
Homework for

Complex Analysis

Nicholas Camacho
Department of Mathematics

University of Iowa
Spring 2017

Most exercises are from
Functions of One Complex Variable I (2nd Edition) by Conway.

For example, “5.3.10” means exercise 10 from
section 3 of chapter 5 in Conway.

Beware: Some solutions may be incorrect!



Nicholas Camacho Complex Analysis — Homework 1 January 27, 2017

Exercise 1. Let 1  p < 1. Show that a closed, bounded subset S ✓ `p(N) is compact if

and only if it is equisummable in the sense that for every ✏ > 0 there exists an index N for

which
P1

k=N |xk|p < ✏ for all x = {xn} 2 S.

Proof. ()) Let ✏ > 0 and cover S with the collection {B(x, ✏)}x2S . Then there exists

x1, . . . , xk
so that S ✓

Sk
i=1 B(xi, ✏). Since x1, . . . , xn 2 `p(N), then for all i we have

||xi||pp =

1X

n=1

|xi
n|p < 1,

So for all i there exits Ni so that
P1

n=Ni
|xi

n|p < ✏. Define N := maxi{Ni}. Now let

y = {yn} 2 S. Then y 2 B(xi, ✏) for some i and then by the triangle inequality,

 1X

n=N

|yn|p
!1/p


 1X

n=N

|yn|p
!1/p

+

 1X

n=N

|xi
n|p
!1/p

< ✏+ ✏p

and so
P1

n=N |yn|p < (✏+ ✏p)p.
(() Let x`

be a point in S, and let x`
m denote its m-th term. Now, let {xn} =

{x1, x2, . . . } be a sequence in S. For ✏ > 0, since S is equisummable, we have an N so

that for all xj
in the sequence {xn},

1X

k=N

|xj
k|

p < ✏,

which gives that for any particular term xj
a in xj

for a � N ,

|xj
a| 

1X

k=N

|xj
k|

p < ✏.

In other words, each term xj
a of the sequence xj

is bounded. So, when we consider the col-

lection of a-th terms over all j, {x1
a, x

2
a, . . . } we have a bounded sequence! For convenience,

suppose N = 1.

Now, consider the collection of “first terms” {x1
1, x

2
1, x

3
1, . . . }. By the argument above,

this collection (sequence) is bounded, and therefore has a convergent subsequence, {xs(1,n)
1 }1n=1 !

a1. Now consider the collection of second terms {xs(1,n)
2 }1n=1. Again, this sequence is

bounded and therefore has a convergent subsequence, {xs(2,n)
2 } ! a2 where the indices

s(2, n) ✓ s(1, n). Continuing in this way, once we have the j-th subsequence for the j-

th terms constructed, {xs(j,n)
j }1n=1 ! aj , we consider the collection {xs(j,n)

j+1 }1n=1, which is

bounded and therefore has a convergent subsequence {xs(j+1,n)
j+1 } ! aj+1 where s(j+1, n) ✓

s(j, n). Setting nk := s(k, k), we get for all j

lim
k!1

xnk
j = aj ,

and so the subsequence {xn
1 , x

n
2 , . . . } of {xn} converges pointwise to the sequence {aj}1j=1.

K
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Exercise 2. Show that z1, z2, z3 2 C are colinear if and only if Im(z1z̄2 + z2z̄3 + z3z̄1) = 0.

Proof. We assume from the outset that z1, z2, and z3 are distinct.

()) Suppose z1, z2, z3 2 C are colinear. Then, there exists a t 2 R such that z3 =

z1t+ (1� t)z2. Let zj = aj + ibj for j = 1, 2, 3. Then

a3 = ta� 1 + a2 � ta2 and b3 = tb1 + b2 � tb2.

For k 6= j, we have Im(zkzj) = ajbk � akbj . So

Im(z1z̄2 + z2z̄3 + z3z̄1) = [a2b1 � a1b2] + [(ta1 + a2 � ta2)b2 � a2(tb1 + b2 � tb2)]

+ [a1(tb1 + b2 � tb2)� (ta1 + a2 � ta2)b1]

= a1(�b2 + tb2 + tb1 + b2 � tb2 � tb1)

+ a2(b1 + b2 � tb2 � tb1 � b2 + tb2 � b1 + tb1)

= 0

(() We have

0 = a1(b3 � b2) + a2(b1 � b3) + a3(b2 � b1). (⇤)

Notice that if a1 = a2, then (⇤) gives a1(b2 � b1) = a3(b2 � b1) and so a1 = a2 = a3 and

the vertical line through a1 contains z1, z2, z3. Similarly, if b1 = b2 then b1 = b2 = b3 and

the horizontal line through b1 contains z1, z2, z3. So, assume a1 6= a2 and b1, 6= b2.
By (⇤), we get

a3 � a2
a1 � a2

=
b3 � b2
b1 � b2

. (⇤⇤)

We claim that if t equals the real number in (⇤⇤), then z3 = z1t+ (1� t)z2 and we are

done. Note that

1� t =
a1 � a3
a1 � a2

=
b1 � b3
b1 � b2

.

Then

z1t+ (1� t)z2 =


a1

✓
a3 � a2
a1 � a2

◆
+ ib1

✓
b3 � b2
b1 � b2

◆�
+


a2

✓
a1 � a3
a1 � a2

◆
+ ib2

✓
b1 � b3
b1 � b2

◆�

=


a1a3 � a1a2 + a1a2 � a2a3

a1 � a2

�
+ i


b1b3 � b1b2 + b1b2 � b2b3

b1 � b2

�

=


(a1 � a2)a3
a1 � a2

�
+ i


(b1 � b2)b3
b1 � b2

�

= z3.

K
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§1.4, #4 Use the binomial equation

(a+ b)n =

nX

k=0

✓
n

k

◆
an�kbk

and compare the real and imaginary parts of each side of de Moivre’s formula to obtain the

formulas:

cosn✓ = cos
n ✓ �

✓
n

2

◆
cos

n�2
sin

2 ✓ +

✓
n

4

◆
cos

n�4 ✓ sin4 ✓ � . . .

sinn✓ =

✓
n

1

◆
cos

n�1 ✓ sin ✓ �
✓
n

3

◆
cos

n�3 ✓ sin3 ✓ + . . .

Proof. Let z = a + ib = r cis ✓. Then by De Moivre’s formula, zn = (a + ib)n = rn cisn✓.
Using the binomial equation and the fact that a = r cos ✓ and b = r sin ✓,

r(cosn✓ + i sinn✓) = (a+ ib)n =

nX

k=0

✓
n

k

◆
an�k

(ib)k

=

nX

k=0

✓
n

k

◆
(r cos ✓)n�kik(r sin ✓)k

= r
nX

k=0

✓
n

k

◆
ik cosn�k ✓ sink ✓

= r


cos

n ✓ +

✓
n

1

◆
i cosn�1

sin ✓ �
✓
n

2

◆
cos

n�1
sin

2 ✓

+ · · ·+
✓

n

n� 1

◆
in�1

cos ✓ sinn�1 ✓ + in sinn ✓

�

= r

⇢
cos

n ✓ �
✓
n

2

◆
cos

n�1
sin

2 ✓ +

✓
n

4

◆
cos

n�4
sin

4 ✓ � . . .

�

+i

✓
n

1

◆
cos

n�1 ✓ sin ✓ �
✓
n

3

◆
cos

n�3 ✓ sin3 ✓ + . . .

�
.

�

Comparing the real and imaginary parts, we obtain the desired formulas. K

§1.4, #7 If z 2 C and Re(zn) � 0 for every positive integer n, show that z is a positive

real number.

Proof. Let z = r cis ✓. By De Moivre’s formula, zn = r cis ✓. We have 0  Re(zn) = rn cosn✓
for all n. This implies rn � 0 and cosn✓ � 0. Working modulo 2⇡, the latter gives
�⇡
2  n✓  ⇡

2 and so
�⇡
(2n)  ✓  ⇡

(2n) . Since this is true for all n, when n ! 1, ✓ ! 0. So,

✓ = 0, which means z = r cis ✓ = r � 0. K
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§3.1, #6 Find the radius of convergence for each of the following power series:

(a)
1X

n=0

anzn, a 2 C; (b)
1X

n=0

an
2

zn, a 2 C; (c)
1X

n=0

knzn, k 2 Z; (d)
1X

n=0

zn!.

Proof. (a) lim sup |an|1/n = lim sup |a| = |a| =) R = 1/|a| is |a| 6= 0 and R = 1 if |a| = 0.

(b) For fixed n,

sup
k�n

⇢���ak
2
���
1/k
�

= sup
k�n

{|a|k} =

8
>>><

>>>:

0 if |a| = 0

1 if |a| = 1

|a|n if 0 < |a| < 1

1 if |a| > 1,

which gives

1

R
= lim sup{|a|k} =

8
>>><

>>>:

0 if |a| = 0

1 if |a| = 1

0 if 0 < |a| < 1

1 if |a| > 1,

=) R =

8
>>><

>>>:

1 if |a| = 0

1 if |a| = 1

1 if 0 < |a| < 1

0 if |a| > 1,

=

8
><

>:

1 if |a| < 1

1 if |a| = 1

0 if |a| > 1.

(c) We have sup`�n{|k`|1/`} = |k| and so lim sup{|k|} = |k| which implies R = 1/|k|.
(d)

1X

n=0

zn! = z0! + z1! + z2! + z3! + z4! + . . .

= z1 + z1 + z2 + z6 + z24 + . . .

= (0)z0 + 2(z) + 1(z2) + (0)z3 + (0)z4 + (0)z5 + (1)z6 + . . .

=

1X

n=1

anz
n

where

an =

8
>>><

>>>:

0 if n = 0

2 if n = 1

1 if n = k! for some k 2 N�1

0 otherwise .

Then for n > 1,

sup
k�n

{|ak|1/k} = sup
k�n

{11/k} = 1 =) lim sup{|ak|1/k} = 1 =) R = 1.

K
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§3.1, #7 Show that the radius of convergence of the power series

1X

n=0

(�1)
n

n
zn(n+1)

is 1, and discuss convergence for z = 1,�1, and i

Proof. Define

an :=

8
<

:

(�1)
k

k
if n = k(k + 1) f or some k 2 Z+

0 otherwise

=

(
2

�1+
p
1+4n

· (�1)
�1+

p
1+4n

2 if n = k(k + 1) f or some k 2 Z+

0 otherwise.

Then the series
P1

n=0 anz
n
is equivalent to the one in question. Notice that for nonzero an,

|an|1/n =

����
2

�1 +
p
1 + 4n

· (�1)
�1+

p
1+4n

2

����
1/n

=

✓
2

|� 1 +
p
1 + 4n|

◆1/n

Now

lim
n!1

ln

 ✓
2

�1 +
p
1 + 4n

◆1/n
!

= lim
n!1

ln

⇣
2

�1+
p
1+4n

⌘

n

= lim
n!1

ln(2)

n
� lim

n!1

ln(�1 +
p
1 + 4n)

n
= 0,

and so

lim
n!1

|an|1/n = e

lim
n!1

ln

 ✓
2

�1 +
p
1 + 4n

◆1/n
!

= e0 = 1.

Thus the radius of convergence is 1! If z = 1, then we have the alternating series, which

converges. If z = �1 the power n(n + 1) will always be even, so we get the same series as

the case z = 1. When z = i we again note that we have even powers on i, and so in(n+1)
is

either 1 or �1. K
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Exercise 3.2.2*. Prove that if bn, an are real an positive and 0 < b = lim bn, a = lim sup an,
then ab = lim sup(anbn). Does this remain true if the requirement of positivity is dropped?

Proof. Fix n 2 N and let k � n. Then

ak  sup
`�n

{a`} and bk  sup
`�n

{b`}.

So

akbk  sup
`�n

{a`} sup
`�n

{b`},

and so

sup
k�n

{akbk}  sup
`�n

{a`} sup
`�n

{b`},

which gives

lim sup(anbn)  lim sup(an) lim sup(bn) = ab.

Conversely, we can pick a subsequence {ank} of {an} which converges to a. Then {ankbnk}
converges to ab, and since lim sup(anbn) is the largest subsequential limit of {anbn}, then
ab  lim sup(anbn). K

Exercise 3.2.3. Show that limn1/n
= 1.

Proof. Since the linear function n grows faster than lnn, we get

lim
n!1

lnn

n
= 0, =) lim

n!1
n1/n

= elim
lnn
n = e0 = 1.

K

Exercise 3.2.4*. Show that (cos z)0 = � sin z and (sin z)0 = cos z.

Proof. Using the power series of cos z and sin z and applying Proposition 2.5,

(cos z)0 =

 1X

n=0

(�1)
n

2n!
z2n
!0

=

1X

n=1

(2n)
(�1)

n

2n!
z2n�1

=

1X

n=1

(�1)
n

(2n� 1)!
z2n�1

=

1X

n=0

(�1)
n+1

(2(n+ 1)� 1)!
z2(n+1)�1

=

1X

n=0

(�1)
n
(�1)

(2n+ 1))!
z2n+1

= � sin z

(sin z)0 =

 1X

n=1

(�1)
n�1

(2n� 1)!
z2n�1

!0

=

1X

n=1

(2n� 1)
(�1)

n�1

(2n� 1)!
z2n�2

=

1X

n=1

(�1)
n�1

(2n� 2)!
z2n�2

=

1X

n=0

(�1)
(n+1)�1

(2(n+ 1)� 2)!
z2(n+1)�2

=

1X

n=0

(�1)
n

2n!
z2n

= cos z.

K
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Exercise 3.2.10. Let G and ⌦ be open in C and suppose f and h are functions defined on

G, g : ⌦ ! C and suppose that f(G) ⇢ ⌦. Suppose that g and h are analytic, g0(!) 6= 0 for

any !, that f is continuous, h is one-to-one, and that they satisfy h(z) = g(f(z)) for z 2 G.

Show that f is analytic. Give a formula for f 0
(z).

Proof. We have

lim
!!z

f(!)� f(z)

! � z
= lim

!!z

f(!)� f(z)

g(f(!))� g(f(z))

g(f(z))� g(f(!))

z � !
=

1

(h0(z))
· g0(f(z)),

and thus f is di↵erentiable. Since h and g are analytic, so is f . Moreover,

f 0
(z) =

1

(h0(z))
· g0(f(z)).

K

Exercise 3.2.11. Suppose that f : G ! C is a branch of the logarithm and that n is an

integer. Prove that zn = enf(z) for all z 2 G.

Proof. Since ef(z) = z, then enf(z) = (ef(z))n = zn for all z 2 G. K

Exercise 3.2.13*. Let G = C� {z 2 R | z  0} and let n be a positive integer. Find all

analytic functions f : G ! C such that z = (f(z))n for all z 2 G.

Proof. Notice that for a function f to satisfy z = (f(z))n, that would imply z1/n = f(z).
Then all analytic functions f with the required property are of the form

f(z) = elog f(z)
= elog z1/n

= e1/n log z
= e1/n(|z|+i(arg(z)+2⇡k))

= e1/n|z|e(i arg(z)+2⇡k)/(n)

for k 2 Z. These functions are analytic since they are the product of the composition of

analytic functions. For each k 2 Z, define

fk(z) = e1/n|z|ei arg(z)/ne2⇡k/n.

Then if k ⌘ m mod n, then fk = fm since e2⇡k/n = e2⇡m/n
. So, we have exactly n analytic

functions satisfying the given property. K
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Exercise 3.2.18*. Let f : G ! C and g : G ! C be branches of za and zb, respectively.
Show that fg is a branch of za+b

and f/g is a branch of za�b
. Suppose that f(G) ⇢ G and

g(G) ⇢ G and prove that both f � g and g � f are branches of zab.

Proof. Let f(z) = ea(p(z)) and g(z) = eb(q(z)) where p(z), q(z) are branches of the logarithm.

As such, there exists k 2 Z so that p(z) = q(z) + 2⇡ik. So

f(z)g(z) = ea(q(z)+2⇡ik)+bq(z)
= eaq(z)+a2⇡ik+bq(z)

= e(a+b)q(z)
(e2⇡i)ak = e(a+b)q(z),

and thus fg is a branch of za+b
. Similarly,

f(z)/g(z) = ea(q(z)+2⇡ik)�bq(z)
= eaq(z)+a2⇡ik�bq(z)

= e(a�b)q(z)
(e2⇡i)ak = e(a�b)q(z).

Let Log(z) be the principal branch of the logarithm. Then there exist m,n 2 Z so that

p(z) = Log(z) + 2⇡im and q(z) = Log(z) + 2⇡in. Then

(f � g)(z) = eap(e
b(q(z))

)
= eaLog(e

b(q(z))
)+2⇡im

= eaLog(e
b(q(z))

)e2⇡im

= eab q(z),

and similarly,

(g � f)(z) = ebq(e
a(p(z))

)
= ebLog(e

a(p(z))
)+2⇡in

= ebLog(e
a(p(z))

)e2⇡in

= eba p(z).

Thus f � g and g � f are branches of zab.
K

Exercise 3.2.21*. Prove that there is no branch of the logarithm defined on G = C�{z 2
R | z  0}. (Hint: Suppose such a branch exists and compare this with the principal

branch.)

Proof. Suppose such a branch exists and call it f(x). If h(z) = ln(|z|) + i✓,�⇡ < ✓ < ⇡ is

the principal branch, then there is a k 2 Z so that f(z) = h(z) + 2⇡ik. Let ✓n = ⇡ � 1/n
and ✓k = �⇡ + 1/n. Then {✓n} ! ⇡ and {✓k} ! �⇡, and so

{ei✓n} ! �1 and {ei✓k} ! �1.

Since f is a branch of the logarithm, it must be continuous. So,

lim
n!1

f
�
ei✓n

�
= f(�1) = lim

n!1
f
�
ei✓k

�
.

So,

lim
n!1

f
�
ei✓n

�
= lim

n!1
h
�
ei✓n

�
+ 2⇡ik

= lim
n!1

[ln(1) + i✓n] + 2⇡ik

= lim
n!1

i(⇡ � 1/n) + 2⇡ik

= i⇡ + 2⇡ik.

However, by a similar computation, we get lim
n!1

f
�
ei✓k

�
= �i⇡ + 2⇡ik. Together, these

imply �i⇡ = i⇡, which means �i = 0. Contradiction! K
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Exercise 3.3.1. Find the image of {z : Re z < 0, | Im z| < ⇡} under the exponential

function.

Proof. Let z = a + ib be an element of the set described. Since the exponential is never

0, ez 6= 0. Because a < 0, then |ez| = ea < 1 since the real exponential is increasing

and ea < e0 = 1. Hence ez will be strictly contained in the unit disk. Since | arg(ez)| =
| Im z| = |b| < ⇡, then ez 62 R�

. Therefore the image of {z : Re z < 0, | Im z| < ⇡} under the

exponential function is the open unit disk minus the nonpositive real axis. That is,

{w 2 C� {0} : |w| < 1, w 62 R�}.

K

Exercise 3.3.7. If Tz =
az + b

cz + d
, find z2, z3, z4 (in terms of a, b, c, d) such that Tz =

(z, z2, z3, z4).

Proof. We want that Tz2 = 1, T z3 = 0, and Tz4 = 1. So

1 =
az2 + b

cz2 + d
=) z2 =

d� b

a� c

0 =
az3 + b

cz3 + d
=) z3 = �b/a

1 =
az4 + b

cz4 + d
=) z4 = �d/c

If a = c, then z2 = 1. If a = 0, then z3 = 1. If c = 0, then z4 = 1. K

Exercise 3.3.9. If Tz =
az + b

cz + d
, find necessary and su�cient conditions that T (�) = �,

where � is the unit circle {z : |z| = 1}.

Proof. Let z 2 � and suppose T (z) 2 �, i.e., T (z)T (z) = 1. Then

1 =
az + b

cz + d

az + b

cz + d
.

Simplifying this expression, we get

0 = zz(aa� cc) + z(ab� cd) + z(ba+ dc) + bb� dd,

Now since zz = 1,

zz � 1 = zz(aa� cc) + z(ab� cd) + z(ba+ dc) + bb� dd.

Comparing coe�cients, we get the following conditions:

ab� cd = 0 and |a|2 + |b|2 = |c|2 + |d|2 (⇤)

Hence if we want T (�) = �, then it is necessary that these conditions hold.

1
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Conversely, suppose the equations in (⇤) hold. Since T sends a circle to a circle, and a

circle is determined by three points (as is T ), we show |T (1)|2 = |T (�1)|2 = |T (i)|2 = 1.

Then we can conclude T (�) = �. So,

1 = |T (1)|2 () |a+ b|2 = |c+ d|2

() |a|2 + 2Re(ab) + |b|2 = |c|2 + 2Re(cd) + |d|2

1 = |T (�1)|2 () |� a+ b|2 = |� c+ d|2

() |� a|2 + 2Re(�ab) + |b|2 = |� c|2 + 2Re(�cd) + |d|2

() |a|2 � 2Re(ab) + |b|2 = |c|2 � 2Re(cd) + |d|2

Combining these, we get Re(ab) = Re(cd). Then,

1 = |T (i)|2 () |ai+ b|2 = |ci+ d|2

() |ai|2 + 2Re(aib) + |b|2 = |c|2 + 2Re(cid) + |d|2

() Re(iab) = Re(icd) (by (⇤))
() � Im(ab) = � Im(cd)

() Im(ab) = Im(cd).

Therefore,

Re(ab) = Re(cd) and Im(ab) = Im(cd)

gives ab = cd. Now, applying this to the first computation 1 = |T (1)|2, we get that

|a|2 + |b|2 = |c|2 + |d|2.

K

Exercise 3.3.17. Let G be a region and suppose that f : G ! C is analytic such that

f(G) is a subset of a circle. Show that f is constant.

Proof. Let z0 2 G so that f 0
(z0) and B ✓ G be an open ball around z0. Pick two points

z1, z2 2 B so that if

`1(t) = (z0 + (z1 � z0)t) and `2(t) = (z0 + (z2 � z0)t)

are equations of the lines joining z0 with z1 and z0 with z2, respectively, then

arg(z1 � z0)� arg(z2 � z0) = arg `01(0)� arg `02(0) =
⇡

2
.

Since f is analytic, it is angle preserving, and so

⇡

2
= arg f 0

(`1(0))`
0
1(0)� arg f 0

(`2(0))`
0
2(0).

However, since f maps the paths `1 and `2 in the circle, the vectors f 0
(`1(0)) and f 0

(`2(0))
must either be identical or pointing in opposite directions. In other words, the vectors will

have angle 0 or angle ⇡ between them. Thus, f 0
= 0 on G, i.e., f is constant. K

2
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Exercise 3.3.27. Prove that the group M of Möbius transformations is a simple group.

Proof. Define a group homomorphism

' : GL2(C) ! M by

✓
a b
c d

◆
7! az + b

cz + d
.

Then ' is certainly surjective with

ker' =

⇢✓
� 0

0 �

◆
: � 2 C

�
.

Then by the first isomorphism theorem, GL2(C)/ ker' ⇠= M. Moreover, GL2(C)/ ker' ⇠=
PSL2(C), which is simple

1
, and hence so is M. K

1According to Frauke Bleher, this is di�cult to prove, and requires a good amount of advanced algebra.

3
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Exercise 4.1.9. Define � : [0, 2⇡] ! C by �(t) = eint where n 2 Z. Show that
R
�

1
zdz =

2⇡in.

Solution:

Z

�

1

z
dz =

Z 2⇡

0

1

eint
d� =

Z 2⇡

0

ineint

eint
dt =

Z 2⇡

0
in dt = 2⇡in.

Exercise 4.1.20. Let �(t) = 1 + eit for 0  t  2⇡ and find
R
�(z

2 � 1)
�1dz.

Solution:
If f(z) = 1/(z2 � 1), then

f(z) =
1

2


1

z � 1
� 1

z + 1

�
and f(�(t)) =

1

2


1

eit
� 1

2 + eit

�
.

Letting Log(z) be the principal log defined on the set G = C� {z 2 R | z  0},
Z 2⇡

0
f(�(t))�0

(t)dt =
1

2

Z 2⇡

0
i dt�

Z 2⇡

0

ieit

2 + eit
dt

�
=

1

2

⇥
2⇡i� Log(2 + eit)|2⇡0

⇤
= ⇡i.

Exercise 4.1.23. Let � be a closed rectifiable curve in an open set G and a 62 G. Show

that for n � 2,
R
�(z � a)�ndz = 0.

Proof. Since � : [a, b] ! C is closed, �(a) = �(b). Letting f(z) = (z � a)�n
, since a 62 G,

then f and

F (z) =
(z � a)�n+1

�n+ 1

are defined and continuous on G, and F 0
= f . So

R
� f(z)dz = F (�)� F (↵) = 0. K

1
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Exercise 4.2.4. (a) Prove Abel’s Theorem: Let
P

an(z�a)n have radius of convergence
1 and suppose that

P
an converges to A. Prove that

lim
r!1�

X
anr

n = A.

(b) Use Abel’s Theorem to prove that log 2 = 1� 1
2 + 1

3 � . . . .

Proof. *** The following proof belongs to Alexander Bates***
We may assume that a = 0 and A = 0. Define sk =

Pk
n=0 an and s�1 := 0. Notice that

an = sn � sn�1. Furthermore, limk!1 sk = limk!1
Pk

n=0 an =
P1

n=0 an = A = 0. Define
f(z) =

P1
n=0 anz

n. Letting z 2 {z 2 R | 0 < z < 1}, we have:

f(z) =
1X

n=0

znan = lim
k!1

kX

n=0

znan = lim
k!1

kX

n=1

zn(sn � sn�1)

= lim
k!1

 
zk+1sk � z0s�1 �

kX

n=1

sn(z
n+1 � zn)

!

= lim
k!1

 
zk+1sk �

kX

n=1

sn(z
n+1 � zn)

!

= lim
k!1

zk+1sk � lim
k!1

kX

n=1

sn(z
n+1 � zn)

= lim
k!1

kX

n=1

sn(z
n � zn+1)

= (1� z) lim
k!1

kX

n=1

snz
n = (1� z)

1X

n=1

snz
n.

Letting ✏ > 0, there exists N 2 N so that |sn| < ✏/2 for all n � N . For real r with 0 < r < 1,

|f(r)|  (1� r)

 �����

N�1X

n=1

snr
n

�����+
1X

n=N

|sn||rn|
!

< (1� r)

 �����

N�1X

n=1

snr
n

�����+
1X

n=N

✏

2
rn
!

= (1� r)

 �����

N�1X

n=1

snr
n

�����+
✏

2

rN

1� r

!

 (1� r)

�����

N�1X

n=1

snr
n

�����+
✏

2
.

If
���
PN�1

n=1 snrn
��� < ✏/2 then we are done. Otherwise, pick r 2 R with 0 < r < 1 so that

1� r < ✏
2|PN�1

n=1 snrn| . Then |f(r)| < ✏
2 + ✏

2 = ✏. Hence, limr!1� f(r) = 0.

We have log(1 + z) =
P1

n=0 an(z + 1 � 1)n =
P1

n=0 anz
n, where an = 1

n!f
(n)(1) =

(�1)n 1
n+1 . That is, log(1 + z) =

P1
n=0(�1)n zn+1

n+1 . This series has radius of convergence 1

and the sum
P1

n=1(�1)n 1
n+1 is convergent. By part (a), the conclusion follows. K

1
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Exercise 4.2.7. Use the results of this section to evaluate the following integrals:

(c)

Z

�

sin z

z3
dz, �(t) = eit, 0  t  2⇡.

(d)

Z

�

log z

zn
dz, �(t) = 1 + 1

2e
it, 0  t  2⇡ and n � 0.

Solution:
Letting f(z) = sin z, we have

0 = � sin 0 = f 00(0) =
2!

2⇡i

Z

�

f(z)

(z � 0)2+1
=

1

⇡i

Z

�

sin z

z3
dz.

In the disk B(1; 1/3), � is a closed rectifiable curve, and log z/zn is analytic and hence
has a primitive. So by Proposition 2.15 the integral in part (d) is 0.

Exercise 4.2.9. Evaluate the following integrals:

(c)

Z

�

dz

z2 + 1
, �(t) = 2eit, 0  t  2⇡.

(d)

Z

�

sin z

z
dz, �(t) = eit, 0  t  2⇡.

Solution:
Let f(z) = 1. Then f is analytic on C with B(0, 2) ⇢ C. Hence by Proposition 2.6

f(z) =
1

2⇡i

Z

�

f(w)

w � z
dw

for |z � 0| < 2. Since |i| = |� i| = 1 < 2, we have

Z

�

dz

z2 + 1
= �2

i

Z

�

1

z � i
dz +

2

i

Z

�

1

z + i
dz = �2

i
· (2⇡i)f(i) + 2

i
· (2⇡i)f(�i) = 0.

Now, letting g(w) = sinw, we have

0 = sin 0 = g(0) =
1

2⇡i

Z

�

g(w)

(w � 0)
dw =

1

2⇡i

Z

�

sinw

w
dw.

2
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Exercise 4.3.1. Let f be an entire function and suppose there is a constant M , and R > 0,
and an integer n � 1 such that |f(z)|  M |z|n for |z| > R. Show that f is a polynomial of
degree  n.

Proof. Since f is continuous and B(0;R) is compact, then there exists C > 0 such that
|f | < C on B(0;R). Choose r > R so that C < Mrn, and let R < |z| < r. Then

|f(z)|  M |z|n < Mrn,

and hence |f | < Mrn on B(0; r). For any k > n, we have by Cauchy’s Estimate

���f (k)(0)
��� 

k!Mrn

rk
=

k!M

rk�n
.

Letting r ! 1 gives that fk(0) = 0 for all k > n. Since f is entire, we can write f(z) =P1
m=0 amzm and for all k > n,

ak =
1

k!
f (k)(0) = 0.

Hence f(z) = anzn + an�1zn�1 + · · ·+ a1z + a0. K

Exercise 4.3.8. Let G be a region and let f and g be analytic functions on G such that
f(z)g(z) = 0 for all z 2 G. Show that either f ⌘ 0 or g ⌘ 0.

Proof. Suppose without loss of generality that g 6⌘ 0 on G. So there exists a 2 G such that
g(a) 6= 0. Let R > 0 so that B(a;R) ⇢ G. The function h(z) := f(z)g(z) = 0 is analytic in
B(a;R), and so we can write 0 = h(z) =

P1
n=0 an(z � a)n. This implies that ak = 0 for all

k � 1.
Fix n 2 N. We show by induction that f (n)(a) = 0. We have f(a)g(a) = 0 by hypothesis

which gives f(a) = 0. Moreover,

0 = a1 = h0(a) = (fg)0(a) = f 0(a)g(a) + f(a)g0(a) = f 0(a)g(a) = 0 =) f 0(a) = 0.

Now suppose for induction that f (k)(a) = 0 for all k 2 {0, . . . , n� 1}. Then

0 = an =
1

n!
h(n)(a) =

1

n!
(fg)(n)(a)

=
nX

`=0

✓
n

`

◆
f (n�`)(a)g(`)(a)

= f (n)(a)g(a),

and hence f (n)(a) = 0. Since this is true for all n 2 N, we have by Theorem 3.7 that f ⌘ 0
on G. K

Exercise 4.3.9. Let U : C ! R be a harmonic function such that U(z) � 0 for all z 2 C;
prove that U is constant.

Proof. Since U is harmonic, it has a harmonic conjugate and hence U is the real part of an
analytic function f . Define g(z) = e�f(z). So g is analytic on all of C hence entire. Then

|g(z)| = |e�f(z)| = eRe�f(z) = e�Re f(z) = e�U(z)  1,

and so g is a constant function by Louiville’s Theorem. It follows that U is also constant. K

3
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Exercise 4.4.3. Let p(z) be a polynomial of degree n and let R > 0 be su�ciently large

so that p never vanishes in {z : |z| � R}. If �(t) = Reit, 0  t  2⇡, show that
R
�

p0(z)
p(z) dz =

2⇡in.

Proof. We can write p(z) = c(z � ↵1) · · · (z � ↵n) where ↵1, . . . ,↵n are the (not necessarily
distinct) roots of p(z) and c 2 C. Then

p0(z) = c
nX

i=1

(z � ↵1) · · · (z � ↵i�1)(z � ↵i+1) · · · (z � ↵n).

So

Z

�

p0(z)

p(z)
dz =

Z

�

nX

i=1

c(z � ↵1) · · · (z � ↵i�1)(z � ↵i+1) · · · (z � ↵n)

c(z � ↵1) · · · (z � ↵n)

=
nX

i=1

Z

�

(z � ↵1) · · · (z � ↵i�1)(z � ↵i+1) · · · (z � ↵n)

(z � ↵1) · · · (z � ↵n)

=
nX

i=1

Z

�

1

z � ↵i

=
nX

i=1

n(�; ai)2⇡i

= 2⇡in.

K

Exercise 4.5.6. Let f be analytic on D = B(0; 1) and suppose |f(z)|  1 for |z| < 1. Show
|f 0(0)|  1.

Proof. By Cauchy’s Estimate, |f 0(0)|  1!·1
11 = 1. K

Exercise 4.5.8. Let G be a region and suppose fn : G ! C is analytic for each n � 1.
Suppose that {fn} converges uniformly to a function f : G ! C. Show that f is analytic.

Proof. Since {fn} ! f uniformly, then f is continuous. Let a 2 G, and let r > 0 be such
that D := B(a; r) ⇢ G. Let T be a triangular path in D. Then

R
T fn(z)dz = 0.

Since {fn} ! f uniformly, then 0 = lim
R
T fn =

R
T lim fn =

R
T f . So by Morera’s

Theorem, f is analytic on D, and in particular at a 2 D. Since a was arbitrary, f is
analytic on G. K

4
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Exercise 4.6.5. Evaluate the integral

Z

�

dz

z2 + 1
where �(✓) = 2| cos 2✓|ei✓ for 0  ✓  2⇡.

Solution:
We have

Z

�

dz

z2 + 1
=

1

2i

Z

�

1

z � i
dz � 1

2i

Z

�

1

z + i
dz

=
⇡

2⇡i

Z

�

1

z � i
dz � ⇡

2⇡i

Z

�

1

z + i
dz

= ⇡(n(�; i)� n(�;�i)).

So it su�ces to find n(�; i) and n(�;�i). By a quick sketch of the curve �, it is easily seen
that n(�; i) = n(�;�i) = 1 and hence the integral in question is 0.

Exercise 4.6.7. Let f(z) =
1

[(z � 1
2 � i) · (z � 1� 3

2 i) · (z � 1� i
2 ) · (z �

3
2 � i)]

and let �

be the polygon [0, 2, 2 + 2i, 2i, 0]. Find
R
� f .

Solution:
Define triangular paths:

�1 = [0, 2, i+i, 0], �2 = [0, i = i, 2i, 0], �3 = [2, i+i, 2+2i, 2], �4 = [2+2i, i+i, 2, 2+2i].

Then � = �1 + �2 + �3 + �4. For convenience, define the points

p1 = 1 +
1

2
i, p2 =

1

2
+ i, p3 = 1 +

3

2
i, p4 =

3

2
+ i.

For each i 2 {1, 2, 3, 4} let Gi be a simply connected open set containing �i but not
containing the points pj for j 2 {1, 2, 3, 4} � {i}. Then define functions fi : Gi ! C by
fi = (z � pi)f . Then each fi is analytic in Gi with n(�i; a) = 0 for all a 2 C�Gi and so

n(�i; pi)fi(pi) =
1

2⇡i

Z

�i

fi(z)

z � pi
dz =

1

2⇡i

Z

�i

f(z)dz.

We have f1(p1) = 2/i, f2(p2) = �2, f3(p3) = �2/i, and f4(p4) = 2. Note that n(�i; pi) = 1.
Then

Z

�
f(z)dz =

4X

i=1

Z

�i

f(z)dz =
4X

i=1

Z

�i

fi(z)

z � pi
dz = 2⇡i

4X

i=1

n(�i; pi)fi(pi) = 2⇡i
4X

i=1

fi(pi) = 0.

1
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Exercise 4.7.3. Let f be analytic in B(a;R) and suppose that f(a) = 0. Show that a is
a zero multiplicity m if and only if f (m�1)(a) = · · · = f(a) = 0 and f (m)(a) 6= 0.

Proof. ()) We can write f(z) = (z�a)mg(z) for some analytic function g of which a is not
a zero. Then by the general Leibniz rule,

f (k)(z) = ((z � a)mg(z))(k) =
kX

i=1

✓
k

i

◆
((z � a)m)(k � i)g(k)(z)

For 0  `  m � 1, ((z � a)m)(`) will have a factor of z � a since ` < m. In particular, if
` = k � i for 0  k  m � 1 and 0  i  k, we see that f (k)(z) will have a factor of z � a.
Hence f (k)(a) = 0 for all 0  k  m� 1.

(() Let f(z) =
P1

n=0 an(z�a)n in B(a;R). Then 0 = f(k)(a)
k! = ak for all 0  k  m�1,

and hence

f(z) =
1X

n=m

an(z � a)n = (z � a)m
1X

n=0

an+m(z � a)n+m.

Letting g(z) :=
P1

n=0 an+m(z � a)n+m, we have f(z) = (z � a)mg(z). Moreover, g(a) =
am 6= 0 since f (m)(a) 6= 0, and hence a is a zero of multiplicity m. K

Exercise 4.7.4. Suppose that f : G ! C is analytic and one-to-one; show that f 0(z) 6= 0
for any z in G.

Proof. By the corollary to the Open Mapping Theorem, f�1 : f(G) ! G is analytic.
Suppose f 0(z) = 0 for some z 2 G and f(z) = !. Then (f�1)0(!) is undefined and therefore

not analytic since (f�1)0(!) =
1

f 0(z)
, a contradiction. K

2
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Exercise 1. Compute

Z 1

�1

ea+ix

(a+ ix)b
dx, where a > 1 and b > 0.

Exercise 2. Let ⇧ be the open right half plane. Suppose that f is analytic on ⇧ and

satisfies the following: (i) |f(z)| < 1 for all z 2 ⇧; and (ii) there exists �⇡/2 < ↵ < ⇡/2

such that
log(|f(rei✓)|)

r
! 1, as r ! 1. Show that f = 0.

Exercise 3. : Let G be a region and let fn : G ! C be analytic functions such that fn has

no zero in G. If fn converges to f uniformly on the compact subsets of G then show that

either f = 0 or f has no zero in G.

Proof. Assume that f 6⌘ 0, and suppose f(a) = 0 for some a 2 G. Since the zeroes of an

analytic function are isolated, there exists r > 0 such that f does not vanish in B(0, r) ✓ G.

Let ✏ = min{|f(z)| : |z� a| = r} > 0. Since {fn} is uniformly convergent to f on compact

subsets of G, there exists N 2 N such that for all n � N

|fn(z)� f(z)| < ✏  |f(z)| for all |z � a| = r.

By Rouche’s Theorem, 0 = Zfn = Zf > 0, a contradiction. So f has no zeroes in G. K

Exercise 5.1.6. If f : G ! C is analytic except for poles show that the poles of f cannot

have a limit point in G.

Proof. We assume that f is not constant, otherwise the statement is false. If f has a pole

at z = a then limz!a |f(z)| = 1, and so limz!a 1/|f(z)| = 0. Since 1/f is analytic, it is in

particular continuous and hence 1/f(a) = 0. Hence the poles of f are precisely the zeroes

of 1/f . If the poles of f has a limit point in G, then the zeroes of 1/f have a limit point in

G. Hence 1/f ⌘ 0, and so f(z) = 1 for all z 2 G, a contradiction. K

Exercise 5.1.13. Let R > 0 and G = {z : |z| > R}; a funtion f : G ! C ia a removable

singularity, a pole, or an essential singularity at infinity if f(z�1
) has, respectively, a re-

movable singularity, a pole, or an essential singularity at z = 0. If f has a pole at 1 then

the order of the pole is the order of the pole of f(z�1
) at z = 0.

(a) Prove that an entire function has a removable singularity at infinity i↵ it is a constant.

Proof. ()) Let f(z) =
P

n�0 anz
n
be entire with a removable singularity at infinity.

Then f(1/z) has a removable singularity at 0, and so

0 = lim
z!0

zf(1/z) = lim
z!0

X

n�0

an
zn�1

=

X

n�0

lim
z!0

an
zn�1

(¡)

Since the sum on the right hand side exists (and equals 0), each summand must be

finite, i.e., each limit limz!0
an

zn�1 exists. In particular, when n � 2, limz!0
an

zn�1 = 1,

unless an = 0. Hence an = 0 for all n � 2. Then (¡) becomes

0 = lim
z!0

zf(1/z) = a0z + a1 = a1,

which gives f(z) = a0.

(() If f(z) = c, then limz!0 f(1/z)z = limz!0 cz = 0 and hence f(z) has a

removable singularity at infinity. K

1
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(b) Prove that an entire function has a pole at infinity of order m i↵ it is a polynomial of

degree m.

Proof. ()) Suppose f(z) =
P

n�0 anz
n
is entire with a pole at infinity of order m.

Then f(1/z) has a pole of order m at z = 0 and hence f(1/z)zm has a removable

singularity at 0. So

0 = lim
z!0

zm+1f(1/z) = lim
z!0

zm+1
X

n�0

an
zn

=

X

n�0

lim
z!0

an
zn�(m+1)

. (¿)

As before, each summand must be finite, i.e., each limit limz!0
an

zn�(m+1) exists. In

particular, when n � m + 1, limz!0
an

zn�(m+1) = 1, unless an = 0. Hence an = 0 for

all n � m+ 2. Then (¿) becomes

0 = lim
z!0

zm+1f(1/z) = lim
z!0

(a0z
m+1

+ a1z
m
+ . . . amz + am + 1),

which gives f(z) = amzm + · · ·+ a1z + a0.

(() Suppose f(z) = amzm + · · ·+ a1z + a0 for am 6= 0. Then

f(1/z) = amz�m
+ · · ·+ a1z

�1
+ a0.

Since f(1/z) has a pole at 0, the above is the Laurent Expansion in Ann(0; 0, R) for

some R > 0. We see then that am�1 = am 6= 0 and an = 0 for all n  �(m + 1).

Hence f(1/z) has a pole of order m at 0 by Proposition 1.18(b). K

(c) Characterize those rational functions which have a removable singularity at infinity.

Proof. *** The following two proofs belong to Curits Balz ***

We can write a rational function as r(z) = p(z)/q(z) = a(z)+p1(z)/q(z) where a(z) is
a polynomial and deg(p1) < deg(q). If r(z) has a removable singularity at infinity, then

r(z) is bounded at infinity. So a(z) + p1(z)/q(z) must also be bounded at infinity. By

the degrees of p1(z) and q(z), we see that p1(z)/q(z) will be bounded at infinity, thus

a(z) will be bounded at infinity. But by part (a), we get that a(z) must be constant,

say a(z) = c, and so r(z) = p(z)/q(z) = c+ p1(z)/q(z). So p(z)� aq(z) + p1(z) must

be a polynomial with degree less than or equal to the degree of q(z). K

(d) Characterize those rational functions which have a pole of order m at infinity.

Proof. As in part (c), write r(z) = p(z)/q(z) = a(z) + p1(z)/q(z). By the degree

requirements, p1(z)/q(z) has a removable singularity at infinity, so we must have a(z)
has a pole of order m at infinity. Thus a(z) is a polynomial of degree m. So the degree

of p(z) must be m greater than the degree of q(z) when r(z) = p(z)/q(z). K

2
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Exercise 5.1.17. Let f be analytic in the region G = Ann(a; 0, R). Show that if

Z Z

G
|f(x+ iy)|2dxdy < 1

then f has a removable singularity at z = a. Suppose that p > 0 and

Z Z

G
|f(x+ iy)|pdxdy < 1;

what can be said about the nature of the singularity at z = a?

Proof. Without loss of generality, assume a = 0. Since f(z) is analytic in G, we can write

f(z) =
P

n2Z anz
n
for all z 2 G. Using the parametrization �(r, ✓) = rei✓ for r 2 (0, R] and

✓ 2 (0, 2⇡] for G, we have

1 >

Z Z

G
|f(x+ iy)|2dxdy =

Z R

0

Z 2⇡

0

 
X

n2Z
anr

nein✓
! 

X

m2Z
amrmeim✓

!
rd✓dr

=

X

n2Z

X

m2Z

Z R

0

Z 2⇡

0
anamrn+m+1ei✓(n�m)d✓dr

=

X

n2Z

X

m2Z
anam

Z R

0
rn+m+1

✓Z 2⇡

0
ei✓(n�m)d✓

◆

| {z }
=0 when n 6=m

dr

=

X

n2Z
|an|22⇡

Z R

0
r2n+1dr

| {z }
goes to 1 if n�1

.

The last integral goes to 1 if n  �1. Since we know the integral is finite, we must have

an = 0 for all n  1. Hence f(z) =
P

n2N anzn, and hence f has a removable singularity at

z = a. K
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Exercise 5.2.2. Verify the following equations:

(b)

Z 1

0

(log x)3

1 + x2
dx = 0

(c)

Z 1

0

cos ax

(1 + x2)2
dx =

⇡(a+ 1)e�a

4
if a > 0.

Solution:

Define f(z) =
eiaz

(1+z2)2 and let � be the closed path which is the boundary of the

upper half disk of radius R > 1, traversed in the counterclockwise direction. The

poles of f(z) are i, �i and n(�, i) = 1, n(�,�i) = 0. Let g(z) = (z � i)2f(z). Then

Res(f ; i) = g0(i) = e�a(a�1)
4i . Then by the Residue Theorem,

Z

�
f = 2⇡iRes(f ; i) =

⇡(a+ 1)e�a

2
.

Then

⇡(a+ 1)e�a

2
=

Z

�
f =

Z R

�R

eiax

(1 + x2)2
+Ri

Z ⇡

0

eiaReix

(1 +Re2ix)2

=

Z R

�R

cos ax

(1 + x2)2
+Ri

Z ⇡

0

eiaReix

(1 +Re2ix)2

=

Z 0

�R

cos ax

(1 + x2)2
+

Z R

0

cos ax

(1 + x2)2
+Ri

Z ⇡

0

eiaReix

(1 +Re2ix)2

= 2

Z R

0

cos ax

(1 + x2)2
+Ri

Z ⇡

0

eiaReix

(1 +Re2ix)2
,

where the last equality follows since cosx is an even function. Now,

�����Ri

Z ⇡

0

eiaReix

(1 +Re2ix)2

�����  R

Z ⇡

0

���eiaReix
���

|1 + 2Re2ix +R2e4ix|  R

Z ⇡

0

1

1 + 2Re2ix +R2e4ix

 ⇡R

1 + 2Re2ix +R2e4ix
R!1����! 0.

Hence
⇡(a+1)e�a

4 =
R1
0

cos ax
(1+x2)2 .

4
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(g)

Z 1

�1

eax

1 + ex
dx =

⇡

sin a⇡
if 0 < a < 1.

Solution:

Define f(z) = eaz

1+ez . Let R > 0 and let � be the rectangular region [�R,R,R + 2⇡].
Then each edge of � can be parametrized by

�1(t) = R+ it, t 2 [0, 2⇡]

�2(t) = 2⇡i� t, t 2 [�R,R]

�3(t) = �R+ i(2⇡ � t), t 2 [0, 2⇡]

�4(t) = t, t 2 [�R,R].

The poles of f(z) are {z = ⇡i+ 2⇡ik | k 2 Z}. Notice that ⇡i is the only pole of f(z)
such that n(�;⇡i) 6= 0. Then using L’Hôpital’s rule

Res(f ;⇡i) = lim
z!⇡i

(z � ⇡if(z) = lim
z!⇡i

(z � ⇡i)aeaz + eaz

ez
= ea⇡ie�⇡i

= �ea⇡i.

By the Residue Theorem

2⇡ie⇡(a�1)
=

Z

�
f(z)

= i

Z 2⇡

0

ea(R+it)

1 + eR+it
�
Z R

�R

ea(2⇡i+t)

1 + e(2⇡i+t)
� i

Z 2⇡

0

ea(�R+it)

1 + e(�R+it)
+

Z R

�R

eat

1 + et
.

We want to show that the first and third integrals above go to 0 as R goes to 1. For

the first integral, since |1 + eR+it| � |eR � 1|, we have

����i
Z 2⇡

0

ea(R+it)

1 + eR+it

���� 
Z 2⇡

0

eaR

|1 + eR+it| 
Z 2⇡

0

eaR

|eR � 1| .

Then

lim
R!1

eaR

eR � 1
= lim

R!1

eR(a�1)

1� 1/eR
= 0 (since a < 1)

Since |1 + e�R+it| � |e�R � 1|, then for the third integral, we have

����i
Z 2⇡

0

ea(�R+it)

1 + e�R+it

���� 
Z 2⇡

0

e�aR

|1 + e�R+it| , and lim
R!1

1

eaR(e�R � 1)
= 0.

Then we have

2⇡ie⇡(a�1)
= �

Z 1

�1

ea(2⇡i+t)

1 + e(2⇡i+t)
+

Z 1

�1

eat

1 + et
= (1� ea2⇡i)

Z 1

�1

eat

1 + et
,

which gives Z 1

�1

eat

1 + et
=

2⇡i(�ea⇡i)

1� ea2⇡i
=

2⇡i

ea⇡i � e�a⇡i
=

⇡

sin(a⇡)
.

(h)

Z 2⇡

0
log sin

2
2✓d✓ = 4

Z ⇡

0
log sin ✓d✓ = �4⇡ log 2.

5
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Exercise 5.2.6. Let � be the rectangular path

[n+ 1/2 + ni,�n� 1/2 + ni,�n� 1/2� ni, n+ 1/2� ni, n+ 1/2 + ni]

and evaluate the integral
R
� ⇡(z + a)�2

cot⇡zdz for a 62 Z. Show that limn!1
R
� ⇡(z +

a)�2
cos⇡zdz = 0 and, by using the first part, deduce that

⇡2

sin
2 ⇡a

=

1X

n=�1

1

(a+ n)2

(Hint: Use the fact that for z = x+iy, | cos z|2 = cos
2 x+sinh

y
and | sin z|2 = sin

2 x+sinh
2 y

to show that | cot⇡z|  2 for z on � if n is su�ciently large.)

Proof. *** The following proof belongs to Curits Balz ***

Let f(z) =
1

(z+a)2 . We want to find
R
� cot⇡zf(z). Define g(z) := ⇡ cot⇡zf(z). By the

residue theorem, since ⇡ cot⇡z has simple poles when z 2 Z, we get

Z

�
g(z) = 2⇡i

 
X

n2Z
Res(g;n) + Res(g,�a)

!
.

At each integer n, the residue of g(z) is

Res(g;n) = lim
z!n

(z � n)⇡ cot⇡zf(z) = lim
z!n

z � n

sin⇡z
lim
z!n

⇡ cot⇡zf(z) = f(n).

We need to show that
R
� ⇡ cot⇡zf(z) = 0 as n ! 1, so we show cot⇡z is bounded on �.

• For z = n+ 1/2 + iy,�1/2  y  1/2,

| cot(⇡z)| = | cot(⇡(N + 1/2iy))| = | cot(⇡/2 + i⇡y)| = | tanh⇡y|  tanh⇡/2

• For z = �n� 1/2 + iy,�1/2  y  1/2

| cot(⇡z)| = | cot(⇡(�N � 1/2iy))| = | cot(⇡/2� i⇡y)| = | tanh⇡y|  tanh⇡/2

• For y > 1/2,

| cot(⇡z)| =
����
ei⇡z + e�i⇡z

ei⇡z � e�i⇡z

���� =
����
e�⇡y

+ e⇡y

e⇡y � e�⇡y

���� =
1 + e2⇡y

1� e�2⇡y
 1 + e�⇡

1� e�⇡
= coth⇡/2

• For y < �1/2,

| cot(⇡z)| = | cot(⇡(�N � 1/2iy))| = | cot(⇡/2� i⇡y)| = | tanh⇡y|  tanh⇡/2.

We also have |f(z)  1
z+a|2 . So

lim
n!1

����
Z

�
⇡ cot⇡zf(z)

����  lim
n!1

Z

g
a⇡| cot(⇡z)||f(z)|  lim

n!1

⇡

n2
(8n+ 4) coth⇡/2 = 0

where 8n+ 4 = V (�). This gives
P

n2Z f(n) = Res(g;�a). But

X

n2Z
f(n) =

X

n2Z

1

(a+ n)2
and Res(g;�a) = lim

z!�a

(z + a)2⇡ cot⇡z

(z + a)2
= �⇡2

csc
2 ⇡a.

So
⇡2

sin
2 ⇡a

=

1X

n=�1

1

(a+ n)2
. K

6
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Exercise 5.3.5. Let f be meromorphic on the region G and not constant; show that neither

the poles nor the zeros of f have a limit point in G.

Proof. That the poles of f do not have a limit point in in G was proved in Exercise 5.1.6.

If the zeroes of f have a limit point in G, then the poles of the meromorphic function 1/f
has a limit point in G, contradicting Exercise 5.1.6. K

Exercise 5.3.10. Let f be analytic in a neighborhood of D = B(0; 1). If |f(z)| < 1 for

|z| = 1, show that there is a unique z with |z| < 1 and f(z) = z. If |f(z)|  1 for |z| = 1,

what can you say?

Proof. Define g(z) = f(z)� z and let h(z) = z. Then on @D, we have

|g(z) + h(z)| = |f(z)| < 1  |g(z)|+ 1 = |g(z)|+ |h(z)|.

By Rouche’s Theorem, Zg = Zh (where Zf denotes the number of zeroes of f). Since

Zg = Zh = 1, then there is a unique z0 2 D such that 0 = g(z0) = f(z0) � z0, i.e.,

f(z0) = z0. K

Exercise 6.2.3. Suppose f : D ! C satisfies Re f(z) � 0 for all z in D and suppose that

f is analytic and not constant.

(a) Show that Re f(z) > 0 for all z 2 D.

Proof. Let ⇧ = {z 2 C | Re z > 0} be the open right-half plane. By the open mapping

theorem, f(D) is open. Therefore since f(D) ✓ ⇧, we must have f(D) ✓ ⇧. K

(b) By using an appropriate Möbius transformation, apply Schwartz’s Lemma to prove

that if f(0) = 1 then

|f(z)|  1 + |z|
1� |z| .

Proof. Define a Möbius transformation g(z) =
z � 1

z + 1
. Then g(⇧) ✓ D because if

Re z > 0, then

����
z � 1

z + 1

����
2

=
z � 1

z + 1
· z � 1

z + 1
=

|z|2 � 2Re z + 1

|z|2 + 2Re z + 1
< 1.

Consider g � f : D ! ⇧ ! D. Since g(f(0)) = 0 and |(g � f)(z)| < 1, we can apply

Swartz’s Lemma to obtain the inequality |(g � f)(z)|  |z| for all z 2 D. This yields

|f(z)� 1|  |z||f(z) + 1| = |zf(z) + z|  |z||f(z)|+ |z| (˝)

By the reverse triangle inequality, we have |f(z)| � 1  ||f(z)| � 1|  |f(z) � 1|. So

(˝) becomes

|f(z)|� 1  |z||f(z)|+ |z|
|f(z)|(1� |z|)  1 + |z|

|f(z)|  1 + |z|
1� |z| .

K

7



Nicholas Camacho Complex Analysis — Homework 7 April 21, 2017

(c) Show that if f(0) = 1, f also satisfies

|f(z)| � 1� |z|
1 + |z| .

(Hint: Use part (a)).

Proof. Since Re f(z) > 0 on D, then 1/f(z) is analytic on D. Let h(z) = 1�z
1+z . Then

(h � 1/f)(0) = 0 and |(h � 1/f)(z)|  1. So by Swartz’s Lemma, |(h � 1/f)(z)|  |z|.
Using the reverse triangle inequality as in part (b), we get

1

|f(z)| � 1 
����1�

1

f(z)

����  |z|
����1 +

1

f(z)

���� =
����z +

z

f(z)

����  |z|+ |z|
|f(z)| ,

which gives

1

|f(z)| (1� |z|)  1 + |z| =) |f(z)| � 1� |z|
1 + |z| .

K

8
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Exercise 1. : Suppose A = {z 2 C : 0 < |z| < 1} and B = {z 2 C : 4 < |z| < 5}. Is there
a one-to-one analytic function from A to B? Justify your answer.

Proof. Suppose there exists a one-to-one onto analytic function from A onto B. Then f

can be extended to an analytic function f̃ : Ã ! B where Ã = {z 2 C : 0  |z| < 1}. Let
f̃(0) = b. By the Open Mapping Theorem, a neighborhood of 0 must get mapped to an
open set in B, i.e., b must lie in the interior of B.

Since f is onto, there exists a 2 A such that f̃(a) = b (as f̃ |A = f). Now, let C and D

be disjoint neighborhoods of 0 and a, respectively. Then E := f̃(C) \ f̃(D) is open since C

and D and f̃ are open. But then f
�1(E)\C and f

�1(E)\D are are two disjoint open sets
in A which get mapped onto the same set E, contradicting the injectivity of f on A. Hence
such a function cannot exist. K

Exercise 2. How many zeros does the function z
8+e

�2016⇡z have in the region Re(z) > 0?

1
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Functions of One Complex Variable, Conway - Exercises

Exercise 7.1.6. (Dini’s Theorem) Consider C(G,R) and suppose that {fn} is a sequence
in C(G,R) which is monotonically increasing and lim fn(z) = f(z) for each z 2 G where
f 2 C(G,R). Show that fn ! f .

Proof. We need to show that fn ! f in (C(G,R), ⇢). This is equivalent to showing that
fn ! f uniformly on compact subsets of G by Proposition 1.10 (b) of this section. So, let
K ⇢ G be a compact subset of G.

Let ✏ > 0. Define gn = f � fn and En = {z 2 K | |f(z) � fn(z)| < ✏} for all n. Then
{gn} is a collection of continuous and decreasing functions (since the fn are increasing).
So, En is open since En = g

�1
n (�1, ✏). Notice that En ✓ En+1 for all n because if z 2 K

satisfies |f(z)� fn(z)| < ✏, then |f(z)� fn+1(z)|  |f(z)� fn(z)| < ✏.
Since fn ! f pointwise, if z 2 K, there exists n 2 N such that z 2 En. Hence {En}

is an open cover for K, and since K is compact, there exists En1 , . . . , Enk which cover K.
By reordering if necessary, we assume nk > nj for all 1  j  k � 1. Hence Enk ◆ Eni

for all j and so Ki =
Sk

j=1 Enj = Enk . Hence if z 2 K and n � nk, then z 2 En, i.e.,
|f(z)� fn(z)| < ✏. Therefore, fn ! f uniformly on K. K

Exercise 7.2.1. Let f, f1, f2, . . . be elements of H(G) and show that fn ! f i↵ for each
closed rectifiable curve � in G, fn(z) ! f(z) for z 2 {�}.

Proof. ()) If fn ! f uniformly on G, then certainly fn ! f uniformly on the (compact)
subset {�} ⇢ G.

(() Let a 2 G and let r > 0 be such that B(a; 2r) ⇢ G. Let �(t) = a+2reit, t 2 [0, 2⇡].
Then for any z 2 B(a; r) and w 2 {�}, we have |w � z| > r. So for z 2 B(a; r) we have by
Cauchy’s Theorem

|f(z)� fn(z)| 
1

2⇡

Z

�

|f(w)� fn(w)|
|w � z| dw <

1

2⇡

Z

�

|f(w)� fn(w)|
r

dw

 1

2⇡
(2⇡2r)

1

r
sup

w2{�}
{|f(w)� fn(w)|}

= 2 sup
w2{�}

{|f(w)� fn(w)|}.

Since fn ! f on {�}, then 2 supw2{�}{|f(w)�fn(w)|} ! 0 as n ! 1. So fn ! f uniformly
on B(a; r).

Now if K ⇢ G is compact, we can cover K with finitely many balls {B(ki; ri)}mi=1 where
ki 2 K and ri > 0 is such that B(ki, 2ri) ⇢ G. Then by the above argument, fn ! f

uniformly on each ball B(ki; ri). If ✏ > 0, for each B(ki; ri), there exists Ni 2 N such that
for all n � Ni, |f � fn| < ✏ on B(ki; ri). Letting N = max{N1, . . . , Nm}, we get that for all
n � N , |f � fn| < ✏ on K. Hence fn ! f uniformly on any compact subset of G, and so
fn ! f on G. K
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Exercise 7.2.13.

(a) Show that if f is analytic on an open set containing the disk B(a;R) then

|f(a)|2  1

⇡R2

Z 2⇡

0

Z R

0
|f(a+ re

i✓)|2rdrd✓ (⇤)

Proof. Let 0 < r < R and �(t) = a+ re
i✓, t 2 [0, 2⇡]. By Cauchy’s Theorem,

|f(a)|2 = |f2(a)|  1

2⇡

Z

�

|f2(z)|
z � a

|dz|

=
1

2⇡

Z 2⇡

0

|f(a+ re
i✓)|2

r
|irei✓|d✓

=
1

2⇡

Z 2⇡

0
|f(a+ re

i✓)|2d✓

Multiplying both sides by r and integrating from 0 to R with respect to r,

|f(a)|2R
2

2
= |f(a)|2

Z R

0
rdr  1

2⇡

Z R

0

✓Z 2⇡

0
|f(a+ re

i✓)|2d✓
◆
rdr

=
1

2⇡

Z 2⇡

0

Z R

0
|f(a+ re

i✓)|2rdrd✓,

which gives (⇤). K

(b) Let G be a region and let M be a fixed positive constant. Let F be the family of all
functions f in H(G) such that

R R
G |f(z)|2dxdy  M . Show that F is normal.

Proof. We show F is locally bounded and hence normal. Let K ⇢ G be compact.
If a 2 K, then by part (a), and our assumption that

R R
G |f(z)|2dxdy  M , we get

|f(a)| 
p
Mp
⇡R

. Hence F is locally bounded. K
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