / (—absint — absint + abccostsint)dt = —2ab.
x 0 0

Exercise 8.2.10. Consider the helicoid parametrized as
X (u1,uz) = (ug cos3ug, uq sin 3us, bug), 0 <wuy <5,0 <wug < 27.

Let S denote the underlying surface of the helicoid and let Q be the orientation 2-form
defined in terms of X as
Q =y (dx Ady N dz).

where N = (—5sin 3us, 5 cos 3ug, —3uq).

(a) Explain why the parametrization X is incompatible with €.
Solution:

‘We have
T, = (cos3ug,sin3ug,0) and T, = (—3u; sin 3ug, 3uy cos 3us, 5),

and so

QX(ul,ug) (Tu1 ) Tuz) = (LN(dI A dy A dz))X(ulA,ug) (Tu1 ’ Tuz)
—5sin3us cos3us —3uq sin 3ug
=det | 5cos3uy sin3us  3uq cos 3ug
—3uq 0 5
= (—5sin 3ug)(5sin 3ugz) — (5 cos 3usg) (5 cos 3uz)
— 3u1 (3uy cos? 3uy + 3uy sin? 3uz)
=-25-9u? <0

and so the parametrization X is incompatible with Q since Qx (y, uy) (Tu;s Tu,) < 0.

(b) Modify the parametrization X to one having the same underlying surface S but that
is compatible with €.
Solution:

Define a parametrization X(ul, ug) := X (u2,u1). This corresponds to interchanging
columns 2 and 3 in the determinant computed in (a), and so QX(ULM) (Ty,,Ty,) > 0.
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(¢) Alternatively, modify the orientation 2-form € to €’ so that the original parametriza-
tion X is compatible with €.

Solution:
Define ' := t(dy A dx A dz). This corresponds to interchanging the rows 1 and 2 in
the determinant computed in (a), and so QiX(ul uz)(Tul,Tuz) > 0.
(d) Calculate [gw, where w = zdx A dy — (2* + y*)dy A dz and S is oriented using Q.
Solution:
We have
WX (uy,ug) = dU2dT A dy — (u% cos? 3us + u% sin? 3ug)dy A dz,
0X
T, = B (cos 3ug, sin 3ug, 0)
0X
T., = — = (—3uq sin 3usg, 3u; cos 3us, 5).
8u2
Then

cos3us —3uq sin3u
WX (ur,uz) (Tul ) Tug) = bug det 2 1 2:|

sin3ug  3uq cos 3us

sin 3us  3uq cos 3us

— (u? cos? 3uy + u? sin” 3uy) det [ 0 5

= 15ujus — 5uf(sin 3us cos 3us + sin® 2us).

Since the parametrization X is orientation-reversing (by part (a)), we have

2w 5
/w = 7/ / wx(ul,UQ)(Tul,Tu2)du1du2.
S 0 0

So,
27 5
/ w= —/ / 15uus — 5u%(sin 3us cos 3us + sin® 3ug)duydus
s 0 0
/27r (15 ) ) u1=>5
= — —UjUuU2
0 2 !

27 5
dusg + / / (5u? (sin 3ug cos 3ug + sin® 3ug )duy dus
0 o Jo
U =27

+0

U=
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Exercise 8.2.11. Let M be the subset of R? given by {(z,y,2) |22 +¢y?> -6 < 2z <
4 — 2% — y?}. Then M may be parametrized as a 3-manifold via

X : D — R3 X (u1,u9,us) = (u1 cosusg, uy sinug, us3),

where

(a)

D = {(u1,ug,u3) €R3 |0 <uy < V5,0 <ug < 2mul —6 <ug <4—ul}

Orient M by using the 3-form Q = dz Ady Adz. Show that the parametrization, when
smooth, is compatible with this orientation.

Solution:
We have
0X
T, = Tu. = (cos ug, sin ugy, 0)
0X
T., = £ = (—wuy sin ug, u1 cos uz, 0)
0X
T,. = 22 —(0,0,1
5= Dus ( )
and

cosus —upsinug 0
Qx (urussug) (Tuyy Ty, Tuy) = det | sinug  ujcosug 0
0 0 1

= U cos? Uy + Uy sin? Uo
= Uui.
So when u; > 0, X is compatible with the orientation form Q.

Identify OM and parametrize it as a union of to 2-manifolds (i.e., as a piecewise smooth
surface).
Solution:

There are two pieces to OM: One which corresponds to when z = 2% + y? — 6 and the
other when z = 4 — 22 — 32, These intersect when 2% + y? = 5, i.e., when z = —1. So
OM can be written

OM = {(z,y,2) | z2=2+9y>—6,2< -1} U{(z,y,2) | 2 =4 —2* — 9%, 2> —1}.
Then we have parametrizations for each piece:
Y : [0,V5] x [0,27) = R3; Y (51, 52) = (51 COS 59, 51 sin 59, 52 — 6)

and
Z :[0,v/5] x [0,27) — R3; Y (51, 52) = (51 CO8 89, 51 sin 59,1 — 7).
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(¢) Describe the outward-pointing unit vector V', varying continuously along each smooth
piece of OM, that is normal to M. Give formulas for it in terms of the parametriza-
tions used in part (b).

Solution:
Let U and W be the two portions of OM, where U corresponds to Y and W corre-
sponds to Z from part (b).

Notice that U is a portion of the 0 level set of the function F : R? — R, F(x,y) =
22 +1y? — 2 — 6. Hence an outward pointing vector to U is VF = (2z,2y, —1). Written
in terms of Y, (251 cos s, 257 sin sg, —1).

Similarly, W is a portion of the 0 level set of the function G : R?> — R, G(z,y) =
22 4+ y? 4+ z — 4. Hence an outward pointing vector to W is VG = (2z,2y,1). Written
in terms of Z, (2s1 cos sz, 257 sin sg, 1).

Exercise 8.2.13. Calculate [qw where S is the portion of the cylinder 22 + 2% = 4 with

—1 < y < 3, oriented by the outward normal vector (z,0,z), and w = zdz A dy + v’ dz A
dr + xdy N dz.

Solution:
S can be parametrized by X : D — R3, X (r,0) = (2sin6,r,2cosf) where D = [—1,3] x
[0,27). Let N = (2,0, z) and orient S by the 2-form Q = (x(dz A dy A dz). Then

0X
= — = 1
T, i (0,1,0)
0X .
Ty = 0 = (2cos 6,0, —2sinh)

and
2sinf 0 2cosf

Qx(r,0)(Tr, Ty) = det 0 1 0 — 4,
2cosf) 0 —2sinf

Hence X is orientation-reversing. Also,

0 2cosf

wx (r,0)(Tr,Ty) = 2cos 6 det [1 0

2 0 —sinf . 1 0
}*e det[o 2cose}+25m9det[o —QSine}

= —4.

3 2m
/OJZ —// wx(r’g)(TT,Tg) =—/ / —4 = 32m.
S D —-1J0

Finally,
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Exercise 8.3.11. Verify the generalized Stokes’s theorem for the 3-manifold
M = {(z,y,z,w) €ER* |z =8 —2y* — 222 — 2w?, 2 > 0}
and the 2-form w = xydz A dw. (Hint: First compute [, w).

Solution:
Using the hint, we first compute [, w. We have

OM = {(z,y,z,w) € R |z =0,8=2y>+22% + 2uw?}.

So for (z,y,z,w) € OM, Wiy y - ) = 0. Hence faMW =0.
We can parametrize M by the map X : B — R*, X (uj,ug,u3) = (8 — 2u? — 2u3 —
2u3, uy, ug,u3), where B = {(u, u,u3) | u? +ud +u2 < 4}. Now

dw = ydx Ndz N\ dw + xdy A dz A dw,

and
0X
T, =—— =(—4u1,1,0,0
1 aul ( U1 )
0X
T, =—— =(—4u-,0,1,0
2 au2 ( U2 )
0X
T,, = — = (—4us3,0,0,1
3 au3 ( U3 )
So
—4U1 —4UQ —4U3
(dw) X (uy ug,us) Ty s Tugs Tuy) = urdet |0 1 0

0 0 1

1
+ (8 — 2u? — 2u3 — 2u3) det |0
0

O = O
= o O

= —4u? +8 —2(uf —u3 —ul).

Switching to spherical coordinates, we get

/ dw = /// dw(8 — 2(u? — u3 — u?) — 4u?)duy dugdus
M B

2m ™ 2
= / / / (8 — 2p? — 4p*sin? p cos? 0) p? sin ¢ dpdpdf
o Jo Jo
2m ™ 2
= / / / (8p?sin p — 2p? sin ¢ — 4p* sin®  cos? 0) p? sin o dpdpdd
o Jo Jo
2m ™
= / / [8/3(8) sin g — 2/5(32) sin g — 4/5(32)sin>p cos 6] dpdf
o Jo
27 4 27 T
= 8/ [—8/3cosp + 8/5cos |y db — 3(32) / / sin®p cos dpdf
0 o Jo
32 4 4

= 8(2m) 7= — =(32) (37r>
= 0.
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Nicholas Camacho Intro to Smooth Manifolds — Homework 10 April 24, 2017

Chasing Chains with Chain Chasing Charlie

Suppose that the following diagram commutes and both rows are exact. Assume that
the first, second, fourth, and fifth vertical maps are isomorphisms and prove that the middle
vertical map is an isomorphism.

AT c—lrsp_‘t,E

[P S A

ALy o M p L

Proof. Injectivity: Suppose y(c) = 0. Then 0 = h'(y(c)) = d(h(c)) which means h(c) €
Kerd = 0. Since Kerh = Img, there exists b € B such that g(b) = ¢. Then ¢'(8(b)) =
v(g(d)) = v(c) = 0, and so B(b) € Kerg’ = Im f’. So there exists a’ € A’ such that
f'(a’) = B(b). Since « is surjective, there exists a € A such that a(a) = a’. Then S(f(a)) =
f(ala)) = f'(a’) = B(b). Since S is injective , f(a) = b. Since Im f = Kerg, g(b) = 0, and
so ¢ = g(b) = 0. Hence + is injective.

Surjectivity: Let ¢ € C'. Since ¢ is surjective, there exists d € D such that 6(d) = h/(c').
Then €(i(d)) = i'(6(d)) = ¢'(W'()) = 0 since h'(¢/) € Imh’ = Keri'. So i(d) € Kere =0,
which means i(d) = 0 and so d € Keri = Imh. So there exists ¢ € C such that h(c) = d.
Then /' (y(c)) = d(h(c)) = d(d) = W' (). So (v(c) = ) € Ker ' = Imagg’, which means
there exists b’ € B’ such that ¢'(b’) = v(¢) —¢. Since 8 is surjective , there exists b € B such
that 3(b) = b". Then y(c) — ¢’ = ¢'(b) = ¢'(B(b)) = ¥(g(b)), which implies v(c — g(b)) = ¢/,
and hence 7 is surjective. -
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