# Homework for <br> Complex Analysis 

Nicholas Camacho<br>Department of Mathematics<br>University of Iowa<br>Spring 2017

Most exercises are from
Functions of One Complex Variable I (2nd Edition) by Conway.
For example, "5.3.10" means exercise 10 from section 3 of chapter 5 in Conway.
Beware: Some solutions may be incorrect!

Exercise 1. Let $1 \leq p<\infty$. Show that a closed, bounded subset $S \subseteq \ell^{p}(\mathbb{N})$ is compact if and only if it is equisummable in the sense that for every $\epsilon>0$ there exists an index $N$ for which $\sum_{k=N}^{\infty}\left|x_{k}\right|^{p}<\epsilon$ for all $x=\left\{x_{n}\right\} \in S$.

Proof. $(\Rightarrow)$ Let $\epsilon>0$ and cover $S$ with the collection $\{B(x, \epsilon)\}_{x \in S}$. Then there exists $x^{1}, \ldots, x^{k}$ so that $S \subseteq \bigcup_{i=1}^{k} B\left(x^{i}, \epsilon\right)$. Since $x^{1}, \ldots, x^{n} \in \ell^{p}(\mathbb{N})$, then for all $i$ we have

$$
\left\|x^{i}\right\|_{p}^{p}=\sum_{n=1}^{\infty}\left|x_{n}^{i}\right|^{p}<\infty
$$

So for all $i$ there exits $N_{i}$ so that $\sum_{n=N_{i}}^{\infty}\left|x_{n}^{i}\right|^{p}<\epsilon$. Define $N:=\max _{i}\left\{N_{i}\right\}$. Now let $y=\left\{y_{n}\right\} \in S$. Then $y \in B\left(x^{i}, \epsilon\right)$ for some $i$ and then by the triangle inequality,

$$
\left(\sum_{n=N}^{\infty}\left|y_{n}\right|^{p}\right)^{1 / p} \leq\left(\sum_{n=N}^{\infty}\left|y_{n}\right|^{p}\right)^{1 / p}+\left(\sum_{n=N}^{\infty}\left|x_{n}^{i}\right|^{p}\right)^{1 / p}<\epsilon+\epsilon^{p}
$$

and so $\sum_{n=N}^{\infty}\left|y_{n}\right|^{p}<\left(\epsilon+\epsilon^{p}\right)^{p}$.
$(\Leftarrow)$ Let $x^{\ell}$ be a point in $S$, and let $x_{m}^{\ell}$ denote its $m$-th term. Now, let $\left\{x^{\boldsymbol{n}}\right\}=$ $\left\{x^{1}, x^{2}, \ldots\right\}$ be a sequence in $S$. For $\epsilon>0$, since $S$ is equisummable, we have an $N$ so that for all $x^{j}$ in the sequence $\left\{x^{\boldsymbol{n}}\right\}$,

$$
\sum_{k=N}^{\infty}\left|x_{k}^{j}\right|^{p}<\epsilon
$$

which gives that for any particular term $x_{a}^{j}$ in $x^{j}$ for $a \geq N$,

$$
\left|x_{a}^{j}\right| \leq \sum_{k=N}^{\infty}\left|x_{k}^{j}\right|^{p}<\epsilon
$$

In other words, each term $x_{a}^{j}$ of the sequence $x^{j}$ is bounded. So, when we consider the collection of $a$-th terms over all $j,\left\{x_{a}^{1}, x_{a}^{2}, \ldots\right\}$ we have a bounded sequence! For convenience, suppose $N=1$.

Now, consider the collection of "first terms" $\left\{x_{1}^{1}, x_{1}^{2}, x_{1}^{3}, \ldots\right\}$. By the argument above, this collection (sequence) is bounded, and therefore has a convergent subsequence, $\left\{x_{1}^{s(1, n)}\right\}_{n=1}^{\infty} \rightarrow$ $a_{1}$. Now consider the collection of second terms $\left\{x_{2}^{s(1, n)}\right\}_{n=1}^{\infty}$. Again, this sequence is bounded and therefore has a convergent subsequence, $\left\{x_{2}^{s(2, n)}\right\} \rightarrow a_{2}$ where the indices $s(2, n) \subseteq s(1, n)$. Continuing in this way, once we have the $j$-th subsequence for the $j$ th terms constructed, $\left\{x_{j}^{s(j, n)}\right\}_{n=1}^{\infty} \rightarrow a_{j}$, we consider the collection $\left\{x_{j+1}^{s(j, n)}\right\}_{n=1}^{\infty}$, which is bounded and therefore has a convergent subsequence $\left\{x_{j+1}^{s(j+1, n)}\right\} \rightarrow a_{j+1}$ where $s(j+1, n) \subseteq$ $s(j, n)$. Setting $n_{k}:=s(k, k)$, we get for all $j$

$$
\lim _{k \rightarrow \infty} x_{j}^{n_{k}}=a_{j}
$$

and so the subsequence $\left\{x_{1}^{n}, x_{2}^{n}, \ldots\right\}$ of $\left\{x^{\boldsymbol{n}}\right\}$ converges pointwise to the sequence $\left\{a_{j}\right\}_{j=1}^{\infty}$.

Exercise 2. Show that $z_{1}, z_{2}, z_{3} \in \mathbb{C}$ are colinear if and only if $\operatorname{Im}\left(z_{1} \overline{z_{2}}+z_{2} \overline{z_{3}}+z_{3} \overline{z_{1}}\right)=0$.
Proof. We assume from the outset that $z_{1}, z_{2}$, and $z_{3}$ are distinct.
$(\Rightarrow)$ Suppose $z_{1}, z_{2}, z_{3} \in \mathbb{C}$ are colinear. Then, there exists a $t \in \mathbb{R}$ such that $z_{3}=$ $z_{1} t+(1-t) z_{2}$. Let $z_{j}=a_{j}+i b_{j}$ for $j=1,2,3$. Then

$$
a_{3}=t a-1+a_{2}-t a_{2} \quad \text { and } \quad b_{3}=t b_{1}+b_{2}-t b_{2}
$$

For $k \neq j$, we have $\operatorname{Im}\left(z_{k} \overline{z_{j}}\right)=a_{j} b_{k}-a_{k} b_{j}$. So

$$
\begin{aligned}
& \operatorname{Im}\left(z_{1} \overline{z_{2}}+z_{2} \overline{z_{3}}+z_{3} \overline{z_{1}}\right)= {\left[a_{2} b_{1}-a_{1} b_{2}\right]+\left[\left(t a_{1}+a_{2}-t a_{2}\right) b_{2}-a_{2}\left(t b_{1}+b_{2}-t b_{2}\right)\right] } \\
& \quad+\left[a_{1}\left(t b_{1}+b_{2}-t b_{2}\right)-\left(t a_{1}+a_{2}-t a_{2}\right) b_{1}\right] \\
&= a_{1}\left(-b_{2}+t b_{2}+t b_{1}+b_{2}-t b_{2}-t b_{1}\right) \\
& \quad+a_{2}\left(b_{1}+b_{2}-t b_{2}-t b_{1}-b_{2}+t b_{2}-b_{1}+t b_{1}\right) \\
&=0
\end{aligned}
$$

$(\Leftarrow)$ We have

$$
\begin{equation*}
0=a_{1}\left(b_{3}-b_{2}\right)+a_{2}\left(b_{1}-b_{3}\right)+a_{3}\left(b_{2}-b_{1}\right) . \tag{*}
\end{equation*}
$$

Notice that if $a_{1}=a_{2}$, then $(*)$ gives $a_{1}\left(b_{2}-b_{1}\right)=a_{3}\left(b_{2}-b_{1}\right)$ and so $a_{1}=a_{2}=a_{3}$ and the vertical line through $a_{1}$ contains $z_{1}, z_{2}, z_{3}$. Similarly, if $b_{1}=b_{2}$ then $b_{1}=b_{2}=b_{3}$ and the horizontal line through $b_{1}$ contains $z_{1}, z_{2}, z_{3}$. So, assume $a_{1} \neq a_{2}$ and $b_{1}, \neq b_{2}$.

By (*), we get

$$
\begin{equation*}
\frac{a_{3}-a_{2}}{a_{1}-a_{2}}=\frac{b_{3}-b_{2}}{b_{1}-b_{2}} \tag{**}
\end{equation*}
$$

We claim that if $t$ equals the real number in $(* *)$, then $z_{3}=z_{1} t+(1-t) z_{2}$ and we are done. Note that

$$
1-t=\frac{a_{1}-a_{3}}{a_{1}-a_{2}}=\frac{b_{1}-b_{3}}{b_{1}-b_{2}}
$$

Then

$$
\begin{aligned}
z_{1} t+(1-t) z_{2} & =\left[a_{1}\left(\frac{a_{3}-a_{2}}{a_{1}-a_{2}}\right)+i b_{1}\left(\frac{b_{3}-b_{2}}{b_{1}-b_{2}}\right)\right]+\left[a_{2}\left(\frac{a_{1}-a_{3}}{a_{1}-a_{2}}\right)+i b_{2}\left(\frac{b_{1}-b_{3}}{b_{1}-b_{2}}\right)\right] \\
& =\left[\frac{a_{1} a_{3}-a_{1} a_{2}+a_{1} a_{2}-a_{2} a_{3}}{a_{1}-a_{2}}\right]+i\left[\frac{b_{1} b_{3}-b_{1} b_{2}+b_{1} b_{2}-b_{2} b_{3}}{b_{1}-b_{2}}\right] \\
& =\left[\frac{\left(a_{1}-a_{2}\right) a_{3}}{a_{1}-a_{2}}\right]+i\left[\frac{\left(b_{1}-b_{2}\right) b_{3}}{b_{1}-b_{2}}\right] \\
& =z_{3} .
\end{aligned}
$$

§1.4, \#4 Use the binomial equation

$$
(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{n-k} b^{k}
$$

and compare the real and imaginary parts of each side of de Moivre's formula to obtain the formulas:

$$
\begin{aligned}
& \cos n \theta=\cos ^{n} \theta-\binom{n}{2} \cos ^{n-2} \sin ^{2} \theta+\binom{n}{4} \cos ^{n-4} \theta \sin ^{4} \theta-\ldots \\
& \sin n \theta=\binom{n}{1} \cos ^{n-1} \theta \sin \theta-\binom{n}{3} \cos ^{n-3} \theta \sin ^{3} \theta+\ldots
\end{aligned}
$$

Proof. Let $z=a+i b=r \operatorname{cis} \theta$. Then by De Moivre's formula, $z^{n}=(a+i b)^{n}=r^{n} \operatorname{cis} n \theta$. Using the binomial equation and the fact that $a=r \cos \theta$ and $b=r \sin \theta$,

$$
\begin{aligned}
r(\cos n \theta+i \sin n \theta)=(a+i b)^{n}= & \sum_{k=0}^{n}\binom{n}{k} a^{n-k}(i b)^{k} \\
= & \sum_{k=0}^{n}\binom{n}{k}(r \cos \theta)^{n-k} i^{k}(r \sin \theta)^{k} \\
= & r \sum_{k=0}^{n}\binom{n}{k} i^{k} \cos ^{n-k} \theta \sin ^{k} \theta \\
= & r\left[\cos ^{n} \theta+\binom{n}{1} i \cos ^{n-1} \sin \theta-\binom{n}{2} \cos ^{n-1} \sin ^{2} \theta\right. \\
& \left.+\cdots+\binom{n}{n-1} i^{n-1} \cos \theta \sin ^{n-1} \theta+i^{n} \sin ^{n} \theta\right] \\
= & r\left\{\left[\cos ^{n} \theta-\binom{n}{2} \cos ^{n-1} \sin ^{2} \theta+\binom{n}{4} \cos ^{n-4} \sin ^{4} \theta-\ldots\right]\right. \\
& \left.+i\left[\binom{n}{1} \cos ^{n-1} \theta \sin \theta-\binom{n}{3} \cos ^{n-3} \theta \sin ^{3} \theta+\ldots\right]\right\}
\end{aligned}
$$

Comparing the real and imaginary parts, we obtain the desired formulas.
§1.4, \#7 If $z \in \mathbb{C}$ and $\operatorname{Re}\left(z^{n}\right) \geq 0$ for every positive integer $n$, show that $z$ is a positive real number.

Proof. Let $z=r \operatorname{cis} \theta$. By De Moivre's formula, $z^{n}=r \operatorname{cis} \theta$. We have $0 \leq \operatorname{Re}\left(z^{n}\right)=r^{n} \cos n \theta$ for all n . This implies $r^{n} \geq 0$ and $\cos n \theta \geq 0$. Working modulo $2 \pi$, the latter gives $\frac{-\pi}{2} \leq n \theta \leq \frac{\pi}{2}$ and so $\frac{-\pi}{(2 n)} \leq \theta \leq \frac{\pi}{(2 n)}$. Since this is true for all $n$, when $n \rightarrow \infty, \theta \rightarrow 0$. So, $\theta=0$, which means $z=r \operatorname{cis} \theta=r \geq 0$.
§3.1, \#6 Find the radius of convergence for each of the following power series:
(a) $\sum_{n=0}^{\infty} a^{n} z^{n}, a \in \mathbb{C} ;$
(b) $\sum_{n=0}^{\infty} a^{n^{2}} z^{n}, a \in \mathbb{C} ;$
(c) $\sum_{n=0}^{\infty} k^{n} z^{n}, k \in \mathbb{Z}$;
(d) $\sum_{n=0}^{\infty} z^{n!}$.

Proof. (a) $\limsup \left|a_{n}\right|^{1 / n}=\lim \sup |a|=|a| \Longrightarrow R=1 /|a|$ is $|a| \neq 0$ and $\mathbb{R}=\infty$ if $|a|=0$.
(b) For fixed $n$,

$$
\sup _{k \geq n}\left\{\left|a^{k^{2}}\right|^{1 / k}\right\}=\sup _{k \geq n}\left\{|a|^{k}\right\}= \begin{cases}0 & \text { if }|a|=0 \\ 1 & \text { if }|a|=1 \\ |a|^{n} & \text { if } 0<|a|<1 \\ \infty & \text { if }|a|>1\end{cases}
$$

which gives
$\frac{1}{R}=\limsup \left\{|a|^{k}\right\}=\left\{\begin{array}{ll}0 & \text { if }|a|=0 \\ 1 & \text { if }|a|=1 \\ 0 & \text { if } 0<|a|<1 \\ \infty & \text { if }|a|>1,\end{array} \Longrightarrow R=\left\{\begin{array}{ll}\infty & \text { if }|a|=0 \\ 1 & \text { if }|a|=1 \\ \infty & \text { if } 0<|a|<1 \\ 0 & \text { if }|a|>1,\end{array}= \begin{cases}\infty & \text { if }|a|<1 \\ 1 & \text { if }|a|=1 \\ 0 & \text { if }|a|>1\end{cases}\right.\right.$
(c) We have $\sup _{\ell \geq n}\left\{\left|k^{\ell}\right|^{1 / \ell}\right\}=|k|$ and so $\lim \sup \{|k|\}=|k|$ which implies $R=1 /|k|$.
(d)

$$
\begin{aligned}
\sum_{n=0}^{\infty} z^{n!} & =z^{0!}+z^{1!}+z^{2!}+z^{3!}+z^{4!}+\ldots \\
& =z^{1}+z^{1}+z^{2}+z^{6}+z^{2} 4+\ldots \\
& =(0) z^{0}+2(z)+1\left(z^{2}\right)+(0) z^{3}+(0) z^{4}+(0) z^{5}+(1) z^{6}+\ldots \\
& =\sum_{n=1}^{\infty} a_{n} z^{n}
\end{aligned}
$$

where

$$
a_{n}= \begin{cases}0 & \text { if } n=0 \\ 2 & \text { if } n=1 \\ 1 & \text { if } n=k!\text { for some } k \in \mathbb{N}_{\geq 1} \\ 0 & \text { otherwise }\end{cases}
$$

Then for $n>1$,

$$
\sup _{k \geq n}\left\{\left|a_{k}\right|^{1 / k}\right\}=\sup _{k \geq n}\left\{1^{1 / k}\right\}=1 \Longrightarrow \lim \sup \left\{\left|a_{k}\right|^{1 / k}\right\}=1 \Longrightarrow R=1
$$

§3.1, \#7 Show that the radius of convergence of the power series

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n} z^{n(n+1)}
$$

is 1 , and discuss convergence for $z=1,-1$, and $i$
Proof. Define

$$
\begin{aligned}
a_{n} & := \begin{cases}\frac{(-1)^{k}}{k} & \text { if } n=k(k+1) \mathrm{f} \text { or some } k \in \mathbb{Z}^{+} \\
0 & \text { otherwise }\end{cases} \\
& = \begin{cases}\frac{2}{-1+\sqrt{1+4 n}} \cdot(-1)^{\frac{-1+\sqrt{1+4 n}}{2}} & \text { if } n=k(k+1) \mathrm{f} \text { or some } k \in \mathbb{Z}^{+} \\
0 & \text { otherwise. }\end{cases}
\end{aligned}
$$

Then the series $\sum_{n=0}^{\infty} a_{n} z^{n}$ is equivalent to the one in question. Notice that for nonzero $a_{n}$,

$$
\left|a_{n}\right|^{1 / n}=\left|\frac{2}{-1+\sqrt{1+4 n}} \cdot(-1)^{\frac{-1+\sqrt{1+4 n}}{2}}\right|^{1 / n}=\left(\frac{2}{|-1+\sqrt{1+4 n}|}\right)^{1 / n}
$$

Now

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \ln \left(\left(\frac{2}{-1+\sqrt{1+4 n}}\right)^{1 / n}\right) & =\lim _{n \rightarrow \infty} \frac{\ln \left(\frac{2}{-1+\sqrt{1+4 n}}\right)}{n} \\
& =\lim _{n \rightarrow \infty} \frac{\ln (2)}{n}-\lim _{n \rightarrow \infty} \frac{\ln (-1+\sqrt{1+4 n})}{n} \\
& =0,
\end{aligned}
$$

and so

$$
\lim _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}=e^{\lim _{n \rightarrow \infty} \ln \left(\left(\frac{2}{-1+\sqrt{1+4 n}}\right)^{1 / n}\right)}=e^{0}=1
$$

Thus the radius of convergence is 1 ! If $z=1$, then we have the alternating series, which converges. If $z=-1$ the power $n(n+1)$ will always be even, so we get the same series as the case $z=1$. When $z=i$ we again note that we have even powers on $i$, and so $i^{n(n+1)}$ is either 1 or -1 .

Exercise 3.2.2*. Prove that if $b_{n}, a_{n}$ are real an positive and $0<b=\lim b_{n}, a=\limsup a_{n}$, then $a b=\lim \sup \left(a_{n} b_{n}\right)$. Does this remain true if the requirement of positivity is dropped?
Proof. Fix $n \in \mathbb{N}$ and let $k \geq n$. Then

$$
a_{k} \leq \sup _{\ell \geq n}\left\{a_{\ell}\right\} \quad \text { and } \quad b_{k} \leq \sup _{\ell \geq n}\left\{b_{\ell}\right\}
$$

So

$$
a_{k} b_{k} \leq \sup _{\ell \geq n}\left\{a_{\ell}\right\} \sup _{\ell \geq n}\left\{b_{\ell}\right\}
$$

and so

$$
\sup _{k \geq n}\left\{a_{k} b_{k}\right\} \leq \sup _{\ell \geq n}\left\{a_{\ell}\right\} \sup _{\ell \geq n}\left\{b_{\ell}\right\}
$$

which gives

$$
\limsup \left(a_{n} b_{n}\right) \leq \lim \sup \left(a_{n}\right) \limsup \left(b_{n}\right)=a b
$$

Conversely, we can pick a subsequence $\left\{a_{n_{k}}\right\}$ of $\left\{a_{n}\right\}$ which converges to $a$. Then $\left\{a_{n_{k}} b_{n_{k}}\right\}$ converges to $a b$, and since $\lim \sup \left(a_{n} b_{n}\right)$ is the largest subsequential limit of $\left\{a_{n} b_{n}\right\}$, then $a b \leq \lim \sup \left(a_{n} b_{n}\right)$.
Exercise 3.2.3. Show that $\lim n^{1 / n}=1$.
Proof. Since the linear function $n$ grows faster than $\ln n$, we get

$$
\lim _{n \rightarrow \infty} \frac{\ln n}{n}=0, \Longrightarrow \lim _{n \rightarrow \infty} n^{1 / n}=e^{\lim \frac{\ln n}{n}}=e^{0}=1
$$

Exercise 3.2.4* Show that $(\cos z)^{\prime}=-\sin z$ and $(\sin z)^{\prime}=\cos z$.
Proof. Using the power series of $\cos z$ and $\sin z$ and applying Proposition 2.5,

$$
\begin{aligned}
(\cos z)^{\prime}=\left(\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n!} z^{2 n}\right)^{\prime}=\sum_{n=1}^{\infty}(2 n) \frac{(-1)^{n}}{2 n!} z^{2 n-1} & =\sum_{n=1}^{\infty} \frac{(-1)^{n}}{(2 n-1)!} z^{2 n-1} \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{(2(n+1)-1)!} z^{2(n+1)-1} \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}(-1)}{(2 n+1))!} z^{2 n+1} \\
& =-\sin z
\end{aligned}
$$

$$
(\sin z)^{\prime}=\left(\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{(2 n-1)!} z^{2 n-1}\right)^{\prime}=\sum_{n=1}^{\infty}(2 n-1) \frac{(-1)^{n-1}}{(2 n-1)!} z^{2 n-2}=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{(2 n-2)!} z^{2 n-2}
$$

$$
=\sum_{n=0}^{\infty} \frac{(-1)^{(n+1)-1}}{(2(n+1)-2)!} z^{2(n+1)-2}
$$

$$
=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n!} z^{2 n}
$$

$$
=\cos z
$$

Exercise 3.2.10. Let $G$ and $\Omega$ be open in $\mathbb{C}$ and suppose $f$ and $h$ are functions defined on $G, g: \Omega \rightarrow \mathbb{C}$ and suppose that $f(G) \subset \Omega$. Suppose that $g$ and $h$ are analytic, $g^{\prime}(\omega) \neq 0$ for any $\omega$, that $f$ is continuous, $h$ is one-to-one, and that they satisfy $h(z)=g(f(z))$ for $z \in G$. Show that $f$ is analytic. Give a formula for $f^{\prime}(z)$.

Proof. We have

$$
\lim _{\omega \rightarrow z} \frac{f(\omega)-f(z)}{\omega-z}=\lim _{\omega \rightarrow z} \frac{f(\omega)-f(z)}{g(f(\omega))-g(f(z))} \frac{g(f(z))-g(f(\omega))}{z-\omega}=\frac{1}{\left(h^{\prime}(z)\right)} \cdot g^{\prime}(f(z))
$$

and thus $f$ is differentiable. Since $h$ and $g$ are analytic, so is $f$. Moreover,

$$
f^{\prime}(z)=\frac{1}{\left(h^{\prime}(z)\right)} \cdot g^{\prime}(f(z))
$$

Exercise 3.2.11. Suppose that $f: G \rightarrow \mathbb{C}$ is a branch of the logarithm and that $n$ is an integer. Prove that $z^{n}=e^{n f(z)}$ for all $z \in G$.

Proof. Since $e^{f(z)}=z$, then $e^{n f(z)}=\left(e^{f(z)}\right)^{n}=z^{n}$ for all $z \in G$.
Exercise 3.2.13*. Let $G=\mathbb{C}-\{z \in \mathbb{R} \mid z \leq 0\}$ and let $n$ be a positive integer. Find all analytic functions $f: G \rightarrow \mathbb{C}$ such that $z=(f(z))^{n}$ for all $z \in G$.

Proof. Notice that for a function $f$ to satisfy $z=(f(z))^{n}$, that would imply $z^{1 / n}=f(z)$. Then all analytic functions $f$ with the required property are of the form

$$
f(z)=e^{\log f(z)}=e^{\log z^{1 / n}}=e^{1 / n \log z}=e^{1 / n(|z|+i(\arg (z)+2 \pi k))}=e^{1 / n|z|} e^{(i \arg (z)+2 \pi k) /(n)}
$$

for $k \in \mathbb{Z}$. These functions are analytic since they are the product of the composition of analytic functions. For each $k \in \mathbb{Z}$, define

$$
f_{k}(z)=e^{1 / n|z|} e^{i \arg (z) / n} e^{2 \pi k / n}
$$

Then if $k \equiv m \bmod n$, then $f_{k}=f_{m}$ since $e^{2 \pi k / n}=e^{2 \pi m / n}$. So, we have exactly $n$ analytic functions satisfying the given property.

Exercise 3.2.18*. Let $f: G \rightarrow \mathbb{C}$ and $g: G \rightarrow \mathbb{C}$ be branches of $z^{a}$ and $z^{b}$, respectively. Show that $f g$ is a branch of $z^{a+b}$ and $f / g$ is a branch of $z^{a-b}$. Suppose that $f(G) \subset G$ and $g(G) \subset G$ and prove that both $f \circ g$ and $g \circ f$ are branches of $z^{a b}$.
Proof. Let $f(z)=e^{a(p(z))}$ and $g(z)=e^{b(q(z))}$ where $p(z), q(z)$ are branches of the logarithm. As such, there exists $k \in \mathbb{Z}$ so that $p(z)=q(z)+2 \pi i k$. So

$$
f(z) g(z)=e^{a(q(z)+2 \pi i k)+b q(z)}=e^{a q(z)+a 2 \pi i k+b q(z)}=e^{(a+b) q(z)}\left(e^{2 \pi i}\right)^{a k}=e^{(a+b) q(z)}
$$

and thus $f g$ is a branch of $z^{a+b}$. Similarly,

$$
f(z) / g(z)=e^{a(q(z)+2 \pi i k)-b q(z)}=e^{a q(z)+a 2 \pi i k-b q(z)}=e^{(a-b) q(z)}\left(e^{2 \pi i}\right)^{a k}=e^{(a-b) q(z)}
$$

Let $\log (z)$ be the principal branch of the logarithm. Then there exist $m, n \in \mathbb{Z}$ so that $p(z)=\log (z)+2 \pi i m$ and $q(z)=\log (z)+2 \pi i n$. Then

$$
\begin{aligned}
(f \circ g)(z)=e^{a p\left(e^{b(q(z))}\right)} & =e^{a \log \left(e^{b(q(z))}\right)+2 \pi i m} \\
& =e^{a \log \left(e^{b(q(z))}\right)} e^{2 \pi i m} \\
& =e^{a b q(z)}
\end{aligned}
$$

and similarly,

$$
\begin{aligned}
(g \circ f)(z)=e^{b q\left(e^{a(p(z))}\right)} & =e^{b \log \left(e^{a(p(z))}\right)+2 \pi i n} \\
& =e^{b \log \left(e^{a(p(z))}\right)} e^{2 \pi i n} \\
& =e^{b a p(z)}
\end{aligned}
$$

Thus $f \circ g$ and $g \circ f$ are branches of $z^{a b}$.

Exercise 3.2.21*. Prove that there is no branch of the logarithm defined on $G=\mathbb{C}-\{z \in$ $\mathbb{R} \mid z \leq 0\}$. (Hint: Suppose such a branch exists and compare this with the principal branch.)
Proof. Suppose such a branch exists and call it $f(x)$. If $h(z)=\ln (|z|)+i \theta,-\pi<\theta<\pi$ is the principal branch, then there is a $k \in \mathbb{Z}$ so that $f(z)=h(z)+2 \pi i k$. Let $\theta_{n}=\pi-1 / n$ and $\theta_{k}=-\pi+1 / n$. Then $\left\{\theta_{n}\right\} \rightarrow \pi$ and $\left\{\theta_{k}\right\} \rightarrow-\pi$, and so

$$
\left\{e^{i \theta_{n}}\right\} \rightarrow-1 \quad \text { and } \quad\left\{e^{i \theta_{k}}\right\} \rightarrow-1
$$

Since $f$ is a branch of the logarithm, it must be continuous. So,

$$
\lim _{n \rightarrow \infty} f\left(e^{i \theta_{n}}\right)=f(-1)=\lim _{n \rightarrow \infty} f\left(e^{i \theta_{k}}\right)
$$

So,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} f\left(e^{i \theta_{n}}\right) & =\lim _{n \rightarrow \infty} h\left(e^{i \theta_{n}}\right)+2 \pi i k \\
& =\lim _{n \rightarrow \infty}\left[\ln (1)+i \theta_{n}\right]+2 \pi i k \\
& =\lim _{n \rightarrow \infty} i(\pi-1 / n)+2 \pi i k \\
& =i \pi+2 \pi i k
\end{aligned}
$$

However, by a similar computation, we get $\lim _{n \rightarrow \infty} f\left(e^{i \theta_{k}}\right)=-i \pi+2 \pi i k$. Together, these imply $-i \pi=i \pi$, which means $-i=0$. Contradiction!

Exercise 3.3.1. Find the image of $\{z: \operatorname{Re} z<0,|\operatorname{Im} z|<\pi\}$ under the exponential function.

Proof. Let $z=a+i b$ be an element of the set described. Since the exponential is never $0, e^{z} \neq 0$. Because $a<0$, then $\left|e^{z}\right|=e^{a}<1$ since the real exponential is increasing and $e^{a}<e^{0}=1$. Hence $e^{z}$ will be strictly contained in the unit disk. Since $\left|\arg \left(e^{z}\right)\right|=$ $|\operatorname{Im} z|=|b|<\pi$, then $e^{z} \notin \mathbb{R}^{-}$. Therefore the image of $\{z: \operatorname{Re} z<0,|\operatorname{Im} z|<\pi\}$ under the exponential function is the open unit disk minus the nonpositive real axis. That is,

$$
\left\{w \in \mathbb{C}-\{0\}:|w|<1, w \notin \mathbb{R}^{-}\right\}
$$

Exercise 3.3.7. If $T z=\frac{a z+b}{c z+d}$, find $z_{2}, z_{3}, z_{4}$ (in terms of $a, b, c, d$ ) such that $T z=$ $\left(z, z_{2}, z_{3}, z_{4}\right)$.

Proof. We want that $T z_{2}=1, T z_{3}=0$, and $T z_{4}=\infty$. So

$$
\begin{aligned}
1 & =\frac{a z_{2}+b}{c z_{2}+d} \Longrightarrow z_{2}=\frac{d-b}{a-c} \\
0 & =\frac{a z_{3}+b}{c z_{3}+d} \Longrightarrow z_{3}=-b / a \\
\infty & =\frac{a z_{4}+b}{c z_{4}+d} \Longrightarrow z_{4}=-d / c
\end{aligned}
$$

If $a=c$, then $z_{2}=\infty$. If $a=0$, then $z_{3}=\infty$. If $c=0$, then $z_{4}=\infty$.
Exercise 3.3.9. If $T z=\frac{a z+b}{c z+d}$, find necessary and sufficient conditions that $T(\Gamma)=\Gamma$, where $\Gamma$ is the unit circle $\{z:|z|=1\}$.

Proof. Let $z \in \Gamma$ and suppose $T(z) \in \Gamma$, i.e., $T(z) \overline{T(z)}=1$. Then

$$
1=\frac{a z+b}{c z+d} \frac{\overline{a z+b}}{\overline{c z+d}} .
$$

Simplifying this expression, we get

$$
0=z \bar{z}(a \bar{a}-c \bar{c})+z(a \bar{b}-c \bar{d})+\bar{z}(b \bar{a}+d \bar{c})+b \bar{b}-d \bar{d}
$$

Now since $z \bar{z}=1$,

$$
z \bar{z}-1=z \bar{z}(a \bar{a}-c \bar{c})+z(a \bar{b}-c \bar{d})+\bar{z}(b \bar{a}+d \bar{c})+b \bar{b}-d \bar{d}
$$

Comparing coefficients, we get the following conditions:

$$
\begin{equation*}
a \bar{b}-c \bar{d}=0 \quad \text { and } \quad|a|^{2}+|b|^{2}=|c|^{2}+|d|^{2} \tag{*}
\end{equation*}
$$

Hence if we want $T(\Gamma)=\Gamma$, then it is necessary that these conditions hold.

Conversely, suppose the equations in $(*)$ hold. Since $T$ sends a circle to a circle, and a circle is determined by three points (as is $T$ ), we show $|T(1)|^{2}=|T(-1)|^{2}=|T(i)|^{2}=1$. Then we can conclude $T(\Gamma)=\Gamma$. So,

$$
\begin{aligned}
1=|T(1)|^{2} & \Longleftrightarrow|a+b|^{2}=|c+d|^{2} \\
& \Longleftrightarrow|a|^{2}+2 \operatorname{Re}(a \bar{b})+|b|^{2}=|c|^{2}+2 \operatorname{Re}(c \bar{d})+|d|^{2} \\
1=|T(-1)|^{2} & \Longleftrightarrow|-a+b|^{2}=|-c+d|^{2} \\
& \Longleftrightarrow|-a|^{2}+2 \operatorname{Re}(-a \bar{b})+|b|^{2}=|-c|^{2}+2 \operatorname{Re}(-c \bar{d})+|d|^{2} \\
& \Longleftrightarrow|a|^{2}-2 \operatorname{Re}(a \bar{b})+|b|^{2}=|c|^{2}-2 \operatorname{Re}(c \bar{d})+|d|^{2}
\end{aligned}
$$

Combining these, we get $\operatorname{Re}(a \bar{b})=\operatorname{Re}(c \bar{d})$. Then,

$$
\begin{aligned}
1=|T(i)|^{2} & \Longleftrightarrow|a i+b|^{2}=|c i+d|^{2} \\
& \Longleftrightarrow|a i|^{2}+2 \operatorname{Re}(a i \bar{b})+|b|^{2}=|c|^{2}+2 \operatorname{Re}(c i \bar{d})+|d|^{2} \\
& \Longleftrightarrow \operatorname{Re}(i a \bar{b})=\operatorname{Re}(i c \bar{d}) \\
& \Longleftrightarrow-\operatorname{Im}(a \bar{b})=-\operatorname{Im}(c \bar{d}) \\
& \Longleftrightarrow \operatorname{Im}(a \bar{b})=\operatorname{Im}(c \bar{d}) .
\end{aligned}
$$

Therefore,

$$
\operatorname{Re}(a \bar{b})=\operatorname{Re}(c \bar{d}) \quad \text { and } \quad \operatorname{Im}(a \bar{b})=\operatorname{Im}(c \bar{d})
$$

gives $a \bar{b}=c \bar{d}$. Now, applying this to the first computation $1=|T(1)|^{2}$, we get that

$$
|a|^{2}+|b|^{2}=|c|^{2}+|d|^{2}
$$

Exercise 3.3.17. Let $G$ be a region and suppose that $f: G \rightarrow \mathbb{C}$ is analytic such that $f(G)$ is a subset of a circle. Show that $f$ is constant.

Proof. Let $z_{0} \in G$ so that $f^{\prime}\left(z_{0}\right)$ and $B \subseteq G$ be an open ball around $z_{0}$. Pick two points $z_{1}, z_{2} \in B$ so that if

$$
\ell_{1}(t)=\left(z_{0}+\left(z_{1}-z_{0}\right) t\right) \quad \text { and } \quad \ell_{2}(t)=\left(z_{0}+\left(z_{2}-z_{0}\right) t\right)
$$

are equations of the lines joining $z_{0}$ with $z_{1}$ and $z_{0}$ with $z_{2}$, respectively, then

$$
\arg \left(z_{1}-z_{0}\right)-\arg \left(z_{2}-z_{0}\right)=\arg \ell_{1}^{\prime}(0)-\arg \ell_{2}^{\prime}(0)=\frac{\pi}{2}
$$

Since $f$ is analytic, it is angle preserving, and so

$$
\frac{\pi}{2}=\arg f^{\prime}\left(\ell_{1}(0)\right) \ell_{1}^{\prime}(0)-\arg f^{\prime}\left(\ell_{2}(0)\right) \ell_{2}^{\prime}(0)
$$

However, since $f$ maps the paths $\ell_{1}$ and $\ell_{2}$ in the circle, the vectors $f^{\prime}\left(\ell_{1}(0)\right)$ and $f^{\prime}\left(\ell_{2}(0)\right)$ must either be identical or pointing in opposite directions. In other words, the vectors will have angle 0 or angle $\pi$ between them. Thus, $f^{\prime}=0$ on $G$, i.e., $f$ is constant.

Exercise 3.3.27. Prove that the group $\mathcal{M}$ of Möbius transformations is a simple group.
Proof. Define a group homomorphism

$$
\varphi: G L_{2}(\mathbb{C}) \rightarrow \mathcal{M} \quad \text { by } \quad\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \mapsto \frac{a z+b}{c z+d}
$$

Then $\varphi$ is certainly surjective with

$$
\operatorname{ker} \varphi=\left\{\left(\begin{array}{ll}
\lambda & 0 \\
0 & \lambda
\end{array}\right): \lambda \in \mathbb{C}\right\} .
$$

Then by the first isomorphism theorem, $G L_{2}(\mathbb{C}) / \operatorname{ker} \varphi \cong \mathcal{M}$. Moreover, $G L_{2}(\mathbb{C}) / \operatorname{ker} \varphi \cong$ $P S L_{2}(\mathbb{C})$, which is simple ${ }^{1}$, and hence so is $\mathcal{M}$.

[^0]Exercise 4.1.9. Define $\gamma:[0,2 \pi] \rightarrow \mathbb{C}$ by $\gamma(t)=e^{i n t}$ where $n \in \mathbb{Z}$. Show that $\int_{\gamma} \frac{1}{z} d z=$ $2 \pi i n$.

## Solution:

$$
\int_{\gamma} \frac{1}{z} d z=\int_{0}^{2 \pi} \frac{1}{e^{i n t}} d \gamma=\int_{0}^{2 \pi} \frac{i n e^{i n t}}{e^{i n t}} d t=\int_{0}^{2 \pi} i n d t=2 \pi i n
$$

Exercise 4.1.20. Let $\gamma(t)=1+e^{i t}$ for $0 \leq t \leq 2 \pi$ and find $\int_{\gamma}\left(z^{2}-1\right)^{-1} d z$.

## Solution:

If $f(z)=1 /\left(z^{2}-1\right)$, then

$$
f(z)=\frac{1}{2}\left[\frac{1}{z-1}-\frac{1}{z+1}\right] \quad \text { and } \quad f(\gamma(t))=\frac{1}{2}\left[\frac{1}{e^{i t}}-\frac{1}{2+e^{i t}}\right]
$$

Letting $\log (z)$ be the principal $\log$ defined on the set $G=\mathbb{C}-\{z \in \mathbb{R} \mid z \leq 0\}$,

$$
\int_{0}^{2 \pi} f(\gamma(t)) \gamma^{\prime}(t) d t=\frac{1}{2}\left[\int_{0}^{2 \pi} i d t-\int_{0}^{2 \pi} \frac{i e^{i t}}{2+e^{i t}} d t\right]=\frac{1}{2}\left[2 \pi i-\left.\log \left(2+e^{i t}\right)\right|_{0} ^{2 \pi}\right]=\pi i
$$

Exercise 4.1.23. Let $\gamma$ be a closed rectifiable curve in an open set $G$ and $a \notin G$. Show that for $n \geq 2, \int_{\gamma}(z-a)^{-n} d z=0$.

Proof. Since $\gamma:[a, b] \rightarrow \mathbb{C}$ is closed, $\gamma(a)=\gamma(b)$. Letting $f(z)=(z-a)^{-n}$, since $a \notin G$, then $f$ and

$$
F(z)=\frac{(z-a)^{-n+1}}{-n+1}
$$

are defined and continuous on $G$, and $F^{\prime}=f$. So $\int_{\gamma} f(z) d z=F(\beta)-F(\alpha)=0$.

Exercise 4.2.4. (a) Prove Abel's Theorem: Let $\sum a_{n}(z-a)^{n}$ have radius of convergence 1 and suppose that $\sum a_{n}$ converges to $A$. Prove that

$$
\lim _{r \rightarrow 1^{-}} \sum a_{n} r^{n}=A
$$

(b) Use Abel's Theorem to prove that $\log 2=1-\frac{1}{2}+\frac{1}{3}-\ldots$.

Proof. ${ }^{* * *}$ The following proof belongs to Alexander Bates***
We may assume that $a=0$ and $A=0$. Define $s_{k}=\sum_{n=0}^{k} a_{n}$ and $s_{-1}:=0$. Notice that $a_{n}=s_{n}-s_{n-1}$. Furthermore, $\lim _{k \rightarrow \infty} s_{k}=\lim _{k \rightarrow \infty} \sum_{n=0}^{k} a_{n}=\sum_{n=0}^{\infty} a_{n}=A=0$. Define $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$. Letting $z \in\{z \in \mathbb{R} \mid 0<z<1\}$, we have:

$$
\begin{aligned}
f(z)=\sum_{n=0}^{\infty} z^{n} a_{n}=\lim _{k \rightarrow \infty} \sum_{n=0}^{k} z^{n} a_{n} & =\lim _{k \rightarrow \infty} \sum_{n=1}^{k} z^{n}\left(s_{n}-s_{n-1}\right) \\
& =\lim _{k \rightarrow \infty}\left(z^{k+1} s_{k}-z^{0} s_{-1}-\sum_{n=1}^{k} s_{n}\left(z^{n+1}-z^{n}\right)\right) \\
& =\lim _{k \rightarrow \infty}\left(z^{k+1} s_{k}-\sum_{n=1}^{k} s_{n}\left(z^{n+1}-z^{n}\right)\right) \\
& =\lim _{k \rightarrow \infty} z^{k+1} s_{k}-\lim _{k \rightarrow \infty} \sum_{n=1}^{k} s_{n}\left(z^{n+1}-z^{n}\right) \\
& =\lim _{k \rightarrow \infty} \sum_{n=1}^{k} s_{n}\left(z^{n}-z^{n+1}\right) \\
& =(1-z) \lim _{k \rightarrow \infty} \sum_{n=1}^{k} s_{n} z^{n}=(1-z) \sum_{n=1}^{\infty} s_{n} z^{n} .
\end{aligned}
$$

Letting $\epsilon>0$, there exists $N \in \mathbb{N}$ so that $\left|s_{n}\right|<\epsilon / 2$ for all $n \geq N$. For real $r$ with $0<r<1$,

$$
\begin{aligned}
|f(r)| & \leq(1-r)\left(\left|\sum_{n=1}^{N-1} s_{n} r^{n}\right|+\sum_{n=N}^{\infty}\left|s_{n}\right|\left|r^{n}\right|\right) \\
& <(1-r)\left(\left|\sum_{n=1}^{N-1} s_{n} r^{n}\right|+\sum_{n=N}^{\infty} \frac{\epsilon}{2} r^{n}\right) \\
& =(1-r)\left(\left|\sum_{n=1}^{N-1} s_{n} r^{n}\right|+\frac{\epsilon}{2} \frac{r^{N}}{1-r}\right) \\
& \leq(1-r)\left|\sum_{n=1}^{N-1} s_{n} r^{n}\right|+\frac{\epsilon}{2}
\end{aligned}
$$

If $\left|\sum_{n=1}^{N-1} s_{n} r^{n}\right|<\epsilon / 2$ then we are done. Otherwise, pick $r \in \mathbb{R}$ with $0<r<1$ so that $1-r<\frac{\epsilon}{2\left|\sum_{n=1}^{N-1} s_{n} r^{n}\right|}$. Then $|f(r)|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon$. Hence, $\lim _{r \rightarrow 1-} f(r)=0$.

We have $\log (1+z)=\sum_{n=0}^{\infty} a_{n}(z+1-1)^{n}=\sum_{n=0}^{\infty} a_{n} z^{n}$, where $a_{n}=\frac{1}{n!} f^{(n)}(1)=$ $(-1)^{n} \frac{1}{n+1}$. That is, $\log (1+z)=\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{n+1}}{n+1}$. This series has radius of convergence 1 and the sum $\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{n+1}$ is convergent. By part (a), the conclusion follows.

Exercise 4.2.7. Use the results of this section to evaluate the following integrals:
(c) $\int_{\gamma} \frac{\sin z}{z^{3}} d z, \quad \gamma(t)=e^{i t}, \quad 0 \leq t \leq 2 \pi$.
(d) $\int_{\gamma} \frac{\log z}{z^{n}} d z, \quad \gamma(t)=1+\frac{1}{2} e^{i t}, \quad 0 \leq t \leq 2 \pi$ and $n \geq 0$.

## Solution:

Letting $f(z)=\sin z$, we have

$$
0=-\sin 0=f^{\prime \prime}(0)=\frac{2!}{2 \pi i} \int_{\gamma} \frac{f(z)}{(z-0)^{2+1}}=\frac{1}{\pi i} \int_{\gamma} \frac{\sin z}{z^{3}} d z
$$

In the disk $B(1 ; 1 / 3), \gamma$ is a closed rectifiable curve, and $\log z / z^{n}$ is analytic and hence has a primitive. So by Proposition 2.15 the integral in part (d) is 0 .

Exercise 4.2.9. Evaluate the following integrals:
(c) $\int_{\gamma} \frac{d z}{z^{2}+1}, \quad \gamma(t)=2 e^{i t}, \quad 0 \leq t \leq 2 \pi$.
(d) $\int_{\gamma} \frac{\sin z}{z} d z, \quad \gamma(t)=e^{i t}, \quad 0 \leq t \leq 2 \pi$.

## Solution:

Let $f(z)=1$. Then $f$ is analytic on $\mathbb{C}$ with $\bar{B}(0,2) \subset \mathbb{C}$. Hence by Proposition 2.6

$$
f(z)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(w)}{w-z} d w
$$

for $|z-0|<2$. Since $|i|=|-i|=1<2$, we have

$$
\int_{\gamma} \frac{d z}{z^{2}+1}=-\frac{2}{i} \int_{\gamma} \frac{1}{z-i} d z+\frac{2}{i} \int_{\gamma} \frac{1}{z+i} d z=-\frac{2}{i} \cdot(2 \pi i) f(i)+\frac{2}{i} \cdot(2 \pi i) f(-i)=0
$$

Now, letting $g(w)=\sin w$, we have

$$
0=\sin 0=g(0)=\frac{1}{2 \pi i} \int_{\gamma} \frac{g(w)}{(w-0)} d w=\frac{1}{2 \pi i} \int_{\gamma} \frac{\sin w}{w} d w
$$

Exercise 4.3.1. Let $f$ be an entire function and suppose there is a constant $M$, and $R>0$, and an integer $n \geq 1$ such that $|f(z)| \leq M|z|^{n}$ for $|z|>R$. Show that $f$ is a polynomial of degree $\leq n$.
Proof. Since $f$ is continuous and $\bar{B}(0 ; R)$ is compact, then there exists $C>0$ such that $|f|<C$ on $\bar{B}(0 ; R)$. Choose $r>R$ so that $C<M r^{n}$, and let $R<|z|<r$. Then

$$
|f(z)| \leq M|z|^{n}<M r^{n}
$$

and hence $|f|<M r^{n}$ on $B(0 ; r)$. For any $k>n$, we have by Cauchy's Estimate

$$
\left|f^{(k)}(0)\right| \leq \frac{k!M r^{n}}{r^{k}}=\frac{k!M}{r^{k-n}}
$$

Letting $r \rightarrow \infty$ gives that $f^{k}(0)=0$ for all $k>n$. Since $f$ is entire, we can write $f(z)=$ $\sum_{m=0}^{\infty} a_{m} z^{m}$ and for all $k>n$,

$$
a_{k}=\frac{1}{k!} f^{(k)}(0)=0 .
$$

Hence $f(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}$.
Exercise 4.3.8. Let $G$ be a region and let $f$ and $g$ be analytic functions on $G$ such that $f(z) g(z)=0$ for all $z \in G$. Show that either $f \equiv 0$ or $g \equiv 0$.

Proof. Suppose without loss of generality that $g \not \equiv 0$ on $G$. So there exists $a \in G$ such that $g(a) \neq 0$. Let $R>0$ so that $B(a ; R) \subset G$. The function $h(z):=f(z) g(z)=0$ is analytic in $B(a ; R)$, and so we can write $0=h(z)=\sum_{n=0}^{\infty} a_{n}(z-a)^{n}$. This implies that $a_{k}=0$ for all $k \geq 1$.

Fix $n \in \mathbb{N}$. We show by induction that $f^{(n)}(a)=0$. We have $f(a) g(a)=0$ by hypothesis which gives $f(a)=0$. Moreover,

$$
0=a_{1}=h^{\prime}(a)=(f g)^{\prime}(a)=f^{\prime}(a) g(a)+f(a) g^{\prime}(a)=f^{\prime}(a) g(a)=0 \Longrightarrow f^{\prime}(a)=0
$$

Now suppose for induction that $f^{(k)}(a)=0$ for all $k \in\{0, \ldots, n-1\}$. Then

$$
\begin{aligned}
0=a_{n}=\frac{1}{n!} h^{(n)}(a) & =\frac{1}{n!}(f g)^{(n)}(a) \\
& =\sum_{\ell=0}^{n}\binom{n}{\ell} f^{(n-\ell)}(a) g^{(\ell)}(a) \\
& =f^{(n)}(a) g(a)
\end{aligned}
$$

and hence $f^{(n)}(a)=0$. Since this is true for all $n \in \mathbb{N}$, we have by Theorem 3.7 that $f \equiv 0$ on $G$.

Exercise 4.3.9. Let $U: \mathbb{C} \rightarrow \mathbb{R}$ be a harmonic function such that $U(z) \geq 0$ for all $z \in \mathbb{C}$; prove that $U$ is constant.

Proof. Since $U$ is harmonic, it has a harmonic conjugate and hence $U$ is the real part of an analytic function $f$. Define $g(z)=e^{-f(z)}$. So $g$ is analytic on all of $\mathbb{C}$ hence entire. Then

$$
|g(z)|=\left|e^{-f(z)}\right|=e^{\operatorname{Re}-f(z)}=e^{-\operatorname{Re} f(z)}=e^{-U(z)} \leq 1
$$

and so $g$ is a constant function by Louiville's Theorem. It follows that $U$ is also constant.

Exercise 4.4.3. Let $p(z)$ be a polynomial of degree $n$ and let $R>0$ be sufficiently large so that $p$ never vanishes in $\{z:|z| \geq R\}$. If $\gamma(t)=R e^{i t}, 0 \leq t \leq 2 \pi$, show that $\int_{\gamma} \frac{p^{\prime}(z)}{p(z)} d z=$ $2 \pi i n$.

Proof. We can write $p(z)=c\left(z-\alpha_{1}\right) \cdots\left(z-\alpha_{n}\right)$ where $\alpha_{1}, \ldots, \alpha_{n}$ are the (not necessarily distinct) roots of $p(z)$ and $c \in \mathbb{C}$. Then

$$
p^{\prime}(z)=c \sum_{i=1}^{n}\left(z-\alpha_{1}\right) \cdots\left(z-\alpha_{i-1}\right)\left(z-\alpha_{i+1}\right) \cdots\left(z-\alpha_{n}\right)
$$

So

$$
\begin{aligned}
\int_{\gamma} \frac{p^{\prime}(z)}{p(z)} d z & =\int_{\gamma} \sum_{i=1}^{n} \frac{c\left(z-\alpha_{1}\right) \cdots\left(z-\alpha_{i-1}\right)\left(z-\alpha_{i+1}\right) \cdots\left(z-\alpha_{n}\right)}{c\left(z-\alpha_{1}\right) \cdots\left(z-\alpha_{n}\right)} \\
& =\sum_{i=1}^{n} \int_{\gamma} \frac{\left(z-\alpha_{1}\right) \cdots\left(z-\alpha_{i-1}\right)\left(z-\alpha_{i+1}\right) \cdots\left(z-\alpha_{n}\right)}{\left(z-\alpha_{1}\right) \cdots\left(z-\alpha_{n}\right)} \\
& =\sum_{i=1}^{n} \int_{\gamma} \frac{1}{z-\alpha_{i}} \\
& =\sum_{i=1}^{n} n\left(\gamma ; a_{i}\right) 2 \pi i \\
& =2 \pi i n .
\end{aligned}
$$

Exercise 4.5.6. Let $f$ be analytic on $D=B(0 ; 1)$ and suppose $|f(z)| \leq 1$ for $|z|<1$. Show $\left|f^{\prime}(0)\right| \leq 1$.

Proof. By Cauchy's Estimate, $\left|f^{\prime}(0)\right| \leq \frac{1!\cdot 1}{1^{1}}=1$.
Exercise 4.5.8. Let $G$ be a region and suppose $f_{n}: G \rightarrow \mathbb{C}$ is analytic for each $n \geq 1$. Suppose that $\left\{f_{n}\right\}$ converges uniformly to a function $f: G \rightarrow \mathbb{C}$. Show that $f$ is analytic.

Proof. Since $\left\{f_{n}\right\} \rightarrow f$ uniformly, then $f$ is continuous. Let $a \in G$, and let $r>0$ be such that $D:=\bar{B}(a ; r) \subset G$. Let $T$ be a triangular path in $D$. Then $\int_{T} f_{n}(z) d z=0$.

Since $\left\{f_{n}\right\} \rightarrow f$ uniformly, then $0=\lim \int_{T} f_{n}=\int_{T} \lim f_{n}=\int_{T} f$. So by Morera's Theorem, $f$ is analytic on $D$, and in particular at $a \in D$. Since $a$ was arbitrary, $f$ is analytic on $G$.

Exercise 4.6.5. Evaluate the integral $\int_{\gamma} \frac{d z}{z^{2}+1}$ where $\gamma(\theta)=2|\cos 2 \theta| e^{i \theta}$ for $0 \leq \theta \leq 2 \pi$.

## Solution:

We have

$$
\begin{aligned}
\int_{\gamma} \frac{d z}{z^{2}+1} & =\frac{1}{2 i} \int_{\gamma} \frac{1}{z-i} d z-\frac{1}{2 i} \int_{\gamma} \frac{1}{z+i} d z \\
& =\frac{\pi}{2 \pi i} \int_{\gamma} \frac{1}{z-i} d z-\frac{\pi}{2 \pi i} \int_{\gamma} \frac{1}{z+i} d z \\
& =\pi(n(\gamma ; i)-n(\gamma ;-i))
\end{aligned}
$$

So it suffices to find $n(\gamma ; i)$ and $n(\gamma ;-i)$. By a quick sketch of the curve $\gamma$, it is easily seen that $n(\gamma ; i)=n(\gamma ;-i)=1$ and hence the integral in question is 0 .

Exercise 4.6.7. Let $f(z)=\frac{1}{\left[\left(z-\frac{1}{2}-i\right) \cdot\left(z-1-\frac{3}{2} i\right) \cdot\left(z-1-\frac{i}{2}\right) \cdot\left(z-\frac{3}{2}-i\right)\right]}$ and let $\gamma$ be the polygon $[0,2,2+2 i, 2 i, 0]$. Find $\int_{\gamma} f$.

## Solution:

Define triangular paths:
$\gamma_{1}=[0,2, i+i, 0], \quad \gamma_{2}=[0, i=i, 2 i, 0], \quad \gamma_{3}=[2, i+i, 2+2 i, 2], \quad \gamma_{4}=[2+2 i, i+i, 2,2+2 i]$.
Then $\gamma=\gamma_{1}+\gamma_{2}+\gamma_{3}+\gamma_{4}$. For convenience, define the points

$$
p_{1}=1+\frac{1}{2} i, \quad p_{2}=\frac{1}{2}+i, \quad p_{3}=1+\frac{3}{2} i, \quad p_{4}=\frac{3}{2}+i .
$$

For each $i \in\{1,2,3,4\}$ let $G_{i}$ be a simply connected open set containing $\gamma_{i}$ but not containing the points $p_{j}$ for $j \in\{1,2,3,4\}-\{i\}$. Then define functions $f_{i}: G_{i} \rightarrow \mathbb{C}$ by $f_{i}=\left(z-p_{i}\right) f$. Then each $f_{i}$ is analytic in $G_{i}$ with $n\left(\gamma_{i} ; a\right)=0$ for all $a \in \mathbb{C}-G_{i}$ and so

$$
n\left(\gamma_{i} ; p_{i}\right) f_{i}\left(p_{i}\right)=\frac{1}{2 \pi i} \int_{\gamma_{i}} \frac{f_{i}(z)}{z-p_{i}} d z=\frac{1}{2 \pi i} \int_{\gamma_{i}} f(z) d z
$$

We have $f_{1}\left(p_{1}\right)=2 / i, f_{2}\left(p_{2}\right)=-2, f_{3}\left(p_{3}\right)=-2 / i$, and $f_{4}\left(p_{4}\right)=2$. Note that $n\left(\gamma_{i} ; p_{i}\right)=1$. Then

$$
\int_{\gamma} f(z) d z=\sum_{i=1}^{4} \int_{\gamma_{i}} f(z) d z=\sum_{i=1}^{4} \int_{\gamma_{i}} \frac{f_{i}(z)}{z-p_{i}} d z=2 \pi i \sum_{i=1}^{4} n\left(\gamma_{i} ; p_{i}\right) f_{i}\left(p_{i}\right)=2 \pi i \sum_{i=1}^{4} f_{i}\left(p_{i}\right)=0
$$

Exercise 4.7.3. Let $f$ be analytic in $B(a ; R)$ and suppose that $f(a)=0$. Show that $a$ is a zero multiplicity $m$ if and only if $f^{(m-1)}(a)=\cdots=f(a)=0$ and $f^{(m)}(a) \neq 0$.

Proof. $(\Rightarrow)$ We can write $f(z)=(z-a)^{m} g(z)$ for some analytic function $g$ of which $a$ is not a zero. Then by the general Leibniz rule,

$$
f^{(k)}(z)=\left((z-a)^{m} g(z)\right)^{(k)}=\sum_{i=1}^{k}\binom{k}{i}\left((z-a)^{m}\right)(k-i) g^{(k)}(z)
$$

For $0 \leq \ell \leq m-1,\left((z-a)^{m}\right)^{(\ell)}$ will have a factor of $z-a$ since $\ell<m$. In particular, if $\ell=k-i$ for $0 \leq k \leq m-1$ and $0 \leq i \leq k$, we see that $f^{(k)}(z)$ will have a factor of $z-a$. Hence $f^{(k)}(a)=0$ for all $0 \leq k \leq m-1$.
$(\Leftarrow)$ Let $f(z)=\sum_{n=0}^{\infty} a_{n}(z-a)^{n}$ in $B(a ; R)$. Then $0=\frac{f^{(k)}(a)}{k!}=a_{k}$ for all $0 \leq k \leq m-1$, and hence

$$
f(z)=\sum_{n=m}^{\infty} a_{n}(z-a)^{n}=(z-a)^{m} \sum_{n=0}^{\infty} a_{n+m}(z-a)^{n+m}
$$

Letting $g(z):=\sum_{n=0}^{\infty} a_{n+m}(z-a)^{n+m}$, we have $f(z)=(z-a)^{m} g(z)$. Moreover, $g(a)=$ $a_{m} \neq 0$ since $f^{(m)}(a) \neq 0$, and hence $a$ is a zero of multiplicity $m$.

Exercise 4.7.4. Suppose that $f: G \rightarrow \mathbb{C}$ is analytic and one-to-one; show that $f^{\prime}(z) \neq 0$ for any $z$ in $G$.

Proof. By the corollary to the Open Mapping Theorem, $f^{-1}: f(G) \rightarrow G$ is analytic. Suppose $f^{\prime}(z)=0$ for some $z \in G$ and $f(z)=\omega$. Then $\left(f^{-1}\right)^{\prime}(\omega)$ is undefined and therefore not analytic since $\left(f^{-1}\right)^{\prime}(\omega)=\frac{1}{f^{\prime}(z)}$, a contradiction.

Exercise 1. Compute $\int_{-\infty}^{\infty} \frac{e^{a+i x}}{(a+i x)^{b}} d x$, where $a>1$ and $b>0$.
Exercise 2. Let $\Pi$ be the open right half plane. Suppose that $f$ is analytic on $\Pi$ and satisfies the following: (i) $|f(z)|<1$ for all $z \in \Pi$; and (ii) there exists $-\pi / 2<\alpha<\pi / 2$ such that $\frac{\log \left(\left|f\left(r e^{i \theta}\right)\right|\right)}{r} \rightarrow \infty$, as $r \rightarrow \infty$. Show that $f=0$.

Exercise 3. : Let $G$ be a region and let $f_{n}: G \rightarrow \mathbb{C}$ be analytic functions such that $f_{n}$ has no zero in $G$. If $f_{n}$ converges to $f$ uniformly on the compact subsets of $G$ then show that either $f=0$ or $f$ has no zero in $G$.

Proof. Assume that $f \not \equiv 0$, and suppose $f(a)=0$ for some $a \in G$. Since the zeroes of an analytic function are isolated, there exists $r>0$ such that $f$ does not vanish in $\bar{B}(0, r) \subseteq G$. Let $\epsilon=\min \{|f(z)|:|z-a|=r\}>0$. Since $\left\{f_{n}\right\}$ is uniformly convergent to $f$ on compact subsets of $G$, there exists $N \in \mathbb{N}$ such that for all $n \geq N$

$$
\left|f_{n}(z)-f(z)\right|<\epsilon \leq|f(z)| \text { for all }|z-a|=r
$$

By Rouche's Theorem, $0=Z_{f_{n}}=Z_{f}>0$, a contradiction. So $f$ has no zeroes in $G$.
Exercise 5.1.6. If $f: G \rightarrow \mathbb{C}$ is analytic except for poles show that the poles of $f$ cannot have a limit point in $G$.

Proof. We assume that $f$ is not constant, otherwise the statement is false. If $f$ has a pole at $z=a$ then $\lim _{z \rightarrow a}|f(z)|=\infty$, and so $\lim _{z \rightarrow a} 1 /|f(z)|=0$. Since $1 / f$ is analytic, it is in particular continuous and hence $1 / f(a)=0$. Hence the poles of $f$ are precisely the zeroes of $1 / f$. If the poles of $f$ has a limit point in $G$, then the zeroes of $1 / f$ have a limit point in $G$. Hence $1 / f \equiv 0$, and so $f(z)=\infty$ for all $z \in G$, a contradiction.

Exercise 5.1.13. Let $R>0$ and $G=\{z:|z|>R\}$; a funtion $f: G \rightarrow \mathbb{C}$ ia a removable singularity, a pole, or an essential singularity at infinity if $f\left(z^{-1}\right)$ has, respectively, a removable singularity, a pole, or an essential singularity at $z=0$. If $f$ has a pole at $\infty$ then the order of the pole is the order of the pole of $f\left(z^{-1}\right)$ at $z=0$.
(a) Prove that an entire function has a removable singularity at infinity iff it is a constant.

Proof. $(\Rightarrow)$ Let $f(z)=\sum_{n \geq 0} a_{n} z^{n}$ be entire with a removable singularity at infinity. Then $f(1 / z)$ has a removable singularity at 0 , and so

$$
\begin{equation*}
0=\lim _{z \rightarrow 0} z f(1 / z)=\lim _{z \rightarrow 0} \sum_{n \geq 0} \frac{a_{n}}{z^{n-1}}=\sum_{n \geq 0} \lim _{z \rightarrow 0} \frac{a_{n}}{z^{n-1}} \tag{D}
\end{equation*}
$$

Since the sum on the right hand side exists (and equals 0), each summand must be finite, i.e., each $\operatorname{limit} \lim _{z \rightarrow 0} \frac{a_{n}}{z^{n-1}}$ exists. In particular, when $n \geq 2, \lim _{z \rightarrow 0} \frac{a_{n}}{z^{n-1}}=\infty$, unless $a_{n}=0$. Hence $a_{n}=0$ for all $n \geq 2$. Then (フ) becomes

$$
0=\lim _{z \rightarrow 0} z f(1 / z)=a_{0} z+a_{1}=a_{1}
$$

which gives $f(z)=a_{0}$.
$(\Leftarrow)$ If $f(z)=c$, then $\lim _{z \rightarrow 0} f(1 / z) z=\lim _{z \rightarrow 0} c z=0$ and hence $f(z)$ has a removable singularity at infinity.
(b) Prove that an entire function has a pole at infinity of order $m$ iff it is a polynomial of degree $m$.

Proof. ( $\Rightarrow$ ) Suppose $f(z)=\sum_{n \geq 0} a_{n} z^{n}$ is entire with a pole at infinity of order $m$. Then $f(1 / z)$ has a pole of order $m$ at $z=0$ and hence $f(1 / z) z^{m}$ has a removable singularity at 0 . So

$$
0=\lim _{z \rightarrow 0} z^{m+1} f(1 / z)=\lim _{z \rightarrow 0} z^{m+1} \sum_{n \geq 0} \frac{a_{n}}{z^{n}}=\sum_{n \geq 0} \lim _{z \rightarrow 0} \frac{a_{n}}{z^{n-(m+1)}}
$$

As before, each summand must be finite, i.e., each limit $\lim _{z \rightarrow 0} \frac{a_{n}}{z^{n-(m+1)}}$ exists. In particular, when $n \geq m+1$, $\lim _{z \rightarrow 0} \frac{a_{n}}{z^{n-(m+1)}}=\infty$, unless $a_{n}=0$. Hence $a_{n}=0$ for all $n \geq m+2$. Then $(\boldsymbol{\Theta})$ becomes

$$
0=\lim _{z \rightarrow 0} z^{m+1} f(1 / z)=\lim _{z \rightarrow 0}\left(a_{0} z^{m+1}+a_{1} z^{m}+\ldots a_{m} z+a_{m}+1\right)
$$

which gives $f(z)=a_{m} z^{m}+\cdots+a_{1} z+a_{0}$.

$$
(\Leftarrow) \text { Suppose } f(z)=a_{m} z^{m}+\cdots+a_{1} z+a_{0} \text { for } a_{m} \neq 0 \text {. Then }
$$

$$
f(1 / z)=a_{m} z^{-m}+\cdots+a_{1} z^{-1}+a_{0} .
$$

Since $f(1 / z)$ has a pole at 0 , the above is the Laurent Expansion in $\operatorname{Ann}(0 ; 0, R)$ for some $R>0$. We see then that $a_{m-1}=a_{m} \neq 0$ and $a_{n}=0$ for all $n \leq-(m+1)$. Hence $f(1 / z)$ has a pole of order $m$ at 0 by Proposition 1.18(b).
(c) Characterize those rational functions which have a removable singularity at infinity.

Proof. ${ }^{* * *}$ The following two proofs belong to Curits Balz ${ }^{* * *}$
We can write a rational function as $r(z)=p(z) / q(z)=a(z)+p_{1}(z) / q(z)$ where $a(z)$ is a polynomial and $\operatorname{deg}\left(p_{1}\right)<\operatorname{deg}(q)$. If $r(z)$ has a removable singularity at infinity, then $r(z)$ is bounded at infinity. So $a(z)+p_{1}(z) / q(z)$ must also be bounded at infinity. By the degrees of $p_{1}(z)$ and $q(z)$, we see that $p_{1}(z) / q(z)$ will be bounded at infinity, thus $a(z)$ will be bounded at infinity. But by part (a), we get that $a(z)$ must be constant, say $a(z)=c$, and so $r(z)=p(z) / q(z)=c+p_{1}(z) / q(z)$. So $p(z)-a q(z)+p_{1}(z)$ must be a polynomial with degree less than or equal to the degree of $q(z)$.
(d) Characterize those rational functions which have a pole of order $m$ at infinity.

Proof. As in part (c), write $r(z)=p(z) / q(z)=a(z)+p_{1}(z) / q(z)$. By the degree requirements, $p_{1}(z) / q(z)$ has a removable singularity at infinity, so we must have $a(z)$ has a pole of order $m$ at infinity. Thus $a(z)$ is a polynomial of degree $m$. So the degree of $p(z)$ must be $m$ greater than the degree of $q(z)$ when $r(z)=p(z) / q(z)$.

Exercise 5.1.17. Let $f$ be analytic in the region $G=\operatorname{Ann}(a ; 0, R)$. Show that if

$$
\iint_{G}|f(x+i y)|^{2} d x d y<\infty
$$

then $f$ has a removable singularity at $z=a$. Suppose that $p>0$ and

$$
\iint_{G}|f(x+i y)|^{p} d x d y<\infty
$$

what can be said about the nature of the singularity at $z=a$ ?
Proof. Without loss of generality, assume $a=0$. Since $f(z)$ is analytic in $G$, we can write $f(z)=\sum_{n \in \mathbb{Z}} a_{n} z^{n}$ for all $z \in G$. Using the parametrization $\gamma(r, \theta)=r e^{i \theta}$ for $r \in(0, R]$ and $\theta \in(0,2 \pi]$ for $G$, we have

$$
\begin{aligned}
\infty>\iint_{G}|f(x+i y)|^{2} d x d y & =\int_{0}^{R} \int_{0}^{2 \pi}\left(\sum_{n \in \mathbb{Z}} a_{n} r^{n} e^{i n \theta}\right)\left(\overline{\sum_{m \in \mathbb{Z}} a_{m} r^{m} e^{i m \theta}}\right) r d \theta d r \\
& =\sum_{n \in \mathbb{Z}} \sum_{m \in \mathbb{Z}} \int_{0}^{R} \int_{0}^{2 \pi} a_{n} \overline{a_{m}} r^{n+m+1} e^{i \theta(n-m)} d \theta d r \\
& =\sum_{n \in \mathbb{Z}} \sum_{m \in \mathbb{Z}} a_{n} \overline{a_{m}} \int_{0}^{R} r^{n+m+1} \underbrace{\left(\int_{0}^{2 \pi} e^{i \theta(n-m)} d \theta\right)}_{=0 \text { when } n \neq m} d r \\
& =\sum_{n \in \mathbb{Z}}\left|a_{n}\right|^{2} 2 \pi \underbrace{\int_{0}^{R} r^{2 n+1} d r}_{\text {goes to } \infty \text { if } n \leq-1}
\end{aligned}
$$

The last integral goes to $\infty$ if $n \leq-1$. Since we know the integral is finite, we must have $a_{n}=0$ for all $n \leq 1$. Hence $f(z)=\sum_{n \in \mathbb{N}} a_{n} z^{n}$, and hence $f$ has a removable singularity at $z=a$.

Exercise 5.2.2. Verify the following equations:
(b) $\int_{0}^{\infty} \frac{(\log x)^{3}}{1+x^{2}} d x=0$
(c) $\int_{0}^{\infty} \frac{\cos a x}{\left(1+x^{2}\right)^{2}} d x=\frac{\pi(a+1) e^{-a}}{4}$ if $a>0$.

## Solution:

Define $f(z)=\frac{e^{i a z}}{\left(1+z^{2}\right)^{2}}$ and let $\gamma$ be the closed path which is the boundary of the upper half disk of radius $R>1$, traversed in the counterclockwise direction. The poles of $f(z)$ are $i,-i$ and $n(\gamma, i)=1, n(\gamma,-i)=0$. Let $g(z)=(z-i)^{2} f(z)$. Then $\operatorname{Res}(f ; i)=g^{\prime}(i)=\frac{e^{-a}(a-1)}{4 i}$. Then by the Residue Theorem,

$$
\int_{\gamma} f=2 \pi i \operatorname{Res}(f ; i)=\frac{\pi(a+1) e^{-a}}{2}
$$

Then

$$
\begin{aligned}
\frac{\pi(a+1) e^{-a}}{2}=\int_{\gamma} f & =\int_{-R}^{R} \frac{e^{i a x}}{\left(1+x^{2}\right)^{2}}+R i \int_{0}^{\pi} \frac{e^{i a R e^{i x}}}{\left(1+R e^{2 i x}\right)^{2}} \\
& =\int_{-R}^{R} \frac{\cos a x}{\left(1+x^{2}\right)^{2}}+R i \int_{0}^{\pi} \frac{e^{i a R e^{i x}}}{\left(1+R e^{2 i x}\right)^{2}} \\
& =\int_{-R}^{0} \frac{\cos a x}{\left(1+x^{2}\right)^{2}}+\int_{0}^{R} \frac{\cos a x}{\left(1+x^{2}\right)^{2}}+R i \int_{0}^{\pi} \frac{e^{i a R e^{i x}}}{\left(1+R e^{2 i x}\right)^{2}} \\
& =2 \int_{0}^{R} \frac{\cos a x}{\left(1+x^{2}\right)^{2}}+R i \int_{0}^{\pi} \frac{e^{i a R e^{i x}}}{\left(1+R e^{2 i x}\right)^{2}}
\end{aligned}
$$

where the last equality follows since $\cos x$ is an even function. Now,

$$
\begin{aligned}
\left|R i \int_{0}^{\pi} \frac{e^{i a R e^{i x}}}{\left(1+R e^{2 i x}\right)^{2}}\right| \leq R \int_{0}^{\pi} \frac{\left|e^{i a R e^{i x}}\right|}{\left|1+2 R e^{2 i x}+R^{2} e^{4 i x}\right|} & \leq R \int_{0}^{\pi} \frac{1}{1+2 R e^{2 i x}+R^{2} e^{4 i x}} \\
& \leq \frac{\pi R}{1+2 R e^{2 i x}+R^{2} e^{4 i x}} \xrightarrow{R \rightarrow \infty} 0
\end{aligned}
$$

Hence $\frac{\pi(a+1) e^{-a}}{4}=\int_{0}^{\infty} \frac{\cos a x}{\left(1+x^{2}\right)^{2}}$.
(g) $\int_{-\infty}^{\infty} \frac{e^{a x}}{1+e^{x}} d x=\frac{\pi}{\sin a \pi}$ if $0<a<1$.

## Solution:

Define $f(z)=\frac{e^{a z}}{1+e^{z}}$. Let $R>0$ and let $\gamma$ be the rectangular region $[-R, R, R+2 \pi]$. Then each edge of $\gamma$ can be parametrized by

$$
\begin{aligned}
& \gamma_{1}(t)=R+i t, \quad t \in[0,2 \pi] \\
& \gamma_{2}(t)=2 \pi i-t, \quad t \in[-R, R] \\
& \gamma_{3}(t)=-R+i(2 \pi-t), \quad t \in[0,2 \pi] \\
& \gamma_{4}(t)=t, \quad t \in[-R, R] .
\end{aligned}
$$

The poles of $f(z)$ are $\{z=\pi i+2 \pi i k \mid k \in \mathbb{Z}\}$. Notice that $\pi i$ is the only pole of $f(z)$ such that $n(\gamma ; \pi i) \neq 0$. Then using L'Hôpital's rule

$$
\operatorname{Res}(f ; \pi i)=\lim _{z \rightarrow \pi i}\left(z-\pi i f(z)=\lim _{z \rightarrow \pi i} \frac{(z-\pi i) a e^{a z}+e^{a z}}{e^{z}}=e^{a \pi i} e^{-\pi i}=-e^{a \pi i}\right.
$$

By the Residue Theorem

$$
\begin{aligned}
2 \pi i e^{\pi(a-1)} & =\int_{\gamma} f(z) \\
& =i \int_{0}^{2 \pi} \frac{e^{a(R+i t)}}{1+e^{R+i t}}-\int_{-R}^{R} \frac{e^{a(2 \pi i+t)}}{1+e^{(2 \pi i+t)}}-i \int_{0}^{2 \pi} \frac{e^{a(-R+i t)}}{1+e^{(-R+i t)}}+\int_{-R}^{R} \frac{e^{a t}}{1+e^{t}}
\end{aligned}
$$

We want to show that the first and third integrals above go to 0 as $R$ goes to $\infty$. For the first integral, since $\left|1+e^{R+i t}\right| \geq\left|e^{R}-1\right|$, we have

$$
\left|i \int_{0}^{2 \pi} \frac{e^{a(R+i t)}}{1+e^{R+i t}}\right| \leq \int_{0}^{2 \pi} \frac{e^{a R}}{\left|1+e^{R+i t}\right|} \leq \int_{0}^{2 \pi} \frac{e^{a R}}{\left|e^{R}-1\right|}
$$

Then

$$
\lim _{R \rightarrow \infty} \frac{e^{a R}}{e^{R}-1}=\lim _{R \rightarrow \infty} \frac{e^{R(a-1)}}{1-1 / e^{R}}=0 \quad \quad(\text { since } a<1)
$$

Since $\left|1+e^{-R+i t}\right| \geq\left|e^{-R}-1\right|$, then for the third integral, we have

$$
\left|i \int_{0}^{2 \pi} \frac{e^{a(-R+i t)}}{1+e^{-R+i t}}\right| \leq \int_{0}^{2 \pi} \frac{e^{-a R}}{\left|1+e^{-R+i t}\right|}, \quad \text { and } \quad \lim _{R \rightarrow \infty} \frac{1}{e^{a R}\left(e^{-R}-1\right)}=0
$$

Then we have

$$
2 \pi i e^{\pi(a-1)}=-\int_{-\infty}^{\infty} \frac{e^{a(2 \pi i+t)}}{1+e^{(2 \pi i+t)}}+\int_{-\infty}^{\infty} \frac{e^{a t}}{1+e^{t}}=\left(1-e^{a 2 \pi i}\right) \int_{-\infty}^{\infty} \frac{e^{a t}}{1+e^{t}},
$$

which gives

$$
\int_{-\infty}^{\infty} \frac{e^{a t}}{1+e^{t}}=\frac{2 \pi i\left(-e^{a \pi i}\right)}{1-e^{a 2 \pi i}}=\frac{2 \pi i}{e^{a \pi i}-e^{-a \pi i}}=\frac{\pi}{\sin (a \pi)}
$$

(h) $\int_{0}^{2 \pi} \log \sin ^{2} 2 \theta d \theta=4 \int_{0}^{\pi} \log \sin \theta d \theta=-4 \pi \log 2$.

Exercise 5.2.6. Let $\gamma$ be the rectangular path

$$
[n+1 / 2+n i,-n-1 / 2+n i,-n-1 / 2-n i, n+1 / 2-n i, n+1 / 2+n i]
$$

and evaluate the integral $\int_{\gamma} \pi(z+a)^{-2} \cot \pi z d z$ for $a \notin \mathbb{Z}$. Show that $\lim _{n \rightarrow \infty} \int_{\gamma} \pi(z+$ $a)^{-2} \cos \pi z d z=0$ and, by using the first part, deduce that

$$
\frac{\pi^{2}}{\sin ^{2} \pi a}=\sum_{n=-\infty}^{\infty} \frac{1}{(a+n)^{2}}
$$

(Hint: Use the fact that for $z=x+i y,|\cos z|^{2}=\cos ^{2} x+\sinh ^{y}$ and $|\sin z|^{2}=\sin ^{2} x+\sinh ^{2} y$ to show that $|\cot \pi z| \leq 2$ for $z$ on $\gamma$ if $n$ is sufficiently large.)
Proof. *** The following proof belongs to Curits Balz ***
Let $f(z)=\frac{1}{(z+a)^{2}}$. We want to find $\int_{\gamma} \cot \pi z f(z)$. Define $g(z):=\pi \cot \pi z f(z)$. By the residue theorem, since $\pi \cot \pi z$ has simple poles when $z \in \mathbb{Z}$, we get

$$
\int_{\gamma} g(z)=2 \pi i\left(\sum_{n \in \mathbb{Z}} \operatorname{Res}(g ; n)+\operatorname{Res}(g,-a)\right)
$$

At each integer $n$, the residue of $g(z)$ is

$$
\operatorname{Res}(g ; n)=\lim _{z \rightarrow n}(z-n) \pi \cot \pi z f(z)=\lim _{z \rightarrow n} \frac{z-n}{\sin \pi z} \lim _{z \rightarrow n} \pi \cot \pi z f(z)=f(n)
$$

We need to show that $\int_{\gamma} \pi \cot \pi z f(z)=0$ as $n \rightarrow \infty$, so we show $\cot \pi z$ is bounded on $\gamma$.

- For $z=n+1 / 2+i y,-1 / 2 \leq y \leq 1 / 2$,

$$
|\cot (\pi z)|=\left|\cot \left(\pi\left(N+1 / 2_{i} y\right)\right)\right|=|\cot (\pi / 2+i \pi y)|=|\tanh \pi y| \leq \tanh \pi / 2
$$

- For $z=-n-1 / 2+i y,-1 / 2 \leq y \leq 1 / 2$

$$
|\cot (\pi z)|=\left|\cot \left(\pi\left(-N-1 / 2{ }_{i} y\right)\right)\right|=|\cot (\pi / 2-i \pi y)|=|\tanh \pi y| \leq \tanh \pi / 2
$$

- For $y>1 / 2$,

$$
|\cot (\pi z)|=\left|\frac{e^{i \pi z}+e^{-i \pi z}}{e^{i \pi z}-e^{-i \pi z}}\right|=\left|\frac{e^{-\pi y}+e^{\pi y}}{e^{\pi y}-e^{-\pi y}}\right|=\frac{1+e^{2 \pi y}}{1-e^{-2 \pi y}} \leq \frac{1+e^{-\pi}}{1-e^{-\pi}}=\operatorname{coth} \pi / 2
$$

- For $y<-1 / 2$,

$$
|\cot (\pi z)|=\left|\cot \left(\pi\left(-N-1 / 2_{i} y\right)\right)\right|=|\cot (\pi / 2-i \pi y)|=|\tanh \pi y| \leq \tanh \pi / 2
$$

We also have $\left\lvert\, f(z) \leq \frac{1}{z+\left.a\right|^{2}}\right.$. So

$$
\lim _{n \rightarrow \infty}\left|\int_{\gamma} \pi \cot \pi z f(z)\right| \leq \lim _{n \rightarrow \infty} \int_{g} a \pi|\cot (\pi z)||f(z)| \leq \lim _{n \rightarrow \infty} \frac{\pi}{n^{2}}(8 n+4) \operatorname{coth} \pi / 2=0
$$

where $8 n+4=V(\gamma)$. This gives $\sum_{n \in \mathbb{Z}} f(n)=\operatorname{Res}(g ;-a)$. But

$$
\begin{aligned}
& \quad \sum_{n \in \mathbb{Z}} f(n)=\sum_{n \in Z} \frac{1}{(a+n)^{2}} \text { and } \operatorname{Res}(g ;-a)=\lim _{z \rightarrow-a} \frac{(z+a)^{2} \pi \cot \pi z}{(z+a)^{2}}=-\pi^{2} \csc ^{2} \pi a . \\
& \text { So } \frac{\pi^{2}}{\sin ^{2} \pi a}=\sum_{n=-\infty}^{\infty} \frac{1}{(a+n)^{2}} \text {. }
\end{aligned}
$$

Exercise 5.3.5. Let $f$ be meromorphic on the region $G$ and not constant; show that neither the poles nor the zeros of $f$ have a limit point in $G$.

Proof. That the poles of $f$ do not have a limit point in in $G$ was proved in Exercise 5.1.6. If the zeroes of $f$ have a limit point in $G$, then the poles of the meromorphic function $1 / f$ has a limit point in $G$, contradicting Exercise 5.1.6.

Exercise 5.3.10. Let $f$ be analytic in a neighborhood of $D=\bar{B}(0 ; 1)$. If $|f(z)|<1$ for $|z|=1$, show that there is a unique $z$ with $|z|<1$ and $f(z)=z$. If $|f(z)| \leq 1$ for $|z|=1$, what can you say?

Proof. Define $g(z)=f(z)-z$ and let $h(z)=z$. Then on $\partial D$, we have

$$
|g(z)+h(z)|=|f(z)|<1 \leq|g(z)|+1=|g(z)|+|h(z)|
$$

By Rouche's Theorem, $Z_{g}=Z_{h}$ (where $Z_{f}$ denotes the number of zeroes of $f$ ). Since $Z_{g}=Z_{h}=1$, then there is a unique $z_{0} \in D$ such that $0=g\left(z_{0}\right)=f\left(z_{0}\right)-z_{0}$, i.e., $f\left(z_{0}\right)=z_{0}$.

Exercise 6.2.3. Suppose $f: \mathbb{D} \rightarrow \mathbb{C}$ satisfies $\operatorname{Re} f(z) \geq 0$ for all $z$ in $\mathbb{D}$ and suppose that $f$ is analytic and not constant.
(a) Show that $\operatorname{Re} f(z)>0$ for all $z \in \mathbb{D}$.

Proof. Let $\Pi=\{z \in \mathbb{C} \mid \operatorname{Re} z>0\}$ be the open right-half plane. By the open mapping theorem, $f(\mathbb{D})$ is open. Therefore since $f(\mathbb{D}) \subseteq \bar{\Pi}$, we must have $f(\mathbb{D}) \subseteq \Pi$.
(b) By using an appropriate Möbius transformation, apply Schwartz's Lemma to prove that if $f(0)=1$ then

$$
|f(z)| \leq \frac{1+|z|}{1-|z|}
$$

Proof. Define a Möbius transformation $g(z)=\frac{z-1}{z+1}$. Then $g(\Pi) \subseteq \mathbb{D}$ because if $\operatorname{Re} z>0$, then

$$
\left|\frac{z-1}{z+1}\right|^{2}=\frac{z-1}{z+1} \cdot \frac{\bar{z}-1}{\bar{z}+1}=\frac{|z|^{2}-2 \operatorname{Re} z+1}{|z|^{2}+2 \operatorname{Re} z+1}<1
$$

Consider $g \circ f: \mathbb{D} \rightarrow \Pi \rightarrow \mathbb{D}$. Since $g(f(0))=0$ and $|(g \circ f)(z)|<1$, we can apply Swartz's Lemma to obtain the inequality $|(g \circ f)(z)| \leq|z|$ for all $z \in \mathbb{D}$. This yields

$$
|f(z)-1| \leq|z||f(z)+1|=|z f(z)+z| \leq|z||f(z)|+|z|
$$

By the reverse triangle inequality, we have $|f(z)|-1 \leq||f(z)|-1| \leq|f(z)-1|$. So () becomes

$$
\begin{aligned}
|f(z)|-1 & \leq|z||f(z)|+|z| \\
|f(z)|(1-|z|) & \leq 1+|z| \\
|f(z)| & \leq \frac{1+|z|}{1-|z|}
\end{aligned}
$$

(c) Show that if $f(0)=1, f$ also satisfies

$$
|f(z)| \geq \frac{1-|z|}{1+|z|}
$$

(Hint: Use part (a)).
Proof. Since $\operatorname{Re} f(z)>0$ on $\mathbb{D}$, then $1 / f(z)$ is analytic on $\mathbb{D}$. Let $h(z)=\frac{1-z}{1+z}$. Then $(h \circ 1 / f)(0)=0$ and $|(h \circ 1 / f)(z)| \leq 1$. So by Swartz's Lemma, $|(h \circ 1 / f)(z)| \leq|z|$. Using the reverse triangle inequality as in part (b), we get

$$
\frac{1}{|f(z)|}-1 \leq\left|1-\frac{1}{f(z)}\right| \leq|z|\left|1+\frac{1}{f(z)}\right|=\left|z+\frac{z}{f(z)}\right| \leq|z|+\frac{|z|}{|f(z)|}
$$

which gives

$$
\frac{1}{|f(z)|}(1-|z|) \leq 1+|z| \Longrightarrow|f(z)| \geq \frac{1-|z|}{1+|z|}
$$

Exercise 1. : Suppose $A=\{z \in \mathbb{C}: 0<|z|<1\}$ and $B=\{z \in \mathbb{C}: 4<|z|<5\}$. Is there a one-to-one analytic function from $A$ to $B$ ? Justify your answer.

Proof. Suppose there exists a one-to-one onto analytic function from $A$ onto $B$. Then $f$ can be extended to an analytic function $\tilde{f}: \tilde{A} \rightarrow B$ where $\tilde{A}=\{z \in \mathbb{C}: 0 \leq|z|<1\}$. Let $\tilde{f}(0)=b$. By the Open Mapping Theorem, a neighborhood of 0 must get mapped to an open set in $B$, i.e., $b$ must lie in the interior of $B$.

Since $f$ is onto, there exists $a \in A$ such that $\tilde{f}(a)=b\left(\text { as }\left.\tilde{f}\right|_{A}=f\right)_{\tilde{f}}$. Now, let $C$ and $D$ be disjoint neighborhoods of 0 and $a$, respectively. Then $E:=\tilde{f}(C) \cap \tilde{f}(D)$ is open since $C$ and $D$ and $\tilde{f}$ are open. But then $f^{-1}(E) \cap C$ and $f^{-1}(E) \cap D$ are are two disjoint open sets in $A$ which get mapped onto the same set $E$, contradicting the injectivity of $f$ on $A$. Hence such a function cannot exist.

Exercise 2. How many zeros does the function $z^{8}+e^{-2016 \pi z}$ have in the region $\operatorname{Re}(z)>0$ ?

## Functions of One Complex Variable, Conway - Exercises

Exercise 7.1.6. (Dini's Theorem) Consider $C(G, \mathbb{R})$ and suppose that $\left\{f_{n}\right\}$ is a sequence in $C(G, \mathbb{R})$ which is monotonically increasing and $\lim f_{n}(z)=f(z)$ for each $z \in G$ where $f \in C(G, \mathbb{R})$. Show that $f_{n} \rightarrow f$.

Proof. We need to show that $f_{n} \rightarrow f$ in $(C(G, \mathbb{R}), \rho)$. This is equivalent to showing that $f_{n} \rightarrow f$ uniformly on compact subsets of $G$ by Proposition 1.10 (b) of this section. So, let $K \subset G$ be a compact subset of $G$.

Let $\epsilon>0$. Define $g_{n}=f-f_{n}$ and $E_{n}=\left\{z \in K| | f(z)-f_{n}(z) \mid<\epsilon\right\}$ for all $n$. Then $\left\{g_{n}\right\}$ is a collection of continuous and decreasing functions (since the $f_{n}$ are increasing). So, $E_{n}$ is open since $E_{n}=g_{n}^{-1}(-1, \epsilon)$. Notice that $E_{n} \subseteq E_{n+1}$ for all $n$ because if $z \in K$ satisfies $\left|f(z)-f_{n}(z)\right|<\epsilon$, then $\left|f(z)-f_{n+1}(z)\right| \leq\left|f(z)-f_{n}(z)\right|<\epsilon$.

Since $f_{n} \rightarrow f$ pointwise, if $z \in K$, there exists $n \in \mathbb{N}$ such that $z \in E_{n}$. Hence $\left\{E_{n}\right\}$ is an open cover for $K$, and since $K$ is compact, there exists $E_{n_{1}}, \ldots, E_{n_{k}}$ which cover $K$. By reordering if necessary, we assume $n_{k}>n_{j}$ for all $1 \leq j \leq k-1$. Hence $E_{n_{k}} \supseteq E_{n_{i}}$ for all $j$ and so $K_{i}=\bigcup_{j=1}^{k} E_{n_{j}}=E_{n_{k}}$. Hence if $z \in K$ and $n \geq n_{k}$, then $z \in E_{n}$, i.e., $\left|f(z)-f_{n}(z)\right|<\epsilon$. Therefore, $f_{n} \rightarrow f$ uniformly on $K$.

Exercise 7.2.1. Let $f, f_{1}, f_{2}, \ldots$ be elements of $H(G)$ and show that $f_{n} \rightarrow f$ iff for each closed rectifiable curve $\gamma$ in $G, f_{n}(z) \rightarrow f(z)$ for $z \in\{\gamma\}$.

Proof. $(\Rightarrow)$ If $f_{n} \rightarrow f$ uniformly on $G$, then certainly $f_{n} \rightarrow f$ uniformly on the (compact) subset $\{\gamma\} \subset G$.
$(\Leftarrow)$ Let $a \in G$ and let $r>0$ be such that $\bar{B}(a ; 2 r) \subset G$. Let $\gamma(t)=a+2 r e^{i t}, t \in[0,2 \pi]$. Then for any $z \in B(a ; r)$ and $w \in\{\gamma\}$, we have $|w-z|>r$. So for $z \in B(a ; r)$ we have by Cauchy's Theorem

$$
\begin{aligned}
\left|f(z)-f_{n}(z)\right| \leq \frac{1}{2 \pi} \int_{\gamma} \frac{\left|f(w)-f_{n}(w)\right|}{|w-z|} d w & <\frac{1}{2 \pi} \int_{\gamma} \frac{\left|f(w)-f_{n}(w)\right|}{r} d w \\
& \leq \frac{1}{2 \pi}(2 \pi 2 r) \frac{1}{r} \sup _{w \in\{\gamma\}}\left\{\left|f(w)-f_{n}(w)\right|\right\} \\
& =2 \sup _{w \in\{\gamma\}}\left\{\left|f(w)-f_{n}(w)\right|\right\} .
\end{aligned}
$$

Since $f_{n} \rightarrow f$ on $\{\gamma\}$, then $2 \sup _{w \in\{\gamma\}}\left\{\left|f(w)-f_{n}(w)\right|\right\} \rightarrow 0$ as $n \rightarrow \infty$. So $f_{n} \rightarrow f$ uniformly on $B(a ; r)$.

Now if $K \subset G$ is compact, we can cover $K$ with finitely many balls $\left\{B\left(k_{i} ; r_{i}\right)\right\}_{i=1}^{m}$ where $k_{i} \in K$ and $r_{i}>0$ is such that $\bar{B}\left(k_{i}, 2 r_{i}\right) \subset G$. Then by the above argument, $f_{n} \rightarrow f$ uniformly on each ball $B\left(k_{i} ; r_{i}\right)$. If $\epsilon>0$, for each $B\left(k_{i} ; r_{i}\right)$, there exists $N_{i} \in N$ such that for all $n \geq N_{i},\left|f-f_{n}\right|<\epsilon$ on $B\left(k_{i} ; r_{i}\right)$. Letting $N=\max \left\{N_{1}, \ldots, N_{m}\right\}$, we get that for all $n \geq N,\left|f-f_{n}\right|<\epsilon$ on $K$. Hence $f_{n} \rightarrow f$ uniformly on any compact subset of $G$, and so $f_{n} \rightarrow f$ on $G$.

## Exercise 7.2.13.

(a) Show that if $f$ is analytic on an open set containing the disk $\bar{B}(a ; R)$ then

$$
\begin{equation*}
|f(a)|^{2} \leq \frac{1}{\pi R^{2}} \int_{0}^{2 \pi} \int_{0}^{R}\left|f\left(a+r e^{i \theta}\right)\right|^{2} r d r d \theta \tag{*}
\end{equation*}
$$

Proof. Let $0<r<R$ and $\gamma(t)=a+r e^{i \theta}, t \in[0,2 \pi]$. By Cauchy's Theorem,

$$
\begin{aligned}
|f(a)|^{2}=\left|f^{2}(a)\right| & \leq \frac{1}{2 \pi} \int_{\gamma} \frac{\left|f^{2}(z)\right|}{z-a}|d z| \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{\left|f\left(a+r e^{i \theta}\right)\right|^{2}}{r}\left|i r e^{i \theta}\right| d \theta \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(a+r e^{i \theta}\right)\right|^{2} d \theta
\end{aligned}
$$

Multiplying both sides by $r$ and integrating from 0 to $R$ with respect to $r$,

$$
\begin{aligned}
|f(a)|^{2} \frac{R^{2}}{2}=|f(a)|^{2} \int_{0}^{R} r d r & \leq \frac{1}{2 \pi} \int_{0}^{R}\left(\int_{0}^{2 \pi}\left|f\left(a+r e^{i \theta}\right)\right|^{2} d \theta\right) r d r \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} \int_{0}^{R}\left|f\left(a+r e^{i \theta}\right)\right|^{2} r d r d \theta
\end{aligned}
$$

which gives (*).
(b) Let $G$ be a region and let $M$ be a fixed positive constant. Let $\mathcal{F}$ be the family of all functions $f$ in $H(G)$ such that $\iint_{G}|f(z)|^{2} d x d y \leq M$. Show that $\mathcal{F}$ is normal.

Proof. We show $\mathcal{F}$ is locally bounded and hence normal. Let $K \subset G$ be compact. If $a \in K$, then by part (a), and our assumption that $\iint_{G}|f(z)|^{2} d x d y \leq M$, we get $|f(a)| \leq \frac{\sqrt{M}}{\sqrt{\pi} R}$. Hence $\mathcal{F}$ is locally bounded.


[^0]:    ${ }^{1}$ According to Frauke Bleher, this is difficult to prove, and requires a good amount of advanced algebra.

