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Exercise 1. Prove Cauchy’s Mean Value Theorem: If f, g : [a, b] ! R are continuous on
[a, b] and di↵erentiable on (a, b), then there exists a c 2 (a, b) such that

f 0(c)[g(b)� g(a)] = g0(c)[f(b)� f(a)].

Proof. Define h : [a, b] ! R by

h(x) = f(x)[g(b)� g(a)]� g(x)[f(b)� f(a)].

Then h is continuous on [a, b] and di↵erentiable on (a, b). Then

h(a) = f(a)[g(b)� g(a)]� g(a)[f(b)� f(a)]

= f(a)g(b)� g(a)f(b)

= f(a)g(b)� g(a)f(b) + f(b)g(b)� g(b)f(b)

= f(b)[g(b)� g(a)]� g(b)[f(b)� f(a)]

= h(b).

By Rolle’s Theorem, there exists c 2 (a, b) so that h0(c) = 0. That is,

0 = h0(c) = f 0(c)[g(b)� g(a)]� g0(c)[f(b)� f(a)],

and so f 0(c)[g(b)� g(a)] = g0(c)[f(b)� f(a)]. K

Exercise 2. Prove L’Hôpital’s Rule: Let f, g : [a, b] ! R be continuous on [a, b] and
di↵erentiable on (a, b) and g0 6= 0 on (a, b). If there exists a c 2 (a, b) for which f(c) =
g(c) = 0 and f 0, g0 : (a, b) ! R are continuous, then

lim
x!c

f(x)

g(x)
= lim

x!c

f 0(x)

g0(x)
.

Proof. For x not equal to c but close to c, we have

f(x)

g(x)
=

f(x)� f(c)

g(x)� g(c)
=

f(x)�f(c)
x�c

g(x)�g(c)
x�c

.

Applying the limit to both sides as x approaches c, and we get f 0(c)/g0(c). Since f 0 and g0

are both continuous at c, then f 0(c) = limx!c f 0(x) and g0(c) = limx!c g0(x) and the result
follows. K

1



Nicholas Camacho Intro to Smooth Manifolds — Homework 1 January 26, 2017

Exercises from Spivak

Exercise 2-1. Prove that if f : Rn ! Rm is di↵erentiable at a 2 Rn, then it is continuous
at a.

Proof. We begin by proving the following (Exercise 1-10): If T : Rm ! Rn is a linear
transformation, show that there is a number M such that |T (h)|  M |h| for h 2 Rm.

First, let [tij ] be the matrix associated with T with i, j-entry tij for 1  i  n and
1  j  m. For h 2 Rm,

T (h) =

0

B@
t11 . . . t1m
...

. . .
...

tn1 . . . tnm

1

CA

0

B@
h1
...

hm

1

CA =

0

B@

Pm
j=1 t1jhj

...Pm
j=1 tnjhj

1

CA .

Let t̃i denote the i-th row in [tij ]. Then by the Cauchy-Schwartz inequality, we have for
fixed i

ht̃i, hi =
mX

j=1

tijhj  |t̃i||h| =

0

@
mX

j=1

t2ij

1

A
1/2 0

@
mX

j=1

h2
j

1

A
1/2

,

and so 0

@
mX

j=1

tijhj

1

A
2



0

@
mX

j=1

t2ij

mX

j=1

h2
j

1

A . (⇤)

Now,

|T (h)| 

0

@
mX

j=1

t1jhj

1

A
2

+ · · ·+

0

@
mX

j=1

tnjhj

1

A
2

=
nX

i=1

0

@
mX

j=1

tijhj

1

A
2


nX

i=1

0

@
mX

j=1

t2ij

mX

j=1

h2
j

1

A (by (⇤))

=
nX

i=1

mX

j=1

t2ij |h|2



0

@
nX

i=1

mX

j=1

t2ij |h|2
1

A
1/2

=

0

@
nX

i=1

mX

j=1

t2ij

1

A |h|

Whew! Now, onto the proof.
Let M be the bound described above for the linear map Df(a). For nonzero h 2 Rm

but close to 0,

|f(a+ h)� f(a)| = |f(a+ h)� f(a)�Df(a)(h) +Df(a)(h)|
 |f(a+ h)� f(a)�Df(a)(h)|+M |h|

= |h|
✓
|f(a+ h)� f(a)�Df(a)(h)|

|h|

◆
+M |h|.

Certainly M |h| ! 0 as h ! 0, and by hypothesis, |h|�1[|f(a+ h)� f(a)�Df(a)(h)|] ! 0
as h ! 0. Thus, |f(a+ h)� f(a)| ! 0 as h ! 0 and so f is continuous at a. K
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Exercise 2-5. Let f : R2 ! R be defined by

f(x, y) =

( x|y|p
x2+y2

(x, y) 6= (0, 0)

0 (x, y) = (0, 0).

Show that f is a function of the kind considered in Problem 2-4 so that f is not di↵erentiable
at (0, 0).

Proof. Define a function g on the unit circle by (a, b) 7! a|b|. Then g(0, 1) = g(1, 0) = 0 and
g(�x,�y) = �x|� y| = �x|y| = �g(x, y). Moreover, for (x, y) 6= (0, 0)

|(x, y)| · g
✓

(x, y)

|(x, y)|

◆
=

p
x2 + y2 · xp

x2 + y2
· |y|p

x2 + y2
=

x|y|p
x2 + y2

= f(x, y),

ans so g satisfies the properties described in Exercise 2-4, which means f is not di↵erentiable
at (0, 0). K

Exercise 2-6. Let f : R2 ! R be defined by f(x, y) =
p
|xy|. Show that f is not di↵eren-

tiable at (0, 0).

Proof. If f were di↵erentiable at (0, 0), then its derivative would be 0. To see this, we use
the hint given in Exercise 2-4 to compute the following:

0 = lim
(h,0)!(0,0)

|f(h, 0)� f(0, 0)�Df(0, 0)(h, 0)|
|(h, 0)| = lim

(h,0)!(0,0)

|Df(0, 0)(h, 0)|p
h2

= lim
(h,0)!(0,0)

|h||Df(0, 0)(1, 0)|
|h|

= |Df(0, 0)(1, 0)|.

Similarly,

0 = lim
(0,k)!(0,0)

|f(0, k)� f(0, 0)�Df(0, 0)(0, k)|
|(0, k)| = |Df(0, 0)(0, 1)|.

So Df(0, 0)(1, 0) = Df(0, 0)(0, 1) = 0, and so for any (a, b) 2 Rm

Df(0, 0)(a, b) = ab[Df(0, 0)(1, 1)] = ab[Df(0, 0)(1, 0) +Df(0, 0)(0, 1)] = 0.

However,

lim
(h,h)!(0,0)

|f(h, h)� f(0, 0)� 0|
|(h, h)| = lim

(h,h)!(0,0)

p
|hh|p

h2 + h2
= lim

(h,h)!(0,0)

p
h2

p
2
p
h2

=
1p
2
.

K
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Exercise 2-10. Find f 0.

We give the matrix representation for Df in terms of the standard basis for Rn.

(a) f(x, y, z) = xy

Df(x, y, z) =
�
yxy�1 xy ln y 0

�
.

(b) f(x, y, z) = (xy, z)

Df(x, y, z) =

✓
yxy�1 xy ln y 0

0 0 1

◆
.

(c) f(x, y) = sin(x sin y)

Df(x, y) =
�
cos(x sin y) sin y cos(x sin y)x cos2 y

�
.

(d) f(x, y, z) = sin(x sin(y sin z))

Df(x, y, z) = ( cos(x sin(y sin z)) · sin(y sin z),
cos(x sin(y sin z)) · x cos(y sin z) · sin z,
cos(x sin(y sin z)) · x cos(y sin z) · y cos z)

Exercise 2-12.

(a) Prove that if f is bilinear, then

lim
(h,k)!(0,0)

|f(h, k)|
|(h, k)| = 0.

Proof. We first prove the following Lemma:

Lemma. Let f and E` be as described in Exercise 2-14 below; let h` 2 E` and fix
am 2 Em for all m 6= `. Then there exists a � 2 E` so that

|f(a1, . . . , h`, . . . , ak)|  |h`||f(a1, . . . , �, . . . , . . . , ak)|

Proof of Lemma. Define

g`(x) =
|f(a1, . . . , x, . . . , ak)|

|x| =

����f
✓
a1, . . . ,

x

|x| , . . . , ak
◆���� .

If S is the sphere in E`, then we let g̃` := g`|S . Then g̃` is a continuous function
on S and since S is compact, there exists � 2 S so that g̃`(y)  g̃`(�) for all y 2 S by
the Mean Value Theorem. So, g`(h`) = g̃`(h`/|h`|)  g̃`(�) and we get

|f(a1, . . . , h`, . . . , ak)|
|h`|

 |f(a1, . . . , �, . . . , ak)|
|�| = |f(a1, . . . , �, . . . , ak)|.

K
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Onto the proof of the exercise. Note that |h| =
p

|h|2 
p

|h|2 + |k|2 = |(h, k)|.
Now it’s just a simple application of the Lemma:

lim
(h,k)!(0,0)

|f(h, k)|
|(h, k)|  lim

(h,k)!(0,0)

|h||f(�, k)|
|h| = lim

(h,k)!(0,0)
|f(�, k)| = |f(�, 0)| = 0.

K

(b) Prove that Df(a, b)(x, y) = f(a, y) + f(x, b).

Proof.

lim
(h,k)!(0,0)

|f(a+ h, b+ k)� f(a, b)�Df(a, b)(h, k)|
|(h, k)|

= lim
(h,k)!(0,0)

|f(a, b) + f(a, k) + f(h, b) + f(h, k)� f(a, b)� f(a, y) + f(x, b)|
|(h, k)|

= lim
(h,k)!(0,0)

|f(h, k)|
|(h, k)| = 0.

K

(c) Show that the formula for Dp(a, b) in Theorem 2-3 is a special case of (b).

Proof. Notice that

p(x+ h, y) = xy + hy = p(x, y) + p(h, y),

p(x, h+ k) = xh+ xk = p(x, h) + p(x, y), and

p(ax, y) = axy = ap(x, y) = xay = p(x, ay)

So, p is bilinear. By (b), Dp(a, b)(x, y) = p(x, b)+ p(a, y) = bx+ay, which is precisely
what is shown in Theorem 2-3. K

Exercise 2-14. Let Ei for i = 1, k be euclidean spaces of various dimensions.

(a) If f is multilinear and i 6= j, show that for h = (h1, . . . , hk), with h` 2 E`, we have

lim
h!0

|f(a1, . . . , hi, . . . , hj , . . . , ak)|
|h| = 0

Proof. Notice that

|(hi, hj)| =
q
|hi|2 + |hj |2 

p
|h1|2 + · · ·+ |hk|2 = |(h1, . . . , hk)| = |h|.

Let g(hi, hj) = f(a1, . . . , hi, . . . , hj , . . . , ak). Then g is bilinear and by Exercise 2-12(a)

lim
h!0

|f(a1, . . . , hi, . . . , hj , . . . , ak)|
|h|  lim

(hi,hj)!(0,0)

|g(hi, hj)|
|(hi, hj)|

= 0.

K
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(b) Prove that

Df(a1, . . . , ak)(x1, . . . , xk) =
kX

i=1

f(a1, . . . , ai�1, xi, ai+1, . . . , ak).

Proof. For notational convenience, let Ir denote i1 < · · · < ir for indices i1, . . . , ir.
We have

f(a+ h) = f(a1 + h1, . . . , ak + hk)

= f(a1, . . . , ak) +
X

1I1k

f(a1, . . . , ai1�1, hi1 , ai1+1, . . . , ak)

+
X

1I2k

f(a1, . . . , ai1�1, hi1 , ai1+1, . . . , ai2�1, hi2 , ai2+1, . . . , ak)

+
X

1I3k

f(a1, . . . , ai1�1, hi1 , ai1+1, . . . , ai2�1, hi2 , ai2+1, . . . , ai3�1, hi3 , ai3+1, . . . , ak)

+ . . .

+
X

1Ik�1k

f(a1, . . . , ai1�1, hi1 , ai1+1, . . . , aik�1�1, hik�1 , aik�1+1, . . . , ak)

+ f(h1, . . . , hk).

This gives

f(a+ h)� f(a)�Df(a)(h)

=
X

1I2k

f(a1, . . . , ai1�1, hi1 , ai1+1, . . . , ai2�1, hi2 , ai2+1, . . . , ak)

+ · · ·+
X

1Ik�1k

f(a1, . . . , ai1�1, hi1 , ai1+1, . . . , aik�1�1, hik�1 , aik�1+1, . . . , ak)

+ f(h1, . . . , hk).

Now for any Ir, by the Lemma in Exercise 2-12, there exists �r such that

|f(a1, . . . , ai1�1, hi1 , ai1+1, . . . , air�1, hir , air+1, . . . , ak)|
 |hi1 ||f(a1, . . . , ai1�1, �r, ai1+1, . . . , air�1, hir , air+1, . . . , ak)|.

Moreover, notice that |hi1 | =
p
|hi1 |2 

p
|hi1 |+ · · ·+ |hir |2 = |(hi1 , . . . , hir )| = |h|,

and so

|f(a1, . . . , ai1�1, hi1 , ai1+1, . . . , air�1, hir , air+1, . . . , ak)|
|h|

 |hi1 ||f(a1, . . . , ai1�1, �r, ai1+1, . . . , air�1, hir , air+1, . . . , ak)|
|hi1 |

= |f(a1, . . . , ai1�1, �r, ai1+1, . . . , air�1, hir , air+1, . . . , ak)|.

If we let h ! 0, then the right-hand-side goes to

|f(a1, . . . , ai1�1, �r, ai1+1, . . . , air�1, 0, air+1, . . . , ak)| = 0,

6
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since the value of a multilinear function is zero whenever any input vector is 0. So,

lim
h!0

������

X

1Irk

f(a1, . . . , ai1�1, hi1 , ai1+1, . . . , air�1, hir , air+1, . . . , ak)

������
|h|


X

1Irk

lim
h!0

|f(a1, . . . , ai1�1, hi1 , ai1+1, . . . , air�1, hir , air+1, . . . , ak)|
|h|


X

1Irk

lim
h!0

|f(a1, . . . , ai1�1, �r, ai1+1, . . . , air�1, hir , air+1, . . . , ak)|

= 0

Let � be such that |f(h1, . . . , hk)|  |h1||f(�, h2, . . . , hk)|. Finally, we compute the
limit:

lim
h!0

|f(a+ h)� f(a)�Df(a)(h)|
|h|

= lim
h!0

⇥
|h|�1

⇤
�����

X

1I2k

f(a1, . . . , ai1�1, hi1 , ai1+1, . . . , ai2�1, hi2 , ai2+1, . . . , ak)

+ . . .

+
X

1Ik�1k

f(a1, . . . , ai1�1, hi1 , ai1+1, . . . , aik�1�1, hik�1 , aik�1+1, . . . , ak)

+ f(h1, . . . , hk)
���


X

1I2k

lim
h!0

|f(a1, . . . , ai1�1, hi1 , ai1+1, . . . , ai2�1, hi2 , ai2+1, . . . , ak)|
|h|

+ . . .

+
X

1Ik�1k

lim
h!0

|f(a1, . . . , ai1�1, hi1 , ai1+1, . . . , aik�1�1, hik�1 , aik�1+1, . . . , ak)|
|h|

+ lim
h!0

h
(|h1||f(�, . . . , hk)|)

.
|h1|

i


X

1I2k

lim
h!0

|f(a1, . . . , ai1�1, �2, ai1+1, . . . , ai2�1, hi2 , ai2+1, . . . , ak)|

+ . . .

+
X

1Ik�1k

lim
h!0

|f(a1, . . . , ai1�1, �k�1, ai1+1, . . . , aik�1�1, hik�1, aik�1+1, . . . , ak)|

= 0.

K
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Exercise 1. Recall that if fn : [a, b] ! R is a sequence of continuous functions on [a, b]
that converges uniformly to f : [a, b] ! R then f is continuous and

lim
n!1

Z b

a
fn(x)dx =

Z b

a
f(x)dx.

Suppose that f : U ! R is in C1
(U), where U ✓ R2

is open, and [a, b]⇥ [c, d] ⇢ U . Let

F (y) =

Z b

a
f(x, y)dx.

Prove that
d
dyF (y) =

R b
a

@
@yf(x, y)dx.

Proof. Fix x 2 [a, b]. Let {an} be a sequence converging to 0 with an 6= 0 for all n and

define 'n : [c, d] ! R by

'n(y) =
f(x, y + an)� f(x, y)

an
.

For the sake of rigor, assume |an|  1 for all n, and extend f to [d, d+1] by f(x, y) := f(x, d)
for all y 2 [d, d+ 1].

Let ✏ > 0. We wish to show that {'n} converges uniformly to
@
@yf(x, y) on [c, d]. That

is, we wish to find suitable N such that

����'n(y)�
@

@y
f(x, y)

���� < ✏.

for all n � N and for all y 2 [c, d].
Since f 2 C1

(U),
@
@yf(x, y) is continuous on [c, d], and therefore uniformly continuous on

[c, d] since [c, d] is compact. So there exists � > 0 such that for all w, z 2 [c, d], if |w� z| < �
then ����

@

@y
f(x,w)� @

@y
f(x, z)

���� < ✏. (⇤)

Let y 2 [c, d] and choose N so that for all n � N , |(y + an) � y| = |an| < �. For all

n � N , there exists cn between y and y + an so that

'n(y) =
f(x, y + an)� f(x, y)

an
=

@

@y
f(x, cn)

by the Mean Value Theorem. Since cn is between y and y + an, then |cn � y| < � for all

n � N . Therefore, we can apply (⇤) to the points cn and y for all n � N to obtain

����'n(y)�
@

@y
f(x, y)

���� =
����
f(x, y + an)� f(x, y)

an
� @

@y
f(x, y)

����

=

����
@

@y
f(x, cn)�

@

@y
f(x, y)

���� < ✏.

Therefore, {'n} ! @
@yf uniformly on [c, d]. Then

lim
n!1

Z b

a
'ndx =

Z b

a

@

@y
f(x, y)dx

1
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Moreover, we have

d

dy
F (y) = lim

n!1

R b
a f(x, y + an)�

R b
a f(x, y)

an

= lim
n!1

Z b

a

f(x, y + an)� f(x, y)

an

= lim
n!1

Z b

a
'n

=

Z b

a

@

@y
f(x, y)dx.

Whew! K

Exercise 2. Let C be a commutative algebra with unity over R. Since homomorphisms of

commutative algebras are linear and send 1 to 1, it is easy to see that any homomorphism

� : C ! R is onto, and the kernel of �,

m = {c 2 C | �(c) = 0}

is a maximal ideal. In particular, m is a linear subspace of C as a vector space, and if c 2 C
and m 2 m, then cm 2 m. Also if m ⇢ I and I satisfies these two conditions given for m,

then I = C. A homomorphism like � is called a place of the commutative algebra. If C was

an algebra of functions on a set X, then � would be evaluation at a point in X. The places

of a commutative algebra play the role of points of the algebra.

Remark: In general, for algebras that are not necessarily commutative, the points of

the algebra correspond to onto homomorphisms where the image is n ⇥ n matrices with

coe�cients in R. Such a homomorphism is called an irreducible representation.

Define D : C ! R to be a derivation centered at the place � if D is R-linear and for any

f, g 2 C,

D(fg) = �(f)D(g) + �(g)D(f).

We denote the set of derivations of C centered at the place � by T�C.

By (m/m2
)
⇤
, we mean linear maps L : m ! R so that if m1,m2 2 m, then L(m1m2) = 0.

The goal of this exercise is to prove that

T�C = (m/m2
)
⇤.

(a) Prove that if D 2 T�C then the restriction of D to m defines an element of (m/m2
)
⇤
.

Hence there is a map defined by restriction,

res : T�C ! (m/m2
)
⇤.

Proof. The proof is straight forward. If D 2 T�C, and f, g 2 m, then �(f) = �(g) = 0

and so

D(fg) = �(f)D(g) + �(g)D(f) = 0.

Thus D|m : m ! R is a linear map so that f, g 2 m implies D(fg) = 0, and hence

D|m 2 (m/m)
⇤
. K
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(b) Prove that if L 2 (m/m2
)
⇤
, then the extension of L to L : C ! R given by L(f) =

L(f � �(f)) is a derivation centered at �. (This depends on the fact that if f 2 C
then f � �(f) 2 m).

Proof. Given L 2 (m/m2
)
⇤
, let E : C ! R be the extension of L to C given by

E(f) = L(f ��(f)). We show that E is R-linear, vanishes on m2
, and sends constants

to 0. Let ↵,� 2 R and f, g 2 C. Then

E(↵f + �g) = L(↵f + �g � �(↵f + �g))

= L(↵f + �g � ↵�(f)� ��(g))

= L(↵f � ↵�(f)) + L(�g � ��(g))

= L(↵(f � �(f))) + L(�(g � �(g)))

= ↵L(f � �(f)) + �L(g � �(g))

= ↵E(f) + �E(g).

For h, k 2 m, �(hk) = �(h)�(k) = 0. So,

E(hk) = L(hk � �(hk)) = L(hk)� L(�(hk)) = 0� L(0) = 0.

And finally

E(↵) = L(↵� ↵�(1)) = L(0) = 0.

Therefore for f, g 2 C, we get

E(fg) = E(fg)� E((f � �(f))(g � �(g)))

= E(fg)� E(fg � f�(g)� g�(f) + �(g)�(f))

= E(fg � (fg � f�(g)� g�(f) + �(g)�(f)))

= E(f�(g) + g�(f)� �(g)�(f)))

= E(f�(g)) + E(g�(f))� E(�(g)�(f)))

= �(g)E(f) + �(f)E(g).

K

(c) Put it all together to prove that the two linear spaces T�C and (m/m2
)
⇤
are isomorphic.

Proof. Given L 2 (m/m2
)
⇤
, use part (b) to extend L to a derivation E in T�C. Then

res(E) = L and so res is surjective.

Suppose res(D) = D|m = 0. Then if f 2 C, f � �(f) 2 m. Also, D(�(f)) =

�(f)D(1) = 0 since derivations vanish on constants. Then

D(f) = D(f)�D(f � �(f)) = D(�(f)) = 0,

and so D ⌘ 0 and res is injective. Moreover, res is a homomorphism since for ↵,� 2 R
and D1, D2 2 T�C

res(↵D1 + �D2) = (↵D1 + �D2)|m = ↵D1|m + �D2|m = ↵res(D1) + �res(D2).

K
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Exercises from Spivak

Exercise 2-17. Find the partial derivatives of the following functions.

(a) f(x, y, z) = xy
.

@f

@x
= yxy�1,

@f

@y
= xy

lnx,
@f

@z
= 0.

(b) f(x, y, z) = z.
@f

@x
= 0,

@f

@y
= 0,

@f

@z
= 1.

(c) f(x, y) = sin(x sin y).

@f

@x
= cos(x sin y) sin y,

@f

@y
= cos(x sin y)x cos2 y.

(d) f(x, y, z) = sin(x sin(y sin z)).

@f

@x
= cos(x sin(y sin z)) · sin(y sin z),

@f

@y
= cos(x sin(y sin z)) · x cos(y sin z) · sin z,

@f

@z
= cos(x sin(y sin z)) · x cos(y sin z) · y cos z.

Exercise 2-20. Find the partial derivatives of f in terms of the derivatives of g and h.1

(a) f(x, y) = g(x)h(y)

D1f(x, y) = h(y)Dg(x), D2f(x, y) = g(x)Dh(y).

(b) f(x, y) = g(x)h(y)

D1f(x, y) = h(y)g(x)h(y)�1Dg(x), D2f(x, y) = g(x)h(y) ln g(x)Dh(y)

(c) f(x, y) = g(x)
D1f(x, y) = Dg(x), D2f(x, y) = 0.

(d) f(x, y) = g(y)
D2f(x, y) = 0, D1f(x, y) = Dg(y).

(e) f(x, y) = g(x+ y)

D1f(x, y) = Dg(x+ y), D2f(x, y) = Dg(x+ y).

Exercise 2-22. If f : R2 ! R and D2f = 0, show that f is independent of the second

variable. If D1f = D2f = 0, show that f is constant.

1I am aware that I am switching my notation from that in Exercise 2-17. I just want to make sure I am
comfortable with both!
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Proof. Fix x0 2 R and let g(y) = f(x0, y). For y1, y2 2 R, since g is di↵erentiable, we have

by the mean value theorem that there exists c between y1 and y2 such that

g(y1)� g(y2) = Dg(c) = 0,

and so g(y1) = g(y2); that is, f(x0, y1) = f(x0, y2) and so f is independent of the second

variable and therefore constant in y. Similarly, we get D1f = 0 and so f is independent of

the first variable and therefore constant in x, making f constant everywhere. K

Exercise 2-24. Define f : R2 ! R by

f(x, y) =

(
xy x2�y2

x2+y2 if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0).

(a) Show that D2f(x, 0) = x for all x and D1f(0, y) = �y for all y.

Proof. We have

D1f(x, y) =

(
x4y+4x2y3�y5

(x2+y2)2 if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0),

and

D2f(x, y) =

(
x5�4x2y2�xy4

(x2+y2)2 if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0),

from which it follows that

D2f(x, 0) =
x5

(x2)2
= x and D1f(0, y) =

�y5

(y2)2
= �y.

K

(b) Show that D1,2f(0, 0) 6= D2,1f(0, 0).

Proof. We have

D1,2f(0, y) = D2(D1f(0, y)) = D2(�y) = �1

but

D2,1f(x, 0) = D1(D2(x, 0)) = D1(x) = 1.

K

Exercise 2-28. Find expressions for the partial derivatives of the following functions:

In each of the following, let a be the argument of f . For example, a := g(x)k(y), g(x)+h(y)
in part (a). We use the formula of Theorem 2-9 to calculate DiF :

(a) F (x, y) = f(g(x)k(y), g(x) + h(y)).

D1F (x, y) = D1f(a) ·D1(g(x)k(y)) +D2f(a) ·D1(g(x) + h(y))

= D1f(a) · g0(x)k(y)) +D2f(a) · g0(x),
D2F (x, y) = D1f(a) ·D2(g(x)k(y)) +D2f(a) ·D2(g(x) + h(y))

= D1f(a) · g(x)k0(y) +D2f(a) · h0
(y).

5
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(b) F (x, y, z) = f(g(x+ y), h(y + z)).

D1F (x, y) = D1f(a) ·D1(g(x+ y)) +D2f(a) ·D1(h(y + z))

= D1f(a) · g0(x+ y),

D2F (x, y) = D1f(a) ·D2(g(x+ y)) +D2f(a) ·D2(h(y + z))

= D1f(a) · g0(x+ y) +D2f(a) · h0
(y + z),

D3F (x, y) = D1f(a) ·D3(g(x+ y)) +D2f(a) ·D3(h(y + z))

= D2f(a) · h0
(y + z).

(c) F (x, y, z) = f(xy, yz, zx).

D1F (x, y) = D1f(a) ·D1(x
y
) +D2f(a) ·D1(y

z
) +D3f(a) ·D1(z

x
)

= D1f(a) · yxy�1
+D3f(a) · zx ln(z),

D2F (x, y) = D1f(a) ·D2(x
y
) +D2f(a) ·D2(y

z
) +D3f(a) ·D2(z

x
)

= D1f(a) · xy
ln(x) +D2f(a) · zyz�1,

D3F (x, y) = D1f(a) ·D3(x
y
) +D2f(a) ·D3(y

z
) +D3f(a) ·D3(z

x
)

= D2f(a) · yz ln(y) +D3f(a) · xzx�1.

(d) F (x, y) = f(x, g(x), h(x, y)).

D1F (x, y) = D1f(a) ·D1(x) +D2f(a) ·D1(g(x)) +D3f(a) ·D1(h(x, y))

= D1f(a) +D2f(a) · g0(x) +D3f(a) ·D1(h(x, y)),

D2F (x, y) = D1f(a) ·D2(x) +D2f(a) ·D2(g(x))D3f(a) ·D2(h(x, y))

= D3f(a) ·D2(h(x, y)).

Exercise 2-29. Let f : Rn ! R. For x 2 Rn
, the limit

lim
t!0

f(a+ tx)� f(a)

t
,

if it exists, is denoted Dxf(a), and called the directional derivative of f at a, in the direction

of x.

(a) Show that Deif(a) = Dif(a).

Proof.

lim
t!0

f(a+ tei)� f(a)

t
= lim

t!0

f(a1, . . . , ai + t, . . . , an)� f(a)

t
= Dif(a).

K

(b) Show that Dtxf(a) = tDxf(a).

Proof.

Dtxf(a) = lim
h!0

f(a+ h(tx))� f(a)

h
= lim

th!0
t
f(a+ (th)x)� f(a)

th
= tDxf(a).

K

6
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(c) If f is di↵erentiable at a, show that Dxf(a) = Df(a)(x) and therefore Dx+yf(a) =
Dxf(a) +Dyf(a).

Proof. If x = 0, the proof is trivial. For nonzero x 2 Rn
, tx ! 0 as t ! 0. Since f is

di↵erentiable, we have

0 = lim
t!0

|f(a+ tx)� f(a)�Df(a)(tx)|
|tx|

= lim
t!0

|f(a+ tx)� f(a)� tDf(a)(x)|
|t|

1

|x|

= lim
t!0

����
f(a+ tx)� f(a)� tDf(a)(x)

t

����
1

|x|

= lim
t!0

����
f(a+ tx)� f(a)

t
�Df(a)(x)

����
1

|x|

which implies

Dxf(a) = lim
t!0

f(a+ tx)� f(a)

t
= Df(a)(x).

Therefore,

Dx+yf(a) = Df(a)(x+ y) = Df(a)(x) +Df(a)(y) = Dxf(a) +Dyf(a).

K

Exercise 2-34. A function f : Rn ! R is homogeneous of degree m if f(tx) = tmf(x) for
all x. If f is also di↵erentiable, show that

nX

i=1

xiDif(x) = mf(x).

Hint: If g(t) = f(tx), find g0(1).

Proof. Using the hint, let g(t) = f(tx) = f(tx1, tx2, . . . , txn
). By Theorem 2-9, we have

g0(t) = D1g(t) =
nX

j=1

Djf(tx) ·D1(tx
j
) =

nX

j=1

Djf(tx) · xj .

Since g(t) = f(tx) = tmf(x), then we also have g0(t) = mtm�1f(x). So g0(1) = mf(x) and

g0(1) =
nX

j=1

Djf(x) · xj .

K
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Intro to Manifolds, Tu – Exercises within the Text

Exercise 3.13. (Symmetrizing operator) Show that the k-linear function Sf is sym-

metric.

Proof. For ⌧ 2 Sk,

⌧(Sf) = ⌧

 
X

�2Sk

�f

!
(definition of Sf)

=

X

�2Sk

⌧(�f) (⌧ is linear)

=

X

�2Sk

(⌧�f) (Lemma 3.11)

=

X

µ2Sk

µf (Sk is a group =) {⌧�}�2Sk = Sk)

= Sf (definition of Sf)

K

Exercise 3.15. (Alternating operator) If f is a 3-linear function on a vector space V
and v1, v2, v3 2 V what is (Af)(v1, v2, v3)?

Proof. We have S3 = {(), (12), (13), (23), (123), (132)} with respective signs

{1,�1,�1,�1, 1, 1}. So

(Af)(v1, v2, v3) =
X

�2S3

(sgn�)f(v�(1), v�(2), v�(3))

= f(v1, v2, v3)� f(v2, v1, v3)� f(v3, v2, v1)

� f(v1, v3, v2) + f(v3, v1, v2) + f(v2, v3, v1)

K

Exercise 3.17. (Associativity of the tensor product) Check that the tensor product

of multilinear functions is associative: If f, g and h are multilinear functions on V , then

(f ⌦ g)⌦ h = f ⌦ (g ⌦ h).

Proof. Let f, g and h be k, ` and m -linear on V , respectively. Then

((f ⌦ g)⌦ h)(v1, . . . , vk+`+m) = (f ⌦ g)(v1, . . . , vk+`)g(vk+`+1, . . . , vk+`+m)

= (f(v1, . . . , vk)g(vk+1, . . . , vk+`))h(vk+`+1, . . . , vk+`+m)

= f(v1, . . . , vk)(g(vk+1, . . . , vk+`)h(vk+`+1, . . . , vk+`+m))

= f(v1, . . . , vk)((g ⌦ h)(vk+1, . . . , vk+`+m))

= (f ⌦ (g ⌦ h))(v1, . . . , vk+`+m).

K

1



Nicholas Camacho Intro to Smooth Manifolds — Homework 3 February 10, 2017

Exercise 3.20. (Wedge product of two 2-covectors) For f, g 2 A2(V ), write out the

definition of f ^ g using (2, 2)-shu✏es.

Proof. The (2, 2) shu✏es of S4 are:


1 2 3 4

1 2 3 4

�
,


1 2 3 4

1 3 2 4

�
,


1 2 3 4

1 4 2 3

�
,


1 2 3 4

2 3 1 4

�
,


1 2 3 4

2 4 1 3

�
,


1 2 3 4

3 4 1 2

�
,

with respective signs: 1, -1, 1, 1, -1, 1. Let v1, v2, v3, v4 2 V . Then

f ^ g =
1

2!2!
A(f ⌦ g)(v1, v2, v3, v4)

=
1

2!2!

X

�2S4

(sgn�)f(v�(1), v�(2))g(v�(3), v�(4))

=

X

(2,2)-shu✏es
�2S4

(sgn�)f(v�(1), v�(2))g(v�(3), v�(4))

= f(v1, v2)g(v3, v4)� f(v1, v3)g(v2, v4) + f(v1, v4)g(v2, v3)

+ f(v2, v3)g(v1, v4)� f(v2, v4)g(v1, v3) + f(v3, v4)g(v1, v2).

K

Exercise 3.22. (Sign of a permutation) Let ⌧ 2 Sk+` be given by

⌧ =


1 . . . ` `+ 1 . . . `+ k

k + 1 . . . k + ` 1 . . . k

�

Show that sgn ⌧ = (�1)
k`
.

Proof. To determine the sign of ⌧ , we need to determine how many transpositions to compose

with ⌧ to obtain the identity permutation. First, we need to perform exactly ` transpositions
to move 1 to the first position. In particular,


1 k + 1

k + 1 1

� 
1 k + 2

k + 2 1

� 
1 k + 3

k + 3 1

�
. . .


1 k + `� 1

k + `� 1 1

� 
1 k + `

k + ` 1

�
⌧

will result in the permutation


1 2 . . . ` `+ 1 . . . `+ k
1 k + 1 . . . k + `� 1 k + ` . . . k

�
.

This permutation has sign equal to (�1)
`
. To obtain the identity, we need to perform this

same process for all numbers 1 through k, resulting in a sign of ((�1)
`
)
k
= (�1)

k`
. K
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Exercise 4.3. (A basis for 3-covectors) Let x1, x2, x3, x4
be the coordinates on R4

and

p a point in R4
. Write down a basis for the vector space A3(Tp(R4

)).

Proof. Using the standard basis

8
<

:
@

@x1

�����
p

,
@

@x2

�����
p

,
@

@x3

�����
p

,
@

@x4

�����
p

9
=

;

of Tp(R4
), we have by Proposition 4.1 the dual basis

{(dx1
)|p, (dx2

)|p, (dx3
)|p, (dx4

)|p}

for the cotangent space T ⇤
p (Rn

). By Proposition 3.29, we need to consider all strictly

increasing sets of indices of length 3 from the set {1, 2, 3, 4}. We get

I1 = (1 < 2 < 3), I2 = (1 < 2 < 4), I3 = (1 < 3 < 4), and I4 = (2 < 3 < 4).

So we have as a basis for A3(Tp(R4
))

dxI1
p = dx1

p ^ dx2
p ^ dx3

p,

dxI2
p = dx1

p ^ dx2
p ^ dx4

p,

dxI3
p = dx1

p ^ dx3
p ^ dx4

p,

dxI4
p = dx2

p ^ dx3
p ^ dx4

p.

K

Exercise 4.4. (Wedge product of a 2-form with a 1-form). Let ! be a 2-form and ⌧ a

1- form on R3
. If X,Y, Z are vector fields on M , find an explicit formula for (!^⌧)(X,Y, Z)

in terms of the values of ! and ⌧ on the vector fields X,Y, Z.

Proof. Fix a point p 2 M . We consider the (2, 1)-shu✏es of S3:


1 2 3

1 2 3

�
,


1 2 3

1 3 2

�
,


1 2 3

2 3 1

�
,

These have respective signs 1,�1, 1. So,

(! ^ ⌧)p(Xp, Yp, Zp) = (!p ^ ⌧p)(Xp, Yp, Zp)

=
1

2!1!

X

�2S3

(sgn�)�(!p(Xp, Yp)⌧p(Zp))

=

X

(2,1)-shu✏es
�2S3

(sgn�)�!p(Xp, Yp)�⌧p(Zp)

= !p(Xp, Yp)⌧p(Zp)� !p(Xp, Zp)⌧p(Yp) + !p(Yp, Zp)⌧p(Xp).

As p varies over all of M , we get

(! ^ ⌧)(X,Y, Z) = !(X,Y )⌧(Z)� !(X,Z)⌧(Y ) + !(Y, Z)⌧(X).

K
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Exercise 4.9. (A closed 1-form on the punctured plane). Define a 1-form ! on

R2 � {0} by

! =
1

x2 + y2
(�ydx+ xdy).

Show that ! is closed.

Proof. Let’s do this computation! To make it a bit cleaner, let

f(x, y) =
�y

x2 + y2
and g(x, y) =

x

x2 + y2
.

Then we have
1

@f

@x
=

2xy

(x2 + y2)2
,

@f

@y
=

�x2
+ y2

(x2 + y2)2
,

and

@g

@x
=

�x2
+ y2

(x2 + y2)2
,

@g

@y
=

�2xy

(x2 + y2)2
.

Here we go:

d! = d

✓
�y

x2 + y2
dx+

x

x2 + y2
dy

◆

= d (fdx+ gdy)

= df ^ dx+ dg ^ dy

=

✓
@f

@x
dx+

@f

@y
dy

◆
^ dx+

✓
@g

@x
dx+

@g

@y
dy

◆
^ dy

=
@f

@x
dx ^ dx+

@f

@y
dy ^ dx+

@g

@x
dx ^ dy +

@g

@y
dy ^ dy

=
@f

@y
dy ^ dx+

@g

@x
dx ^ dy

= �@f

@y
dx ^ dy +

@g

@x
dx ^ dy

=

✓
�@f

@y
+

@g

@x

◆
dx ^ dy

= (0)dx ^ dy

= 0

K

1Notice that these two functions satisfy the Cauchy-Riemann Equations!
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Intro to Manifolds, Tu – End of Section Exercises

Exercise 3.3. A basis for k-tensors
Let V be a vector space of dimension n with basis e1, . . . en. let ↵1, . . . ,↵n

be the dual basis

for V ⇤
. Show that a basis for the space Lk(V ) of k-linear functions on V is {↵i1 ⌦ . . .⌦↵ik}

for all multi-indices (i1, . . . , ik) (not just the strictly ascending multi-indices as for Ak(V )).

In particular, this shows that dimLk(V ) = nk
.

Proof. Let ↵I
= ↵i1 ⌦ . . . ⌦ ↵ik and eJ = (ej1 , . . . , ejk). Let f 2 Lk(V ). We claim

f =
P

I f(eI)↵
I
, where I ranges over all multi-indices {(i1, . . . , ik)} of length k. Let

g =
P

I f(eI)↵
I
. Then

g(eJ) =
X

I

f(eI)↵
I
(eJ) =

X

I

f(eI)�
I
J = f(eJ),

and thus g = f since multi-linear functions are determined by their action on basis elements.

Hence {↵I}I spans Lk(V ).

Suppose 0 =
P

I cI↵
I
for some scalars cI for all I. Then applying both sides to eJ gives

0 =

X

I

cI↵
I
(eJ) =

X

I

cI�
I
J = cJ .

And so cI = 0 for all I, and hence the ↵I
are linearly independent. K

Exercise 3.4. A characterization of alternating k-tensors
Let f be a k-tensor on a vector space V . Prove that f is alternating if and only if f changes

sign whenever two successive arguments are interchanged:

f(. . . , vi+1, vi, . . . ) = �f(. . . , vi, vi+1, . . . ) (⇤)

for i = 1, . . . , k � 1.

Proof. ()) We have �f = (sgn�)f for all � 2 Sk. Given i, let � = (i, i+ 1) 2 Sk. Then

f(. . . , vi+1, vi, . . . ) = f(. . . , v�(i), v�(1+1), . . . )

= �f(. . . , vi, vi+1, . . . )

= (sgn�)f(. . . , vi, vi+1, . . . )

= �f(. . . , vi, vi+1, . . . ).

(() Suppose (⇤) holds and let � 2 Sk. Since Sk =
⌦
{(i, i+ 1)}n�1

i=1

↵
, then

� = (i1, i1 + 1)(i2, i2 + 1) . . . (im, im + 1)

for some m 2 Z+
and (ij , ij + 1) 2 Sk all j = 1, . . . ,m. Now,

�f(v1, . . . , vk) = [(i1, i1 + 1) . . . (im, im + 1)]f(v1, . . . , vk)

= [(i1, i1 + 1) . . . (im�1, im�1 + 1)]f(. . . , vm+1, vm, . . . )

= [(i1, i1 + 1) . . . (im�1, im�1 + 1)](�1)f(. . . , vm, vm+1, . . . )

.

.

.

= (�1)
mf(v1, . . . , vk).

5
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If � is even, then so is m, and

�f(v1, . . . , vk) = (�1)
mf(v1, . . . , vk) = f(v1, . . . , vk) = (sgn�)f(v1, . . . , vk).

Similarly, if � is odd, then so is m, and

�f(v1, . . . , vk) = (�1)
mf(v1, . . . , vk) = �f(v1, . . . , vk) = (sgn�)f(v1, . . . , vk).

K

Exercise 3.5. Another characterization of alternating k-tensors
Let f be a k-tensor on a vector space V . Prove that f is alternating if and only if

f(v1, . . . , vk) = 0 whenever two of the vectors v1, . . . , vk are equal.

Proof. ()) Suppose f is alternating and that vm = v` for 1  m, `  k. Let � = (m`) 2 Sk

and suppose without loss of generality that m < `. Then

f(v1, . . . , v`, . . . , vm, . . . , vk) = f(v�(1), . . . , v�(m), . . . , v�(`), . . . , v�(k))

= �f(. . . , v`, . . . , vm, . . . , )

= �f(. . . , v`, . . . , vm, . . . ) (f is alternating)

= �f(. . . , vm, . . . , v`, . . . ). (vm = v`)

So

f(. . . , v`, . . . , vm, . . . ) = �f(v1, . . . , vm, . . . , v`, . . . , vk)

implies

f(v1, . . . , v`, . . . , vm, . . . , vk) = 0.

(() Notice that

f(. . . , vi, vi+1, . . . ) + f(. . . , vi+1, vi, . . . ) = f(. . . , vi, vi+1, . . . ) + f(. . . , vi, vi, . . . )

+ f(. . . , vi+1, vi+1, . . . ) + f(. . . , vi+1, vi, . . . )

= f(. . . , vi, vi + vi+1, . . . )

+ f(. . . , vi+1, vi + vi+1, . . . )

= f(. . . , vi + vi+1, vi + vi+1, . . . )

= 0.

So

f(. . . , vi, vi+1, . . . ) = �f(. . . , vi+1, vi, . . . ),

and by Exercise 3.4, f is alternating. K
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Exercise 3.7. Transformation rule for a wedge product of covectors
Suppose two sets of covectors on a vector space V , �1, . . . ,�k

and �1, . . . , �k
, are related by

�i
=

kX

j=1

aij�
j , i = 1, . . . , k,

for a k ⇥ k matrix A = [aij ]. Show that

�1 ^ · · · ^ �k
= (detA)�1 ^ · · · ^ �k.

Proof. Since ^ is distributive, we obtain

�1 ^ · · · ^ �k
=

0

@
kX

j1=1

a1j1�
j1

1

A ^ · · · ^

0

@
kX

jk=1

akjk�
jk

1

A =

kX

j1

· · ·
kX

jk

a1j1 · · · a
k
jk�

j1 ^ · · · ^ �jk

Since �j1 ^ · · · ^ �jk = 0 if any of the indices ji are repeated, each set of indices ji1 · · · jik
which have no repetition correspond to a bijection between the set {1, . . . , k} with itself;

that is, they correspond to a permutation in Sk. So the above multi-sum becomes

X

�2Sk

a1�(1) · · · ak�(k)��(1) ^ · · · ^ ��(k)

Now since the wedge product is anticommutative, we obtain the desired formula:

�1 ^ · · · ^ �k
=

X

�2Sk

sgn(�)a1�(1) · · · ak�(k)�1 ^ · · · ^ �k
= (detA)�1 ^ · · · ^ �k.

K

Exercise 4.1. A 1-form on R3

Let ! be the 1-form zdx � dz and let X be the vector field y @
@x + x @

@y on R3
. Compute

!(X) and d!.

Proof.

!(X) = (zdx� dz)

✓
y
@

@x
+ x

@

@y

◆
= zdx

✓
y
@

@x
+ x

@

@y

◆
� dz

✓
y
@

@x
+ x

@

@y

◆

= z

✓
y
@x

@x
+ x

@x

@y

◆
�
✓
y
@z

@x
+ x

@z

@y

◆

= zy

d! = d(zdx� dz) = dz ^ dx� d(1) ^ dz

= dz ^ dx� 0 ^ dz

= dz ^ dx.

K
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Exercise 4.2. A 2-form on R3

At each point p 2 R3
, define a bilinear function !p on Tp(R3

) by

!p(a, b) = !p

0

@

2

4
a1

a2

a3

3

5 ,

2

4
b1

b2

b3

3

5

1

A = p3 det


a1 b1

a2 b2

�
,

for tangent vectors a, b 2 Tp(R3
), where p3 is the third component of p = (p1, p2, p3). Since

!p is an alternating bilinear function on Tp(R3
), ! is a 2-form on R3

. Write ! in terms of

the standard basis dxi ^ dxj
at each point.

Proof. Since ! is a 2-form on R3
, we have

! = ↵dx1 ^ dx2
+ �dx1 ^ dx3

+ �dx2 ^ dx3

for some C1
functions ↵,�, �. For p 2 R3

and a, b 2 Tp(R3
),

!p(a, b) = ↵(p)dx1 ^ dx2
(a, b) + �(p)dx1 ^ dx3

(a, b) + �(p)dx2 ^ dx3
(a, b)

= ↵(p)[dx1
(a)dx2

(b)� dx1
(b)dx2

(a)]

+ �(p)[dx1
(a)dx3

(b)� dx1
(b)dx3

(a)]

+ �(p)[dx2
(a)dx3

(b)� dx2
(b)dx3

(a)]

= ↵(p)[a1b2 � b1a2] + �(p)[a1b3 � b1a3] + �(p)[a2b3 � b2a3].

Since

det


a1 b1

a2 b2

�
= a1b2 � b1a2,

we must have ↵(p) = p3 and � = � ⌘ 0, and so ! = ↵dx1 ^ dx2
. K
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Exercise 4.3. Exterior calculus
Suppose the standard coordinates on R2

are called r and ✓ (this R2
is the (r, ✓)-plane, not

the (x, y)-plane). If x = r cos ✓ and y = r sin ✓, calculate dx, dy, and dx ^ dy in terms of dr
and d✓.

Proof. We have maps x, y : R2 ! R given by x(r, ✓) = r cos ✓ and y(r, ✓) = r sin ✓. By

Proposition 4.2, we can write dx and dy as

dx =
@x

@r
dr +

@x

@✓
d✓ and dy =

@y

@r
dr +

@y

@✓
d✓.

Then

dx = cos ✓dr � r sin ✓d✓ and dy = sin ✓dr + r cos ✓d✓.

Now, we compute dx ^ dy :

dx ^ dy =

✓
@x

@r
dr +

@x

@✓
d✓

◆
^
✓
@y

@r
dr +

@y

@✓
d✓

◆

=

✓
@x

@r
dr ^ @y

@r
dr

◆
+

✓
@x

@r
dr ^ @y

@✓
d✓

◆
+

✓
@x

@✓
d✓ ^ @y

@r
dr

◆
+

✓
@x

@✓
d✓ ^ @y

@✓
d✓

◆

=

✓
@x

@r

@y

@r
dr ^ dr

◆
+

✓
@x

@r

@y

@✓
dr ^ d✓

◆
+

✓
@x

@✓

@y

@r
d✓ ^ dr

◆
+

✓
@x

@✓

@y

@✓
d✓ ^ d✓

◆

= 0 +

✓
@x

@r

@y

@✓
dr ^ d✓

◆
+

✓
@x

@✓

@y

@r
d✓ ^ dr

◆
+ 0

=

✓
@x

@r

@y

@✓
� @x

@✓

@y

@r

◆
dr ^ d✓

= (cos ✓r cos ✓ � (�r sin ✓) sin ✓)dr ^ d✓

= r(cos2 ✓ + sin
2 ✓)dr ^ d✓

= rdr ^ d✓.

K
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Exercise 4.4. Exterior calculus
Suppose the standard coordinates on R3

are called ⇢,�, and ✓. If x = ⇢ sin ✓, cos ✓, y =

⇢ sin� sin ✓, and z = ⇢ cos�, calculate dx, dy, dz, and dx ^ dy ^ dz in terms of d⇢, d�, and
d✓.

Proof. We have maps x, y, z : R3 ! R given by

x(⇢,�, ✓) = ⇢ sin� cos ✓, y(⇢,�, ✓) = ⇢ sin� sin ✓, and z(⇢,�, ✓) = ⇢ cos�

So by Proposition 4.2, we get

dx =
@x

@⇢
d⇢+

@x

@�
d�+

@x

@✓
d✓

= sin� cos ✓d⇢+ ⇢ cos ✓ cos�d�� ⇢ sin� sin ✓d✓,

dy =
@y

@⇢
d⇢+

@y

@�
d�+

@y

@✓
d✓

= sin� sin ✓d⇢+ ⇢ cos� sin ✓d�+ ⇢ sin� cos ✓d✓

dz =
@z

@⇢
d⇢+

@z

@�
d�+

@z

@✓
d✓

= cos�d⇢� ⇢ sin�d�.

Since @z/@✓ = 0, we remove it from the following computation. Here. We. Go.

dx ^ dy ^ dz =

✓
@x

@⇢
d⇢+

@x

@�
d�+

@x

@✓
d✓

◆
^
✓
@y

@⇢
d⇢+

@y

@�
d�+

@y

@✓
d✓

◆

^
✓
@z

@⇢
d⇢+

@z

@�
d�

◆

=
@x

@�

@y

@✓

@z

@⇢
d� ^ d✓ ^ d⇢+

@x

@✓

@y

@�

@z

@⇢
d✓ ^ d� ^ d⇢

+
@x

@⇢

@y

@✓

@z

@�
d⇢ ^ d✓ ^ d�+

@x

@✓

@y

@⇢

@z

@�
d✓ ^ d⇢ ^ d�

=


@x

@�

@y

@✓

@z

@⇢
� @x

@✓

@y

@�

@z

@⇢
� @x

@⇢

@y

@✓

@z

@�
+

@x

@✓

@y

@⇢

@z

@�

�
d⇢ ^ d� ^ d✓

=

✓
@x

@�

@y

@✓
� @x

@✓

@y

@�

◆
@z

@⇢
+

✓
�@x

@⇢

@y

@✓
+

@x

@✓

@y

@⇢

◆
@z

@�

�
d⇢ ^ d� ^ d✓

= [(⇢ cos ✓ cos�⇢ sin� cos ✓ + ⇢ sin� sin ✓⇢ cos� sin ✓) cos�

+ (� sin� cos ✓⇢ sin� cos ✓ � ⇢ sin� sin ✓ sin� sin ✓)(�⇢ sin�)]d⇢ ^ d� ^ d✓

= [(⇢2 cos2 ✓ cos2 � sin�+ ⇢2 sin2 ✓ cos2 � sin�)

+ (⇢2 sin3 � cos
✓
+⇢2 sin2 ✓ sin3 �)]d⇢ ^ d� ^ d✓

= ⇢2[cos2 � sin�(cos2 ✓ + sin
2 ✓) + sin

3 �(cos2 ✓ + sin
2 ✓)]d⇢ ^ d� ^ d✓

= ⇢2[cos2 � sin�+ sin
3 �]d⇢ ^ d� ^ d✓

= ⇢2[sin�(cos2 � sin
2 �)]d⇢ ^ d� ^ d✓

= ⇢2 sin�d⇢ ^ d� ^ d✓

K
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Exercise 4.5. Wedge product
Let ↵ be a 1-form and � be a 2-form on R3

. Then

↵ = a1dx
1
+ a2dx

2
+ a3dx

3

� = b1dx
2 ^ dx3

+ b2dx
3 ^ dx1

+ b3dx
1 ^ dx2.

Simplify the expression ↵ ^ � as much as possible.

Proof. As we distribute across the wedge product ↵ ^ �, we disregard terms which would

give dxi ^ dxi
= 0.

↵ ^ � = (a1dx
1
+ a2dx

2
+ a3dx

3
) ^ (b1dx

2 ^ dx3
+ b2dx

3 ^ dx1
+ b3dx

1 ^ dx2
)

= a1b1dx
1 ^ dx2 ^ dx3

+ a2b2dx
2 ^ dx3 ^ dx1

+ a3b3dx
3 ^ dx1 ^ dx2

= a1b1dx
1 ^ dx2 ^ dx3

+ a2b2dx
1 ^ dx2 ^ dx3

+ a3b3dx
1 ^ dx2 ^ dx3

= (a1b1 + a2b2 + a3b3)dx
1 ^ dx2 ^ dx3.

K
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Getting to know SU(2) and SO(3)

The quaternions are just R4 equipped with a multiplication. In order to make working
with quaternionic multiplication tractable, we denote the elements of R4 as

H = {a+ xi+ yj + zk | a, x, y, z 2 R}.

If q = a + xi + yj + zk then the real part of q, denoted Re(q) is a and the imaginary
part of q, denoted, Im(q) is the vector xi+ yj+ zk. Suppose that q = a+~v and q

0 = b+ ~w,
where a, b 2 R and ~v, ~w 2 R

3. Define the product qq0 by

qq
0 = ab� ~v · ~w + a~w + b~v + ~v ⇥ ~w.

Quaternionic multiplication is associative and bilinear. Define the complex conjugate of
q by q = a� ~v.

Exercise 1. Prove that Re(qq0) = q · q0. Prove that ||q|| =
p
qq. Compute ij, jk,ki, and

i2, j2,k2.

Proof. Let q = a+ ~v and q
0 = b+ ~w. Then

qq0 = (a+ ~v)(b� ~w) = ab+ ~v · ~w � a~w + b~v � ~v ⇥ ~w,

and so Re(qq0) = ab+ ~v · ~w. On the other hand, q · q0 = (a+ ~v) · (b+ ~w) = ab+ ~v · ~w.
Now,

||q|| =
p
a2 + ||v||2 =

p
a2 + ||v||2 � a~v + a~v + ~v ⇥ ~v =

p
qq

And finally, we have i = 0 + (1, 0, 0), j = 0 + (0, 1, 0), and k = 0 + (0, 0, 1). So,

ij = (0 + (1, 0, 0))(0 + (0, 1, 0)) = (1, 0, 0)⇥ (0, 1, 0) = (0, 0, 1) = k.

Similarly we get jk = i and ki = j. Moreover,

i2 = (0 + (1, 0, 0))(0 + (1, 0, 0)) = �((1, 0, 0) · (1, 0, 0)) = �1.

Similarly we get j2 = �1 and k2 = �1. K

Exercise 2. Prove that if q 6= 0 +~0, then q has a multiplicative inverse given by q/qq.

Proof. Let q = a+ ~v. Then

q

✓
q

qq

◆
= (a+ ~v)

✓
a� ~v

a+ ||v2||

◆
=

a+ ||v2||
a+ ||v2|| = 1,

and similarly (q/qq)q = 1. K

Exercise 3. Prove that q, q0 2 H commute if and only if their imaginary parts are linearly
dependent.

Proof. Recall that ⇥ is anticommutative. So

qq
0 = q

0
q () ab� ~v · ~w + a~w + b~v + ~v ⇥ ~w = ba� ~w · ~v + b~v + a~w + ~w ⇥ ~v

() ~v ⇥ ~w = ~w ⇥ ~v

() ~v ⇥ ~w = �~v ⇥ ~w

() ~v ⇥ ~w = 0

() ~v, ~w are linearly dependent.

K
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Exercise 4. Define SU(2) = {q 2 H | qq = 1}.

• Prove that SU(2) is a Lie group.

Proof. Let F : R4 ! R be given by q 7! ||q||. Then

F⇤ =

✓
@F

@x1
,
@F

@x2
,
@F

@x3
,
@F

@x4

◆
=

✓
x1

||x|| ,
x2

||x|| ,
x3

||x|| ,
x4

||x||

◆
.

Then F⇤ is never zero, and so all values of R are regular values of F . In particular, 1
is a regular value of F and so by the Regular Level Set Theorem,

F
�1(1) = SU(2)

is a regular submanifold of R4 of dimension 4� 1 = 3.

To see that SU(2) is a group, we note that 1 2 SU(2) and so SU(2) 6= ;. Moreover,
for p, q 2 SU(2),

||pq�1|| = ||pq|| = pqpq = pq pq = pqqp = 1, (See the claim proven in Exercise 5!)

and so pq
�1 2 SU(2), and hence SU(2) is a group.

Now, the multiplication map µ : SU(2) ⇥ SU(2) ! SU(2) ! SU(2) is simply a
restriction of the multiplication map H ⇥ H ! H, which is smooth since each of the
component functions of multiplication in H is a polynomial.

Similarly, the inversion map ◆ : SU(2) ! SU(2) given by q 7! q/qq is the restriction
of the inversion map on H to SU(2). The inversion map on H is a rational expression
defined for all q 6= 0, which is smooth, and since 0 62 SU(2), then ◆ is smooth.

K

• Prove T1SU(2) = R
3. Let c : (�✏, ✏) ! SU(2) be a smooth curve starting at 1. Write

c(t) = ↵(t) + i�(t) + j�(t) + k�(t).

Then in the “calculus sense”, c0(t) = ↵
0(t)+ i�

0(t)+ j�
0(t)+ k�

0(t), which we can also
think of as an element of the quaternions. Prove that c

0(0) is purely imaginary, i.e.,
↵
0(0) = 0.

Proof. Since c(t) 2 SU(2) for all t 2 (�✏, ✏), then

1 = c(t)c(t) = ||c(t)||2 = (↵(t))2 + (�(t))2 + (�(t))2 + (�(t))2.

The right hand side is now a function from R to R, and so taking the derivative of
both sides,

0 = 2 (↵(t)↵0(t) + �(t)�0(t) + �(t)�0(t) + �(t)�0(t)) .

Now, c(0) = 1, and so �(0) = �(0) = �(0) = 0, and so

0 = 2↵(0)↵0(0) = 2↵0(0),

and hence ↵0(0) = 0. K
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• Show that the commutator of two vectors at the identity is twice the cross product of
those vectors.

Proof. Let ~v = (0 + ~v), ~w = (0 + ~w) 2 T1SU(2) = R
3. Then

[~v, ~w] = ~v ~w � ~w~v

= (0 + ~v)(0 + ~w)� (0 + ~w)(0 + ~v)

= (�~v · ~w + ~v ⇥ ~w)� (�~w · ~v + ~w ⇥ ~v)

= (�~v · ~w + ~v ⇥ ~w)

= ~v ⇥ ~w � (�~v ⇥ ~w)

= 2(~v ⇥ ~w)

K
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Exercise 5. Any Lie group acts on its tangent space at the identity by conjugation. This
is called the adjoint representation. Given q 2 SU(2) and ~w 2 R

3 define

Ad(q)(~w) = q ~wq

Prove Ad(q) is a linear map from R
3 to R

3. Prove that Ad(q) : R3 ! R
3 preserves the dot

product.

Proof. Let ↵ 2 R and ~w, ~u 2 R
3. Then

Ad(q)(~w + ↵~u) = q(~w + ↵~u)q = q ~wq + ↵q~uq = Ad(q)(~w) + ↵Ad(q)(~u).

and hence Ad(q) is linear.
Now, we claim that for all s, t 2 H, we have st = t s: If s = a+ ~u and t = b+ ~w, then

st = ab� ~u · ~w � (a~w + b~u+ ~u⇥ ~w).

On the other hand,

t s = (b� ~w)(a� ~u)

= ab� ~u · ~w � b~u� a~w + ~w ⇥ ~u

= ab� ~u · ~w � b~u� a~w � ~u⇥ ~w

= ab� ~u · ~w � (b~u+ a~w + ~u⇥ ~w)

= st,

which gives the claim. Now, let ~u, ~w 2 R
3. From Exercise 1, we have

Ad(q)(~u) ·Ad(q)(~w) = Re
⇣
Ad(q)(~u)Ad(q)(~w)

⌘
.

So,

Re
⇣
Ad(q)(~u)Ad(q)(~w)

⌘
= Re

⇣
q~uq (q ~w)q

⌘

= Re
⇣
q~uq q(q ~w)

⌘
(by the claim)

= Re
⇣
q~uq q(q ~w)

⌘

= Re
⇣
q~u(q ~w)

⌘

= Re
�
q(~u ~w q)

�
(by the claim)

= Re
�
(~u ~w q)q

�
(since Re(st) = Re(ts))

= Re(~u~w)

= ~u · ~w.

K
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Exercise 6. Recall that SU(3) is the Lie group of all linear maps from R
3 to R

3 to that
preserve the dot product, and have determinant 1. Prove that the adjoint representation of
SU(2) defines a homomorphism,

✓ : SU(2) ! SO(3)

and that homomorphism is a smooth mapping. (Here you could just write out a formula
for it and see it is smooth as both manifolds are submanifolds of Euclidean spaces.)

Proof. Since Ad(q) preserves the dot product, the matrix corresponding to Ad(q) is orthog-
onal by definition1, i.e., Ad(q) 2 O(3). So, we define ✓ : SU(2) ! O(3) by q 7! Ad(q). Since
1 2 SU(2) and ✓(1) = Ad(1) = I3, then ✓(1) 2 SO(3).

Next, we show that ✓ is a homomorphism and is smooth. Once we show this, we can
conclude that Im(✓) ⇢ SO(3) since O(3) has two connected components: matrices with
determinant 1, and matrices with determinant �1. Since ✓(1) 2 SO(3) and ✓ is smooth, the
image of ✓ must be connected, and hence lie completely in SO(3).

✓ is a homomorphism: Let q, p 2 SU(2). Note that the multiplication in SU(2) is quater-
nion multiplication given above and the multiplication in O(3) is composition (viewing the
matrices in O(3) as linear maps.)

✓(qp)(~v) = Ad(qp)(~v)

= qp~vpq

= qp~vq p (by the claim in Exercise 5)

= q (Ad(p)(~v)) q

= Ad(q) (Ad(p)(~v))

= (✓(q) � ✓(p)) (~v)

✓ is smooth: Per the hint, we give a formula for ✓ as a map between R
4 and R

9. This
amounts to giving a formula for Ad(q)(~w) and showing that it is smooth. Let q = a + ~u.
We find that

Ad(q)(~w) = a
2
~w + 2a(~u⇥ ~w)� ~w||~u||2.

The component functions of this map consist of smooth operations: multiplication, squaring,
adding, subtracting. Hence ✓ is a smooth map between R

4 and R
9, and hence is a smooth

map between the submanifolds SU(2) of R4 and SO(3) of R9. K

1per Wikipedia
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Exercise 7. Recall that a roation of R2 by an angle of ' is given by

✓
cos' � sin'
sin' cos'

◆
.

They are characterized by the fact that they are orthogonal and they have determinant +1.
A rotation by an angle ' about an axis~v 2 R

3 has ~v as an eigenvector of the eigenvalue +1
and acts as a rotation of angle ' on the copy of R2 that is orthogonal to ~v.

Prove Euler’s theorem, that every element of SO(3) is a rotation about some axis. How
can you compute the angle of rotation without changing bases?

Proof. Let A 2 SO(3). Then

det(I �A) = det(AT ) det(I �A)

= det(AT � I)

= det((A� I)T )

= det(A� I)

= � det(I �A),

and so det(I �A) = 0, i.e., 1 is an eigenvalue of A and hence A is a rotation. K

6
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*** Was not able to get to these problems. Sorry Jesse! ***

Exercise 8. Without great injury to yourself or those around you, prove that if q = cos�+
sin�~v 2 SU(2) then Ad(q) is rotation by an angle of 2� radians about the axis ~v. Use this
to conclude that the kernel of ✓ : SU(2) ! SO(3) is just ±1.

Exercise 9. We say that p, q 2 SU(2) are conjugate if and only if there is r 2 SU(2) with
rpr = q.

• Prove that p and q are conjugate if and only if Re(p) = Re(q). To do this with as
little pain as possible, figure out where the axis of rpr is in terms of the axis of p and
the action of Ad(r) on R

3.

• Describe the conjugacy classes of SU(2) as geometric objects. What are the di↵erent
conjugacy classes di↵eomorphic to?

Exercise 10. Prove that ✓ : SU(2) ! SO(3) is onto, and the inverse image of each element
of SO(3) is two antipodal points on S

3 = SU(2). Use this to construct a homeomorphism
between RP (3) and SO(3).

7
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Intro to Manifolds, Tu – End of Section Exercises

Exercise 8.1. Di↵erential of a map
Let F : R2 ! R

2 be the map

(u, v, w) = F (x, y) = (x, y, xy).

Let p = (x, y) 2 R
2. Compute F⇤(

@
@x |p) as a linear combination of @

@u ,
@
@v , and

@
@w at F (p).

Proof. We have
x = u � F, y = v � F, and xy = w � F.

Then

F⇤

✓
@

@x

���
p

◆
(u) =

@

@x
(u � F ) =

@x

@x
= 1

F⇤

✓
@

@x

���
p

◆
(v) =

@

@x
(v � F ) =

@y

@x
= 0

F⇤

✓
@

@x

���
p

◆
(w) =

@

@x
(w � F ) =

@xy

@x
= y,

and so

F⇤

✓
@

@x

���
p

◆
=

@

@u
+ y

@

@w
.

K

Exercise 8.2. Di↵erential of a linear map
Let L : Rn ! R

m be a linear map. For any p 2 R
n there is a canonical identification

Tp(Rn)
⇠�! R

n given by
X

a
i @

@xi
|p 7! a =

⌦
a
1
, . . . , an

↵
.

Show that the di↵erential L⇤,p : Tp(Rn) ! TL(p)(R
m) is the map L : Rn ! R

m itself, with
the identification of the tangent spaces as above.

Proof. Let

Xp =
X

a
i @

@xi

���
p
2 Tp(R

n).

Then

L⇤(Xp)x
i = Xp(x

i � L) = XpL
i

= lim
t!0

L
i(p+ ta)� L

i(p)

t

= lim
t!0

L
i(p) + tL(a)� L

i(p)

t

= L
i(a).

Since this is true for all coordinates xi, then L⇤(Xp) = L(a). K

8
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Exercise 8.3. Di↵erential of a map
Fix a real number ↵ and define F : R2 ! R

2 by

u

v

�
= (u, v) = F (x, y) =

✓
cos↵ � sin↵
sin↵ cos↵

◆
x

y

�
.

Let X = �y
@
@x+x

@
@y be a vector field on R

2. If p = (x, y) 2 R
2 and F⇤(Xp) = (a @

@u+b
@
@v )|p,

find a and b in terms of x, y, and ↵.

Proof. Note that

(u � F )(x, y) = F
1(x, y) = x cos↵� y sin↵

(v � F )(x, y) = F
2(x, y) = x sin↵+ y cos↵.

Then

a =

✓
a
@

@u
+ b

@

@v

◆
(u) = F⇤(Xp)(u) = Xp(u � F )

=

✓
�y

@

@x
+ x

@

@y

◆
(x cos↵� y sin↵)

= �y
@(x cos↵� y sin↵)

@x
+ x

@(x cos↵� y sin↵)

@y

= �y cos↵� x sin↵.

Similarly,

b =

✓
a
@

@u
+ b

@

@v

◆
(v) = F⇤(Xp)(v) = Xp(u � F ) = �y sin↵+ x cos↵.

K

Exercise 8.6. Velocity vector
Let p = (x, y) be a point in R

2. Then

cp(t) =


cos 2t � sin 2t
sin 2t cos 2t

� 
x

y

�
, t 2 R,

is a curve with initial point p in R
2. Compute the velocity vector c0p(0).

Proof. We have

cp = (c1p, c
2
p) = (x cos 2t� y sin 2t, x sin 2t+ y cos 2t),

and so

c⇤,p(t) =


�2x sin 2t� 2y cos 2t
2t cos 2t� 2y sin 2t

�
.

This gives

c⇤,p(0) =


�2x sin 0� 2y cos 0
2t cos 0� 2y sin 0

�
=


�2y
2x

�

K

9
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Exercise 8.7. Tangent space to a product
If M and N are manifolds, let ⇡1 : M⇥N ! M and ⇡2 : M⇥N ! N be the two projections.
Prove that for (p, q) 2 M ⇥N ,

⇡1⇤,⇡2⇤ : T(p,q)(M ⇥N) ! TpM ⇥ TqN

is an isomorphism.

Proof. *** Copied from the back of the book. I need some help understanding this. See
you in o�ce hours! ***

If (U,�) = (U, x1
, . . . , x

m) and (V, ) = (V, y1, . . . , yn) are charts about p in M and q in
N respectively, then by Proposition 5.18, a chart about (p, q) in M ⇥N is

(U ⇥ V,�⇥  ) = (U ⇥ V, (⇡⇤
1�,⇡

⇤
2 )) = (U ⇥ V, x

1
, . . . , x

n
, y

1
, . . . , y

n),

where x
i = ⇡

⇤
1x

i and ⇡⇤
2y

i. Let ⇡1⇤(@/@x
j) =

P
a
i
j@/@x

i. Then

a
i
j = ⇡1⇤

 
@

@x

j
!
x
i =

@

@x
j

�
x
i � ⇡1

�
=
@x

i

@x
j �

i
j .

This really means that

⇡1⇤

✓
@

@x
j

���
(p,q)

◆
=

@

@xj

���
p
. (1)

Similarly,

⇡1⇤

✓
@

@y
j

◆
= 0, ⇡2⇤

✓
@

@x
j

◆
= 0, ⇡2⇤

✓
@

@y
j

◆
=

@

@yj
. (2)

A basis for T(p,q)(M ⇥N) is

@

@x
1

���
(p,q)

, . . . ,
@

@x
m

���
(p,q)

,
@

@y
1

���
(p,q)

, . . .
@

@y
n

���
(p,q)

.

A basis for TpM ⇥ TqN is

✓
@

@x1

���
p
, 0

◆
, . . . ,

✓
@

@xm

���
p
, 0

◆
,

✓
0,

@

@y1

���
p

◆
, . . .

✓
0,

@

@yn

���
p
,

◆
.

By (1) and (2), the linear map (⇡1⇤ ,⇡2⇤) maps a basis of T(p,q)(M ⇥ N) to a basis of
TpM ⇥ TqN , and is therefore an isomorphism. K

10
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Exercise 8.10. Local maxima
A real valued function f : M ! R on a manifold M is said to have a local maximum at
p 2 M if there is a neighborhood U of p such that f(p) � f(q) for all q 2 U .

(a) Prove that if a di↵erentiable function f : I ! R defined on an open interval I has a
local maximum at p 2 I, then f

0(p) = 0.

Proof. Let {qn}, {rn} ⇢ U be such that qn < p and p < rn for all n and {qn} and {rn}
converge to p. Then

f
0(p) = lim

n!1

f(qn)� f(p)

qn � p
� 0,

and

f
0(p) = lim

n!1

f(rn)� f(p)

rn � p
 0.

Hence f
0(p) = 0. K

(b) Prove that a local maximum of a C
1 function f : M ! R is a critical point of f .

(Hint: Let Xp be a tangent vector in TpM and let c(t) be a curve in M starting at p
with initial vector Xp. Then f � c is a real-valued function with a local maximum at
0. Apply (a).)

Proof. Using the hint, we have (f � c)(0) = f(c(0)) = f(p). Then

0 = (f � c)0(0) = (f � c)⇤,0 = f⇤,c(0) � c⇤,0 = f⇤,pc
0(0) = f⇤,p(Xp).

Since Xp was an arbitrary tangent vector in TpM , f⇤,p ⌘ 0, and hence it is not
surjective. So p is a critical point of f . K

11
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Exercise 1. Suppose that S ⇢ M is a compact regular submanifold, and F : M ! N is

smooth, so that F |S is one-to-one, and for every p 2 S, F⇤p : TpM ! TF (p)N is a linear

isomorphism. Prove that there is U open with S ⇢ U so that F : U ! N is a di↵eomorphism

onto its image.

Proof. Thank you for your help on this one Jesse!

By the Inverse Function Theorem, F is a local di↵eomorphism on S. So at every p 2 S,
there exists a coordinate chart (Vp,�p) on which F is a di↵eomorphism. For all p, replace
Vp with ��1

p (B(�(p), ✏p)) for some small ✏p. Notice that
S

p2S Vp covers S, and since S is

compact, there exists Vp1 , . . . , Vpn such that S ⇢
Sn

i=1 Vpi =: V . Then V =
Sn

i=1 Vpi is

compact since it is a closed subset of a compact space.

Now for all p 2 S, choose ✏0p small enough so that V 0
p := ��1

p (B(�p(p), ✏0p)) ✓ V . Define

V 0
:= [p2SV 0

p ✓ V . Note that V 0 ⇢ V , and hence V 0 is compact.

We want to show that there exists some open set U containing S and contained in V on

which F is injective. Then, by the inverse function theorem, F will be a di↵eomorphism on

U . To that end, suppose such a U does not exist. Then for all U containing S and contained

in V , there exists distinct x, y 2 U such that F (x) = F (y). In light of this, we define

Un =

[

p2S

��1
p

⇣
B
⇣
�p(p),

✏p
n

⌘⌘

for all n 2 N, where the ✏0ps are the same ones from before where V 0
p := ��1

p (B(�p(p), ✏0p)).

Notice that we have Un ⇢ Un ⇢ V 0 and Un ⇢ V . For all n, pick distinct xn, yn 2 Un such

that F (xn) = F (yn). So {(xn, yn)} is a sequence in the compact space
1 V 0 ⇥ V 0, and so

there exists a convergent subsequence {(xnk , ynk)} converging to some (x0, y0). Notice that

by construction of the Un’s, we have (x0, y0) 2 S ⇥ S. Then since F is continuous,

F (x0) = lim
k!1

F (xnk) = lim
k!1

F (ynk) = F (y0),

and since F is injective on S, we have x0 = y0. Now, there exists K 2 N such that for all

k � K, xnk , ynk 2 V 0
x0
. But F |V 0

x0
is a di↵eomorphism, and in particular, injective, and so

F (xnk) = F (ynk) for all k � K, a contradiction. K

1Tychono↵’s Theorem!

1
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Exercise 2. Suppose that F : M ! N is smooth. M is compact, N is connected, and

at every p 2 M , F⇤,p : TpM ! TF (p)N is an isomorphism. Prove that F is a covering

projection.

Proof. Since M is compact and nonempty, N is connected and Hausdor↵, and F is contin-

uous and open, then F is surjective.

Since F⇤,p is an isomorphism for all p 2 M , then dimM = dimN ; say dimM = n. Since
F is a submersion on all of M , then in particular, no point of N is a critical value of F .

Hence every point of N is a regular value of F . So if b 2 N , then by the Regular Level Set

Theorem, S := F�1
({b}) ⇢ M is a regular submanifold of dimension n� n = 0, i.e., S is a

collection of points. Since N is Hausdor↵, the set {b} is closed, and since F is continuous,

S is closed. As a closed subset of a compact space, S is compact, and therefore S is a finite

collection of points.

For all p 2 S, since F⇤,p is an isomorphism, then F is locally invertible at p by the Inverse

Function Theorem, i.e., there exists a neighborhood Vp of p so that F : Vp ! F (Vp) is a

di↵eomorphism. Shrink each open set in the collection {Vp}p2S if necessary so that they

are disjoint to obtain {Up}p2S . Then S =
F

p2S Up.

Define U :=
F

p2S F (Up). Then U is a neighborhood of b and F�1
(U) =

F
p2S Up.

Moreover, F |Up is a di↵eomorphism for all p. Therefore F is a covering map.

K

2
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Exercise 3. Suppose that p : E ! B and q : E0 ! B are n-dimensional vector bundles,

where E,E0, B, p, q are all smooth. Suppose that F : E ! E0
is a smooth bundle map. That

is, q � F = p and for any b 2 B, F : p�1
(b) ! q�1

(b) is a linear isomorphism. Prove that F
is a homeomorphism. Hint: You need to prove that the inverse is continuous, it su�ces to

do this in a trivialization.

Proof. We first show that F is bijective. Every e 2 E0
is in some fiber q�1

(b), and since

F (p�1
(b)) = q�1

(b), then F is surjective. If F (a) = F (b), then this point in E0
is in some

fiber q�1
(b) on which F is injective since F is an isomorphism, and hence a = b.

E E0

B

F

p q

Now by the hint, we need to show that F�1
is continuous, i.e., that F is an open map

in a trivialization. Let b 2 B, and let W and V be respective trivializing open sets at b for

p and q. Then let U := W \ V and let ' : p�1
(U) ! U ⇥ Rn

and  : q�1
(U) ! U ⇥ Rn

be

the trivializations.

Define G : U ⇥Rn ! ⇥Rn
by  �F �'�1

. Then G�1
= ' �F�1 � �1

, and since ' and

 �1
are continuous, it follows that F�1

is continuous precisely when G�1
is continuous.

U ⇥ Rn p�1
(U) q�1

(U) U ⇥ Rn

U

'�1

⇡U

G

F

p q

 

⇡U

Let (x, v) 2 U ⇥ Rn
. Then G(x, v) = (x,A(x) · v) for some matrix A(x). We get that

G is the identity on the first component since '�1, F , and  are all linear isomorphisms on

the fibers and hence preserve base points. So G is also fiber-preserving.

Since '�1, F , and  are all smooth, then so is A : U ! GLn(R), which means A�1
:

U ! GLn(R) is also smooth. Then G�1
(y, w) = (y, (A(y))�1 · w). Since A�1

is smooth,

G�1
is smooth and so a fortiori, G�1

continuous.

K

3
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Exercise 4. Recall that a frame of a vector bundle p : E ! B is a collection of smooth

sections s1, . . . sn : B ! E, that is p�si = IdB , so that for every b 2 B, {s1(b), . . . , sn(b)} is

a basis for p�1
(b). Prove that p : E ! B is trivial if and only if it admits a smooth frame.

Proof. ()) Suppose p : E ! B is trivial; that is, there exists a smooth map f : E ! B⇥Rn

such that the following diagram commutes, (p = ⇡B � f)

E B ⇥ Rn

B

f

p ⇡B

and such that f is a linear isomorphism on each fiber; i.e., for each b 2 B, p�1
(b)

⇠�! {b}⇥Rn
.

Let e1, . . . , en be the standard basis for Rn
. For each i 2 {1, . . . , n} define

ei : B ! B ⇥ Rn
by b 7! (b, ei).

Then {ei}i defines a smooth frame over the vector bundle ⇡B : B ⇥ Rn ! B because:

⇡B � ei = 1B , and, for all b 2 B, the set {ei(b)}i = {(b, ei)}i forms a basis for the vector

space {b}⇥ Rn
.

Define si : B ! E by si = f�1 � ei for all i 2 {1, . . . , n}. Then si is smooth since both

f�1
and ei are smooth, and

p � si = p � f�1 � ei = ⇡B � ei = 1B ,

which means the si are sections of the vector bundle p : E ! B. Moreover, for all b 2 B
and for all i 2 {1, . . . , n},

si(b) = f�1
(ei) = f�1

(b, ei).

Since f is a linear isomorphism, it takes bases to bases, and hence {f�1
(b, ei)}i = {si(b)}i is

a basis for p�1
(b). Hence {si}i constitutes a smooth frame for the vector bundle p : E ! B.

E B ⇥ Rn

B

f

p ⇡B

si ei

(() Now suppose p : E ! B admits a smooth frame, say {si}i. Let e 2 E and p(e) = b.
Then {si(b)}i is a basis for the vector space p�1

(b) and so e can be written uniquely as

e =
P

aisi(b) for some ai 2 R. Define

f : E ! B ⇥ Rn
by e 7! (p(e), a1, . . . , an).

We first show that f is linear on the fibers of p. Let b 2 B and e, e0 2 p�1
(b) with

e =
P

aisi(b) and e0 =
P

cisi(b). For � 2 R,

f(e+ �e0) = f
⇣X

(ai + �ci)si(b)
⌘

= (b, a1 + �c1, . . . , an + �cn)

= (b, a1, . . . , an) + �(b, c1, . . . , cn)

= f(e) + �f(e0).

4
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Now if (b, a1, . . . , an) 2 B ⇥ Rn
, then

f
⇣X

aisi(b)
⌘
= (b, a1, . . . , an),

and so f is surjective. If f(e) = (b, 0, . . . , 0), then e =
P

0si(b) = 0, hence f is injective.

Finally, f is fiber-preserving because

⇡B(f(e)) = ⇡B(p(e), a1, . . . , an) = p(e),

i.e., p = ⇡B � f .
Finally, we show that f is smooth by showing that det(F⇤) 6= 0 in a trivializing open

set U . Then applying the Inverse Function Theorem, f is smooth on U . So, let � be the

trivialization of U and let {ti}i be the frame of �. That is, for e 2 p�1
(U), e =

P
aiti(p(e)).

Now, relative to the char �, we get

f⇤ =

0

@
I 0

⇤ TM

1

A

where TM stands for ”transition matrix”, which is the matrix which is the change of basis

matrix from U ⇥Rn
to U ⇥Rn

. Then det(F⇤) 6= 0. Therefore, f makes p : E ! B a trivial

bundle. K

5
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Exercise 5. There is an action of the group Z on R2
given by n.(x, y) = (x+ n, (�1)

ny).
Denote the quotient space Mob = R2/ ⇠.

1. Prove that p : Mob ! S1
given by p([x, y]) = e2⇡ix is well defined and continuous.

Proof. Let ⇠ be the relation (x, y) ⇠ (x0, y0) if and only if there exists n 2 Z such

that (x + n, (�1)
ny) = (x0, y0). Let q : R2 ! R2/ ⇠ be the quotient map induced by

this relation. Define f : R2 ! S1
by (x, y) 7! e2⇡ix. Suppose (x, y) ⇠ (x0, y0) with

(x+ n, (�1)
ny) = (x0, y0). Then

f(x0, y0) = e2⇡ix
0
= e2⇡i(x+n)

= e2⇡ixe2⇡in = e2⇡ix = f(x, y),

which means f is constant on the fibers above R2/ ⇠. Hence f descends to a map

f̃ : R2/ ⇠! S1
which makes the following diagram commute:

R2 S1

R2/ ⇠

q

f

f̃

So f = f̃ � q, and for all [x, y] 2 R2/ ⇠, we have

f̃([x, y]) = f(q�1
([x, y])) = e2⇡ix.

Notice that p = f̃ , which is well defined. Moreover, because f is continuous, then so

is p. K

2. Prove that p : Mob ! S1
is a line bundle by supplying local trivializations.

3. Prove that p : Mob ! S1
is not trivial by proving it has no nonvanishing sections. Use

the intermediate value theorem on [0, 1] where we map [0, 1] to S1
using exp(2⇡ix).

6
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Exercise 1. Let p : E ! B be a smooth n-plane bundle over the smooth manifold B. The

fibers p�1
(b) are all n-dimensional vector spaces over R. A metric on E is an assignment

of an innerproduct

< , >b: p
�1

(b)⇥ p�1
(b) ! R. (1)

This means the pairings < , >b are bilinear, symmetric and positive definite. Also the

pairings are required to vary smoothly. If U ⇢ B, a local frame is a collection of smooth

sections s1, . . . , sn : U ! E, so that at each b 2 U , s1(b), . . . , sn(b) are a basis for p�1
(b).

We form an n⇥ n matrix valued function g : U ! Mn(R) whose entries are

gij(c) =< si(c), sj(c) >c .

We say the metric is smooth if for every b 2 B there is U open with b 2 U and a local

frame s1, . . . , sn so that the entries of the matrix g are smooth functions on U .

Prove that if p : E ! B is a smooth n-plane bundle then it always admits a smooth

metric. Hint: Partition of unity. You need to check the convex sum of inner products is an

inner product.

Proof. We first argue that the vector bundle p : E ! B admits local frames, for the purpose

of defining local inner products, which will then help us to define a metric on all of E.

If (U,') is a trivialization of E over B, then the map ' : p�1
(U) ! U⇥Rn

(by definition)

causes the bundle p : p�1
(U) ! U to become trivial over U ; that is, the following diagram

commutes

p�1
(U) U ⇥ Rn

U

'

p ⇡U

and ' is a linear isomorphism on each fiber; i.e., for each b 2 U , p�1
(b)

⇠�! {b} ⇥ Rn
.

We saw in the previous homework that a trivial bundle always admits a smooth frame

{si}. In particular, we showed that si : U ! p�1
(U) is defined by si = '�1 � ei, where

ei : U ! U ⇥ Rn
is given by b 7! (b, ei) and where {ei} is the standard basis for Rn

.

For b 2 U , we want to define an inner product on p�1
(b). Well, we already have a

standard inner product (the dot product) on elements of Rn
and an isomorphism p�1

(b)
⇠�!

{b}⇥Rn
. It therefore seems reasonable to define an inner product < , >U on a fibers above

points in U in terms of the dot product in Rn
. To that end, if e, e0 2 p�1

(b), then we can

write e =
P

aisi(b) and e0 =
P

cisi(b) for unique ai, ci 2 R. Then

(⇡Rn � ')(e) = ⇡Rn('(e)) = ⇡Rn(b, c1, . . . , cn) = (c1, . . . , cn),

where ⇡Rn is projection onto Rn
. So we define < , >U,b by

< e, e0 >U,b= (⇡Rn � ')(e) · (⇡Rn � ')(e0) =
X

aici,

where · denotes the usual dot product in Rn
. Given this definition, we want to check that

1
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the entries gij(b) =< si(b), sj(b) >U,b are smooth functions on U :

< si(b), sj(b) >U,b = (⇡Rn � ')(si(b)) · (⇡Rn � ')(sj(b))
= (⇡Rn � ' � si)(b) · (⇡Rn � ' � sj)(b)
= (⇡Rn � ' � '�1 � ei)(b) · (⇡Rn � ' � '�1 � ej)(b)
= (⇡Rn � ei)(b) · (⇡Rn � ej)(b)
= ⇡Rn(b, ei) · ⇡Rn(b, ej)

= �ji .

Now that we’ve defined a metric locally on fibers above points in a trivializing open

set, we want to extend our definition to a global metric on all of E. First, cover B by

trivializing open sets {U↵}, and let {⇢↵} be a partition of unity subordinate to {U↵}.
Define < , >b: p�1

(b)⇥ p�1
(b) ! R on E by

< , >b:=

X

↵

⇢↵(b) < , >U↵=

X

↵, b2U↵

⇢↵(b) < , >U↵,b=

X

↵, b2U↵

< , >U↵,b

Then define a metric on E which assigns to each b 2 B the inner product < , >b. This

metric is positive definite since the sum of nonnegative scalings of positive definite inner

products is positive definite. This metric is symmetric since

< e, e0 >b=

X

↵, b2U↵

< e, e0 >U↵,b=

X

↵, b2U↵

< e0, e >U↵,b=< e0, e >b .

Finally, the metric is bilinear since

< e+ �e00, e0 >b =

X

↵, b2U↵

< e+ �e00, e0 >U↵,b

=

X

↵, b2U↵

< e, e0 >U↵,b + < �e00, e0 >U↵,b

=< e, e0 >b +� < e00, e0 > .

(And similarly for the second factor of the pairing). K

2
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Exercise 2. Suppose that F : M ! N is smooth and p : E ! N is a smooth bundle define

F ⇤E = {(m,~v) 2 M ⇥ E | F (m) = p(~v)}
Define p1 : F ⇤E ! M by p1(m,~v) = m. Use local trivializations U ⇢ N of p : E ! N to

build local trivializations on p1 : F ⇤E ! M so that the coordinate changes are smooth.

Proof. Let (U,') be a trivialization of E over N . Since F is continuous, F�1
(U) ✓ M is

open. We want to define a homeomorphism

 : p�1
1 (F�1

(U)) ! F�1
(U)⇥ Rn.

so that (F�1
(U), ) can serve as a local trivialization on p1 : F ⇤E ! M . To that end, we

make the following observation: If (m,~v) 2 p�1
1 (F�1

(U)), then

m = p1(m,~v) 2 F�1
(U),

i.e., F (m) 2 U . Hence p�1
(F (m)) ✓ p�1

(U) and since p(~v) = F (m), we have ~v 2
p�1

(p(v)) ✓ p�1
(U). Since ' is defined on p�1

(U), the above observation motives the

following definition for  :
 (m,~v) = (m,⇡Rn('(~v)).

Let ⇡M ,⇡E be projection onto M and E. Notice that  = (⇡M ,⇡Rn � ' � ⇡E), and since all

of the component functions of  are continuous, so is  . Now, we define  �1
and show that

it is continuous and that it is indeed an inverse for  . Let

 �1
: F�1

(U)⇥ Rn ! p�1
1 (F�1

(U))

be given by  �1
(k, ~u) = (k,'�1

(F (k), ~u)). Then as before,  �1
is continuous since all of

its component functions are continuous.

Interlude: We want to check that (k,'�1
(F (k), ~u)) is actually an element of p�1

1 (F�1
(U)) ✓

F ⇤E. Note that since '|p�1({F (k)}) : p
�1

({F (k)}) ! {F (k)}⇥ Rn
is a linear map, then

'�1
(F (k), ~u) 2 p�1

({F (k)}),
and hence p('�1

(F (k), ~u)) = F (k). In other words, the element (k,'�1
(F (k), ~u)) is indeed

in F ⇤E. Moreover,

p1(k,'
�1

(F (k), ~u)) = k 2 F�1
(U),

and so (k,'�1
(F (k), ~u)) is an element of p�1

1 (F�1
(U)).

Then we have:

( �  �1
)(n, ~u) =  (n,'�1

(F (n), ~u)) =
⇣
n,⇡Rn(F (n), ~u)

⌘
= (n, ~u).

Note that '(~v) = (p(~v),⇡Rn('(~v)). So,

( �1 �  )(m,~v) =  �1
⇣
m,⇡Rn('(~v))

⌘

=

✓
m,'�1

⇣
F (m),⇡Rn('(~v))

⌘◆

=

✓
m,'�1

⇣
p(~v),⇡Rn('(~v))

⌘◆
(F (m) = p(~v))

=

⇣
m,'�1

('(~v))
⌘

= (m,~v).

3
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Hence  is a homeomorphism. We now show that  is a linear isomorphism on the fibers

above F�1
(U); that is, if m 2 F�1

(U), then the map

 |p�1
1 ({m}) : p

�1
1 ({m}) ! {m}⇥ Rn

is a linear isomorphism. If (m,~v) 2 p�1
1 ({m}), then in particular p(~v) = F (m). So when we

consider the definition of  , we get that

 |p�1
1 ({m}) =

⇣
⇡M , (⇡Rn � ')|p�1({F (m)})

⌘
,

and hence  |p�1
1 ({m}) is a linear isomorphism since '|p�1({F (m)}) is a linear isomorphism.

Now, if {(U↵,'↵)} is a collection of trivializations of E over N , let {(F�1
(U↵), ↵)}

be a collection of homeomorphisms, where  ↵ corresponds to '↵ and is defined as in our

construction above. If F�1
(U↵), F�1

(U�) are two overlapping open sets in the collection

{(F�1
(U↵), ↵)}, we want to show that the coordinate change

 ↵ �  �1
� : F�1

(U↵ \ U�)⇥ Rn ! F�1
(U↵ \ U�)⇥ Rn

is smooth. Notice that

 ↵ �  �1
� =

⇣
⇡1,⇡Rn � '↵ � '�(F � ⇡1.⇡Rn)

⌘
,

We know that '↵ �'� is smooth. This shows that the component functions of  ↵ � �1
� are

smooth, and hence so is  ↵ �  �1
� .

K

4
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Exercise 3. Suppose that p : E ! B is a vector bundle. We say E0 ⇢ E is a subbundle

of dimension k if for every b 2 B, E0 \ p�1
(b) is a vector subspace of dimension k and for

each b 2 B there is U open with b 2 U and k smooth sections s1, . . . , sk : U ! E so that

for each c 2 U , s1(c), . . . , sk(c) form a basis of E0 \ p�1
(c). Prove that if E0

is a subbundle

of E there is a subbundle E00
of E so that E0 � E00

= E in the sense at each b 2 B,

(E0 \ p�1
(b))� (E00 \ p�1

(b)) = p�1
(b). Hint: Use a metric, and orthogonal projection into

the perpendicular.

Notice that the restriction of the projection map to a subbundle is a bundle in its own

right.

Proof. Let b 2 B. By the same argument employed at the outset of Exercise 1, the vector

bundle p : E ! B admits local frames; that is, there exists a neighborhood U of b so that

there exists n smooth sections si : U ! p�1
(U), 1  i  n, such that s1(b), . . . , sn(b) is

a basis for the vector space p�1
(b). Applying Gram-Schmidt orthogonalization, we assume

without loss of generality that s1(b), . . . , sn(b) is an orthonormal basis for p�1
(b) and that

s1(b), . . . , sk(b) form a basis of E0 \ p�1
(b).

By Exercise 1, we have a smooth metric defined on E. So, we define the orthogonal

complement of E0
in E:

E00
:= {e00 2 E | < e00, e0 >p(e00)= 0 for all e0 2 E0 \ (p�1

(p(e00))}.

Certainly we have (E0 \ p�1
(b)) + (E00 \ p�1

(b)) ✓ p�1
(b). Now if e 2 p�1

(b), then there

exists real numbers �i, 1  i  n so that e = �1s1(b) + · · ·+ �nsn(b). Define

e0 :=
kX

i=1

�isi(b) 2 E0 \ p�1
(b),

and e00 := e� e0. For notational brevity, let sj denote sj(b) in the next computation. Recall

that since s1, . . . , sn is an orthonormal basis, < si, sj >= �ji . For any j 2 {1, . . . , k}

< e00, sj >b =< e, sj >b � < e0, sj >b

=< e, sj >b ��1 < s1, sj >b � · · ·� �j < sj , sj >b � · · ·� �k < sk, sj >b

=< e, sj >b ��j
= 0,

i.e., e00 2 E00 \ p�1
(b) and so e = e0 + e00 2 (E0 \ p�1

(b)) + (E00 \ p�1
(b)), which gives

(E0 \ p�1
(b)) + (E00 \ p�1

(b)) = p�1
(b) .

Finally, it follows from the definition of E00
that (E0 \ p�1

(b)) \ (E00 \ p�1
(b)) = {0}.

Hence we’ve shown (E0 \ p�1
(b))� (E00 \ p�1

(b)) = p�1
(b). K

5
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Exercise 4. Suppose that i : M ! N is the embedding of a smooth regular submanifold of

codimension k. Suppose further than TN has a smooth metric on it. Define the normal space

⌫p to Ti(p)(i(M)) to be the linear subspace of Ti(p)N that is perpendicular to Ti(p)(i(M)).

The normal bundle ⌫ is the subbundle of i⇤TN whose fiber over p is ⌫p. Prove that i⇤TN =

(i⇤T (i(M)))� ⌫. Hint: Use the last problem.

Proof. We have the following diagram:

i⇤TN TN

M N

⇡1

⇡2

⇡

i

Let p 2 M . Since i⇤T i(M) and ⌫ are subbundles of i⇤TN , we want to use Exercise 3 to

show

⇡�1
1 (p) =

⇣
⇡�1
1 (p) \ i⇤T i(M)

⌘
�
⇣
⇡�1
1 (p) \ ⌫)

⌘
.

First, we consider the set

⇡�1
1 (p) = {(p,~v) 2 i ⇤ TN | ~v 2 TN, i(p) = ⇡(~v)}. (˝)

By definition of the map ⇡, we have that ~v 2 T⇡(~v)N for all ~v 2 TN . So if (p,~v) 2 ⇡�1
1 (p),

then ~v 2 Ti(p)N . Now since Ti(p)i(M) is a subspace of Ti(p)N , then we can write

Ti(p)N = Ti(p)i(M)� (Ti(p)i(M))
?
= Ti(p)i(M)� ⌫p.

In particular, if ~v 2 Ti(p)N , there exists unique elements v1 2 Ti(p)i(M) and v2 2 ⌫p such

that ~v = v1 + v2. So then (˝) becomes

⇡�1
1 (p) = {(p, v1 + v2) 2 i⇤TN | v1 2 Ti(p)i(M), v2 2 ⌫p, i(p) = ⇡(~v)}

= {(p, v1) + (p, v2) 2 i⇤TN | “—————————–”}

=

⇣
{p}⇥ Ti(p)i(M)

⌘
�
⇣
{p}⇥ ⌫p

⌘

=

⇣ �
⇡1|i⇤Ti(M)

��1
(p)

⌘
�

⇣
(⇡1|⌫)�1

(p)
⌘

=

⇣
⇡�1
1 (p) \ i⇤T i(M)

⌘
�
⇣
⇡�1
1 (p) \ ⌫)

⌘
.

K

6
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Exercise 5. Assume that M ⇢ RN
is a smooth regular submanifold, and that M is com-

pact. Let p : ⌫ ! M be the normal bundle. The elements of ⌫ consist or ordered pairs

(m,~v) where m 2 M and ~v 2 TmM?
. Define F : ⌫ ! RN

given by F (m,~v) = m + ~v.
Show that F can be restricted to an open subset U ⇢ ⌫ containing M as the zero section,

such that F |U is a di↵eomorphism onto an open neighborhood of M in RN
. Hint: Your last

homework.

The last exercise is the Regular Neighborhood Theorem Here we can make a tube

lemma type argument to show we can choose U so that in each fiber of ⌫ it is an open ✏
ball.

Proof. Define M0 := {(m, 0) | m 2 M} = s0(M) ⇢ ⌫, i.e., M0 is a copy of M in ⌫ as the

zero section. Notice that since the smooth section s0 is continuous and M is compact, then

so is M0. We want to show that the map F has the following properties: (1) F is smooth

on ⌫; (2) F |m0 is injective; (3) For m 2 M , F⇤,(m,0) : Tm,0⌫ ! TmRN
is an isomorphism.

Then using the first exercise of the previous homework, the result follows.

(1) follows from the fact that vector addition in RN
is smooth. (2) follows trivially

from the fact that m + 0 = n + 0 () m = n. For (3), it su�ces to show that locally

in a trivialization say ', we have (F � ')⇤,(m,0) is an isomorphism. To that end, we show

det((F � ')⇤,(m,0)) is nonzero. Then the inverse function theorem gives that (F � ')⇤,(m,0)

is an isomorphism. We have

F � '�1
: M ⇥ RN�k ! RN

where (m,w) 7! m+

⇣
(⇡2 � ')|p�1(m)

⌘�1
(w).

Now, defining '2 := ⇡2 � ', we have

(F � ')⇤,(m,0) =

0

@
Ik 0

⇤ ('2|p�1(m))
�1

1

A ,

and hence det(F � ')⇤,(m,0)) is nonzero. K

7
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Intro to Manifolds, Tu – End of Section Exercises

Exercise 15.9. Structure of a general linear group

(a) For r 2 R
⇥
:= R� {0}, let Mr be the matrix

2

6664

r

1

. . .

1

3

7775
= [r e1 e2 . . . en],

where e1, e2, . . . , en is the standard basis for R
n
. Prove that the map

f : GL(n,R) ! SL(n,R)⇥ R
⇥
,

A 7! (AM1/ detA, detA)

is a di↵eomorphism.

Proof. Since the component functions of f are matrix multiplication and the determi-

nant function, which are smooth, then f is smooth. Define a map

f
�1

: SL(n,R)⇥ R
⇥ ! GL(n,R),

(B, r) 7! (MrB).

Then f
�1

is smooth since it is defined by matrix multiplication and in an inverse for

f since

(f
�1 � f)(A) = f

�1
(AM1/ detA, detA) = MdetAAM1/ detA

= [detAe1 e2 . . . en][(A/ detA)e1 e2 . . . en]

= [Ae1 Ae2 . . . Aen]

= A,

(f � f�1
)(B, r) = f(MrB) = ((MrB)M1/ detMrB , detMrB)

= ((MrB)M1/r detB , detMrB)

= ([re1 e2 . . . en]B[(1/r)e1 e2 . . . en], r)

= ([rB1e1 B2e2 . . . B2en][(1/r)e1 e2 . . . en], r)

= (B, r).

K

1
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(b) Show that the center ofGL(2,R) is isomorphic to R
⇥
, corresponding to the subgroup of

scalar matrices, and that the center of SL(2,R)⇥R
⇥
is isomorphic to {±1}⇥R

⇥
. The

group R
⇥

has two elements of order 2, while the group {±1}⇥ R
⇥

has four elements

of order 2. Since their centers are not isomorphic, GL(2,R) and SL(2,R) ⇥ R
⇥

are

not isomorphic as groups.

Proof. An element of the center of GL(2,R) is a scalar multiple of the identity and

hence we define a map ' :

✓
a 0

0 a

◆
7! a, which is clearly bijective and is linear since

'

✓
a 0

0 a

◆✓
b 0

0 b

◆
= ab = '

✓
a 0

0 a

◆
'

✓
b 0

0 b

◆
.

Hence we have an isomorphism. Now, the center of SL(2,R)⇥R
⇥
are elements of the

form

✓✓
1 0

0 1

◆
, r

◆
and

✓✓
�1 0

0 �1

◆
, r

◆
for r 2 R

⇥
, which is clearly isomorphic to

{±1}⇥ R
⇥
. K

(c) Show that h : GL(3,R) ! SL(3,R)⇥R
⇥
given by A 7!

�
(detA)

�1/3
A, detA

�
is a Lie

group isomorphism.

Proof. We have

h(AB) =

⇣
(det(A) det(B))

�1/3
AB, det(A) det(B)

⌘

=

⇣
det(A)

�1/3
A, det(A)

⌘⇣
det(B)

�1/3
B, det(B)

⌘

= h(A)h(B),

and hence h is a homomorphism. If
�
(detA)

�1/3
A, detA

�
=
�
(detB)

�1/3
B, detB

�
,

then detA = detB and detA)
�1/3

A = detB)
�1/3

B, which together give A = B

and hence h is injective. Let (B, r) 2 SL(3,R) ⇥ R
⇥
. Then let A := r

1/3
B. Then

det(A) = r and

h(A) = (det(A)
�1/3

r
1/3

B, detA) = (r
�1/3

r
1/3

B, r) = (B, r).

K

Exercise 15.10. Orthogonal group

Show that the orthogonal group O(n) is compact by proving that it is a closed and bounded

subset of R
n⇥n

.

Proof. We have that O(n) is closed since it is the preimage of the closed set {I} of under the

continuous map A 7! AA
t
. If A = (aij) 2 O(n), then (AA

T
)jj =

Pn
k=1 ajkakj =

Pn
k=1 a

2
kj ,

and since AA
T
= I, then

Pn
k=1 a

2
kj = 1. Hence

||A|| =
 

nX

i=1

nX

k=1

a
2
kj

!1/2

=

 
nX

i=1

1)

!1/2

= n
1/2

,

and hence ||A|| is bounded. K

2
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Exercise 15.11. Special orthogonal group SO(2)

The special orthogonal group SO(n) is defined to be the subgroup of O(n) consisting of

matrices of determinant 1. Show that every matrix A 2 SO(2) can be written in the form

A =


a b

c d

�
=


cos ✓ � sin ✓

sin ✓ cos ✓

�

for some real number ✓. Then prove that SO(2) is di↵eomorphic to the circle S
1
.

Proof. Let A =


a b

c d

�
2 SO(3). Then

I = AA
T
=


a b

c d

� 
a c

b d

�
=


a
2
+ b

2
ac+ bd

ca+ db c
2
+ d

2

�
,

which gives a
2
+b

2
= 1 = c

2
+d

2
. So there exists ✓,� 2 [0, 2⇡) so that cos ✓ = a, � sin ✓ = b,

sin� = c, and d = cos�. Since ac+ bd = 0, we get

0 = cos ✓ sin�� sin ✓ cos� = sin(�� ✓),

which gives �� ✓ = 0, i.e., � = ✓. So A becomes

A =


cos ✓ � sin ✓

sin ✓ cos ✓

�
.

Conversely, we have


cos ✓ � sin ✓

sin ✓ cos ✓

� 
cos ✓ sin ✓

� sin ✓ cos ✓

�
=


cos

2
✓ + sin

2
✓ cos ✓ sin ✓ � sin ✓ cos ✓

sin ✓ cos ✓ � cos ✓ sin ✓ sin
✓
+cos

2
✓

�
= I,

and hence every matrix in SO(3) has the desired form. Now since every point in S
1
can be

written in the form cos
2
✓ + sin

2
✓, we define a map

f : SO(2) ! S
1

(cos ✓, sin ✓,� sin ✓, cos ✓) 7! (cos ✓, sin ✓),

where we are identifying the matrix


cos ✓ � sin ✓

sin ✓ cos ✓

�
with the 4-tuple (cos ✓, sin ✓,� sin ✓, cos ✓),

and a point p = cos
2
✓+sin

2
✓ 2 S

1
with the pair (cos ✓, sin ✓). Then f is simply the restric-

tion of the projection map on the first two factors, which is smooth. Then if we define

f
�1

: S
1 ! SO(2)

(cos ✓, sin ✓) 7! (cos ✓, sin ✓,� sin ✓, cos ✓),

then f
�1

is an inverse map for f . Then f
�1

= (⇡1,⇡2, `�1�⇡2,⇡1), where `�1 : R ! R is left

multiplication by �1. So f
�1

is smooth since all of its component functions are smooth. K

3
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Exercise 15.12. Unitary Group

The unitary group U(n) is defined to be

U(n) = {A 2 GL(n,C) | AT
A = I},

where A denotes the complex conjugate of A, the matrix obtained from A by conjugating

every entry of A : (A)ij = aij . Show that U(n) is a regular submanifold of GL(n,C) and

that dimU(n) = n
2
.

Proof. Using the map f : GL(n,C) ! GL(n,C) given by A 7! A
T
A, we have that f

�1
(I) =

U(n). Since U(n) is a subgroup of GL(n,C), f is continuous, and {I} is closed, then U(n)

is a closed subgroup, and hence an embedded Lie subgroup .

To find the dimension of U(n), we find the dimension of the tangent space at the identity.

Let X 2 TIU(n), and choose a curve c : (�✏, ✏) ! U(n) starting at I with c
0
(0) = X. Then

c(t)
T
c(t) = I for all t, and so applying the matrix product rule we have

0 = c0(t)
T
c(t) + c(t)

T
c
0
(t).

At t = 0 we have X
T
= �X. Thus X is skew-Hermitian. Since skew-Hermitian matrices

are completely determined by their entries in the upper triangle and their diagonal entries,

we have

#(matrix entries)�#(diagonal entries)

2
=

n
2 � n

2

complex numbers to choose for in the upper triangle, which is the same as choosing n
2 � n

real numbers. Now since we have X
T

= �X for all skew-Hermitian X, this means that

the diagonal entries must be purely imaginary. Hence we have n
2 � n + n = n

2
choices to

determine X. Hence the dimension of TIU(n) is n
2
and hence dimU(n) = n

2
. K

Exercise 15.15. Symplectic Group

Let H be the skew field of quaternions. The symplectic group Sp(n) is defined to be

Sp(n) = {A 2 GL(n,H) | AT
A = I},

where A denotes the quaternionic conjugate of A. Show that Sp(n) is a regular submanifold

of GL(n,H) and compute its dimension.

Proof. This proof is essentially the same as the one in Exercise 15.12, except when we

calculate the dimension of TISp(n):

Since skew-H matrices are completely determined by their entries in the upper triangle

and their diagonal entries, we have

#(matrix entries)�#(diagonal entries)

2
=

n
2 � n

2

quaternion numbers to choose for in the upper triangle, which is the same as choosing

4((n
2 � n)/2) = 2(n

2 � n) real numbers. Now since we have X
T
= �X for all skew-H X,

this means that the diagonal entries must be purely imaginary. The imaginary component of

elements in H consist of three components. Hence we have 2(n
2�n)+3n = 2n

2
+n choices to

determineX. Hence the dimension of TISp(n) is 2n
2
+n and hence dimSp(n) = 2n

2
+n. K
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Exercise 16.1. Skew-Hermitian matrices

A complex matrix X 2 C
n⇥n

is said to be skew-Hermitian if its conjugate transpose X
T

is equal to �X. Let V be the vector space of n ⇥ n skew-Hermitian matrices. Show that

dimV = n
2
.

Proof. See Exercise 15.12. K

Exercise 16.2. Lie algebra of a unitary group

Show that the tangent space at the identity I of the unitary group U(n) is the vector space

of n⇥ n skew-Hermitian matrices.

Proof. See Exercise 15.12. K

Exercise 16.3. Lie algebra of a symplectic group

Show that the tangent space at the identity I of the symplectic group Sp(n)subsetGL(n,H)

is the vector space of all n⇥ n quaternionic matrices X such that X
T
= �X.

Proof. See Exercise 15.15. K
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Intro to Manifolds, Tu – End of Section Exercises

Exercise 17.1. A 1-form on R2 � {(0, 0)}

Let the standard coordinates on R2
by x, y and let

X = �y
@

@x
+ x

@

@y
and Y = x

@

@x
+ y

@

@y

be vector fields on R2
. Find a 1-form ! on R2 � {(0, 0)} such that !(X) = 1 and !(Y ) = 0.

Solution:

Let ! =
�y

x2 + y2
dx+

x

x2 + y2
. Then

!(X) =

✓
�y

x2 + y2
dx+

x

x2 + y2

◆✓
�y

@

@x
+ x

@

@y

◆
=

(�y)2

x2 + y2
+

x2

x2 + y2
= 1

!(Y ) =

✓
�y

x2 + y2
dx+

x

x2 + y2

◆✓
x
@

@x
+ y

@

@y

◆
=

�yx

x2 + y2
+

xy

x2 + y2
= 0.

Exercise 17.4. Liouville form on the cotangent bundle

(a) Let (U,�) = (U, x1, . . . , xn
) be a chart on a manifold M , and let

(⇡�1U, �̃) = (⇡�1U, x1, . . . , xn, c1, . . . , cn)

be the induced chart on the cotangent bundle T ⇤M . Find a formula for the Liouville

form � on ⇡�1U in terms of the coordinates x1, . . . , xn, c1, . . . , cn.
Solution:

Let ⇡⇤
denote the dual of the di↵erential of the projection ⇡ : T ⇤M ! M , i.e.,

⇡⇤
= (⇡⇤)

_
. Let p 2 U and ! 2 T ⇤

pU . Then �!(p) = !p � ⇡⇤ = ⇡⇤
(!p). Let

! =
P

cidxi
. Now, using the fact that ⇡⇤

(dxi
) = d(⇡⇤xi

) = d(xi � ⇡) = dxi
, we have

�!(p) = ⇡⇤
(!p) = ⇡⇤

⇣X
cidx

i
⌘
=

X
ci⇡

⇤
(dxi

) =

X
cidx

i.

(b) Prove that the Liouville form � on T ⇤M is C1
. (Hint: Use (a) and Proposition 17.6)

Solution:

We can write �!(p) =
P

cidx
i
+
P

0dci. As coordinate functions, the coe�cients ci

are all smooth relative to the frame {dxi, dci} and so � is smooth.

1
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Exercise 18.2. Linearity of the pullback

Prove Proposition 18.9

Proposition 1. If F : M ! N is a C1
map. If !, ⌧ are k-forms on M and a is a real

number, then

(i) F ⇤
(! + ⌧) = F ⇤! + F ⇤⌧ ;

(ii) F ⇤
(a!) = aF ⇤!.

Proof. Let p 2 M and X1, . . . , Xk 2 TpM . Then

(F ⇤
(! + ⌧))p(X1, . . . Xk) = (! + ⌧)F (p)(F⇤,pX1, . . . , F⇤,pXk)

= (!F (p) + ⌧F (p))(F⇤,pX1, . . . , F⇤,pXk)

= !F (p)(F⇤,pX1, . . . , F⇤,pXk) + ⌧F (p)(F⇤,pX1, . . . , F⇤,pXk)

= (F ⇤!)p(X1, . . . Xk) + (F ⇤⌧)p(X1, . . . Xk).

(F ⇤
(a!))p(X1, . . . Xk) = (a!)F (p)(F⇤,pX1, . . . , F⇤,pXk)

= a(!F (p)(F⇤,pX1, . . . , F⇤,pXk))

= a(F ⇤!)p(X1, . . . Xk).

K

Exercise 18.3. Pullback of a wedge product

Prove Proposition 18.11

Proposition 2. If F : M ! N is a C1
map of manifolds and ! and ⌧ are di↵erential

forms on M , then

F ⇤
(! ^ ⌧) = F ⇤! ^ F ⇤⌧.

Proof. Let ! 2 ⇤
k
(T ⇤N) and ⌧ 2 ⇤

`
(T ⇤N). Let p 2 M and let X1, . . . , Xk, Xk+1, . . . , Xk+`

be in TpM . Then

F ⇤
(! ^ ⌧)p(X1, . . . , Xk+`) = (! ^ ⌧)F (p)(F⇤,pX1, . . . , F⇤,pXk+`)

= (!F (p) ^ ⌧F (p))(F⇤,pX1, . . . , F⇤,pXk+`)

=

X

�2Sk+`

(sgn�) !F (p)(F⇤,pX1, . . . , F⇤,pXk)⌧F (p)(F⇤,pXk+1, . . . , F⇤,pXk+`)

=

X

�2Sk+`

(sgn�) (F ⇤!)p(X1, . . . , Xk)(F
⇤⌧)p(Xk+1, . . . , Xk+`)

= ((F ⇤!)p ^ (F ⇤⌧)p))(X1, . . . , Xk, Xk+1, . . . , Xk+`)

= (F ⇤! ^ F ⇤⌧)p(X1, . . . , Xk, Xk+1, . . . , Xk+`).

K
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Exercise 18.8. Pullback by a surjective submersion

In Subsection 19.5, we will show that the pullback of a C1
form is C1

. Assuming this

fact for now, prove that if ⇡ : M̃ ! M is a surjective submersion, then the pullback map

⇡⇤
: ⌦

⇤
(M) ! ⌦

⇤
(M̃) is an injective algebra homomorphism.

Proof. Exercises 18.2 and 18.3 show that ⇡⇤
is an algebra homomorphism. Now, suppose

⇡⇤
(!) = 0 for ! 2 ⌦

⇤
(M). We want to show that ! ⌘ 0. That is, if q 2 M and Y1, . . . , Yk 2

TqM , then !q(Y1, . . . , Yk) = 0. Since ⇡ is surjective, there exists p 2 M̃ such that ⇡(p) = q.
Since ⇡⇤,p is surjective, there exists Xi 2 TpM̃ such that F⇤,pXi = Yi for all 1  i  k. So

0 = (⇡⇤!)p(X1, . . . , Xk) = !⇡(p)(⇡⇤,pX1, . . . ,⇡⇤,pXk) = !q(Y1, . . . , Yk),

as desired. Hence ⇡⇤
is an injective algebra homomorphism. K
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Exercise 19.1. Pullback of a di↵erential form

Let U be the open set ]0,1[⇥]0,⇡[⇥]0, 2⇡[ in the (⇢,�, ✓)-space R3
. Define F : U ! R3

by

F (⇢,�, ✓) = (⇢ sin� cos ✓, ⇢ sin� sin ✓, ⇢ cos�).

If x, y, z are the standard coordinates on the target R3
, show that

F ⇤
(dx ^ dy ^ dz) = ⇢2 sin� d⇢ ^ d� ^ d✓.

Solution:

We have

F ⇤
(dx) = d(F ⇤x) = d(x � F ) = d(⇢ sin� cos ✓) = sin� cos ✓ d⇢+ ⇢ cos� cos ✓ d�� ⇢ sin� sin ✓ d✓,

F ⇤
(dy) = d(F ⇤y) = d(y � F ) = d(⇢ sin� sin ✓) = sin� sin ✓ d⇢+ ⇢ cos� sin ✓ d�+ ⇢ sin� cos ✓ d✓,

F ⇤
(dz) = d(F ⇤z) = d(z � F ) = d(⇢ cos�) = cos� d⇢� ⇢ sin� d�.

Let’s do this:

F ⇤
(dx ^ dy ^ dz) = F ⇤dx ^ F ⇤dy ^ F ⇤dz

= (sin� cos ✓ d⇢+ ⇢ cos� cos ✓ d�� ⇢ sin� sin ✓ d✓)

^ (sin� sin ✓ d⇢+ ⇢ cos� sin ✓ d�+ ⇢ sin� cos ✓ d✓)

^ (cos� d⇢� ⇢ sin� d�)

= (sin� cos ✓)(⇢ sin� cos ✓)(�⇢ sin�) d⇢ ^ d✓ ^ d�

+ (⇢ cos� cos ✓)(⇢ sin� cos ✓)(cos�) d� ^ d✓ ^ d⇢

+ (�⇢ sin� sin ✓)(sin� sin ✓)(�⇢ sin�) d✓ ^ d⇢ ^ d�

+ (�⇢ sin� sin ✓)(⇢ cos� sin ✓)(cos�) d✓ ^ d� ^ d⇢

= �⇢2(sin3 � cos
2 ✓) d⇢ ^ d✓ ^ d�

+ (⇢2 cos2 � cos
2 ✓ sin�) d� ^ d✓ ^ d⇢

+ ⇢2 sin3 � sin
2 ✓ d✓ ^ d⇢ ^ d�

+ (�⇢2 sin� sin
2 ✓ cos2 � d✓ ^ d� ^ d⇢

= [⇢2(sin3 � cos
2 ✓) + (⇢2 cos2 � cos

2 ✓ sin�)

+ (⇢2 sin3 � sin
2 ✓) + (⇢2 sin� sin

2 ✓ cos2 �)] d⇢ ^ d� ^ d✓

= [⇢2 sin3 �(cos2 ✓ + sin
2 ✓) + ⇢2 sin� cos

2 �(cos2 ✓ + sin
2 ✓)] d⇢ ^ d� ^ d✓

= [⇢2 sin�(sin2 �+ cos
2 �)] d⇢ ^ d� ^ d✓

= ⇢2 sin� d⇢ ^ d� ^ d✓

WHEW! And there you have it!

4
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Exercise 19.2. Pullback of a di↵erential form

Let F : R2 ! R2
be given by

F (x, y) = (x2
+ y2, xy).

If u, v are the standard coordinates on the target R2
, compute F ⇤

(udu+ vdv).
Solution:

F ⇤
(udu+ vdv) = (F ⇤u)F ⇤du+ (F ⇤v)F ⇤dv

= (F ⇤u)dF ⇤u+ (F ⇤v)dF ⇤v

= (x2
+ y2)d(x2

+ y2) + (xy)d(xy)

= (x2
+ y2)(2xdx+ 2ydy) + (xy)(ydx+ xdy)

= (2x3
+ 3xy2)dx+ (2x2y + 2y3)dy.

Exercise 19.3. Pullback of a di↵erential form by a curve

Let ⌧ be the 1-form ⌧ = (�ydx+xdy)/(x2
+y2) on R2�{0} by �(t) = (cos t, sin t). Compute

�⇤⌧ . (This problem is related to Example 17.16 in that if i : S1 ,! R2 � {0} is inclusion,

then � = i � c and ! = i⇤⌧).
Solution:

Let a = �y/(x2
+ y2) and b = x/(x2

+ y2). Then

�⇤⌧ = �⇤
(adx+ bdy)

= (�⇤a)(d�⇤x) + (�⇤b)(d�⇤y)

= (a � �)(d(x � �)) + (b � �)(d(y � �))

=

✓
� sin t

cos2 t+ sin
2 t

◆
d(cos t) +

✓
cos t

cos2 t+ sin
2 t

◆
d(sin t)

= (� sin t)(� sin t)dt+ (cos t) cos tdt

= dt

Exercise 19.5. Coordinate functions and di↵erential forms

Let f1, . . . , fn
be C1

functions on a neighborhood U of a point p in a manifold of dimension

n. Show that there is a neighborhood W of p on which f1, . . . , fn
form a coordinate system

if and only if (df1 ^ · · · ^ dfn
)p 6= 0.

Proof. Define f := (f1, . . . , fn
) and let (U, x1, . . . , xn

) be a chart at p. Suppose there exists
an open set W with p 2 W ⇢ U so that (W, f1, . . . , fn

) is a coordinate system at p. Then

(W, f1, . . . , fn
) is a coordinate system at p () 9W ✓ U, p 2 W, f |W is a di↵eomorphism

() f : U ! Rn
is a locally invertible at p

() det[@f i/@xj
(p)] 6= 0

() (df1 ^ · · · ^ dfn
)p

= det[@f i/@xj
(p)]dx1 ^ · · · ^ dxn 6= 0

K
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Exercise 19.8. Nondegenerate 2-forms

A 2-covetor ↵ on a 2n-dimensional vector space V is said to be nondegenerate if ↵n
:=

↵ ^ · · · ^ ↵ (n times) is not the zero 2n-covector. A 2 form ! on a 2n-dimensional manifold

M is said to be nondegenerate if at every point p 2 M , the 2-covector !p is nondegenerate

on the tangent space TpM .

(a) Prove that on Cn
with real coordinates x1, y1, . . . , xnyn, the 2-form ! =

Pn
i=1 dx

i^dyi
is nondegenerate.

Proof. We have !n
=

 
nX

i=1

dxi ^ dyi
!

^ · · · ^
 

nX

i=1

dxi ^ dyi
!

.

The expanded product of !n
will be a sum of wedge products. A single summand

in !n
will be a wedge product corresponding to n choices: Each being a choice of

dxi ^ dyi. So a generic summand in !n
has the form

(dxi1 ^ dyi1) ^ (dxi2 ^ dyi2) · · · ^ (dxin ^ dyin),

for some choice of i1, i2, . . . , in. So !n
be will be a sum of nn

terms. However, a

summand in !n
is nonzero if and only if all of the dxij ^ dyij are distinct. This

corresponds to choosing i1, i2, . . . , in by a permutation in Sn. So, a generic nonzero

summand has the form
n̂

i=1

dx�(i) ^ dy�(i) (¿)

for some � 2 Sn. Hence

!n
=

X

�2Sn

n̂

i=1

dx�(i) ^ dy�(i). (¡)

Since each term in (¿) is a 2-form, we may commute terms without introducing a

change in sign. Hence we can reorder each summand in !n
so that the indices are in

increasing order, and rewrite (¿) as

n̂

i=1

dxi ^ dyi.

Hence (¡) becomes

!n
=

X

�2Sn

n̂

i=1

dxi ^ dyi = n!
n̂

i=1

dxi ^ dyi. (?)

K

(b) Prove that if � is the Liouville form on the total space T ⇤M of the cotangent bundle

of an n-dimensional manifold M , then d� is a nondegenerate 2-form on T ⇤M .

Solution:

Using the formula we found in Exercise 17.4(a) and using insight gained from Exercise

19.8(a), (in particular the formula in (?)), we have

(d�)n = d
⇣X

cidx
i
⌘n

=

⇣X
dci ^ dxi

⌘n
= n!

n̂

i=1

dci ^ dxi.

6
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Exercise 20.1. The limit of a family of vector fields

Let I be an open interval, M a manifold, and {Xt} a 1-parameter family of vector fields on

M defines for all t 6= t0 2 I. Show that the definition of limt!t0 Xt in (20.1), if the limit

exists is independent of coordinate charts.

Proof. Let (U, x1, . . . , xn
) and (V, y1, . . . , yn) be two overlapping charts in M about p. Then

for any t, we have

Xt|p =

X

i

ai(t, p)
@

@xi

�����
p

=

X

j

bj(t, p)
@

@yj

�����
p

.

Then for any k, applying both sides to xk
gives

ak(t, p) =

 
X

i

ai(t, p)
@

@xi

!
xk

=

0

@
X

j

bj(t, p)
@

@yj

1

Axk
=

X

j

bj(t, p)
@xk

@yj
(T)

Moreover, for any j, since @/@yj 2 TpU we have

@

@yj
=

X

i

ci
@

@xi
.

Then for any k, applying both sides to xk
gives

@xk

@yj
=

X

i

ci
@xk

@xi
= ck,

and so

@

@yj
=

X

i

@xi

@yj
@

@xi
. (Q)

Hence we have

lim
t!t0

Xt|p =

X

i

lim
t!t0

ai(t, p)
@

@xi

�����
p

=

X

i

lim
t!t0

0

@
X

j

bj(t, p)
@xi

@yj

�����
p

1

A @

@xi

�����
p

= lim
t!t0

X

j

bj(t, p)
X

i

@xi

@yj

�����
p

@

@xi

�����
p

= lim
t!t0

X

j

bj(t, p)
@

@yj

�����
p

.

Therefore the limit, if it exists, is independent of coordinate charts. K

7
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Exercise 20.3. Derivative of a smooth family of vector fields

Shew that the definition (20.3) of the derivative of a smooth family of vector fields on M is

independent of the chart (U, x1, . . . , xn
) containing p.

Proof. Using the same charts as in Exercise 20.1, by di↵erentiating both sides of (T) with

respect to t (and then evaluating at t0) we get

@ak

@t
(t0, p) =

X

j

@bj

@t
(t0, p)

@xk

@yj
.

(Note that we can do this since @xk/@yj does not depend on t). Hence we have by (Q)
 

d

dt

�����
t=t0

Xt

!

p

=

X

i

@ai

@t
(t0, p)

@

@xi

�����
p

=

X

i

0

@
X

j

@bj

@t
(t0, p)

@xk

@yj

�����
p

1

A @

@xi

�����
p

=

X

j

@bj

@t
(t0, p)

X

i

@xk

@yj

�����
p

@

@xi

�����
p

=

X

j

@bj

@t
(t0, p)

@

@yj

�����
p

.

Therefore the definition of the derivative of a smooth family of vector fields on M is inde-

pendent of coordinate charts. K

Exercise 20.7. F-Linearity and the Lie Derivative

Let ! be a di↵erential form, X a vector field, and f a smooth function on a manifold. The

Lie derivative LX! is not F-linear in either variable, but prove that is satisfies the following

identity:

LfX! = fLX! + df ^ ◆X!.

Proof. Starting with Cartan’s Magic Formula, we have

LfX! = d(◆fX!) + ◆fX(d!)

= d(f ◆X!) + f ◆X(d!) (◆fX = f ◆X)

= df ^ ◆X! + fd(◆X!) + f ◆X(d!)

= df ^ ◆X! + f(d(◆X!) + ◆X(d!))

= df ^ ◆X! + fLX!. (By Cartan’s Magic Formula)

K

8
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Exercise 20.9. Interior multiplication on Rn

Let ! = dx1 ^ · · ·^ dxn
be the volume of a form and X =

P
xi@/@xi

the radial vector field

on Rn
. Compute the contraction ◆x!.

Solution:

For any j,

◆Xdxj
= dxi

(X) = dxj
⇣X

xi@/@xi
⌘
= xj .

Then by the formula in Proposition 20.7,

◆X! = ◆X(dx1 ^ · · · ^ dxn
) =

nX

i=1

(�1)
i�1dxi

(X)dx1 ^ · · · ^ ˆdxi ^ · · · ^ dxn

=

nX

i=1

(�1)
i�1xidx1 ^ · · · ^ ˆdxi ^ · · · ^ dxn.

Exercise 20.10. The Lie derivative on the 2-sphere

Let ! = xdy ^ dz � ydx^ dy+ zdx^ dy and X = �y@/@x+ x@/@y on the unit 2-sphere S2

in R3
.

Solution:

First we compute LXx,LXy, and LX(z � y):

LXx = Xx =

✓
�y

@

@x
+ x

@

@y

◆
x = �y,

LXy = Xy =

✓
�y

@

@x
+ x

@

@y

◆
y = x,

LXz = Xy =

✓
�y

@

@x
+ x

@

@y

◆
z = 0,

LX(z � y) = X(z � y) =

✓
�y

@

@x
+ x

@

@y

◆
(z � y) = �x.

Now,

LX! = LX(xdy ^ dz + (z � y)dx ^ dy)

= LX(xdy ^ dz) + LX((z � y)dx ^ dy)

=

h
(LXx)dy ^ dz + xLX(dy ^ dz)

i
+

h
(LX(z � y))dx ^ dy + (z � y)LX(dx ^ dy)

i

=

h
(LXx)dy ^ dz

i
+ x
h
(LXdy) ^ dz + dy ^ (LXdz)

i

+

h
(LX(z � y))dx ^ dy

i
+ (z � y)

h
(LXdx) ^ dy + dx ^ (LXdy)

i

=

h
(LXx)dy ^ dz

i
+ x
h
d(LXy) ^ dz + dy ^ d(LXz)

i

+

h
(LX(z � y))dx ^ dy

i
+ (z � y)

h
d(LXx) ^ dy + dx ^ d(LXy)

i

=

h
(�y)dy ^ dz

i
+ x
h
d(x) ^ dz + dy ^ d(0)

i

+

h
(�x)dx ^ dy

i
+ (z � y)

h
d(�y) ^ dy + dx ^ d(x)

i

= �ydy ^ dz + xdx ^ dz � xdx ^ dy.

9
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Intro to Manifolds, Tu – End of Section Exercises

Exercise 21.3. Equivalence of oriented atlases

Show that the relation in Definition 21.11 is an equivalence relation.

Definition 1. Two oriented atlases {(U↵,�↵)} and {(V� , �)} on a manifold M are said
to be equivalent if the transition functions

�↵ �  �1
� :  �(U↵ \ V�) ! �↵(U↵ \ V�)

have positive Jacobian determinant for all ↵,�.

Proof. Reflexivity : If {(U↵,�↵)} is an oriented atlas, then for any two overlapping charts
(U↵,�↵) = (U↵, x1, . . . , xn) and (U� ,��) = (U� , y1, . . . , yn) , we have by definition of ori-
ented atlas that

det


@xi

@yj

�
> 0

everywhere on U↵\U� . Let r1, . . . , rn be the standard coordinates in Rn. Then (�↵��
�1
� )i =

ri � �↵ � ��1
� = xi

� �� . So for any point p 2 U↵ \ U� we have

@(�↵ � ��1
� )i

@rj
(��(p)) =

@(ri � �↵ � ��1
� )

@rj
(��(p)) =

@(xi
� ��1

� )

@rj
(��(p)) =

@xi

@yj
(p),

where the last equality follows by definition of the partial derivative of the coordinate func-
tions xi : U� ! R with respect to the coordinates yj . Hence we have

det

"
@(�↵ � ��1

� )i

@rj

#
= det


@xi

@yj

�
> 0

everywhere on U↵ \ U� .
Symmetry : Suppose {(U↵,�↵)} ⇠ {(V↵, �)}. If (U↵, x1, . . . , xn) and (V� , y1, . . . , yn)

are two overlapping charts, then

det

"
@(�↵ �  �1

� )i

@rj

#
= det


@xi

@yj

�
> 0

everywhere on U↵ \ V� . But then

det


@( � � ��1

↵ )i

@rj

�
= det


@yi

@xj

�
= det


@xi

@yj

�T
> 0,

and hence {(V↵, �)} ⇠ {(U↵,�↵)}.
Transitivity : Suppose {(U↵,�↵)} ⇠ {(V↵, �)} and {(V� , �)} ⇠ {(W� , ✓�)}. If (U↵, x1, . . . , xn),

(V� , y1, . . . , yn), and (W� , z1, . . . , zn) are overlapping charts, then

det

"
@(�↵ �  �1

� )i

@rj

#
= det


@xi

@yj

�
> 0 and det

"
@( � � ✓�1

� )i

@rj

#
= det


@yi

@zj

�
> 0.

Since �↵ � ✓�1
� = (�↵ �  �1

� ) � ( � � ✓�1
� ), then

det

"
@(�↵ � ✓�1

� )

@ri

#
= det

"
@xi

@yj

�����
@yi

@zj

#
> 0,

and so {(U↵,�↵)} ⇠ {(W� , ✓�)}. K

1
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Exercise 21.4. Orientation-preserving di↵eomorphisms

Let F : (N, [!N ]) ! (M, [!M ]) be an orientation-preserving di↵eomorphism. If {(V↵, ↵)} =
{(V↵, y1↵, . . . , y

n
↵)} is an oriented atlas on M that specifies the orientation on M , show that

{(F�1V↵, F ⇤ ↵)} = {(F�1V↵, F 1
↵, . . . , F

n
↵ )} is an oriented atlas on N that specifies the

orientation of N , where F i
↵ = yi↵ � F .

Proof. We first show that the atlas {(F�1V↵, F ⇤ ↵)} is orientable. Suppose (F�1V↵, F ⇤ ↵) =
(F�1V↵, (x1

↵ �F ), . . . , (xn
↵ �F ) and (F�1V� , F ⇤ �) = (F�1V� , (y1� �F ), . . . , (yn� �F )) are two

overlapping charts in N . Then

@(F ⇤ ↵)i

@(F ⇤ �)j
=
@((F ⇤ ↵) � (F ⇤ �)�1)i

@rj
=
@xi

↵ � F � F�1
� yi�

@rj
=
@(xi

↵ � yi�)

@rj
=
@xi

↵

@yj�
,

and so

det


@(F ⇤ ↵)i

@(F ⇤ �)j

�
= det

"
@xi

↵

@yj�

#
> 0.

Now, the oriented atlas {(V↵, ↵)} = {(V↵, y1↵, . . . , y
n
↵)} determines an orientation on M ,

given by µM := [(@/@y1↵, . . . , @/@y
n
↵)]. The orientation µM is associated to the equivalence

class of the nowhere vanishing n-form !M on M . Hence we have

!M (@/@y1↵, . . . , @/@y
n
↵) > 0.

We need to show that the atlas {(F�1V↵, F ⇤ ↵)} = {(F�1V↵, (y1↵ � F ), . . . , (yn↵ � F ))}
on N specifies the orientation of N . That is, we need to show

!N

✓
@

@(y1↵ � F )
, . . . ,

@

@(yn↵ � F )

◆
> 0. (¡)

Let (V↵, y1↵, . . . , y
n
↵) be a chart about a point q 2 M . Then the chart (F�1V↵, (y1↵ �

F ), . . . , (yn↵ � F )) contains p := F�1(q). Recall that {@/@yi↵|q}
n
i=1 is a basis for TqM and

{@/@(yi↵ � F )|p}ni=1 is a basis for TpN . So for some real numbers akj , we have

F⇤,p

0

@ @

@(yj↵ � F )

�����
p

1

A =
X

k

akj
@

@yk↵

�����
q

. (»)

Applying both sides to yi↵, we find that

aij =

0

@
X

k

akj
@

@yi↵

�����
q

1

A yi↵ = F⇤,p

0

@ @

@(yj↵ � F )

�����
p

1

A yi↵ =
@

@(yj↵ � F )

�����
p

(yi↵ � F ) = �ij .

So our equation in (») becomes

F⇤,p

0

@ @

@(yj↵ � F )

�����
p

1

A =
X

i

�ij
@

@yi↵

�����
q

=
@

@yj↵

�����
q

.

2
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Since F is orientation preserving, then [F ⇤!M ] = [!N ]. So there exists a smooth function
f > 0 on M such that fF ⇤!M = !N . Now, we have the following:

!N

0

@ @

@(y1↵ � F )

�����
p

, . . . ,
@

@(yn↵ � F )

�����
p

1

A = f(F ⇤!M )p

0

@ @

@(y1↵ � F )

�����
p

, . . . ,
@

@(yn↵ � F )

�����
p

1

A

= f!M

0

@F⇤,p

0

@ @

@(y1↵ � F )

�����
p

1

A , . . . , F⇤,p

0

@ @

@(yn↵ � F )

�����
p

1

A

1

A

= f!M

0

@ @

@y1↵

�����
q

, . . . ,
@

@yj↵

�����
q

1

A > 0,

which gives (¡).
K

Exercise 21.5. Orientation-preserving or orientation-reversing di↵eomorphisms

Let U be the open set (0,1) ⇥ (0, 2⇡) in the (r, ✓)-plane R2. We define F : U ⇢ R2
! R2

by F (r, ✓) = (r cos ✓, r sin ✓). Decide whether F is orientation-preserving or orientation-
reversing as a di↵eomorphism onto its image.
Solution:

Using Proposition 21.8, F is orientation preserving if and only if

det

2

6664

@F 1

@dr

@F 1

@d✓

@F 2

@dr

@F 2

@d✓

3

7775
= det


cos ✓ �r sin ✓
sin ✓ r cos ✓

�
= r cos2 ✓ + r sin2 ✓ = r

is everywhere positive on U . Since r 2 (0,1), F is orientation preserving.

3
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Exercise 21.6. Orientability of a regular level set in Rn+1

Suppose f(x1, . . . , xn+1) is a C1 function on Rn+1 with 0 as a regular value. Show that
the zero set of f is an orientable submanifold of Rn+1. In particular, the unit n-sphere Sn

in Rn+1 is orientable.

Proof. By Theorem 21.5, the zero set of f is an orientable submanifold if and only if there
exists a C1 nowehere-vanishing n-form on M := f�1({0}). For each i, define the set

Ui = {p 2 Rn+1
| @f/@xi(p) 6= 0}.

Since 0 is a regular value of f , every point p 2 Rn+1 satisfies @f/@xi(p) 6= 0 for some i. So
{Ui}

n+1
i=1 is a cover of M . Define a top form ! on Ui by

! = (�1)i�1 dx
1
^ · · · ^ cdxi ^ · · · ^ dxn+1

@f/@xi
.

By the implicit function theorem, in a neighborhood of a point p 2 Ui, xi is a function of

x1, . . . , bxi, . . . , xn. It follows that x1, . . . , bxi, . . . , xn can be used as local coordinates, and
the n-form

(�1)i�1 dx
1
^ · · · ^ cdxi ^ · · · ^ dxn+1

@f/@xi

is C1 at p. Thus, ! is C1 on Ui and nowhere vanishing on M . K

Exercise 21.7. Orientability of a Lie group

Show that every Lie group G is orientable by constructing a nowhere-vanishing top form on
G.

Proof. *** This proof belongs to Alex Bates ***
Let e 2 G be the identity and let {X1

e , . . . , X
n
e } be a basis for TeG. Since for any g 2 G, left

multiplication `g is a di↵eomorphism, we have an isomorphism `g,⇤ : TeG ! TgG. Hence we
have a left-invariant vector fields {X1, . . . , Xn

} on G (and therefore smooth, by Prop 16.8)
given by Xi(e) = Xi

e for all 1  i  n. Let {↵1
e, . . . ,↵

n
e } be dual to {X1

e , . . . , X
n
e }. Define a

top form !e = ↵1
e ^ · · · ^ ↵n

e . Then for any g 2 G, we can define

!g := `⇤g�1(!e) = `⇤g�1(↵1
e ^ · · · ^ ↵n

e ).

Hence ! is a top form on G. To see that ! is nowhere-vanishing, first note that `g,⇤�`g�1,⇤ =
1TeG. Now, for any g 2 G, we have

!g(X
1
g , . . . , X

n
g ) = (`⇤g�1!e)(`g,⇤X

1
e , . . . , `g,⇤X

n
e )

= !e(`g�1,⇤`g,⇤X
1
e , . . . , `g�1,⇤`g,⇤X

n
e )

= !e(X
1
e , . . . , X

n
e )

= ↵1
e ^ · · · ^ ↵n

e (X
1
e , . . . , X

n
e )

= det[↵i
e(X

i
e)]

= 1.

K

Exercise 21.8. Orientability of a parallelizable manifold

Show that a parallelizable manifold is orientable. (In particular, this shows again that every
Lie group is orientable.)

4
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*** I obtained solutions from the back of the book for all those
problems in Section 22 which had them. Sorry Jesse, I did not

manage my time well on this assignment.***

Exercise 22.4. Smooth outward-pointing vector field along the boundary

Show that the vector field X =
P
⇢↵X↵ defined in the proof of Proposition 22.10 is a

smooth outward-pointing vector field along @M .

Proof. Let p 2 @M and let (U, x1, . . . , xn) be a coordinate neighborhood of p. Write

X↵,p =
nX

i=1

ai(X↵,p)
@

@xi

�����
p

.

Then

Xp =
X

↵

⇢↵(p)X↵,p =
nX

i=1

X

↵

⇢↵(p)a
i(X↵,p)

@

@xi

�����
p

.

SinceX↵,p is outward pointing, the coe�cient an(X↵,p) is negative by Exercise 22.3. Because
⇢↵(p) � 0 for all ↵ with ⇢↵(p) positive for at lest on ↵, the coe�cient

P
↵ ⇢↵(p)a

i(X↵,p) of
@/@xn

|p in Xp is negative. Again by Exercise 22.3, this proves that Xp is outward pointing.
The smoothness of the vector field X follows from the smoothness of the partition of

unity ⇢↵ and of the coe�cient functions ai(X↵,p) as functions of p. K

Exercise 22.5. Boundary orientation

Let M be an oriented manifold with boundary, ! an orientation form for M , and X a C1

outward-pointing vector field along @M .

(a) If ⌧ is another orientation form on M , then ⌧ = f! for a C1 everywhere-positive
function f on M . Show that ◆X⌧ = f ◆X! and therefore, ◆X⌧ ⇠ ◆X! on @M . (Here
“⇠” is the equivalence relation defined in Subsection 21.4.)
Solution: Since ◆X is C1(M)-linear, we have ◆X⌧ = ◆X(f!) = f ◆X!.

(b) Prove that if Y is another C1 outward-pointing vector field along @M , then ◆X! ⇠

◆Y ! on @M .

Proof. By Proposition 22.11, both ◆X! and ◆Y ! are smooth nowhere vanishing (n�1)-
forms on @M , i.e., ◆X!, ◆Y ! 2 ⇤n�1(T ⇤@M). Since @M is an (n � 1)-dimensional
manifold, both ◆X! and ◆Y ! are top dimensional forms on @M , and hence ◆X! = f ◆Y !
for some nowhere-vanishing f 2 C1(M). K

5
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Exercise 22.6. Induced atlas on the boundary

Assume n � 2 and let (U,�) and (V, ) be two charts in an oriented atlas of an orientable
n- manifold M with boundary. Prove that if U \ V \ @M 6= ?, then the restriction of the
transition function  � ��1 to the boundary B := �(U \ V ) \ @Hn,

( � ��1)|B : �(U \ V ) \ @Hn
!  (U \ V ) \ @Hn,

has positive Jacobian determinant. (Hint: Let � = (x1, . . . , xn) and  = (y1, . . . , yn). Show
that the Jacobian matrix of  ���1 in local coordinates is block triangular with J( ���1)|B

and
@yn

@xn
as the diagonal blocks, and that

@yn

@xn
> 0.) Thus, if {(U↵,�↵)} is an oriented atlas

for a manifold M with boundary, then the induced atlas {(U↵ \ @M,�↵|U↵\@M )} for @M is
oriented.

Proof. Let r1, . . . , rn be the standard coordinates on the upper half-space H
n. As a short-

hand, we write a = (a1, . . . , an1) for the first n1 coordinates of a point in H
n. Since the

transition function
 � ��1 : �(U \ V ) !  (U \ V ) ⇢ H

n

takes boundary points to boundary points and interior points to interior points, (i) (rn � �

��1)(a, 0) = 0 and (ii) (rn � � ��1)(a, t) > 0 for t > 0, where (a, 0) and (a, t) are points in
�(U \ V ) ⇢ H

n.
Let xj = rj � � and yi = ri � � be the local coordinates on the charts (U,�) and (V, )

respectively. In particular, yn � ��1 = rn �  � ��1. Di↵erentiating (i) with respect to rj

gives

@yn

@xj

�����
��1(a,0)

=
@(yn � ��1)

@rj

�����
(a,0)

=
@(rn �  � ��1)

@rj

�����
(a,0)

= 0 for j = 1, . . . , n� 1.

From (i) and (ii),

@yn

@xn

�����
��1(a,0)

=
@(yn � ��1)

@rn

�����
(a,0)

= lim
t!0+

(yn � ��1)(a, t)� (yn � ��1)(a, 0)

t

= lim
t!0+

(yn � ��1)(a, t)

t
� 0

since both t and (yn � ��1)(a, t) are positive.
The Jacobian matrix of J = [@yi/@xj ] of the overlapping charts U and V at a point

p = ��1(a, 0) in U \ V \ @M therefore has the form

J =

0

BBBBBBB@

@y1

@x1
· · ·

@y1

@xn�1

@y1

@xn

...
. . .

...
...

@yn�1

@x1
· · ·

@yn�1

@xn�1

@yn�1

@xn

0 · · · 0
@yn

@xn

1

CCCCCCCA

=

 
A ⇤

0
@yn

@xn

!

where the upper left (n� 1)⇥ (n� 1) block A = [@yi/@xj ]1i,jn�1 is the Jacobian matrix
od the induces charts U \ @M and V \ @M on the boundary. Since det J(p) > 0 and
@yn/@xn(p) > 0, we have detA(p) > 0. K

6
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Exercise 22.7. Boundary orientation of the left half-space

Let M be the left half-space

{(x1, . . . , xn) 2 Rn
| x1  0},

with orientation form dx1
^ · · · ^ dxn. Show that an orientation form for the boundary

orientation on @M = {(0, x2, . . . , xn) 2 Rn
} is dx2

^ ^dxn.
Unlike the upper half-space H

n, whose boundary orientation takes on a sign (Example
22.13), this exercise shows that the boundary orientation for the left half-space has no
sign. For this reason some authors use the left half-space as the model of a manifold with
boundary.

Proof. Because a smooth outward-pointing vector field along @M is @/@x1, by definition an
orientation form of the boundary orientation on @M is the contraction

◆@/@x1(dx1
^ dx2

^ · · · ^ dxn) = dx2
^ · · · ^ dxn.

K

Exercise 22.8. Boundary orientation on a cylinder

Let M be the cylinder S1
⇥ [0, 1] with the counterclockwise orientation when viewed from

the exterior. Describe the boundary orientation on C0 = S1
⇥ {0} and C1 = S1

⇥ {1}.
Solution:

Define f : R3
! R by f(x, y, z) = x2 + y2. Then M is a compact subset of the regular

submanifold f�1(1). (Since f⇤ = (2x 2y 0) fails to be surjective if and only if x = y = 0,
then 1 is a regular value of f .)

Now, the tangent space TpM at a point p 2 M can be identified with Ker df . We have
df = 2xdx+2ydy, and if Xp = a@/@x+b@/@+c@/@z 2 TpM , then 0 = df(Xp) = 2xa+2yb,
which is satisfied by a = �y and b = �x. Since df(@/@z) = 0, we have an ordered basis
{�y@/@x+ x@/@, @/@z} which gives the counterclockwise orientation of M .

Now, @/@z is an outward pointing vector on C1. We orient C1 by �x@/@y + y@/@x. To
check that this coincides with the orientation on M , we check by using the outward vector
first rule: ✓

@

@z
,�x

@

@y
+ y

@

@x

◆
⇠

✓
x
@

@y
� y

@

@x
,
@

@z

◆
,

and the latter is the orientation on M .
Similarly, �@/@z is an outward pointing vector on C0, and we orient C0 by x@/@y�y@/@x

and see that this coincides with the orientation on M since
✓
�
@

@z
, x

@

@y
� y

@

@x

◆
⇠

✓
x
@

@y
� y

@

@x
,
@

@z

◆
.

7
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Exercise 22.9. Boundary orientation on a sphere

Orient the unit sphere Sn in Rn+1 as the boundary of the closed unit ball. Show that on
orientation form on Sn is

! =
n+1X

i=1

(�1)i�1xidx1
^ · · · ^ cdxi ^ · · · ^ dxn+1,

where the caret b over dxi indicates that dxi is omitted. (Hint: An outward-pointing vector
field on Sn is the radial vector field X =

P
xi@/@xi. )

Proof. We have the standard orientation dx1
^ · · · ^ dxn+1 on Rn+1 and since the closed

unit ball is a subset of Rn+1, this form can be used to orient its boundary Sn. Using the
hint, an outward pointing vector field on Sn+1 is X =

P
xi@/@xi, and so an orientation

form on Sn is the contraction

! = ◆X(dx1
^ · · · ^ dxn+1) =

n+1X

i=1

(�1)i�1dxi(X)dx1
^ · · · ^ cdxi ^ · · · ^ dxn+1

=
n+1X

i=1

(�1)i�1xidx1
^ · · · ^ cdxi ^ · · · ^ dxn+1.

K
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Exercise 22.10. Orientation on the upper hemisphere of a sphere

Orient the unit sphere Sn in Rn+1 as the boundary of the closed unit ball. Let U be the
upper hemisphere U = {x 2 Sn

| xn+1 > 0}. It is a coordinate chart on the sphere with
coordinates x1, . . . , xn

(a) Find an orientation form on U in terms of dx1, . . . , dxn.
Solution:

As in Exercise 22.9, we have dx1
^ · · · ^ dxn+1 as an orientation form on the closed

unit ball. An outward pointing vector field on U is @/@xn+1, and so an orientation
form on U is

◆@/@xn+1(dx1
^ · · · ^ dxn+1) =

n+1X

i=1

(�1)i�1dxi(@/@xn+1)dx1
^ · · · ^ cdxi ^ · · · ^ dxn+1

= (�1)(n+1)�1dxn+1(@/@xn+1)dx1
^ · · · ^ dxn

= (�1)ndx1
^ · · · ^ dxn,

where the second equality follows from the fact that dxi(@/@xn+1) = �n+1
i .

(b) Show that the projection map ⇡ : U ! Rn,

⇡(x1, . . . , xn, xn+1) = (x1, . . . , xn),

is orientation-preserving if and only if n is even.

Proof. Let ! = (�1)ndx1
^ · · ·^dxn be the orientation form on U obtained in part (a).

Let ⌧ = dx1
^ · · ·^dxn be the standard orientation form on Rn. Note that ⇡(U) = D̊n,

where D̊n is the unit disk in Rn.

We want to check that the di↵eomorphism ⇡ : (U, [!]) ! (D̊n, ⌧) is orientation-
preserving when n is even. To that end, let p 2 U and let e1, . . . , en be a basis for
TpU . Since is a linear map, ⇡⇤ = ⇡, and so ⇡⇤(ei) = ei for all 1  i  n, (since ⇡ is
the identity on the first n coordinates). Then

!p(e1, . . . , en) = (�1)ndx1
^ · · · ^ dxn(e1, . . . , en)

and

(⇡⇤⌧)p(e1, . . . , en) = ⌧⇡(p)(⇡⇤,pe1, . . . ,⇡⇤,pen)

= ⌧p(e1, . . . , en)

= dx1
^ · · · ^ dxn(e1, . . . , en).

Hence [!] = [⇡⇤⌧ ] if and only if n is even. K

9
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Exercise 22.11. Antipodal map on a sphere and the orientability of RPn

(a) The antipodal map a : Sn
! Sn on the n-sphere is defined by

a(x1, . . . , xn+1) = (�x1, . . . ,�xn+1).

Show that the antipodal map is orientation-preserving if and only if n is odd.

Proof. Using the orientation form ! =
Pn+1

i=1 (�1)i�1xidx1
^· · ·^cdxi^· · ·^dxn+1 from

Exercise 22.9, we want to show that a : (Sn, [!]) ! (Sn, [!]) is orientation preserving,
i.e., that [a⇤!] = [!]. Let p 2 Sn and (e1, . . . , en+1) be a basis for TpSn. Note that
a⇤ = a and so a⇤(ei) = �ei for all 1  i  n+ 1. Then

(a⇤!)p(e1, . . . , en+1) = !a(p)(a⇤e1, . . . , a⇤en+1)

= !�p(�e1, . . . ,�en+1)

= (�1)n+1!(e1, . . . , en+1),

and so [a⇤!] = [!] if and only if n is odd. K

(b) Use part (a) and Problem 21.6 to prove that an odd-dimensional real projective space
RPn is orientable.

10
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Intro to Manifolds, Tu – End of Section Exercises

Exercise 23.4. Stokess theorem

Prove Stokes’s theorem for Rn and for Hn.

Proof. (Stokes’s theorem for Rn)
Let ! be an (n� 1)-form on Rn with compact support. Then ! will have the form

! =
X

i

fidx
1
^ · · · ^ dx

i�1
^ cdxi ^ dx

i+1
^ · · · ^ dx

n
.

Since ! has compact support in Rn, there exists a 2 R such that supp fi ( [�a, a]n for all
i. Then

d! =
X

i

X

j

@fi

@xj
dx

j
^ dx

1
^ · · · ^ cdxi ^ · · · ^ dx

n

=
X

i

@fi

@xi
dx

i
^ dx

1
^ · · · ^ cdxi ^ · · · ^ dx

n (wedge product is 0 unless j = i)

=
X

i

(�1)i�1 @fi

@xi
dx

1
^ · · · ^ dx

n
.

Since @Rn = ?, then
R
@Rn ! = 0. Notice that for each i, we have

Z
1

�1

@fi

@xi
dx

i =

Z a

�a

@fi

@xi
dx

i

= fi(. . . , x
i�1

, a, x
i+1

, . . . )� fi(. . . , x
i�1

,�a, x
i+1

, . . . ) (m)

= 0

since supp fi ( [�a, a]n. So

Z

Rn

d! =

Z

Rn

X

i

(�1)i�1 @fi

@xi
dx

1
^ · · · ^ dx

n

=
X

i

(�1)i�1

Z

Rn

@fi

@xi
dx

1
· · · dx

n

=
X

i

(�1)i�1

Z

Rn�1

Z
1

�1

✓
@fi

@xi
dx

i

◆
dx

1
· · · cdxi · · · dx

n

=
X

i

(�1)i�1

Z

Rn�1

(0)dx1
· · · cdxi · · · dx

n

= 0

which gives Stoke’s Theorem in Rn.

1
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(Stokes’s theorem for H
n)

We use the same (n� 1)-form ! from the first part and consider it as a form on H
n. Notice

that dxn
⌘ 0 on @H

n since @H
n is defined by the equation x

n = 0. So for i < n, we have

fidx
1
^ · · · ^ dx

i�1
^ cdxi ^ dx

i+1
^ · · · ^ dx

n
⌘ 0 on @H

n. So
Z

@Hn

! =

Z

@Hn

X

i

fidx
1
^ · · · ^ dx

i�1
^ cdxi ^ dx

i+1
^ · · · ^ dx

n

=
X

i

Z

@Hn

fidx
1
· · · cdxi · · · dx

n

=

Z

@Hn

fndx
1
· · · dx

n�1
.

On the other hand, first notice that we have

Z
1

0

@fn

@xn
dx

n =

Z a

0

@fn

@xn
dx

n = fn(x
1
, . . . , x

n�1
, a)� fn(x

1
, . . . , x

n�1
, 0)

= �fn(x
1
, . . . , x

n�1
, 0).

So

(�1)n�1

Z

Hn

@fn

@xn
dx

1
· · · dx

n = (�1)n�1

Z

Rn�1

✓Z
1

0

@fn

@xn
dx

n

◆
dx

1
· · · dx

n�1

= (�1)n�1

Z

Rn�1

✓Z a

0

@fn

@xn
dx

n

◆
dx

1
· · · dx

n�1

= (�1)n
Z

Rn�1

fn(x
1
, . . . , x

n�1
, 0)dx1

· · · dx
n�1

.

Then
Z

Hn

d! =

Z

Hn

X

i

(�1)i�1 @fi

@xi
dx

1
^ · · · ^ dx

n

=
X

i

(�1)i�1

Z

Hn

@fi

@xi
dx

1
· · · dx

n

=
n�1X

i

(�1)i�1

Z

Hn�1

✓Z
1

�1

@fi

@xi
dx

i

◆
dx

1
· · · cdxi · · · dx

n + (�1)n�1

Z

Hn

@fn

@xn
dx

1
· · · dx

n�1

= 0 + (�1)n�1

Z

Hn

@fn

@xn
dx

1
· · · dx

n�1 (by (m) applied to all i < n)

= (�1)n
Z

Rn�1

fn(x
1
, . . . , x

n�1
, 0)dx1

· · · dx
n�1

=

Z

@Hn

fndx
1
· · · dx

n�1

where the last equality follows from the fact that (�1)nRn�1 is precisely @H
n with its

boundary orientation. K
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Exercise 23.5. Area form on the sphere S
2

Prove that the area form ! on S
2 in Example 23.11 is equal to the orientation form

xdy ^ dz � ydx ^ dz + zdx ^ dy

of S2 in Problem 22.9.

Proof. The area form in Example 23.11 is

! =

8
>>>>>>>>><

>>>>>>>>>:

dy ^ dz

x
for x 6= 0

dz ^ dx

y
for y 6= 0

dx ^ dy

z
for z 6= 0

We can describe S
2 as all the points in R3 which satisfy the equation x

2 + y
2 + z

2 = 1.
Taking the exterior derivative of this equation and dividing by 2 we obtain xdx+ydy+zdz =
0. So, dx = (�ydy � zdz)/x, which gives

dx ^ dy =
z

x
dy ^ dz and dx ^ dz =

�y

x
dy ^ dz.

So

xdy ^ dz � ydx ^ dz + zdx ^ dy = xdy ^ dz +
y
2

x
dy ^ dz +

z
2

x
dx ^ dy

= x+
y
2

x
+

z
2

x
dy ^ dz

=
x
2

x
+

y
2

x
+

z
2

x
dy ^ dz

=
dy ^ dz

x

when x 6= 0. Similarly we obtain the other equations describing ! when y 6= 0 and z 6= 0. K

3
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Exercise 24.1. Nowhere-vanishing 1-forms

Prove that a nowhere-vanishing 1-form on a compact manifold cannot be exact.

Proof. We show the contrapositive statement. Let M be a compact manifold and suppose
! is an exact 1-form on M . Then there exists a smooth function f 2 C

1(M) such that
df = !. Since M is compact, f attains maximum (or minimum) value at on M by the
Extreme Value Theorem. Suppose f attains a maximum at p 2 M . Then ! = dfp = 0, and
so ! is not nowhere vanishing. K

Exercise 24.2. Cohomology in degree zero

Suppose a manifold M has infinitely many connected components. Compute its de Rham
cohomology vector space H

0(M) in degree 0. (Hint: By second countability, the number of
connected components of a manifold is countable.)

Proof. By the hint, the number connected components of M is countable. Since there are
no nonzero exact 0- forms on M , we have H

0(M) = Z
0(M) = {closed 0-forms}. Suppose f

is a closed 0-form on M and let (U, x1
, . . . , x

n) be a chart on M . Then

0 = df =
X

i

@f

@xi
dx

i
.

This means that the partial derivatives of f are all zero on U , i.e., f is constant on U .
Since f must be constant on each connected component of M , then f can be represented
by real-valued sequence: f = (a1, a2, a3, . . . ). Thus H0(M) = RN. K
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Vector Calculus, Colley – Exercises

Exercise 8.2.4. A robot arm is constructed in R3 by anchoring a rod of length 2 to the
origin (using a ball joint so that the rod may swivel freely) and attaching to the free end of
the rod another rod of length 1 (which may also swivel freely). Show that the set of states
of this robot arm may be described by a smooth parametrized 4-manifold in R6.

Solution:
A point (x1, y1, z1) in a state of the rod of length 2 can be described in spherical coordinates
by

(x1, y1, z1) = (2 sin'1 cos ✓1, 2 sin'1 sin ✓1, 2 cos'1).

Similarly, a point (x2, y2, z2) in a state of the rod of length 1 can be described by

(x2, y2, z2) = (x1 + 2 sin'2 cos ✓2, y1 + 2 sin'2 sin ✓2, z1 + 2 cos'2)

= (2 sin'1 cos ✓1 + 2 sin'2 cos ✓2, 2 sin'1 sin ✓1 + 2 sin'2 sin ✓2, 2 cos'1 + 2 cos'2).

Let D = [0,⇡]⇥ [0, 2⇡)⇥ [0,⇡]⇥ [0, 2⇡), and define a map X : D ! R6 by

X('1, ✓1,'2, ✓2) = (x1, y1, z1, x2, y2, z2),

where x1, y1, z1, x2, y2, and z2 are as above. Then X is smooth since each of its component
functions are smooth.

We now show thatX in injective, except possibly on the boundary. SupposeX('1, ✓1,'2, ✓2) =
X('̃1, ✓̃1, '̃2, ✓̃2). This would imply that cos'1 = cos '̃1, and since '1, '̃1 2 [0,⇡], we
must have '1 = '̃1. This then yields 2 cos'2 = 2 cos '̃2 (from the last component),
which gives '2 = '̃2. Using these equations in the first and second components, we see
that ✓1 = ✓̃1 since we can restrict ourselves to values away from the boundary, i.e., on
(0,⇡)⇥ (0, 2⇡)⇥ (0,⇡)⇥ (0, 2⇡). Finally, the fourth and fifth components are deduced to

cos ✓2 = cos ✓̃2, and sin ✓2 = sin ✓̃2,

respectively, which gives ✓2 = ✓̃2. Then

T '1 =
@X

@'1
= (2 cos'1 cos ✓1, 2 cos'1 sin ✓1,�2 sin'1, 2 cos'1 cos ✓1, 2 cos'1 sin ✓1,�2 sin'1)

T ✓1 =
@X

@✓1
= (�2 sin'1, 2 sin'1 cos ✓1, 0,�2 sin'1, 2 sin'1 cos ✓1, 0)

T '2 =
@X

@'2
= (0, 0, 0, cos'2 cos ✓2, cos'2 sin ✓2,� sin'2)

T ✓2 =
@X

@✓2
= (0, 0, 0,� sin'2 sin ✓2, sin'2 cos ✓2, 0).

Now, consider the equation c1T '1 + c2T ✓1 + c3T '2 + c2T ✓2 = (0, 0, 0, 0, 0, 0). Because
we are concerned about linear independence of T '1 ,T ✓1 ,T '2 ,T ✓2 on an open neighborhood
of a point in X(D), we can again restrict ourselves to points away from the boundary.
First, notice that our equation gives �2c1 sin'1 = 0, which means c1 = 0 since sin'1 6= 0
for '1 2 (0,⇡). We then have �2c3 sin'2 = 0 and so c3 = 0. Then �2c2 sin'1 = 0 so
that c2 = 0, and then c4 = 0. Hence T '1 ,T ✓1 ,T '2 ,T ✓2 are linearly independent, which
completes the problem.

5



Nicholas Camacho Intro to Smooth Manifolds — Homework 10 April 24, 2017

Exercise 8.2.6. Let a, b, and c be positive constants and x : [0,⇡] ! R3 the smooth path
given by x(t) = (a cos t, b sin t, ct). If ! = bdx� ady + xydz, calculate

R
x !.

Solution:
First, we have

!x(t) = bdx� ady + ab cos t sin tdz and T t =
@T

@t
= (�a sin t, b cos t, c),

and so
!x(t)(T t) = �ab sin t� ab sin t+ abc cos t sin t.

Then
Z

x
! =

Z ⇡

0
!x(t)(Tt)dt =

Z ⇡

0
(�ab sin t� ab sin t+ abc cos t sin t)dt = �2ab.

Exercise 8.2.10. Consider the helicoid parametrized as

X(u1, u2) = (u1 cos 3u2, u1 sin 3u2, 5u2), 0  u1  5, 0  u2  2⇡.

Let S denote the underlying surface of the helicoid and let ⌦ be the orientation 2-form
defined in terms of X as

⌦ = ◆N (dx ^ dy ^ dz).

where N = (�5 sin 3u2, 5 cos 3u2,�3u1).

(a) Explain why the parametrization X is incompatible with ⌦.
Solution:

We have

T u1 = (cos 3u2, sin 3u2, 0) and T u2 = (�3u1 sin 3u2, 3u1 cos 3u2, 5),

and so

⌦X(u1,u2)(T u1 ,T u2) = (◆N (dx ^ dy ^ dz))X(u1,u2)(T u1 ,T u2)

= det

2

4
�5 sin 3u2 cos 3u2 �3u1 sin 3u2

5 cos 3u2 sin 3u2 3u1 cos 3u2

�3u1 0 5

3

5

= (�5 sin 3u2)(5 sin 3u2)� (5 cos 3u2)(5 cos 3u2)

� 3u1(3u1 cos
2 3u2 + 3u1 sin

2 3u2)

= �25� 9u2
1 < 0

and so the parametrization X is incompatible with ⌦ since ⌦X(u1,u2)(Tu1 , Tu2) < 0.

(b) Modify the parametrization X to one having the same underlying surface S but that
is compatible with ⌦.
Solution:

Define a parametrization X̃(u1, u2) := X(u2, u1). This corresponds to interchanging
columns 2 and 3 in the determinant computed in (a), and so ⌦X̃(u1,u2)

(T u1 ,T u2) > 0.

6
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(c) Alternatively, modify the orientation 2-form ⌦ to ⌦0 so that the original parametriza-
tion X is compatible with ⌦0.
Solution:

Define ⌦0 := ◆N (dy ^ dx ^ dz). This corresponds to interchanging the rows 1 and 2 in
the determinant computed in (a), and so ⌦0

X(u1,u2)
(T u1 ,T u2) > 0.

(d) Calculate
R
S !, where ! = zdx ^ dy � (x2 + y

2)dy ^ dz and S is oriented using ⌦.
Solution:

We have

!X(u1,u2) = 5u2dx ^ dy � (u2
1 cos

2 3u2 + u
2
1 sin

2 3u2)dy ^ dz,

T u1 =
@X

@u1
= (cos 3u2, sin 3u2, 0)

T u2 =
@X

@u2
= (�3u1 sin 3u2, 3u1 cos 3u2, 5).

Then

!X(u1,u2)(T u1 ,T u2) = 5u2 det


cos 3u2 �3u1 sin 3u2

sin 3u2 3u1 cos 3u2

�

� (u2
1 cos

2 3u2 + u
2
1 sin

2 3u2) det


sin 3u2 3u1 cos 3u2

0 5

�

= 15u1u2 � 5u2
1(sin 3u2 cos 3u2 + sin3 2u2).

Since the parametrization X is orientation-reversing (by part (a)), we have

Z

S
! = �

Z 2⇡

0

Z 5

0
!X(u1,u2)(T u1 ,T u2)du1du2.

So,

Z

S
! = �

Z 2⇡

0

Z 5

0
15u1u2 � 5u2

1(sin 3u2 cos 3u2 + sin3 3u2)du1du2

= �

Z 2⇡

0

✓
15

2
u
2
1u2

◆����
u1=5

u1=0

du2 +

Z 2⇡

0

Z 5

0
(5u2

1(sin 3u2 cos 3u2 + sin3 3u2)du1du2

= �
375

2

✓
u
2
2

2

◆����
u2=2⇡

u2=0

+ 0

= �375⇡2
.

7
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Exercise 8.2.11. Let M be the subset of R3 given by {(x, y, z) | x
2 + y

2
� 6  z 

4� x
2
� y

2
}. Then M may be parametrized as a 3-manifold via

X : D ! R3;X(u1, u2, u3) = (u1 cosu2, u1 sinu2, u3),

where

D = {(u1, u2, u3) 2 R3
| 0  u1 

p

5, 0  u2 < 2⇡, u2
1 � 6  u3  4� u

2
1}.

(a) Orient M by using the 3-form ⌦ = dx^dy^dz. Show that the parametrization, when
smooth, is compatible with this orientation.
Solution:

We have

T u1 =
@X

@u1
= (cosu2, sinu2, 0)

T u2 =
@X

@u2
= (�u1 sinu2, u1 cosu2, 0)

T u3 =
@X

@u3
= (0, 0, 1)

and

⌦X(u1,u2,u3)(T u1 ,T u2 ,T u3) = det

2

4
cosu2 �u1 sinu2 0
sinu2 u1 cosu2 0
0 0 1

3

5

= u1 cos
2
u2 + u1 sin

2
u2

= u1.

So when u1 > 0, X is compatible with the orientation form ⌦.

(b) Identify @M and parametrize it as a union of to 2-manifolds (i.e., as a piecewise smooth
surface).
Solution:

There are two pieces to @M : One which corresponds to when z = x
2 + y

2
� 6 and the

other when z = 4� x
2
� y

2. These intersect when x
2 + y

2 = 5, i.e., when z = �1. So
@M can be written

@M = {(x, y, z) | z = x
2 + y

2
� 6, z  �1} [ {(x, y, z) | z = 4� x

2
� y

2
, z � �1}.

Then we have parametrizations for each piece:

Y : [0,
p

5]⇥ [0, 2⇡) ! R3;Y (s1, s2) = (s1 cos s2, s1 sin s2, s
2
1 � 6)

and
Z : [0,

p

5]⇥ [0, 2⇡) ! R3;Y (s1, s2) = (s1 cos s2, s1 sin s2, 1� s
2
1).

8
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(c) Describe the outward-pointing unit vector V , varying continuously along each smooth
piece of @M , that is normal to @M . Give formulas for it in terms of the parametriza-
tions used in part (b).
Solution:

Let U and W be the two portions of @M , where U corresponds to Y and W corre-
sponds to Z from part (b).

Notice that U is a portion of the 0 level set of the function F : R2
! R, F (x, y) =

x
2+y

2
� z�6. Hence an outward pointing vector to U is rF = (2x, 2y,�1). Written

in terms of Y , (2s1 cos s2, 2s1 sin s2,�1).

Similarly, W is a portion of the 0 level set of the function G : R2
! R, G(x, y) =

x
2 + y

2 + z � 4. Hence an outward pointing vector to W is rG = (2x, 2y, 1). Written
in terms of Z, (2s1 cos s2, 2s1 sin s2, 1).

Exercise 8.2.13. Calculate
R
S ! where S is the portion of the cylinder x

2 + z
2 = 4 with

�1  y  3, oriented by the outward normal vector (x, 0, z), and ! = zdx ^ dy + e
y2

dz ^

dx+ xdy ^ dz.

Solution:
S can be parametrized by X : D ! R3, X(r, ✓) = (2 sin ✓, r, 2 cos ✓) where D = [�1, 3] ⇥
[0, 2⇡). Let N = (x, 0, z) and orient S by the 2-form ⌦ = ◆N (dx ^ dy ^ dz). Then

T r =
@X

@r
= (0, 1, 0)

T ✓ =
@X

@✓
= (2 cos ✓, 0,�2 sin ✓)

and

⌦X(r,✓)(T r,T ✓) = det

2

4
2 sin ✓ 0 2 cos ✓

0 1 0
2 cos ✓ 0 �2 sin ✓

3

5 = �4.

Hence X is orientation-reversing. Also,

!X(r,✓)(T r,T ✓) = 2 cos ✓ det


0 2 cos ✓
1 0

�
+ e

r2 det


0 � sin ✓
0 2 cos ✓

�
+ 2 sin ✓ det


1 0
0 �2 sin ✓

�

= �4.

Finally, Z

S
! = �

Z Z

D
!X(r,✓)(T r,T ✓) = �

Z 3

�1

Z 2⇡

0
�4 = 32⇡.
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Exercise 8.3.11. Verify the generalized Stokes’s theorem for the 3-manifold

M = {(x, y, z, w) 2 R4
| x = 8� 2y2 � 2z2 � 2w2

, x � 0}

and the 2-form ! = xydz ^ dw. (Hint: First compute
R
@M !).

Solution:
Using the hint, we first compute

R
@M !. We have

@M = {(x, y, z, w) 2 R4
| x = 0, 8 = 2y2 + 2z2 + 2w2

}.

So for (x, y, z, w) 2 @M , !(x,y,z,w) = 0. Hence
R
@M ! = 0.

We can parametrize M by the map X : B ! R4, X(u1, u2, u3) = (8 � 2u2
1 � 2u2

2 �

2u2
3, u1, u2, u3), where B = {(u1, u2, u3) | u

2
1 + u

2
2 + u

2
3  4}. Now

d! = ydx ^ dz ^ dw + xdy ^ dz ^ dw,

and

T u1 =
@X

@u1
= (�4u1, 1, 0, 0)

T u2 =
@X

@u2
= (�4u2, 0, 1, 0)

T u3 =
@X

@u3
= (�4u3, 0, 0, 1)

So

(d!)X(u1,u2,u3)(T u1 ,T u2 ,T u3) = u1 det

2

4
�4u1 �4u2 �4u3

0 1 0
0 0 1

3

5

+ (8� 2u2
1 � 2u2

2 � 2u2
3) det

2

4
1 0 0
0 1 0
0 0 1

3

5

= �4u2
1 + 8� 2(u2

1 � u
2
2 � u

2
3).

Switching to spherical coordinates, we get
Z

M
d! =

Z Z Z

B
d!(8� 2(u2

1 � u
2
2 � u

2
3)� 4u2

1)du1du2du3

=

Z 2⇡

0

Z ⇡

0

Z 2

0
(8� 2⇢2 � 4⇢2 sin2 ' cos2 ✓)⇢2 sin' d⇢d'd✓

=

Z 2⇡

0

Z ⇡

0

Z 2

0
(8⇢2 sin'� 2⇢4 sin'� 4⇢4 sin3 ' cos2 ✓)⇢2 sin' d⇢d'd✓

=

Z 2⇡

0

Z ⇡

0
[8/3(8) sin'� 2/5(32) sin'� 4/5(32)sin3

' cos ✓] d'd✓

= 8

Z 2⇡

0
[�8/3 cos'+ 8/5 cos']⇡0 d✓ �

4

5
(32)

Z 2⇡

0

Z ⇡

0
sin

3
' cos ✓ d'd✓

= 8(2⇡)
32

15
�

4

5
(32)

✓
4

3
⇡

◆

= 0.
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Chasing Chains with Chain Chasing Charlie

Suppose that the following diagram commutes and both rows are exact. Assume that
the first, second, fourth, and fifth vertical maps are isomorphisms and prove that the middle
vertical map is an isomorphism.

A B C D E

A
0

B
0

C
0

D
0

E
0

f

↵

g

�

h

�

i

� ✏

f 0 g0
h0 i0

Proof. Injectivity: Suppose �(c) = 0. Then 0 = h
0(�(c)) = �(h(c)) which means h(c) 2

Ker � = 0. Since Kerh = Im g, there exists b 2 B such that g(b) = c. Then g
0(�(b)) =

�(g(b)) = �(c) = 0, and so �(b) 2 Ker g0 = Im f
0. So there exists a

0
2 A

0 such that
f
0(a0) = �(b). Since ↵ is surjective, there exists a 2 A such that ↵(a) = a

0. Then �(f(a)) =
f
0(↵(a)) = f

0(a0) = �(b). Since � is injective , f(a) = b. Since Im f = Ker g, g(b) = 0, and
so c = g(b) = 0. Hence � is injective.

Surjectivity: Let c0 2 C
0. Since � is surjective, there exists d 2 D such that �(d) = h

0(c0).
Then ✏(i(d)) = i

0(�(d)) = i
0(h0(c0)) = 0 since h

0(c0) 2 Imh
0 = Ker i0. So i(d) 2 Ker ✏ = 0,

which means i(d) = 0 and so d 2 Ker i = Imh. So there exists c 2 C such that h(c) = d.
Then h

0(�(c0)) = �(h(c)) = �(d) = h
0(c0). So (�(c) � c

0) 2 Kerh0 = Imagg
0, which means

there exists b0 2 B
0 such that g0(b0) = �(c)�c

0. Since � is surjective , there exists b 2 B such
that �(b) = b

0. Then �(c)� c
0 = g

0(b) = g
0(�(b)) = �(g(b)), which implies �(c� g(b)) = c

0,
and hence � is surjective. K
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