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In these exercises R is a ring with 1 and M is a left R-module.

Exercise 10.1.5. For any left ideal I of R define

IM =

(
X

finite

aimi | ai 2 I, mi 2 M

)

to be the collection of all finite sums of elements of the form am where a 2 I and m 2 M .

Prove that IM is a submodule of M .

Proof. Since 0R 2 I and 0M 2 M , then 0R0M = 0M 2 IM and so IM 6= ?. Let r 2 R and

let

x =

nX

i=1

aimi, y =

mX

j=1

ajmj

be elements of IM for ai, aj 2 I and mi,mj 2 M for all i and j. Then,

x+ ry =

nX

i=1

aimi + r

0

@
mX

j=1

ajmj

1

A

=

nX

i=1

aimi +

mX

j=1

rajmj

is a finite sum of products of elements from I and M since raj 2 I and hence IM is a

submodule of M . K

Exercise 10.1.9. If N is a submodule of M , the annihilator of N in R is defined to be

{r 2 R | rn = 0 for all n 2 N}. Prove that the annihilator of N is R is a 2-sided ideal of R.

Proof. Let AnnR(N) = {r 2 R | rn = 0 for all n 2 N}. Notice that AnnR(N) 6= ? since

0Rn = 0N for all n 2 N . Let x, y 2 AnnR(N) and n 2 N . Then (x � y)n = xn � yn =

0N � 0N = 0N , where the first equality holds by a module axiom, and so x� y 2 AnnR(N).

If r 2 R then (rx)n = r(xn) = r(0N ) = 0N where the first equality holds by a module

axiom. We also have by a module axiom that (xr)n = x(rn) = 0N , since rn 2 N . Hence

xr, rx 2 AnnR(N) and thus AnnR(N) is an ideal of R. K

Exercise 10.1.10. If I is a right ideal of R, the annihilator of I in M is defined to be

{m 2 M | am = 0 for all a 2 I}. Prove that the annihilator of I in M is a submodule of

M .

Proof. Let AnnM (I) = {m 2 M | am = 0 for all a 2 I}. Since a0M = 0M for all a 2 I,
then 0M 2 AnnM (I) and so AnnM (I) 6= ?. Let x, y 2 AnnM (I), r 2 R, and a 2 I. Then

x+ ry 2 M and ar 2 I, and so by module axioms

a(x+ ry) = ax+ a(ry) = 0 + (ar)y = 0 + 0 = 0.

So x+ ry 2 AnnM (I) and thus AnnM (I) is a submodule of M . K

1
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Exercise 10.2.4. Let A be an Z-module, let a be any element of A and let n be a positive

integer. Prove that the map 'a : Z/nZ ! A given by 'a(k) = ka is a well-defined Z-module

homomorphism if and only if na = 0.

Proof. ()) We have na = 'a(n) = 'a(0) = 0a = 0.

(() To show that 'a is well defined, suppose k = `. Then k� ` = k � ` = 0 = n and so

ka� `a = (k � `)a = 'a(k � `) = 'a(n) = na = 0

and hence 'a(k) = ka = `a = 'a(`).
Let k, ` 2 Z/nZ and m 2 Z. Then mk + ` = mk + ` = mk + ` and so

'a(mk + `) = 'a(mk + `) = (mk + `)a = (mk)a+ `a = m(ka) + `a = m'a(k) + 'a(`).

K

Prove that HomZ(Z/nZ, A) ⇠= An where An = {a 2 A | na = 0} (so An is the annihilator

in A of the ideal (n) of Z — cf. Exercise 10.1.10)

Proof. Since An is the annihilator of the ideal (n) of Z in A, it is a Z-submodule by Exercise

10.1.10. Moreover, by Proposition 2(2), HomZ(Z/nZ, A) is a Z-module. So we define a map

� of Z–modules

� : An ! HomZ(Z/nZ, A)
a 7! 'a.

and show that � is an isomorphism.

Let x, y 2 An, m 2 Z, and k 2 Z/nZ. Then mx + y 2 An, and by the previous proof

'mx+y 2 HomZ(Z/nZ, A). Then

'mx+y(k) = k(mx+ y) = k(mx) + ky = (km)x+ ky = m(kx) + ky = m'x(k) + 'y(k).

So

�(mx+ y) = 'mx+y = m'x + 'y = m�(x) + �(y),

and so � is an Z-module homomorphism.

Suppose 'x = 'y. Then

x = 1x = 'x(1) = 'y(1) = 1y = y,

and so � is injective. Let ' 2 HomZ(Z/nZ, A). Then '(1) = a for some a 2 A and for

k 2 Z/nZ
'(k) = '( 1 + · · ·+ 1| {z }

k�summands

) = '(1) + · · ·+ '(1)| {z }
k�summands

= ka.

Hence �(a) = 'a = ' and so � is surjective. K
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Exercise 10.3.7. Let N be a submodule of M . Prove that if both M/N and N are finitely

generated, then so is M .

Proof. By hypothesis, we have a finite subset A = {a1, . . . , an} ✓ M for which

RA = Ra1 + · · ·+Ran = N.

Similarly, we have a finite subset of distinct coset representatives B = {b1, . . . , bm} ✓ M
where if B = {b1 +N, . . . , bm +N} = {b1, . . . , bm}, then B ✓ M/N and

RB = Rb1 + · · ·+Rbm = M/N.

We show that M = R(A [ B) and hence that M is finitely generated. Let x 2 M . Then

x+N = x 2 M/N and for some r1, . . . rm 2 R

x = r1b1 + · · ·+ rmbm

= r1b1 + · · ·+ rmbm

= r1b1 + · · ·+ rmbm.

So,

x� (r1b2 + . . . rmbm) = n for some n 2 N.

Now for some s1, . . . , sn 2 R, n = s1a1 + · · ·+ snan and so

x� (r1b2 + . . . rmbm) = s1a1 + · · ·+ snan

which gives

x = s1a1 + · · ·+ snan + r1b2 + . . . rmbm

and thus x 2 R(A [ B) and M ✓ R(A [ B). Conversely, since M is a left R–module and

A,B ✓ M , then R(A [B) ✓ M . K
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In these exercises R is a ring with 1 and M is a left R-module.

Exercise 10.1.8. An element m of the R–module M is called a torsion element if rm = 0

for some nonzero element r 2 R. The set of torsion elements is denoted

Tor(M) = {m 2 M | rm = 0 for some nonzero r 2 R}.

(a) Prove that if R is an integral domain then Tor(M) is a submodule of M (called the

torsion submodule of M).

Proof. Since 1R0M = 0M then Tor(M) 6= ?. Let x, y 2 Tor(M) and r 2 R. Then

r1x = 0M and r2y = 0M for some r1, r2 2 R � {0R}. Since R is an integral domain

r1r2 6= 0R. Then

(r1r2)(x+ ry) = (r1r2)x+ (r1r2)ry = r2(r1x) + r1r(r2y) = 0M

and so x+ ry 2 Tor(M). K

(b) Give an example of a ringR and anR–moduleM such that Tor(M) is not a submodule.

[Consider the torsion elements in the R–module R.]

Proof. Consider R = M = Z/4Z. Then 2 · 2 = 0 so that 2 2 Tor(R), but 1 · 2 =

2 6= 0 and so Tor(R) is not closed under the action of rings elements and thus not a

submodule. K

(c) If R has zero divisors show that every nonzero R–module has nonzero torsion elements.

Proof. Let M be a nonzero R–module. Suppose r, s 2 R � {0R} for which rs = 0.

Then if m 2 M � {0},
0m = (rs)m = r(sm)

and so sm 2 Tor(M). If sm 6= 0M , we are done. If sm = 0M , then m is a nonzero

torsion element of M . K

Exercise 10.1.19. Let F = R, let V = R2
and let T be the linear transformation from V

to V which is projection onto the y-axis. Show that V, 0, the x-axis, and the y-axis are the

only F [x]–submodules for this T .

Proof. Let X be the x-axis and Y be the y-axis. Then

T (X) = 0 ⇢ X, and T (Y ) = Y ✓ Y,

T (R2
) = Y ⇢ R2, and T (0) = 0.

and since X,Y,R2, and 0 are subspaces of R2
, then they are R2

[x]-submodules.

Now suppose that (W,T |W ) is a R2
[x]-submodule for T that is not X,Y or 0. Then

there exists (u, v) 2 W so that u 6= 0 6= v. Then any scalar multiple of (u, v) is in W so

that the entire line L through the origin containing (u, v) is in W . Then T (W ) = Y and

since T (W ) ✓ W , then Y ✓ W . Given (x, y) 2 R2
, let (x, b) 2 L ⇢ W and (0, y � b) 2 Y ⇢

so that (x, y) = (x, b) + (0, y � b) 2 W . So W = R2
. So any T -stable subspace of R2

, and

hence any R2
[x]-submodule is X,Y,R2

, or 0. K

1
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Exercise 10.2.9. Let R be a commutative ring. Prove that HomR(R,M) and M are

isomorphic as left R–modules. [Show that each element of HomR(R,M) is determined by

its value on the identity of R.]

Proof. Let ' 2 HomR(R,M). Given r 2 R,

'(r) = '(r · 1R) = r'(1R)

and so ' is completely determined by its value on 1R. Define

� : HomR(R,M) ! M

' 7! '(1R).

If ', 2 HomR(R,M)

�('+  ) = ('+  )(1R) = '(1R) +  (1R) = �(') + �( )

and for r 2 R
�(r') = (r')(1R) = r('(1R)) = r�(').

If '(1R) =  (1R) then ' =  since elements of HomR(R,M) are completely determined

by their value on 1R and thus � is injective. Given m 2 M , define ' : R ! M by r 7! rm.

Then for r, s, t 2 R,

'(r + st) = (r + st)m = rm+ (st)m = rm+ s(tm) = '(r) + s'(t)

and so ' 2 HomR(R,M). Moreover, '(1R) = 1Rm = m and so � is surjective. K

Exercise 10.2.12. Let I be a left ideal of R and let n be a positive integer. Prove

Rn/IRn ⇠= R/IR⇥ · · ·⇥R/IR| {z }
n times

where IRn
is defined as in Exercise 5 of section 1.

Proof. Define a map  : Rn ! R/IR ⇥ · · · ⇥ R/IR by (r1, . . . , rn) 7! (r1, . . . , rn). Given

(r1, . . . , rn) and (s1, . . . , sn) in Rn
and t 2 R,

 ((r1, . . . , rn) + t(s1, . . . , sn)) =  (r1 + ts1, . . . rn + tsn)

= (r1 + ts1, . . . rn + tsn = r1)

= (r1 + ts1, . . . , rn + tsn)

= (r1, . . . , rn) + t(s1, . . . , rn)

=  (r1, . . . , rn) + t (s1, . . . , sn),

and so  is an R–module homomorphism. If (r1, . . . , rn) 2 R/IR ⇥ · · · ⇥ R/IR, then

'(r1, . . . , rn) = (r1, . . . , rn) and so  is surjective.

If (r1, . . . , rn) 2 Ker then rj 2 IR for all j and so (r1, . . . , rn) 2 IRn
. Conversely if

a(r1, . . . , rn) 2 IRn
for a 2 I then

 (ar1, . . . , arn) = (ar1, . . . , arn) = (0, . . . , 0),

where the last equality holds since arj 2 IR for all j. So a(r1, . . . , rn) 2 Ker and this

extends to all elements of IRn
since  is linear. Therefore, Ker = IRn

and by the First

Isomorphism Theorem, Rn/IRn ⇠= R/IR⇥ · · ·⇥R/IR. K

2
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Exercise 10.3.2. Assume R is commutative. Prove that Rn ⇠= Rm
is and only if n = m,

i.e., two free R–modules of finite rank are isomorphic if and only if they have the same rank.

[Apply Exercise 12 of Section 2 with I a maximal ideal of R. You may assume that if F is

a field, then Fn ⇠= Fm
if and only if n = m, i.e., two finite dimensional vector spaces over

F are isomorphic if and only if they have the same dimension — this will be proved later

in Section 11.1.]

Proof. If n = m then Rn
= Rm

. Let I be a maximal ideal of R. If : Rn ! Rm
is an

R–module isomorphism, then for a(r1, . . . , rn) 2 IRn
,

f(a(r1, . . . , rn)) = af(r1, . . . , rn) = a(s1, . . . , sm)

for some (s1, . . . , sm) 2 Rm
. Since f is linear, this extends to all finite sums of elements

of the form a(r1, . . . , rn) and so f(IRn
) ✓ IRm

. Similarly, if b(s1, . . . , sm) 2 IRm
, then

f�1
(b(s1, . . . , sm)) 2 IRn

and so f(IRn
) = IRm

.

Define f̃ : Rn ! Rm/IRm
by f̃(r1, . . . , rn) = f(r1, . . . , rn). Then f̃ is an R–module

epimorphism with Ker f = IRn
and we get an isomorphism Rn/IRn ⇠= Rm/IRm

. Notice

that IR = I. Let F be the field R/I. By Exercise 10.2.12,

Fn
= F ⇥ · · ·⇥ F| {z }

n times

⇠= Rn/IRn ⇠= Rm/IRm ⇠= F ⇥ · · ·⇥ F| {z }
m times

= Fm,

and by the hint, n = m. K

3
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In these exercises R is a ring with 1 and M is a left R-module.

Exercise 10.3.5. Let R be and Integral domain. Prove that every finitely generated tor-

sion R–module has a nonzero annihilator. Give an example of a torsion R–module whose

annihilator is the zero ideal.

Proof. Let M be a finitely generated torsion R–module with generating set {a1, . . . , an}.
For all ai, there exists si 2 R � {0R} such that siai = 0. Let s = s1s2 · · · sn. Since R is an

integral domain, s 6= 0R. Now if m = r1an + · · ·+ rnan 2 M , then

sm = (s1 · · · sn)(r1an + · · ·+ rnan)

= (s1 · · · sn)r1an + · · ·+ (s1 · · · sn)rnan
= (s2 · · · sn)(s1r1)an + · · ·+ (s1 · · · sn�1)(snrn)an = 0.

So, we have 0R 6= s 2 AnnR(M).

Consider the internal direct sum

M =

M

n2Z+

Z/nZ = 0Z � Z/2Z� Z/3Z� · · ·

Then E is a torsion Z–module. To see this, let

m = (0Z, . . . ,m1, . . . ,m2, . . . ,m`, 0, . . . )

be an element of M where we are assuming m` is the last nonzero coordinate of m and

mj 6= 0 for all 1  j  `. If we let r = m1 ·m2 · · ·m`, then rm = (0Z, 0, 0, . . . , 0, . . . ).
Let n 2 Z+

, r 2 Z, and j 2 Z/nZ. If rj = rj = 0, then r is a multiple of n. Now if

r 2 AnnZ(M), this must be true for all n, which means r is an integer which is a multiple of

every integer, which is not possible for any nonzero integer. Thus, r = 0Z = AnnZ(M). K

Exercise 10.3.15. An element e 2 R is called a central idempotent if e2 = e and er = re
for all r 2 R. If e is a central idempotent in R, prove that M = eM � (1� e)M .

Proof. If n 2 eM \ (1 � e)M , then em1 = n = m2 � em2 for some m1,m2 2 M . Then

m2 = e(m1 +m2) and so

n = e(m1 +m2)� e[e(m1 +m2)] = e(m1 +m2)� e2(m1 +m2) = 0M ,

which implies eM \ (1� e)M = {0M}.
Since e0M = 0M and (1 � e)0M = 0M , then the sets eM and (1 � e)M are nonempty.

Let em1, em2 2 eM , (1� e)m3, (1� e)m4 2 (1� e)M and r 2 R. Then

em1 + rem2 = em1 + erm2 = e(m1 + rm2)

is in eM and

(1� e)m3 + r(1� e)m4 = (1� e)m3 + (1� e)rm4 = (1� e)(m3 + rm4)

is in (1 � e)M . Thus eM and (1 � e)M are submodules of M . Since M is a module, then

certainly eM + (1� e)M ✓ M . Now if m 2 M , then

m = em+m� em = em+ (1� e)m

is an element of eM + (1� e)M . So M = eM � (1� e)M . K

1
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Exercise 10.4.16. Suppose R is a commutative ring and let I and J be ideals of R, so

R/I and R/J are naturally R–modules.

Throughout, we use the following notation: r := r + I, er := r + J and br := r + (I + J) for
all r 2 R.

(a) Prove that every element of R/I⌦RR/J can be written as a simple tensor of the form

1r ⌦ er.

Proof. Let n 2 R/I ⌦R/J . Then

n =

kX

i=1

ri ⌦ s̃i =
X

(1R)ri ⌦ esi

=

X
(1R)⌦ ri esi

= 1R ⌦
X

grisi

= 1R ⌦
P̂

risi.

K

(b) Prove that there is an R–module isomorphism R/I ⌦R R/J ⇠= R/(I + J) mapping

r ⌦ er0 to crr0.

Proof. Call the map given above  . We first show that  is well-defined. In order to

do this, we show that the corresponding map on the cartesian product

' : R/I ⇥R/J ! R/(I + J), (m, en) 7! dmn

is R-balanced. Then by the universal property of the tensor product, there is a unique

Z–module homomorphism � : R/I⌦RR/J ! R/(I+J) such that �(m⌦en) = '(m, en)
for all m 2 R/I and en 2 R/J . Then by uniqueness of this map, this means that then

 = � is a well-defined Z–module homomorphism. Let’s begin:

Let m1,m2,m 2 R/I,fn1,fn2, en 2 R/J , and r 2 R. Then we have

'(m1 +m1, en) = '(m1 +m1, en)

= (m1 +m2)n[
= dm1n+ dm2n

= '(m1, en) + '(m2, en),

'(m,fn1 +fn2) = '(m, n̂1 + n2)

= m(n1 + n2)[
= dmn1 + dmn2

= '(m,fn1) + '(m,fn2),

and finally '(m,frn) = dmrn = '(mr, en). So ' is R-balanced.

2
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Note that in view of part (a), we can write an arbitrary element of R/I ⌦R R/J
as a simple tensor of the form 1R ⌦ er. Then  is injective because

bs = br =) s� r 2 I + J

=) c0R = [s� r

=) 0R � (s� r) 2 I + J

=) r � s 2 J

=) er = es
=) 1R ⌦ er = 1R ⌦ es.

Certainly  is surjective: if br 2 R/(I + J), then 1R ⌦ er 7! br. Let t 2 R. Then,

1R ⌦ er + t(1R ⌦ es) = 1R ⌦ er + t1R ⌦ es
= 1R ⌦ er + 1Rt⌦ es
= 1R ⌦ er + 1R ⌦ ets
= 1R ⌦

�
er + ets

�

= 1R ⌦
⇣
r̂ + ts

⌘
.

So, we get \r + ts = br + bts = br + tbs, and we see that the map is an R–module

homomorphism. K

Exercise 10.5.2. Suppose that

A B C D

A0 B0 C 0 D0

↵ � � �

 ' ⌘

 0 '0 ⌘0

is a commutative diagram of groups, and that the rows are exact.

(a) Prove that if ↵ is surjective, and �, � are injective, then � is injective.

Proof. Suppose �(c) = 1. Then ⌘0(�(c)) = 1 and since ⌘0 � � = � � ⌘ then �(⌘(c)) = 1.

Since � is injective, ⌘(c) = 1. Then c 2 ker ⌘ = Im', and so there exists b 2 B such

that '(b) = c. Now,

'0
(�(b)) = �('(b)) = �(c) = 1,

and so �(b) 2 ker'0
= Im 0

. Thus there exists a0 2 A0
such that  0

(a0) = �(b). Since
↵ is surjective there exists a 2 A such that ↵(a) = a0. Then

�(b) =  0
(↵(a)) = �( (a)),

which implies b =  (a) since � is injective. So b 2 Im = ker' and c = �(b) = 1. K

(b) Prove that if � is injective, and ↵, � are surjective, then � is surjective.

3
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Proof. Let b0 2 B0
. Since � is surjective, then there exists c 2 C such that �(c) =

'0
(b0). So, �(c) 2 Im'0

= ker ⌘0 and since ⌘0 � � = � � ⌘, then

1 = ⌘0(�(c)) = �(⌘(c))

which gives ⌘(c) = 1 since � is injective. Now, c 2 ker ⌘ = Im', which means there

exists b1 2 B such that '(b1) = c. Since � � ' = '0 � �, then

'0
(b0) = �(c) = �('(b1)) = '0

(�(b1)),

and so b0��(b1) 2 ker'0
= Im . So there exists a0 2 A0

such that  (a0) = b0��(b1).
Since ↵ is surjective, there exists a 2 A so that ↵(a) = a0. Since � �  =  0 � ↵, then

�( (a)) =  0
(↵(a)) =  0

(a0)� b0 � �(b1)

implies b0 = �( (a) + b1). Therefore, � is surjective.

K

4
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In these exercises R is a ring with 1 and M is a left R-module.

Exercise 10.3.9. An R–module M is called irreducible if M 6= 0 and if 0 and M are the

only submodules of M . Show that M is irreducible if and only if M 6= 0 and M is a cyclic

module with any nonzero element as generator. Determine all the irreducible Z–modules.

Proof. ()) Since M is irreducible, M 6= 0. Let m 2 N � {0N}, r1m, r2m 2 Rm and s 2 R.

Certainly Rm 6= 0 and

r1m+ s(r2m) = (r1 + sr2)m 2 Rm,

and so Rm is a submodule of M . Since M is irreducible, then Rm = M .

(() Let N ✓ M be a submodule. If N = 0 we are done. Suppose N 6= 0. Then for any

n 2 N � {0N}, Rn = M and since Rn ✓ N , then M = N and so M is irreducible.

Let M be an irreducible Z–module, i.e. an abelian group that is cyclic. Notice that

M 6= Z, since Z has plenty of proper nontrivial subgroups. Thus M must have finite order.

If M is to have no nontrivial proper subgroups, it must have order a prime number. Since

all groups of prime order are cyclic, and all cyclic groups are abelian, then M must be a

group of prime order. K

Exercise 10.3.11. Show that if M1 and M2 are irreducible R–modules then any nonzero

R–module homomorphism from M1 to M2 is an isomorphism. Deduce that if M is irre-

ducible then EndR(M) is a division ring (this result is called Schur0sLemma). [Consider

the kernel and the image.]

Proof. If ' : M1 ! M2 is a nonzero homomorphism, then Im' is a submodule of M2:

either 0M2 or M2. Since ' is nonzero, Im' = M2. Similarly, ker' is a submodule of M1

and cannot be M1 since ' is nonzero, and thus ker' = 0M1 . So ' is an isomorphism.

Therefore, ifM is irreducible and ' 2 EndR(M) then '�1
is also an element of EndR(M)

and thus EndR(M) is a division ring. K

Exercise 10.3.12. Let R be a commutative ring and let A,B, andM be R–modules. Prove

the following isomorphism of R–modules:

HomR(A⇥B,M) ⇠= HomR(A,M)⇥HomR(B,M)

Proof. If ' 2 HomR(A ⇥ B,M), define '|A : A ! M by '|A(a) = '(a, 0). It follows that

'|A 2 HomR(A,M) since ' is an R module homomorphism. Define '|B : B ! M similarly:

'|B(b) = '(0, b) . Now define a map

� : HomR(A⇥B,M) ! HomR(A,M)⇥HomR(B,M),

' 7! ('|A,'|B).

We first show that � is an R–module homomorphism: Let '1,'2 2 HomR(A⇥ B,M) and

r 2 R. Then

�('1 + r'2) = (('1 + r'2) |A, ('1 + r'2) |B)
= ('1|A + r ('2|A) ,'1|B + r ('2|B))
= ('1|A,'1|B) + (r ('2|A) , r ('2|B))
= ('1|A,'1|B) + r (('2|A) , ('2|B))
= �('1) + r�('2).

1
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If ' 2 ker�, then for all a 2 A and for all b 2 B

0 ⌘ '|A(a) = '(a, 0)

0 ⌘ '|B(b) = '(0, b),

and so for all a 2 A and b 2 B, we get

'(a, b) = '((a, 0) + (0, b)) = '(a, 0) + '(0, b) = 0.

Thus, ' ⌘ 0 and so � is injective.

If ( , ⌘) 2 HomR(A,M)⇥HomR(B,M), define a map

' : A⇥B ! M,

(a, b) 7!  (a) + ⌘(b).

We check that ' 2 HomR(A⇥B,M): Let r 2 R and (a1, b1), (a2, b2) 2 A⇥B. Then

'((a1, b1) + r(a2, b2)) = '(a1 + ra2, b1 + rb2)

=  (a1 + ra2) + ⌘(b1 + rb2)

=  (a1) + r (a2) + ⌘(b1) + r⌘(b2)

= [ (a1) + ⌘(b1)] + r[ (a2) + ⌘(b2)]

= '(a1, b1) + r'(b1, b2).

Notice that for all a 2 A and for all b 2 B

'|A(a) = '(a, 0) =  (a) + ⌘(0) =  (a), and

'|B(b) = '(0, b) =  (0) + ⌘(b) = ⌘(b).

So, �(') = ( , ⌘) and hence � is surjective. K

Exercise 10.4.20. Let I = (2, x) be the ideal generated by 2 and x in the ring R = Z[x].
Show that the element 2⌦ 2+ x⌦ x in I ⌦R I is not a simple tensor, i.e., cannot be written

as a⌦ b for some a, b 2 I.
From Dr. Bleher: Prove that there is an R-balanced map f : I ⇥ I ! I2 defined by

f(p(x), q(x)) = p(x)q(x). Use this to obtain a well-defined Z–module homomorphism F :

I ⌦R I ! I2. Argue that F is surjective. Show that F is an R-module homomorphism

by showing F preserves the R–module structure on I ⌦R I coming from the fact that R is

commutative. Then use the map F to do #20.

Proof. Let p1(x), p2(x), p(x), q1(x)q2(x), q(x) 2 I and r 2 R. Then

f(p1(x) + p2(x), q(x)) = p1(x)q(x) + p2(x)q(x) = f(p1(x), q(x)) + f(p2(x), q(x)),

f(p(x), q1(x) + q2(x)) = p(x)q1(x) + p(x)q2(x) = f(p(x), q1(x)) + f(p(x), q2(x)),

f(p(x), rq(x)) = (p(x)r)q(x) = f(p(x)r, q(x)).

So f is R-balanced and so we have a well-defined Z–module homomorphism F : I⌦RI ! I2.
Given

Pn
i=1 pi(x)qi(x) 2 I2, we have

F

 
nX

i=1

pi(x)⌦ qi(x)

!
=

nX

i=1

pi(x)qi(x),

2
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and so F is surjective. Since R is commutative I ⌦R I is an R–module. Moreover, we know

that F is additive since F is a Z–module homomorphism. Now

F

 
r

nX

i=1

pi(x)⌦ qi(x)

!
= F

 
nX

i=1

rpi(x)⌦ qi(x)

!

=

nX

i=1

F (rpi(x)⌦ qi(x))

=

nX

i=1

rpi(x)qi(x)

= r
nX

i=1

pi(x)qi(x)

= rF

 
nX

i=1

pi(x)⌦ qi(x)

!
,

and so F preserves the R–module structure on I ⌦R I.
Suppose 2⌦ 2 + x⌦ x = p(x)⌦ q(x) for some p(x), q(x) 2 I. Then

4 + x2
= F (2⌦ 2) + F (x⌦ x) = F (p(x)⌦ q(x)) = p(x)q(x).

So if p(x) were constant, then p(x) would have to divide 1 and 4, and thus p(x) = ±1. But

± 62 I and so p(x) and q(x) are not constant. So, both p(x) and q(x) must be of the form

p(x) = x+ n, q(x) = x+m for some even integers m,n. Then

x2
+ 4 = (x+ n)(x+m) = x2

+ (m+ n)x+ nm,

which means m+n = 0 and som = �n. We also get 4 = mn = �nn = �n2
, a contradiction.

K

3
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Exercise 11.1.6. Let V be a vector space of finite dimension. If ' is any linear transfor-

mation from V to V prove there is an integer m such that the intersection of the image of

'm
and the kernel of 'm

is {0V }.

Proof. Let i 2 Z+
. Then if k 2 Ker'i

,

'i+1
(k) = '('(k)) = '(0V ) = 0V

and so k 2 Ker'i+1
. So,

Ker' ✓ Ker'2 ✓ · · · ✓ Ker'i ✓ Ker'i+1 ✓ . . .

is an ascending chain of subspaces of V . Since V is finite dimensional, the dimensions

of this chain cannot strictly increase indefinitely. Thus there exists m 2 Z+
such that

Ker'i
= Ker'm

for all i � m.

If v 2 Im'm \Ker'm
, then

'm
(u) = v and 'm

(v) = 0V

for some u 2 V . Then

'2m
(u) = 'm

('m
(u)) = 'm

(v) = 0V ,

and so u 2 Ker'2m
= Ker'm

. Hence we get 0V = 'm
(u) = v. K

Exercise 11.1.8. Let V be a vector space over F and let ' be a linear transformation of

the vector space V to itself. A nonzero element v 2 V satisfying '(v) = �v for some � 2 F
is call an eigenvector of ' with eigenvalue �. Prove that for any fixed � 2 F the collection

of eigenvectors of ' with eigenvalue � together with 0 forms a subspace of V .

Proof. Let E� = {v 2 V �{0V } | '(v) = �v}[{0V }. Since 0V 2 E�, E� 6= ?. If E� = {0V }
we are done. Let u, v 2 E� so that at least one of the vectors u, v are nonzero, and let ⌘ 2 F .

Then

'(u+ ⌘v) = '(u) + ⌘'(v) = �u+ ⌘(�v) = �u+ �(⌘v) = �(u+ ⌘v),

and so u+ ⌘v 2 E�, and hence E� is a subspace of V . K

Exercise 11.1.9. Let V be a vector space over F and let ' be a linear transformation of

the vector space V to itself. Suppose for i = 1, 2, . . . , k that vi 2 V is an eigenvector for '
with eigenvalue �i 2 F and that all the eigenvalues �i are distinct. Prove that v1, v2, . . . , vk
are linearly independent. [Use induction on k: write a linear dependence relation among

the vi and apply ' to get another linear dependence relation among the vi involving the

eigenvalues — now subtract a suitable multiple of the first linear relation to get a linear

dependence relation on fewer elements.] Conclude that any linear transformation on an

n-dimensional vector space has at most n distinct eigenvalues.

Proof. We proceed by induction on k. If k = 1, there’s nothing to show. Suppose v1, . . . , vm
are linearly independent for some 1  m  k � 1. Suppose

0 = ↵1v1 + . . .↵mvm + ↵m+1vm+1. (1)

If we can show that ↵m+1 = 0, then (1) would then give ↵i = 0 for all 1  i  m+ 1 since

v1, . . . , vm are linearly independent. Suppose ↵m+1 6= 0. Then

vm+1 = � 1

↵m+1
(↵1v1 + · · ·+ ↵mvm) (2)

1
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Applying ' to (1) and substituting the value of vm+1 given in (2),

0 = '(0) = ↵1'(v1) + · · ·+ ↵m'(vm) + ↵m+1'(vm+1)

= ↵1�1v1 + · · ·+ ↵m�mvm + ↵m+1�m+1vm+1

= ↵1�1v1 + · · ·+ ↵m�mvm + ↵m+1�m+1

✓
� 1

↵m+1
(↵1v1 + · · ·+ ↵mvm)

◆

= (�1 � �m+1)↵1v1 + · · ·+ (�m � �m+1)↵mvm.

Since v1, . . . , vm are linearly independent, (�i � �m+1)↵i = 0 for all 1  i  m. Since

the �j are all distinct for 1  j  m + 1, then �i � �m+1 6= 0 and so ↵i = 0 for all

1  i  m. Therefore, we have 0 = ↵m+1vm+1 by (1), a contradiction since vm+1 6= 0. Thus

↵m+1 = 0. K

Exercise 11.2.15. Prove that the row rank of two row equivalent matrices is the same. [It

su�ces to prove this for two matrices di↵ering by an elementary row operation.]

Proof. Let A and B be two row equivalent matrices in Matm⇥n(F ) with row vectors

a1, . . . , am and b1, . . . , bm. Notice that

dim(span{a1, . . . , am}) = #{ linearly independent rows of A} = row rank of A.

Similarly for the rows of B. If A and B di↵er by a interchange of rows, then {a1, . . . , am} =

{b1, . . . , bm} and so trivially dim(span{a1, . . . , am}) = dim(span{b1, . . . , bm}).
Suppose A and B di↵er by the second elementary row operation. That is, suppose for

some i, ai = �bi for some � 2 F and a` = b` for all ` 6= i. Then

dim(span{a1, . . . , ai, . . . , am}) = dim(span{a1, . . . , ai�1,�bi, ai+1 . . . , am})
= dim(span{b1, . . . , bi�1,�bi, bi+1 . . . , bm})
= dim(span{b1, . . . , bm})

Now suppose A and B di↵er by the third elementary row operation. That is, suppose

for some i, ai = bi + �bj for some � 2 F and i 6= j and a` = b` for all ` 6= i. Then

dim(span{a1, . . . , ai, . . . , am}) = dim(span{a1, . . . , ai�1, bi + �bj , ai+1 . . . , am})
= dim(span{b1, . . . , bi�1, bi + �bj , bi+1 . . . , bm})
= dim(span{b1, . . . , bm})

K

Exercise 11.3.4. If V is infinite dimensional with basis A, prove that A⇤
= {v⇤ | v 2 A}

does not span V ⇤
.

Proof. Let f 2 V ⇤
be defined by f(e↵) = 1F for all e↵ 2 A. Suppose f 2 spanA⇤

. Then

there exists n 2 Z+
, c1, . . . , cn 2 F and v⇤1 , . . . , v

⇤
n 2 A⇤

such that

f =

nX

i=1

civ
⇤
i .

However, for ↵ 62 {1, . . . , n},

1F = f(e↵) =
nX

i=1

civ
⇤
i (e↵) = 0F .

K

2
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Exercise 11.1.10. Prove that any vector space V has a basis.

Proof. Let S = {J ✓ V | J consists of linearly independent vectors} be partially ordered

by inclusion. S is nonempty since {0V } 2 S. Let C be a chain in S. We claim

U =

[

J2C
J

is an upper bound for C. Certainly J ✓ U for all J 2 C. It remains to show that U 2 S. Let
{u1, . . . , un} be a finite collection of vectors in U . For all i, there exists Ji containing ui.

Since C is a chain, there must be a Jk containing all Ji and therefore all u1, . . . , un. Hence,

the u1, . . . , un are linearly independent. Since this is true for all finite collections of vectors

in U , then U 2 S. By Zorn’s Lemma, S contains a maximal element, call it M .

We show M = {m1, . . . ,m`} is a basis for V . We already know M is a linearly indepen-

dent set. Suppose M does not span V . Then there exists v 2 V �{0V } which is not a linear

combination of the vectors in M . In other words, for all sets of scalars a1, . . . , a` 2 F�{0F },

v �
X̀

i=1

aimi 6= 0V .

Then {v} [M is a linearly independent set in V , a contradiction since M is a maximal set

of linearly independent vectors in V . Thus M is a basis for V . K

Exercise 2. Suppose V is a non-zero vector space over a field F and A is a subset of V
that spans V . Prove that A contains a basis of V .

Proof. Let S = {J ✓ A | J consists of linearly independent vectors}. The proof that S
contains a maximal element M is identical to the previous problem.

To see that M is a basis for V , suppose v 62 spanM . Since v 2 spanA, there exists

n 2 Z+
, a1, . . . , an 2 A, and c1, . . . cn 2 F so that

v =

nX

i=1

ciai.

Notice that if ai 2 spanM for all i 2 {1, . . . , n}, then v would be in the span of M . So, there

exists j 2 {1, . . . , n} such that aj 62 spanM . Notice that {aj} [M is linearly independent;

otherwise, we could write aj as a linear combination of elements in M , (but aj 62 spanM).

So {aj} [ M ✓ A is linearly independent, a contradiction since M is maximal in A with

respect to linear independence. Hence M is a basis for V . K

1
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Exercise 11.2.6. Prove if ' 2 HomF (Fn, Fm
), and B, E are the natural bases of Fn, Fm

respectively, then the range of ' equals the span of the set of columns of ME
B ('). Deduce

that the rank of ' (as a linear transformation) equals the column rank of ME
B (').

Proof. Let B = {b1, . . . , bn} and E = {e1, . . . , em} be the natural bases of Fn
and Fm

,

respectively. For all j 2 {1, . . . , n}

'(bj) =
mX

i=1

aijei

for some aij 2 F . Notice that since E is a natural basis for Fm
, the sum above is precisely

the jth column vector of ME
B ; that is,

'(bj) =
mX

i=1

aijei = ~aj , (⇤)

where ~aj denotes the jth column vector of ME
B . If v 2 Fm

is in the range of ', there exists

u 2 Fn
such that '(u) = v. Moreover, there exists c1, . . . , cn 2 F such that

u =

nX

j=1

cjbj .

So,

v = '(u) =
nX

j=1

cj'(bj) =
nX

j=1

cj

mX

i=1

aijei =
nX

j=1

cj ~aj

and hence v is in the span of the columns of ME
B . Conversely, if w is in the span of the

columns of ME
B , then there exists d1, . . . , dn 2 F such that

w =

nX

j=1

dj ~aj .

Letting x =
Pn

j=1 djbj 2 Fn
, we get by (⇤),

w =

nX

j=1

dj ~aj =
nX

j=1

dj

mX

i=1

aijei =
nX

j=1

dj'(bj) = '(x),

and so w is in the range of '. Therefore we have set equality between the range of ' and

the span of the columns of ME
B . This gives

dim(Im') = dim(span{ ~a1, . . . , ~an}),

i.e., the rank of ' equals the column rank of ME
B . K

2
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Exercise 11.2.11. Let ' be a linear transformation from the finite dimensional vector

space V to itself such that '2
= '.

A linear transformation ' satisfying '2
= ' is called an idempotent linear transforma-

tion. This exercise proves that idempotent linear transformations are simply projections

onto some subspace.

(a) Prove that Im' \Ker' = 0.

Proof. Let v 2 Im'\Ker'. Then there exists u 2 V such that '(u) = v and '(v) = 0.

Then v = '(u) = '2
(u) = '('(u)) = '(v) = 0. K

(b) Prove that V = Im'�Ker'.

Proof. We know Im' and Ker' are subspaces of V . By part (a), their intersection is

trivial. We also have Im' + Ker' ✓ V . Moreover, if v 2 V , then v � '(v) 2 Ker'
since

'(v � '(v)) = '(v)� '2
(v) = 0.

So v = '(v) + (v � '(v)) 2 Im'+Ker'. Therefore, V = Im'�Ker'. K

(c) Prove that there is a basis of V such that the matrix of ' with respect to this basis is

a diagonal matrix whose entries are all 0 or 1.

Proof. Let {v1, . . . , vk} be a basis for Ker'. Extend this to a basis for V , B =

{v1, . . . , vk, . . . , vn}. Notice that {vk+1, . . . , vn} ✓ Im' since V = Im'�Ker'. Then
'(vi) = 0 for all i 2 {1, . . . , k}. So, the ith column in MB

B (') consists of all zeros for
i 2 {1, . . . , k}.

For all j 2 {k + 1, . . . , n}, there exists uj 2 V such that '(uj) = vj . So,

'(vj) = '('(uj)) = '(uj) = vj .

Therefore, the jth column in MB
B (') has a 1 in the jth row and zeroes everywhere

else. Thus we get

MB
B (') =

0

BBBBBBBBBBBB@

0 0 · · · 0 0 0 0 0

0 0 · · · 0 0 0 0 0

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

0 · · · 0 0 0 · · · 0 0

0 · · · 0 0 1 0 · · · 0

0 · · · 0 0 0 1 0 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

0 · · · 0 0 0 · · · 0 1

1

CCCCCCCCCCCCA

K
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Exercise 11.2.13. Let V,W be vector spaces over F with dimensions n and m, respec-

tively. Let ' : V ! W be a linear transformation; let B1,B2 be bases for V and E1, E2 be

bases for W . Define

A = ME1
B1
('), B = ME2

B2
('), P = MB1

B2
(1V ), and Q = ME1

E2
(1W ).

where 1V : V ! V and 1W : W ! W denote the identity maps on V and W , respectively.

Prove that Q�1
= ME2

E1
(1W ) and that Q�1AP = B, giving the general relation between ma-

trices representing the same linear transformation but with respect to two di↵erent choices

of bases.

Proof. We have

QME2
E1
(1W ) = ME1

E2
(1W )ME2

E1
(1W ) = ME1

E1
(1W ) = I,

and

ME2
E1
(1W )Q = ME2

E1
(1W )ME1

E2
(1W ) = ME2

E2
(1W ) = I,

and so Q�1
= ME2

E1
(1W ).

Moreover,

Q�1AP = ME2
E1
(1W )ME1

B1
(')MB1

B2
(1V ) = ME2

B1
(1W � ')MB1

B2
(1V ) = ME2

B2
(' � 1V ) = B.

K

Exercise 11.2.25. Let A be an n⇥ n matrix.

(a) Show that A has an inverse matrix B with columns B1, . . . , Bn if and only if the

system of equations:

AB1 =

0

BBBBB@

1

0

.

.

.

0

0

1

CCCCCA
, AB2 =

0

BBBBB@

0

1

0

.

.

.

0

1

CCCCCA
, . . . , ABn =

0

BBBBB@

0

0

.

.

.

0

1

1

CCCCCA

has solutions.

Proof. ()) If Ij denotes the jth column of the identity matrix I, then since AB = I,
we get ABj = Ij for all j 2 {1, . . . , n}. So the Bj are the solutions to the system of

equations.

(() Let B = (B1, . . . , Bn). Since ABj = Ij , it follows that AB = I. Let ' and

 be the linear transformations (with respect to some chosen basis) of V associated

with A and B, respectively. Since AB = I, then ' �  = 1V and so ' is surjective,

i.e. dim Im' = n. Then

n = dim(V ) = dimKer'+ dim Im' =) Ker' = 0

So ' is bijective and thus A has a left inverse, say C. Then

C = CI = C(AB) = (CA)B = IB = B

and so BA = I. K

1
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(b) Prove that A has an inverse if and only if A is row equivalent to the n ⇥ n identity

matrix.

Proof. ()) Viewing A as a map A : Fn ! Fn
, A is invertible. In particular,

dimKerA = 0. Since n = dimFn
= dimKerA + ImA, then ImA = n. So the

(row) rank of A is n. Since the rank of a matrix is una↵ected by row operations (cf.

Exercise 11.2.15), then if we reduce A to its reduced row echelon form, call it A0
, then

A0
has rank n. Since the only matrix in reduced row echelon form of rank n is I, then

A0
= I. That is, A is row equivalent to I.

(() If A is row equivalent to the identity matrix, then there are a finite number

of row operations which reduce A to I. For each elementary row operation, there is a

corresponding elementary matrix Pi which, when multiplied by A has the same e↵ect

on A as that of an elementary row operation. Let P1, . . . , Pk be the k elementary

matrices corresponding to the k elementary row operations on A which reduce A to

I. Then if B = P1 · · ·Pk, we have BA = I. Using a similar argument as in part (a),

we get AB = I. K

(c) Prove that A has an inverse B if and only if the augmented matrix (A | I) can be row

reduced to the augmented matrix (I | B) where I is the n⇥ n identity matrix.

Proof. This follows almost immediately from part (b). A is invertible if and only if

A is row equivalent to the identity matrix, if and only if (A | I) is row equivalent to

(I | C) for some matrix C. But notice that C was obtained by the elementary row

operations on I which reduced A to I. Hence CA = I, and since inverses are unique,

B = C. K

Exercise 11.4.4.

(a) (i) interchanging two rows changes the sign of the determinant.

(ii) adding a multiple of one row to another does not change the sign of the determi-

nant.

(iii) multiplying any row by a nonzero element u from F multiplies the determinant

by u.

Proof. We know that the determinant function is alternating on the columns of a

matrix, and that det(AT
) = det(A). If we interchange two rows of A, we interchange

two columns of AT
. This will change the sign of det(AT

) by �1, and thus change the

sign of det(A) by �1. This gives (i). Analogously, adding a multiple of one row to

another row in A corresponds to adding a multiple of one column to another column

in AT
. So if A1, . . . , An are the columns of AT

(the rows of A), then

det(A1, . . . , Ai + �Aj , . . . , An) = det(A1, . . . , Ai, . . . , An) + det(0, . . . , 0,�Aj , 0, . . . , 0)

= det(A1, . . . , Ai, . . . , An)

= det(AT
)

= det(A).

2
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This gives (ii). Finally for (iii), we have

det(A1, . . . , uAi, . . . , An) = det(A1, . . . , uAi, . . . , An)

= u det(A1, . . . , Ai, . . . , An)

= u det(AT
)

= u det(A).

K

(b) Prove that detA is nonzero if and only if A is row equivalent to the n ⇥ n identity

matrix. Suppose A can be row reduced to the identity matrix using a total of s row

interchanges as in (i) and by multiplying the rows by nonzero elements u1, . . . , ut as

in (iii). Prove that det(A) = (�1)
s
(u1u2 . . . ut)

�1
.

Proof. ()) If the determinant of A is nonzero, then the columns of A are linearly indepen-

dent. In particular, A has rank n. Then the kernel of A is trivial and thus A is invertible.

By exercise 11.2.25, A is row equivalent to the identity matrix.

(() If A is row equivalent to the identity matrix, then the columns of A are linearly

independent and so det(A) 6= 0.

The last statement follows from the fact that the determinant function is multiplicative.

By part (a), s row interchanges changes the value of the determinant of A by (�1)
s
. Let P

be the matrix obtained by performing s row interchanges in A. Then det(P ) = (�1)
s
det(A).

Let Q now be the matrix obtained by multiplying rows of P be u1, . . . , ut. In particular,

Q = I. Then by part (a),

1 = det(I) = det(Q) = u1 · · ·ut det(P ) = u1 · · ·ut(�1)
s
det(A)

and so det(A) = (�1)
s
(u1 · · ·ut)

�1
. K
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Exercise 11.3.3. Let S be any subset of V ⇤
for some finite dimensional space V . Define

Ann(S) = {v 2 V | f(v) = 0 for all f 2 S}. (Ann(S) is called the annihilator of S in V ).

(a) Prove that Ann(S) is a subspace of V .

(b) Let W1 and W2 be subspaces of V ⇤
. Prove that Ann(W1+W2) = Ann(W1)\Ann(W2)

and Ann(W1 \W2) = Ann(W1) + Ann(W2).

(c) Let W1 and W2 be subspaces of V ⇤
. Prove that W1 = W2 if and only if Ann(W1) =

Ann(W2).

(d) Prove that the annihilator of S is the same as the annihilator of the subspace of V ⇤

spanned by S.

(e) Assume V is finite dimensional with basis v1, . . . , vn. Prove that if S = {v⇤1 , . . . , v⇤k}
for some k  n then Ann(S) is the subspace spanned by {vk+1, . . . , vn}.

(f) Assume V is finite dimensional. Prove that ifW ⇤
is any subspace of V ⇤

then dimAnn(W ⇤
) =

dimV � dimW ⇤
.

Proof. (a): Ann(S) is nonempty since f(0V ) = 0V for all f 2 S. If u,w 2 Ann(S), f 2 S,
and r 2 F , then f(u+ rw) = f(u) + rf(w) = 0 and so u+ rw 2 Ann(S). Hence Ann(S) is
a subspace of V .

(b): Let B be a basis for W1 \ W2. Extend B to bases B1, and B2 for W1, and W2

respectively, with

B = {x⇤
1, . . . , x

⇤
`}, B1 �B = {y⇤1 , . . . , y⇤n1

}, B2 �B = {z⇤1 , . . . , z⇤n2
}.

We claim B [ (B1 � B) [ (B2 � B) = B [ B1 [ B2 is a linearly independent set. If there

exists ri, sj , tk 2 F so that

X̀

i=1

rix
⇤
i +

n1X

j=1

sjy
⇤
j +

n2X

k=1

tkz
⇤
k = 0, (Eqn 1)

then

X̀

i=1

rix
⇤
i +

n1X

j=1

sjy
⇤
j = �

n2X

k=1

tkz
⇤
k 2 W1 \W2

which means

�
n2X

k=1

tkz
⇤
k 2 span{x⇤

1, . . . , x
⇤
`},

which is a contradiction unless all tk are zero. Then (Eqn 1) becomes

X̀

i=1

rix
⇤
i +

n1X

j=1

sjy
⇤
j = 0,

and since the xi⇤ and y⇤j form a basis for W2, all the ri, sj are zero.

Now, extend B [B1 [B2 to a basis for V ⇤
, say

B = {x⇤
1, . . . , x

⇤
`} [ {y⇤1 , . . . , y⇤n1

} [ {z⇤1 , . . . , z⇤n2
} [ {f⇤

1 , . . . , f
⇤
m}.

1
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Since V is finite dimensional, V ⇤⇤ ⇠= V , which means B is dual to a basis

{x1, . . . , x`} [ {y1, . . . , yn1} [ {z1, . . . , zn2} [ {f1, . . . , fm}

of V . Now let v 2 Ann(W1 \W2). Then v 2 V and so there exists ↵i,�j , �k, �p 2 F so that

v =

X̀

i=1

↵ixi +

n1X

j=1

�jyj +
n2X

k=1

�kzk +

mX

p=1

�pfp.

Since x⇤
i0(v) = 0 for all i0 2 {1, . . . , `}, then

0 = x⇤
i0(v) =

X̀

i=1

↵ixi0(xi) = ai0 ,

and so ai = 0 for all i 2 {1, . . . , `}. Thus,

v =

n1X

j=1

�jyj +
n2X

k=1

�kzk +

mX

p=1

�pfp.

Notice that
Pn1

j=1 �jyj 2 Ann(W2) since

z⇤k0

0

@
n1X

j=1

�jyj

1

A =

n1X

j=1

�jz
⇤
k0
(yj) = 0,

and
Pn2

k=1 �kzk +
Pm

p=1 �pfp 2 Ann(W1) since

y⇤j0

 
n2X

k=1

�kzk +

mX

p=1

�pfp

!
=

n2X

k=1

�ky
⇤
j0(zk) +

mX

p=1

�py
⇤
j0(fp) = 0.

Thus v 2 Ann(W1) + Ann(W2).

Conversely, if v = w + u 2 Ann(W1) + Ann(W2), then for f 2 W1 \W2

f(v) = f(w + u) = f(w) + f(v) = 0,

so v 2 Ann(W1 \W2).

(c):()) If W1 and W2 are the same then certainly so are their annihilators.

(() Let {v1, . . . , vk} be a basis of Ann(W1) = Ann(W2) ✓ V . Now extend this to a

basis {v1, . . . , vk, . . . , vn} of V , with dual basis {v⇤1 , . . . , v⇤n} for V ⇤
. For any w⇤ 2 W1, we

can write

w⇤
=

nX

i=1

aiv
⇤
i .

Then for ` 2 {1 . . . k}, we have w⇤
(v`) = 0 since w⇤ 2 W1 and v1, . . . , vk 2 Ann(W1), and so

w⇤
(v`) =

nX

i=1

aiv
⇤
i (v`) =

nX

i=k+1

aiv
⇤
i (v`).

So W1 ✓ span(v⇤k+1, . . . , v
⇤
k) and similarly, W2 ✓ span(v⇤k+1, . . . , v

⇤
k).

2
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(d): If v 2 Ann(spanS), then for any s⇤ 2 S ✓ spanS, we have s⇤(v) = 0. Conversely,

if v 2 Ann(S), then for s⇤ =
P

ais⇤i 2 spanS for s⇤i 2 S, we have

s⇤(v) =
X

ais
⇤
i (v) = 0.

(e): Let u 2 Ann(S), with u =
Pn

i=1 aivi. For j 2 {1, . . . , k}, v⇤j 2 S, so

0 = v⇤j (u) =
nX

i=1

aivj(vi) = aj .

So aj = 0 for all j 2 {1, . . . , k}. Thus u 2 span{vk+1, . . . , vn}.
Conversely, let u 2 span{vk+1, . . . , vn} with

u =

nX

i=k+1

aivi.

Then for v⇤j 2 S, 1  j  k,

v⇤j (u) =
nX

i=k+1

aiv
⇤
j (vi) = 0.

(f): Let {v⇤1 , . . . , v⇤k} be a basis for W ⇤
. Extend to a basis B = {v⇤1 , . . . , v⇤n} for V ⇤

. The

dual basis of B in V ⇤⇤ ⇠= V is a basis {v1, . . . , vn} for V . By part (e),

dimAnn(W ⇤
) = dim span{vk+1, . . . , vn} = n� k = dim(V )� dim(W ⇤

).

K
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Exercise 12.1.2. Let M be a module over the integral domain R.

(a) Suppose that M has rank n and that x1, x2, . . . , xn is any maximal set of linearly

independent elements of M . Let N = Rx1 + · · · + Rxn be the submodule generated

by x1, x2, . . . , xn. Prove that N is isomorphic to Rn
and that the quotient M/N is a

torsion R–module (equivalently, the elements x1, . . . , xn are linearly independent and

for any y 2 M there is a nonzero element r 2 R such that ry can be written as a linear

combination r1x2 + · · ·+ rnxn of the xi).

Proof. Define a map ' : N ! Rn
by r1x1 + · · · + rnxn 7! (r1, . . . , rn). Let s 2 R.

Then

'((r1x1 + · · ·+ rnxn) + s(t1x1 + · · ·+ tnxn)) = '((r1 + st1)x1 + · · ·+ (rn + stn)xn)

= (r1 + st1, . . . , rn + stn)

= (r1, . . . , rn) + s(t1, . . . , tn)

= '(r1x2 + · · ·+ rnxn)

+ s'(t1x1 + · · ·+ tnxn),

and so ' is an R� –module homomorphism. If

'(r1x1 + · · ·+ rnxn) = (0, . . . , 0),

then r1, . . . , rn = 0 and hence r1x1 + · · · + rnxn = 0. Thus ' is injective. If

(r1, . . . , rn) 2 Rn
then clearly '(r1x1 + · · · + rnxn) = (r1, . . . , rn). Therefore ' is

an isomorphism of R–modules.

Let y 2 M � {0M}. Then the set {x1, . . . , xn, y} is a linearly dependent set since

M has rank n. In particular, there exists r1, . . . , rn+1 2 R, not all zero so that

r1x1 + · · ·+ rnxn + rn+1y = 0.

If rn+1 = 0, then r1, . . . , rn = 0 since x1, . . . , xn are linearly independent. So rn+1 6= 0,

and we have

�rn+1y = r1x1 + . . . rnxn.

Thus �rn+1y 2 N and hence M/N is a torsion R–module. K

(b) Prove conversely that ifM contains a submoduleN that is free of rank n (i.e., N ⇠= Rn
)

such that the quotient M/N is a torsion R–module then M has rank n.

Proof. Let y1, . . . , yn+1 2 M and let {a1, . . . , an} be an R-basis for N . Since M/N is

torsion, there exists r1, . . . , rn+1 2 R � {0R} such that riyi + N = N , i.e., riyi 2 N
for all 1  i  n + 1. Since N is a free R–module, then any n + 1 elements in N are

linearly dependent. So there exists t1, . . . , tn+1 2 R, not all zero so that

t1(r1y1) + · · ·+ tn+1(rn+1yn+1) = 0.

Letting ↵i = tiri for all 1  i  n+ 1, we have

↵1y1 + · · ·+ ↵n+1yn+1 = 0,

i.e., we have a linear dependence relationship for the yi since ri 6= 0R and at least one

ti is nonzero. Thus M has rank n. K

4
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Exercise 12.1.3. Let R be an integral domain and let A and B be R–modules of ranks m
and n, respectively. Prove that the rank of A�B is m+ n.

Proof. By the previous exercise, A contains a submodule C (namely, the submodule gener-

ated by a maximal set of linearly independent elements in A) which is isomorphic to Rm
so

that A/C ⇠= A/Rm
is torsion. Similarly, B contains a submodule D so that B/D ⇠= B/Rn

is torsion. Notice that the map a + b 7! (a + C) + (b +D) gives an isomorphism between

A � B and A/C + B/D. The map is clearly surjective, and is a homomorphism since it

is simply the natural projection in each coordinate. Moreover, C + D is contained in the

kernel of this map; and if a+ b 7! 0, then a 2 C and b 2 D, i.e., a+ b 2 C+D. Thus we get

A�B/(C +D) ⇠= A/C +B/D.

In particular, A � B/(C + D) is torsion since both A/C and B/D are torsion. Moreover,

C+D ⇠= Rm
+Rn ⇠= Rm+n

is free of rank m+n. Therefore, A�B contains free submodule

C + D of rank m + n so that A � B/(C + D) is torsion. Hence by the previous exercise,

(part (b)), A�B has rank m+ n. K

Exercise 12.1.4. Let R be an integral domain, let M be an R–module and let N be a

submodule of M . Suppose M has rank n, N has rank r, and the quotient M/N has rank s.
Prove that n = r + s.

Proof. Let x1, . . . , xs be elements of M such that x1, . . . , xs is a maximal set of linearly

independent elements in M/N . Let xs+1, . . . , xs+r be a maximal set of linearly independent

elements in N . Suppose

t1x1 + · · ·+ ts+rxs+r = 0M (⇤)

for some t1, . . . , tr+s 2 R. if ⇡ : M ! M/N is the natural projection homomorphism, then

applying ⇡ to (⇤) gives

0M = ⇡(t1x1 + · · ·+ ts+rxs+r) = t1⇡(x1) + · · ·+ ts+r⇡(xs+r)

= t1⇡(x1) + · · ·+ ts⇡(xs)

= t1x1 + · · ·+ tsxs.

Then t1, . . . , ts are all 0 since x1, . . . , xs are linearly independent in M/N . Then (⇤) becomes

ts+1xs+1 + · · ·+ ts+rxs+r = 0M ,

which means ts+1, . . . , ts+r are all 0 since xs+1, . . . , xs+r are linearly independent. Hence

x1, . . . , xs+r are linearly independent in M .

Let y 2 M . Then either y 2 M or y 2 M � N . Consider the set {x1, . . . , xs+r, y}. If

this set is linearly independent, then if y 2 N , the elements xs+1, . . . , xs+r, y are linearly

independent in N , a contradiction. If y 2 M � N , then y 6= 0M and so the elements

x1, . . . , xs, y are linearly independent, a contradiction. Hence if we let P = Rx1+ . . . Rxr+s,

then M/P is a torsion R–module and P has rank r+ s. Then be exercise 12.1.2 (b), M has

rank r + s. K
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Exercise 12.1.11. Let R be a P.I.D., let a be a nonzero element of R and let M = R/(a).
For any prime p of R prove that

pk�1M/pkM ⇠=

(
R/(p) if k  n

0 if k > n,

where n is the power of p dividing a in R.

Proof. Suppose k  n and define a map

' : pk�1(R/(a)) ! R/(p) by pk�1r = pk�1r + (a) 7! r + (p).

Suppose pk�1r1 = pk�1r2. Then

pk�1(r1 � r2) 2 (a) ✓ (pn) ✓ (p) =) pk�1r1 + (p) = pk�1r2 + (p)

and so '
⇣
pk�1r1

⌘
= '

⇣
pk�1r2

⌘
and hence ' is well defined. It’s clear that ' is surjective.

Moreover, if '
⇣
pk�1r

⌘
= 0 + (p), then r 2 (p), and so r = ps for some s 2 R. Then

pk�1r = pk�1ps = pks 2 pk(R/(a)).

Conversely if pkt 2 pk(R/(a)), then

'
⇣
pkt

⌘
= '

⇣
pk�1pt

⌘
= pt+ (p) = 0 + (p),

and so ker' = pk(R/(a)). Then by the First Isomorphism Theorem,

pk�1(R/(a))/pk(R/(a)) ⇠= R/(p).

Now we want to show that pmM = pnM for all m � n. One inclusion is clear: If
pmm1 2 pmM , then

pmm1 = pnpm�nm1 2 pnM.

For the other inclusion, let pnx + (a) 2 pnM . Notice that we can write a = pnb with
p 6 | b. Then gcd(b, pm�n) = 1, and so there exists r, s 2 R for which rb+ spm�n = 1. Then
x = xrb+ xspm�n, and so

pnx+ (a) = pn(xrb+ xspm�n) + (a)

= (pnxrb+ xspm) + (a)

= (pnxrb+ (a)) + (xspm + (a))

= xspm + (a) 2 pmM.

Therefore, when k > n, k � 1 � n, and so pk�1M/pkM = pnM/pnM = 0.
K

1



Nicholas Camacho Abstract Algebra II — Homework 5A February 21, 2017

Exercise 12.1.12. Let R be a P.I.D. and let p be a prime in R.

(a) Let M be a finitely generated torsion R–module. Use the previous exercise to prove
that pk�1M/pkM ⇠= Fnk where F is the field R/(p) and nk is the number of elementary
divisors of M which are powers p↵ with ↵ � k.

Proof. By the Fundamental Theorem of Finitely Generated Modules over a P.I.D.,

M ⇠= R/(p↵1
1 )� · · ·�R/(p↵t

t )

where p↵1
1 , . . . , p↵t

t are positive powers of primes in R. Define Mi := R/(p↵i
i ) for all

1  i  t. Then

pk�1M/pkM ⇠= pk�1(M1 � · · ·�Mt)
.
pk(M1 � · · ·�Mt)

⇠= pk�1M1 � · · ·� pk�1Mt

.
pkM1 � · · ·� pkMt

By Exercise 12.1.7,

pk�1M/pkM ⇠=
⇣
pk�1M1

.
pkM1

⌘
� · · ·�

⇣
pk�1Mt

.
pkMt

⌘
.

Now, if there is an elementary divisor p↵i
i of M which is associate to p↵i and k  ↵i

then we get
pk�1M/pkM ⇠= R/(p) = F

by the previous exercise. On the other hand, if there is an elementary divisor p↵i
i of

M which is not associate to p↵i , or which has power ↵i < k, then

pk�1Mi/p
kMi

⇠= 0.

Let nk be the number of elementary divisors of M which are associate p↵ with ↵ � k.
Then

pk�1M/pkM ⇠= R/(p)� · · ·�R/(p) ⇠= Fnk .

K

2
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(b) Suppose M1 and M2 are isomorphic finitely generated torsion R–modules. Use (a) to
prove that, for every k � 0, M1 and M2 have the same number of elementary divisors
p↵ with ↵ � k. Prove that this implies M1 and M2 have the same set of elementary
divisors.

Proof. Let ' : M1 ! M2 be an isomorphism between M1 and M2. Define a map

 : pk�1M1 ! pk�1M2/p
kM2

by
pk�1m 7! pk�1'(m) = pk�1'(m) + pkM2.

Let r 2 R and m,n 2 M1. Then

 ((pk�1m) + r(pk�1n)) =  (pk�1(m+ rn))

= pk�1'(m+ rn)

= pk�1'(m) + rpk�1'(n)

=  (pk�1m) + r (pk�1n).

Hence  is an R–module homomorphism.

If pk�1m 2 pk�1M2/pkM2, then there exists n 2 M1 such that '(n) = m, and so

 (pk�1n) = pk�1'(n) = pk�1m,

and thus  is surjective.

If  (pk�1m) = 0, then pk�1'(m) 2 pkM2 and so pk�1'(m) = pk` for some ` 2 M2.
Let q 2 M1 be such that '(q) = `. Then

pk�1'(m)� pk` = 0 () pk�1('(m)� p`) = 0

() pk�1('(m)� p'(q)) = 0

() '(pk�1(m� pq)) = 0

() pk�1(m� pq) = 0

() pk�1m = pkq 2 pkM1.

Hence ker = pkM1. Therefore by the First Isomorphism Theorem,

pk�1M1/p
kM1

⇠= pk�1M2/p
kM2.

Let nk and number of elementary divisors of M1 which are powers p↵ with ↵ � k.
Similarly let n0

k be this number for M2. Then by part (a),

Fnk ⇠= pk�1M1/p
kM1

⇠= pk�1M2/p
kM2

⇠= Fn0
k ,

where F is the field R/(p). Then nk = n0
k.

Since, nk is number of elementary divisors of M1 and M2 which are associate to
p↵, for ↵ � k, and nk+1 is number of elementary divisors of M1 and M2 which are
associate to p↵, for ↵ � k+1, then nk � nk+1 is the number of elementary divisors of
M1 and M2 which are associate to pk. Since this is true for all k and for all primes
p 2 R, then M1 and M2 have the same elementary divisors.

K

3
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Exercise 12.1.16. Prove that M is finitely generated if and only if there is a surjective
R-homomorphism ' : Rn ! M for some integer n (this is true for any ring R).

Proof. ()) If M = {0} then ' : R0 = {0} ! M is surjective. If M 6= 0, then let
M = Rx1 + · · ·+Rxn and define

' : Rn ! M by (r1, . . . , rn) 7! r1x1 + . . . rnxn.

This map is certainly a surjective R–module homomorphism.
(() If ' : Rn ! M is a surjective R–module homomorphism, then let ei be the standard

basis elements of Rn. Define '(ei) = xi. If m 2 M there exists r =
Pn

i=1 ciei 2 Rn such
that

m = '(r) =
nX

i=1

ci'(ei) =
nX

i=1

cixi.

Hence the set {x1, . . . , xn} generates M .
K

4
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Exercise 12.1.15. Prove that if R is a Neotherian ring then Rn is a Neotherian R–module.

Proof. We proceed by induction on n. When n = 1, we’re done. Assume Rn�1 is Neotherian
for n > 1. Let {b1, . . . , bn} be a basis for Rn. Let M be a submodule of Rn. Define

A = {a1 | (a1, . . . , an) 2 M}.

Then A is nonempty since M is, and if x, y 2 A and r 2 R, then there exists elements of
M with x and y in their first coordinate: (x, . . . ), (y, . . . ) 2 M . Then (x, . . . ) + r(y, . . . ) =
(x+ry, . . . ), and so x+ry 2 A, and thus A is a submodule of R. Since R is Neotherian, then
A is finitely generated, say by {a1, . . . , ak}. For all 1  i  k let ai be the first coordinate
of mi 2 M .

Now let m 2 M and a be the first coordinate of m. Then a 2 A and so

a =
kX

i=1

riai

for some r1, . . . , rk 2 R. Then

n := m�
kX

i=1

rimi

has first coordinate zero. So, n 2 Rn�1 \ M where we are viewing Rn�1 as the set of
elements in Rn whose first coordinate is zero. Then if s, t 2 Rn�1 \M and v 2 Rn�1, then
clearly s+ vt 2 inRn�1 \M . So Rn�1 \M is a submodule of Rn�1, and by the induction
hypothesis Rn�1 is Neotherian and so Rn�1 \ M is finitely generated, say by {n1, . . . n`}.
Then we can write

n =
X̀

i=1

sini

for some si 2 R. So,

m = n+
kX

i=1

rimi =
X̀

i=1

sini +
kX

i=1

rimi,

and hence {m1, . . . ,mk, n1, . . . , n`} generate M . Since M was arbitrary, every submodule
of Rn is finitely generated and hence Rn is Neotherian. K

1
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Exercise 12.1.19. By the previous two exercises, we may perform elementary row and
column operations on a given relations matrix by choosing di↵erent generators for Rn and
ker�. If all relation matrices are the zero matrix then ker' = 0 and M ⇠= Rn. Otherwise
let a1 be the (nonzero) gcd of all the entries in a fixed initial relations matrix for M .

(a) Prove that by elementary row and column operations we may assume a1 occurs in a
relations matrix of the form

0

BBB@

a1 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 a2 . . . amn

1

CCCA

where a1 divides aij for i = 1, 2, . . . ,m and j = 1, 2, . . . , n.

(b) Prove that there is a relations matrix of the form

0

BBB@

a1 0 . . . 0
0 a22 . . . a2n
...

...
. . .

...
0 am2 . . . amn

1

CCCA

where a1 divides all the entries.

Proof. Staring with the matrix in part (a), since a1|a21, then there exists d21 such that
a21 = d21a1. So we perform the following row operation to put a 0 in the (2, 1)-entry
of the matrix: R2 � d21R2 ! R2. Continuing to do this for each row, we perform
the row operation Ri � di1R1 ! Ri for all i 2 {1, . . . ,m} and obtain all zeroes in the
first column (excluding the a1 in the (1,1)-entry). Similarly, for each j 2 {1, . . . , n},
there exists d1j such that a1j = d1ja1. Therefore, we perform the following column
operation for each j 2 {1, . . . , n}: Cj � d1jC1 ! Cj . By this we obtain the desired
matrix. K

(c) Let a2 be the gcd of all the entries excepts the element a1 in the relations matrix in
(b). Prove that there is a relations matrix of the form

0

BBBBB@

a1 0 0 . . . 0
0 a2 0 . . . 0
0 0 a33 . . . a3n
...

...
...

. . .
...

0 0 am3 . . . amn

1

CCCCCA

where a1 divides a2 and a2 divides all the other entries of the matrix.

Proof. Starting with the matrix obtained in part (b), we can apply part (b) again to
obtain zeros in the second row and second column, except at the (2,2)-position. K

2
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(d) Prove that there is a relations matrix of the form

✓
D 0
0 0

◆
where D is a diagonal

matrix with nonzero entries a1, a2, . . . , ak, k  n, satisfying

a1|a2| . . . |ak.

Conclude that
M ⇠= R/(a1)�R/(a2)� · · ·�R/(ak)�Rn�k.

Proof. The matrix D is of the form

D =

0

BBB@

a1 0 . . . 0
0 a2 . . . 0
...

...
. . .

...
0 0 . . . ak

1

CCCA
.

By using part (c), we can obtain such a matrix D by induction. Moreover, if ' : Rn !
M is a surjective R–module homomorphism we have M ⇠= Rn/ ker'. From part (d),
we have that

ker' = a1 � . . . ak � 0n�k.

Then by Exercise 12.1.7,

M ⇠= Rn/ ker' ⇠= R/(a1)� · · ·�R/(ak)�Rn�k/0n�k ⇠= R/(a1)� · · ·�R/(ak)�Rn�k

K
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Exercise 12.2.14. Determine all possible rational canonical forms for a linear transforma-

tion with characteristic polynomial x2
(x2

+ 1)
2
.

Proof. Let F be a field and T be a linear transformation over an F–module with �T =

x2
(x2

+1)
2
. First suppose x2

+1 is irreducible over F . Since mT (x) divides �T (x) and must

be divisible by all the factors appearing in �T (x)/mT (x), we get the following possibilities

for mT (x) and corresponding invariant factors:

(i) mT (x) = x2
(x2

+ 1). Invariant factors: x2
+ 1 | x2

(x2
+ 1)

2
= x4

+ x.

(ii) mT (x) = x2
(x2

+ 1)
2
. Invariant factors: x2

(x2
+ 1) = x6

+ 2x4
+ x2

.

(iii) mT (x) = x(x2
+ 1). Invariant factors: x(x2

+ 1) | x(x2
+ 1).

(iv) mT (x) = x(x2
+ 1)

2
. Invariant factors: x | x(x2

+ 1) = x5
+ 2x3

+ x.

Then we get the corresponding rational canonical forms:

(i)

0

BBBBBBBB@

0 �1

1 0

0 0 0 0

1 0 0 0

0 1 0 �1

0 0 1 0

1

CCCCCCCCA

(ii)

0

BBBBBBBB@

0 0 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 �1

0 0 1 0 0 0

0 0 0 1 0 �2

0 0 0 0 1 0

1

CCCCCCCCA

(iii)

0

BBBBBBBB@

0 0 0

1 0 �1

0 1 0

0 0 0

1 0 �1

0 1 0

1

CCCCCCCCA

(iv)

0

BBBBBBBB@

0

0 0 0 0 0

1 0 0 0 �1

0 1 0 0 0

0 0 1 0 �2

0 0 0 1 0

1

CCCCCCCCA

Now suppose x2
+ 1 is irreducible in F with x2

+ 1 = (x + ↵)(x + �). By expanding

and comparing coe�cients, we find that � = �↵, i.e., x2
+ 1 = (x + ↵)(x � ↵). Note that

↵2
= �1. This gives the following additional possibilities for mT (x):

(v) mT (x) = x2
(x+ ↵)2(x� ↵).

Invariant factors: x� ↵, x2
(x+ ↵)2(x� ↵) = x5

+ ↵x4
+ x3

+ ↵x2
.

(vi) mT (x) = x2
(x� ↵)2(x+ ↵).

Invariant factors: x+ ↵, x2
(x� ↵)2(x+ ↵) = x5 � ↵x4

+ x3 � ↵x2
.

(vii) mT (x) = x(x+ ↵)2(x� ↵).
Invariant factors: x(x� ↵), x(x+ ↵)2(x� ↵) = x4

+ ↵x3
+ x2

+ ↵x.

(viii) mT (x) = x(x� ↵)2(x+ ↵).
Invariant factors: x(x+ ↵), x(x� ↵)2(x+ ↵) = x4 � ↵x3

+ x2 � ↵x.

1
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Then we get the corresponding rational canonical forms:

(v)

0

BBBBBBBB@

↵

0 0 0 0 0

1 0 0 0 0

0 1 0 0 �↵

0 0 1 0 �1

0 0 0 1 �↵

1

CCCCCCCCA

(vi)

0

BBBBBBBB@

�↵

0 0 0 0 0

1 0 0 0 0

0 1 0 0 ↵

0 0 1 0 �1

0 0 0 1 ↵

1

CCCCCCCCA

(vii)

0

BBBBBBBB@

0 0

1 ↵

0 0 0 0

1 0 0 �↵

0 1 0 �1

0 0 1 �↵

1

CCCCCCCCA

(viii)

0

BBBBBBBB@

0 0

1 �↵

0 0 0 0

1 0 0 ↵

0 1 0 �1

0 0 1 ↵

1

CCCCCCCCA

K

Exercise 12.2.18. Let V be a finite dimensional vector space over Q and suppose T is a

nonsingular linear transformation of V such that T�1
= T 2

+ T . Prove that the dimension

of V is divisible by 3. If the dimension of V is precisely 3, prove that all such linear

transformations T are similar.

Proof. The given conditions give I = T 3
+T 2

, i.e., T 3
+T 2�I = 0 and somT (x) = x3

+x2�1,

which is irreducible by the root test. Since mT is irreducible, the invariant factors of T will

be mT itself, repeated say n times. Then �T = (mT )
n
.The dimension of V is equal to the

degree of �T , namely 3n. Hence the dimension of V divides 3.

If the dimension of V is 3, then and two linear transformations with minimal polynomial

x3
+ x2 � 1 will have the same invariant factors; namely, x3

+ x2 � 1. Hence they will have

the same rational canonical form and therefore be similar. K

2
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Exercise 12.3.16. Determine the Jordan canonical form for the matrix

0

BBB@

1 1 1 1

0 1 0 �1

0 0 1 1

0 0 0 1

1

CCCA
.

Proof. We start by finding the Smith Normal form for A. We obtain this by performing the

following row/column operations:

�R1 ! R1; C1 + xC2 ! C � 1; R2 � x(x � 1)R1 ! R2; C2 � C1 ! C2;

C3 � C1 ! C3; C4 � C1 ! C4; C4 � C3 ! C4; C2 $ C4;

R3 + xR2 ! R3; R4 � (x � 1)R2 ! R4; C3 + (x(x� 1))C2 ! C3; (⇤)
C4 + (x� 1)

2C2 ! C4; C4 � C3 ! C4; C3 + xC4 ! C3; C3 $ C4;

R3 + R4 ! R3; �C3 ! C3; �C4 ! C4.

We get

xI �A =

0

BBBBBB@

x� 1 �1 �1 �1

0 x� 1 0 1

0 0 x� 1 �1

0 0 0 x� 1

1

CCCCCCA

(⇤)��!

0

BBBBBB@

1 0 0 0

0 1 0 0

0 0 (x� 1)
2

0

0 0 0 (x� 1)
2

1

CCCCCCA
.

So the invariant factors of A are a1(x) = a2(x) = (x � 1)
2
. Now we find the matrix

P 0
by performing on the identity matrix the column operations corresponding to the row

operations used above. That is, we perform the following column operations on I:

(�1)C1 ! C1; C1 + (A(A� I))C2 ! C1; C2 �AC3 ! C3;

C2 + (A� I)C4 ! C2; C4 � C3 ! C4. (⇤⇤)

I =

0

BB@

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1

CCA
(⇤⇤)��!

0

BB@

0 0 0 0

0 0 0 0

0 0 1 �1

0 0 0 1

1

CCA = P 0.

Now we find the matrix Q so that Q�1AQ is the Jordan canonical form of A. Let Ci(P 0
)

denote the ith column of P 0
. The columns of Q will be given by:

Column 1: (A� I)2�1
(C3(P

0
)) = (1 0 0 0)

T , Column 2: (A� I)2�2
(C3(P

0
)) = C3(P

0
)

Column 3: (A� I)2�1
(C4(P

0
)) = (0 � 1 1 0)

T , Column 4: (A� I)2�2
(C4(P

0
)) = C4(P

0
).

Therefore we get

Q =

0

BB@

1 0 0 0

0 0 �1 0

0 1 1 �1

0 0 0 1

1

CCA and Q�1AQ =

0

BB@

1 1

0 1

1 1

0 1

1

CCA

K

3
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Exercise 12.3.21. Show that if A2
= A then A is similar to a diagonal matrix which only

has 0’s and 1’s along the diagonal.

Proof. The minimal polynomial for A divides x2 � x, and so the minimal polynomial will

have distinct roots 0 and/or 1. Hence A is similar to a diagonal matrix (since a matrix whose

minimal polynomial has distinct roots will be similar to a diagonal matrix). In particular,

the diagonal will consist of the eigenvalues of A; namely, 0 and/or 1. K

Exercise 12.3.31. Let N be an n⇥n matrix with coe�cients in the field F . The matrix N
is said to be nilpotent if some power of N is the zero matrix, i.e., Nk

= 0 for some k. Prove
that any nilpotent matrix is similar to a block diagonal matrix whose blocks are matrices

with 1’s along the first superdiagonal and 0’s elsewhere.

Proof. The minimal polynomial for N will divide the polynomial xk
, and hence the minimal

polynomial will have all roots equal to 0. So the Jordan Normal form for N will have blocks

with 1’s along the first superdiagonal and 0’s elsewhere. K
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The following exercises outline the proof of Theorem 21:

Theorem (Theorem 21). Let A be an n⇥n matrix over a field F . Using the three elementary
row and column operations, the n⇥ n matrix xI �A with entries from F [x] can be put into
the diagonal form, called the Smith Normal Form for A

0

BBBBBBBBBB@

1

. . .
1

a1(x)
a2(x)

. . .
am(x)

1

CCCCCCCCCCA

with monic nonzero elements a1(x), a2(x), . . . , am(x) of F [x] with degrees at least one and
satisfying a1(x) | a2(x) | . . . | am(x). The elements a1(x), a2(x), . . . , am(x) are the invari-
ant factors of A.

Let V be an n-dimensional vector space with basis v1, v2, . . . , vn and let T be the linear

transformation of V defined by the matrix A and this choice of basis, i.e., T is the linear

transformation with

T (vj) =
nX

i=1

aijvi, j = 1, 2, . . . , n

where A = (aij). Let F [x]n be the free module of rank n over F [x] and let ⇠1, ⇠2, . . . , ⇠n
denote a basis. Then we have a natural surjective F [x]–module homomorphism

' : F [x]n ! V

defined by mapping ⇠i to vi, i = 1, 2, . . . , n. As indicated in the exercises of the previous

section, the invariant factors for the F [x]–module V can be determined once we have de-

termined a set of generators and the corresponding relations matrix for Ker'. Since by

definition x acts on V by the linear transformation T , we have

x(vj) =
nX

i=1

aijvi, j = 1, 2, . . . , n.

Exercise 12.2.22. Show that the elements

⌫j = �a1j⇠i � · · ·� aj�1j⇠j�1 + (x� ajj)⇠j � aj+1j⇠j+1 � · · ·� anj⇠n

for j = 1, 2, . . . , n are elements of the kernel of '.

Proof.

'(⌫j) = �a1j'(⇠1)� · · ·� aj�1j'(⇠j�1) + (x� ajj)'(⇠j)� aj+1j'(⇠j+1)� · · ·� anj'(⇠n)

= �a1jv1 � · · ·� aj�1jvj�1 + xvj � ajjvj � aj+1jvj+1 � · · ·� anjvn

= �a1jv1 � · · ·� aj�1jvj�1 +

nX

i=1

aijvi � ajjvj � aj+1jvj+1 � · · ·� anjvn

= 0.

K

1
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Exercise 12.2.23.

(a) Show that x⇠j = ⌫j + fj where fj 2 F ⇠1 + · · · + F ⇠n is an element of the F -vector

space spanned by ⇠1, . . . , ⇠n.

Proof.

⌫j�x⇠j = �a1j⇠1� · · ·�aj�1j⇠j�1�ajj⇠j�aj+1j⇠j+1� · · ·�anj⇠n 2 F ⇠1+ · · ·+F ⇠n.

K

(b) Show that

F [x]⇠1 + · · ·+ F [x]⇠n = (F [x]⌫1 + · · ·+ F [x]⌫n) + (F ⇠1 + · · ·+ F ⇠n)

Proof. Notice that F [x]⇠1+ · · ·+F [x]⇠n = F [x]n. Let M := (F [x]⌫1+ · · ·+F [x]⌫n)+
(F ⇠1+ · · ·+F ⇠n). We will show that M is a submodule of F [x]n, and since M contains

a basis of F [x]n, it follows that M = F [x]n.

Clearly M 6= ?. Let p1, . . . , pn, q1, . . . , qn 2 F [x] and a1, . . . , an, b1, . . . , bn 2 F .

Then

 
nX

i=1

pi⌫i +
nX

i=1

ai⇠i

!
+

 
nX

i=1

qi⌫i +
nX

i=1

bi⇠i

!
=

nX

i=1

(pi + qi)⌫i +
nX

i=1

(ai + bi)⇠i

is an element of M . For c 2 F ,

c

 
nX

i=1

qi⌫i +
nX

i=1

bi⇠i

!
=

nX

i=1

(cqi)⌫i +
nX

i=1

(cbi)⇠i

is an element of M . By part (a), we get

x

 
nX

i=1

bi⇠i

!
=

nX

i=1

bi(x⇠i) =
nX

i=1

bi(⌫i + fi) =
nX

i=1

bi⌫i +
nX

i=1

bifi

where fi 2 F ⇠1 + · · ·+ F ⇠n for all 1  i  n. So

x

 
nX

i=1

qi⌫i +
nX

i=1

bi⇠i

!
= x

 
nX

i=1

qi⌫i

!
+ x

 
nX

i=1

bi⇠i

!

=

nX

i=1

xqi⌫i +

 
nX

i=1

bi⌫i +
nX

i=1

bifi

!

=

nX

i=1

(xqi + bi)⌫i +
nX

i=1

bifi

is an element of M . Therefore M is a submodule of F [x]n. K

2
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Exercise 12.2.24. Show that ⌫1, ⌫2, . . . , ⌫n generate the kernel of '.

Proof. By the previous exercise, an element in F [x]n can be written as the sum of an element

in the F [x]–module generated by v1, . . . , vn with an element of the form b1⇠1+. . . bn⇠n where

the bi are elements of F . Let

 =

nX

i=1

qi⌫i +
nX

i=1

bi⇠i

be an element of F [x]n. Recall from Exercise 12.2.22 that vj 2 Ker' for all 1  j  n.
Then

 2 Ker' () 0V = '() =
nX

i=1

q1'(⌫n) +
nX

i=1

bi'(⇠i) =
nX

i=1

bivi

() bi = 0F for all 1  i  n

()  =

nX

i=1

qi⌫i

and hence ⌫1, ⌫2, . . . , ⌫n generate the the kernel of '. K

3
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Exercise 12.2.25. Show that the generators ⌫1, ⌫2, . . . , ⌫n of Ker' have corresponding

relations matrix 0

BBB@

x� a11 �a21 . . . �an1
�a12 x� a22 . . . �an2
.
.
.

.

.

.
. . .

.

.

.

�a1n �a2n . . . x� ann

1

CCCA
= xI �At

where At
is the transpose of A. Conclude that Theorem 21 and the algorithm for determining

the invariant factors of A follows by Exercises 16 and 19 in the previous section (note that

the row and column operations necessary to diagonalize this relations matrix are the column

and row operations necessary to diagonalize the matrix in Theorem 21, which explains why

the invariant factor algorithm keeps track of the row operations used).

Proof. Based on the form of ⌫j given in Exercise 12.2.22, the jth row of the relations matrix

(which corresponds the generator ⌫j of Ker') is by definition

�
�a1j . . . �aj�1j x� ajj �aj+1j �anj

�
,

which gives the desired relations matrix. Now, by exercise 19 of the previous section, we

can diagonalize the relations matrix xI �At
by using row and column operations on to get

a matrix of the form ✓
D 0

0 0

◆
(⇤)

where D is a diagonal matrix with nonzero entries a1(x), a2(x), . . . , ak(x) and we have the

divisibility conditions a1(x)|a2(x)| . . . |ak(x). Additionally, we have that

(V, T ) ⇠= F [x]/(a1(x))� F [x]/(a2(x))� · · ·� F [x]/(ak(x))� F [x]n�k.

Since V is finite dimensional, then (V, T ) is torsion, i.e., k = n. Therefore the matrix in (⇤)
is just D.

Let ↵i be the leading coe�cient for ai(x) for all 1  i  n. In the case that ai(x) is

constant, let ↵i be the constant of ai(x). To obtain monic polynomials, we multiply row i
(or column i) of D by ↵�1

i for all 1  i  n. Due to the divisibility conditions, any constant

polynomials will appear in the beginning of the list a1(x), a2(x), . . . , an(x). So, we obtain a

matrix of the form desired in Theorem 21, which proves the theorem.

Now, the row and column operations used to obtain D are those which are described

in (a) and (b) of the first step of the Invariant Factor Decomposition Algorithm. Also,

multiplying the rows (or columns) of D by units as we did in the proof of Theorem 21

corresponds to part (c) of the algorithm.

Moreover, parts (a) and (b) of step 2 in the algorithm correspond directly to exercises

17 and 18 of section 12.1, which say that interchanging generators and multiplying one

generator by a multiple of another does not alter the relations matrix. Per exercises 17 and

18 of the previous section, multiplying the ith row by a unit corresponds to changing the

ith generator; so, part (c) of step 2 corresponds to this action. K

4
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Exercise 12.3.26. Determine the Jordan canonical form for the n ⇥ n matrix over Fp

whose entries are all equal to 1.

Proof. The minimal polynomial for such a matrix A will be mA(x) = x2�nx since no linear
polynomial will send A to zero, and

0

B@
1 · · · 1
...

. . .
...

1 · · · 1

1

CA

2

� n

0

B@
1 · · · 1
...

. . .
...

1 · · · 1

1

CA =

0

B@
n · · · n
...

. . .
...

n · · · n

1

CA�

0

B@
n · · · n
...

. . .
...

n · · · n

1

CA =

0

B@
0 · · · 0
...

. . .
...

0 · · · 0

1

CA .

Notice that x and x�n are the only divisors of x2�xn = x(x�n). Because of the divisibility
condition on the invariant factors, and since the product of the invariant factors must have
degree equal to n, we get the following possibilities for the invariant factors of A:

x, x, . . . , x| {z }
n�2 terms

, x2 � nx, or x� n, x� n, . . . , x� n| {z }
n�2 terms

, x2 � nx.

However, the latter set of invariant factors would yield a characteristic polynomial so
that the geometric multiplicity of the eigenvalue n, namely n, would exceed the algebraic
multiplicity, namely n � 1. This contradicts a basic linear algebra fact that the geometric
multiplicity is bounded above by the algebraic multiplicity. Hence the invariant factors of
A are those in the first list.

Now to determine the Jordan Canonical form, we must consider two cases: when p 6 | n
(hence n 6= 0Fp), and when p|n (hence n = 0Fp). If p 6 | n, the minimal polynomial has
distinct roots 0 and n, the Jordan canonical form will be a diagonal matrix, with the roots
of the invariant factors along the diagonal. If p|n, the minimal polynomial will not have
distinct roots, and hence have Jordan blocks of size 1 for the invariant factors, except for
the Jordan block corresponding to the minimal polynomial, which will be a block of size 2.
That is, with respect to these cases, the possible Jordan canonical form for A are

0

BBB@

0
. . .

0
n

1

CCCA
and

0

BBB@

0
. . .

0 1
0 0

1

CCCA
.

K

1
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Exercise 13.2.8. Let F be a field of characteristic 6= 2. let D1 and D2 be elements of F ,
neither of which is a square in F . Prove that F (

p
D1,

p
D2) is of degree 4 over F if D1D2

is not a square in F and is of degree 2 over F otherwise. When F (
p
D1,

p
D2) is of degree

4 over F the field is called a biquadratic extension of F .

Proof. We have the tower of fields F ✓ F
�p

D1

�
✓ F

�p
D1,

p
D2

�
. Hence

h
F
⇣p

D1,
p
D2

⌘
: F

i
=

h
F
⇣p

D1,
p
D2

⌘
: F

⇣p
D1

⌘i h
F
⇣p

D1

⌘
: F

i
.

Notice that
p
D1 is a root of x2 �D1 over F , and so mp

D1,F (x) divides 2. We show that

x2 �D1 is irreducible over F and hence is the minimal polynomial of
p
D1 over F so that⇥

F
�p

D1

�
: F

⇤
= 2. Suppose x2 � D1 = (x + ↵)(x + �) = x2 + (↵ + �)x + ↵� 2 F [x].

Comparing coe�cients, we get that ↵ = �� and �D1 = ↵� = ��2 =) D1 = �2, which is
a contradiction since D1 is not a square in F .

Next, we show that the degree of the minimal polynomial of
p
D2 over F

�p
D1

�
(and

hence
⇥
F
�p

D1,
p
D2

�
: F

�p
D1

�⇤
) equals 2 if D1D2 is not a square in F , and equals 1 if

D1D2 is a square in F . The desired result will follow.
Since

p
D2 is a root of x2 �D2 over F

�p
D1

�
, then degree of the minimal polynomial

of
p
D2 over F

�p
D1

�
is 2 or 1. Suppose

x2 �D1 = (x+ ↵)(x+ �) = x2 + (↵+ �)x+ ↵�

for ↵,� 2 F
�p

D1

�
. Comparing coe�cients, we get D2 = �2. By Corollary 7 (§13.1, D&

F), we have F
�p

D1

�
= {a+ b

p
D1 | a, b 2 F}. So � = a+ b

p
D1 for some a, b 2 F . Then

D2 = �2 = a2 + 2ab
p
D1 + b2D1 =) D2 � a2 � b2D1 = 2ab

p
D1.

Comparing the coe�cients of
p
D1, we have that 2ab = 0. Since F has characteristic 6= 2,

this reduces to ab = 0, and so a = 0 or b = 0. If b = 0, then D2 = a2, a contradiction since
D2 is not a square in F . So a = 0 and hence D2 = b2D1, which gives D1D2 = (bD1)2.

IfD1D2 is not a square in F , this gives a contradiction, showing that x2�D2 is irreducible
over F (

p
D1) and hence the minimal polynomial of

p
D2 over F (

p
D1). Otherwise, x2�D1

is reducible and hence the minimal polynomial of
p
D2 over F (

p
D1) has degree 1. K

Exercise 13.2.14. Prove that if [F (↵) : F ] is odd then F (↵) = F (↵2).

Proof. We prove the contrapositive statement. Suppose F (↵) 6= F (↵2). We have the
tower of fields F ✓ F (↵2) ( F (↵), and in particular ↵ 62 F (↵2). Notice that ↵ is a
root of the polynomial x2 � ↵2 2 F (↵2)[x]. Hence deg(m↵,F (↵2)(x)) divides 2. Moreover,
deg(m↵,F (↵2)(x)) 6= 1 since the only possible linear polynomial in F (↵2)[x] of which ↵ could
be a root would be x� ↵, but ↵ 62 F (↵2). So [F (↵) : F ] is even since

[F (↵) : F ] = [F (↵2) : F ][F (↵) : F (↵2)] = [F (↵2) : F ] · 2.

K

Exercise 13.2.16. Let K/F be an algebraic extension and let R be a ring contained in K
and containing F . Show that R is a subfield of K containing F .

Proof. Since 1K = 1F 2 F ✓ R, then R has a 1. Let ↵ 2 R � {0R}. Consider the subring
F [↵] ✓ R. Since ↵ is algebraic over F , then F [↵] = F (↵). Since F (↵) is a field, then
↵�1 2 F (↵) ✓ R. For any ↵,� 2 R, ↵� = �↵ 2 K . Since R is closed, ↵� = �↵ 2 R.
Hence R is a commutative division ring with 1, i.e., a field. K

2
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Exercise 12.3.30. Let � be an eigenvalue of the linear transformation T on the finite
dimensional vector space V over the field F . Let rk = dimF (T � �)kV be the rank of the
linear transformation (T � �)k on V . For any k � 1, prove that rk�1 � 2rk + rk+1 is the
number of Jordan blocks of T corresponding to � of size k [use Exercise 12 in Section 1].

Proof. By Exercise 12 in Section 1, using p(x) = x � � (which is irreducible in the UFD
F [x] and hence prime), R = F [x], and M = (V, T ) (which is a torsion F [x]–module since V
is finite dimensional), we have that

(x� �)k�1(V, T )/(x� �)k(V, T ) ⇠= (F [x]/(x� �))nk ,

where nk is the number of elementary divisors of (V, T ) which are of the form (x� �)↵ for
↵ � k. This gives

dimF (T � �)k�1V � dimF (T � �)kV = dimF (F [x]/(T � �))nk = nk,

i.e., rk�1 � rk = nk. Define #J�,k := the number of Jordan Blocks of T corresponding to
� of size k. Notice that #J�,k corresponds to the number of elementary divisors of (V, T )
which are of the form (x� �)k. Hence #J�,k = nk � nk+1, which gives

#J�,k = nk � nk+1 = rk�1 � rk � (rk � rk+1) = rk�1 � 2rk + rk+1.

K

Exercise 13.2.9. Let F be a field of characteristic 6= 2. Let a, b be elements of the field

F with b not a square in F . Prove that a necessary and su�cient condition for
p
a+

p
b =p

m +
p
n for some m and n in F is that a2 � b is a square in F . Use this to determine

when the field Q(
p
a+

p
b), (a, b 2 Q) is biquadratic over Q.

Proof. ()) First suppose
p
a+

p
b =

p
m +

p
n for some m and n in F . Squaring both

sides we obtain a+
p
b = m+2

p
mn+n. We claim that a = m+n and

p
b = 2

p
mn. Once

this is verified, it follows that a2 � b = (m� n)2 and hence is a square in F .
By assumption,

p
b 62 F and hence a +

p
b 62 F . Note that

p
mn 62 F since otherwise,

a+
p
b = m+ 2

p
mn+ n is an element of F , a contradiction.

Certainly m + n 6=
p
b. Suppose

p
b = c + 2

p
mn for c equal to m,n or m + n. This

implies b = c2 + 4c
p
mn + 4mn 62 F , since

p
mn 62 F , which is a contradiction. The claim

now follows.
(() Now suppose a2 � b := d2 is a square in F . Then m := a+d

2 and n := a�d
2 2 F give

m+ 2
p
mn+ n = a+

p
b, i.e.,

p
a+

p
b =

p
m+

p
n.

Now, we claim that Q(
p
m +

p
n) = Q(

p
m,

p
n). The inclusion “ ✓ ” is clear: If

f(x, y) = x + y 2 Q[x, y], then f(
p
m,

p
n) =

p
m +

p
n 2 Q(

p
m,

p
n). For the other

inclusion, let

g(x) = x3 � x(3m+ n)(2n� 2m)�1 and h(x) = x3 � x(m+ 3n)(2m� 2n)�1

be elements of Q[x]. Then
p
m = g(

p
m+

p
n) and

p
n = h(

p
m+

p
n) are in Q(

p
m+

p
n),

which gives “ ◆ ”.

Now, a2 � b is a square in F if and only if Q(
p
a+

p
b) = Q(

p
m+

p
n) = Q(

p
m,

p
n).

By Exercise 13.2.8, Q(
p
m,

p
n) is biquadratic if and only if m and n are not squares in Q

and

mn =
a2 � d2

4
=

b

4
is not a square in F . Since b is not a square in F , neither is b/4. K

1
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Exercise 13.2.15. A field F is said to be formally real if �1 is not expressible as a sum
of squares in F . Let F be a formally real field, let f(x) 2 F [x] be an irreducible polynomial
of odd degree and let ↵ be a root of f(x). Prove that F (↵) is also formally real. [Pick ↵ a
counterexample of minimal degree. Show that �1 + f(x)g(x) = (p1(x))2 + · · · + (pm(x))2

for some pi(x), g(x) 2 F [x] where g(x) has odd degree < deg f . Show that some root � of
g has odd degree over F and F (�) is not formally real, violating the minimality of ↵.

Proof. Pick a root ↵ of f(x) of minimal degree so that F (↵) is not formally real. Then
F (↵) ⇠= F [x]/(f(x)). Since F (↵) is not formally real, we can write �1

Pm
i=1 �

2
i for some

�i 2 F (↵). Let pi(x) be the image of �i under the above isomorphism where pi(x) =
pi(x) + (f(x)), and the pi(x)’s have strictly smaller degree than f(x). Then

�1 =
mX

i=1

pi(x)
2
, (⇤)

i.e., �1�
P

pi(x)
2
= f(x)g(x) for some g(x) in F [x]. So,

�1 + f(x)g(x) =
mX

i=1

pi(x)
2.

Since the RHS is a polynomial of even degree then f(x)g(x) has even degree; and since f(x)
has odd degree, so does g(x). Moreover, the RHS has degree less than 2 deg f(x), which
gives that the degree of g(x) is less than that of f(x).

Now since the degree of g(x) is the sum of degrees of its irreducible factors, there is an
irreducible factor h(x) of g(x) which has odd degree. If � is a root of h(x), then F (�) ⇠=
F [x]/(h(x)), and the equation in (⇤) is still true in F [x]/(h(x)). Hence F (�) is not formally
real and � has degree equal to deg h(x), which is strictly less than deg f(x) which is the
degree of ↵. This is a contradiction to the minimality of the degree of ↵. K

Exercise 13.2.17. Let f(x) be an irreducible polynomial of degree n over a field F . Let
g(x) be any polynomial if F [x]. Prove that every irreducible factor of the composite poly-
nomial f(g(x)) has degree divisible by n.

Proof. Let p(x) 2 F [x] be an irreducible factor of f(g(x)) of degree m. If ↵ is a root of
p(x), then f(g(↵)) = 0, i.e., g(↵) is a root of f(x). Since f is irreducible, the degree of g(↵)
over F is n; that is, [F (g(↵)) : F ] = n.

Now, since F ✓ F (g(↵)), then p(x) 2 F (g(↵))[x]. So ↵ is algebraic over F (g(↵)), and
hence F (g(↵),↵) = F (↵) is a finite extension over F , say with index [F (↵) : F ] = `. Then
we have the tower of fields F ✓ F (g(↵)) ✓ F (↵), which gives

m = [F (↵) : F ] = [F (g(↵)) : F ][F (↵) : F (g(↵))] = n · `

and hence m divides n. K

2
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Exercise 13.2.19. Let K be an extension of F of degree n.

(a) For any ↵ 2 K prove that ↵ acting by left multiplication on K is an F -linear trans-

formation of K.

(b) Prove that K is isomorphic to a subfield of the ring n ⇥ n matrices over F , so the

ring of n⇥ n matrices over F contains an isomorphic copy of every extension of F of

degree  n.

Proof. For ↵ 2 K, define �↵ : K ! K by �↵(k) = ↵k. Then for k, ` 2 K and � 2 F ,

�↵(k + �`) = ↵(k + �`) = ↵k + ↵�` = ↵k + �↵` = �↵(k) + ��↵(`),

and hence �↵ is an F -linear transformation of K. For ↵,� 2 K we have the following

properties: �↵+� = �↵ + �� and �↵� = �↵ � �� . Now, pick a basis E for K over F and

define � : K ! Matn⇥n(F ) by ↵ 7! ME
E (�↵). Then for ↵,� 2 K,

ME
E (�↵+�) = ME

E (�↵+��) = ME
E (�↵)+ME

E (��), ME
E (�↵�) = ME

E (�↵���) = ME
E (�↵)M

E
E (��).

So � is a field homomorphism and �(K) is a subfield of Matn⇥n(F ). Then

(aij) := ME
E (�↵) = ME

E (��) =: (bij) =) aij = bij for all i, j 2 {1, . . . , n},

and since linear transformations are determined by their action on basis elements, �↵ = �� ,

i.e., ↵ = �. So � is injective and hence K ⇠= �(K) as fields. K

Exercise 13.2.21. Let K = Q(
p
D) for some squarefree integer D. Let ↵ = a + b

p
D be

an element of K. Use the basis 1,
p
D for K as a vector space over Q and show that the

matrix of the linear transformation “multiplication by ↵ ” on K considered in the previous

exercises has the matrix
�
a bD
b a

�
. Prove directly that the map a + b

p
D 7!

�
a bD
b a

�
is an

isomorphism of the field K with a subfield of the ring Mat2⇥2(Q).

Proof. Let �↵ be left multiplication by ↵ = a + b
p
D. Let E = {1,

p
D} be a basis for K.

Then �↵(1) = ↵(1) = a+ b
p
D and �↵(

p
D) = ↵(

p
D) = bD + a

p
D gives

ME
E (�↵) =

✓
a bD
b a

◆
.

The mapa+ b
p
D 7!

�
a bD
b a

�
is a homomorphism since

(a+ b
p
D) + (a0 + b0

p
D) = a+ a0 + (b+ b0)

p
D 7!

✓
a+ a0 bD + b0D
b+ b0 a0 + b0

◆

=

✓
a bD
b a

◆
+

✓
a0 b0D
b0 a0

◆

and

(a+ b
p
D)(a0 + b0

p
D) = (aa0 + bb0D + (ab0 + a0b)

p
D) 7!

✓
aa0 + bb0D ab0D + a0bD
a0b+ ab0 bb0D + aa0

◆

=

✓
a bD
b a

◆✓
a0 b0D
b0 a0

◆

The image of this map is therefore a subfield of Mat2⇥2(Q). If

✓
a bD
b a

◆
=

✓
a0 b0D
b0 a0

◆
then

a = a0, b = b0 and hence a+ b
p
D = a0 + b0

p
D, i.e., the map is injective. This shows K is

isomorphic to a subfield of Mat2⇥2(Q). K

1
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Exercise 13.4.2. Determine the splitting field and its degree over Q for x4
+ 2.

Proof. The roots of x4
+ 2 are:

(�2)
1/4, (�2)

1/4⇠, (�2)
1/4⇠2, (�2)

1/4⇠3

where ⇠ = e2⇡i/4 = e⇡i/2 = i. Hence our list becomes

(�2)
1/4, (�2)

1/4i,�(�2)
1/4, (�2)

1/4
(�i).

So our splitting field is K = Q((�2)
1/4, (�2)

1/4i,�(�2)
1/4, (�2)

1/4
(�i)). But

(�2)
1/4i,�(�2)

1/4, (�2)
1/4

(�i)

are all elements of Q((�2)
1/4, i), and hence K = Q((�2)

1/4, i). Moreover, since (�2)
1/4

is

a root of x4
+ 2, which is irreducible over Q, and i is a root of x2

+ 1, which is irreducible

over Q((�2)
1/4

), the degree of K over Q is

[K : Q] = [K : Q((�2)
1/4

][Q((�2)
1/4

) : Q] = 2 · 4 = 8.

K

Exercise 13.4.3. Determine the splitting field and its degree over Q for x4
+ x2

+ 1.

Proof. Using the quadratic equation to find x2
, we find that

x2
=

�1±
p
�3

2
=) x = ± (�2± 2

p
3i)1/2

2
= ± (4ei✓)1/2

2
= ±ei✓/2,

where ✓ = 2⇡/3 and 4⇡/3. So we have the splitting field

K = Q(±ei⇡/3,±ei2⇡/3) = Q(ei⇡/3, ei2⇡/6) = Q(ei⇡/3),

where the last equality follows from the fact that (ei⇡/3)2 = ei2⇡/3. Since ei⇡/3 is a a root

of x2 � x+ 1, which is irreducible over Q, we have [K : Q] = 2. K

2
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Exercise 13.2.18. Let k be a field and let k(x) be the field of rational functions in x

with coe�cients from k. Let t 2 k(x) be the rational function P (x)
Q(x) with relatively prime

polynomials P (x), Q(x) 2 k[x] with Q(x) 6= 0. Then k(x) is an extension of k(t) and to
compute its degree it is necessary to compute the minimal polynomial with coe�cients in
k(t) satisfied by x.

(a) Show that the polynomial P (X)� tQ(X) in the variable X and coe�cients in k(t) is
irreducible over k(t) and has x as a root.

Proof. Let f(X) = P (X)� tQ(X). Then f(x) = P (x)� P (x)
Q(x) (Q(x)) = 0 and hence x

is a root of f(X). Consider the ring k[t] consisting of all polynomials in the variable
t with coe�cients in k. The fraction field of k[t] consists of all rational expressions of
polynomials in the variable t with coe�cients in k . But this is precisely the definition
for k(t), i.e., k(t) is the fraction field of k[t].

Now since P (x) and Q(x) are rational functions with coe�cients in k, then P (x)�
tQ(x) is a rational function in the variable t with coe�cients in k, i.e., f(X) =
P (X) � tQ(X) 2 (k(t))[X]. Since P and Q are relatively prime, then by Gauss’
Lemma, f(X) is irreducible in (k[t])[X] if and only if it is irreducible in (k(t))[X]. But
notice that (k[t])[X] = (k[X])[t], and hence we need to show that f(X) is irreducible
in (k[X])[t]. But as a polynomial in t with coe�cients in k[X], f(X) is linear, and
hence irreducible. K

(b) Show that the degree of P (X)� tQ(X) as a polynomial in X with coe�cients in k(t)
is the maximum of the degrees of P (x) and Q(x).

Proof. Suppose P (X) = anXn + · · ·+ a0 and Q(X) = bmXm + · · ·+ b0 for ai, bj 2 k
where an, bm 6= 0, then P (X)� tQ(X) will be

anX
n + · · ·+ a0 � tbmXm � · · ·� tb0

If m 6= n, then the result is clear. If m = n, then we have leading coe�cient an � tbn.
We just need to make sure an � tbn 6= 0 and the result follows. Suppose an � tbn = 0,
then an = tbn. If bn = 0, then an = 0, a contradiction. Otherwise, t = an/bm, but
this means t 2 k, a contradiction. K

(c) Show that [k(x) : k(t)] =
h
k(x) : k

⇣
P (x)
Q(x)

⌘i
= max(degP (x), deg(Q(x)).

Proof. This follows immediately from parts (a) and (b), since the degree of the exten-
sion k(x) over k(t) is the degree of the minimal polynomial of x over k(t). K

1
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Exercise 13.2.20. Show that if the matrix of the linear transformation “multiplication by
↵” considered in the previous exercises is A then ↵ is a root of �A. This gives an e↵ective
procedure for determining an equation of degree n satisfied by and element ↵ in an extension
of F of degree n. Use this procedure to obtain the monic polynomial of degree 3 satisfied
by 3

p
2 and by 1 + 3

p
2 + 3

p
4.

Proof. If �↵ is the linear transformation “multiplication by ↵”, notice that �↵ � ↵1K ⌘ 0.
Hence for some basis E of K over F , ME

E (�↵) = A

det(A� ↵I) = det
�
ME

E (�↵)�ME
E (↵1K)

�
= det

�
ME

E (�↵ � ↵1K)
�
= det(0) = 0,

and hence �A(↵) = 0.

The basis {1, 3
p
2, 3

p
4} generates Q( 3

p
2). Multiplication by ↵ = 3

p
2 is given by

1 7! 3
p
2, 3

p
2 7! 3

p
4, 3

p
4 7! 2.

So, the matrix corresponding to this linear transformation is

 
0 0 2
1 0 0
0 1 0

!
, which has char-

acteristic polynomial x3 � 2.

The basis {1, 3
p
2, 3

p
4} generates Q(1 + 3

p
2 + 3

p
4). Multiplication by ↵ = 1 + 3

p
2 + 3

p
4

is given by

1 7! 1 + 3
p
2 + 3

p
4, 3

p
2 7! 2 + 3

p
2 + 3

p
4, 3

p
4 7! 2 + 2 3

p
2 + 3

p
4

So, the matrix corresponding to this linear transformation is

 
1 2 2
1 1 2
1 1 1

!
, which has char-

acteristic polynomial x3 � 3x2 � 3x� 1.
K

2
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Exercise 13.4.6. Let K1 and K2 be finite extensions of F contained in the field K, and
assume both are splitting fields over F .

(a) Prove that their composite K1K2 is a splitting field over F .

Proof. The assumption that K1 and K2 are splitting fields means that each of them is
a splitting field of a family of polynomials in F [x] of degrees � 1. Since we assume K1

and K2 to be finite over F , we can take these families to be finite. Hence, by taking
the product of the polynomials in each of these families we get that K1 (respectively
K2) is the splitting field of a single polynomial f1(x) (respectively f2(x)) in F [x] of
degree � 1.

Now, since K1K2 contains both K1 and K2, it contains all the roots of f1(x) and
f2(x), and so there exists a splitting field L ✓ K1K2 of the family of polynomials
{f1(x), f2(x)}. Since L is the contains the roots of f1(x) (respectively f2(x)), then
K1 ✓ L (respectively K1 ✓ L). Since K1K2 is the smallest subfield of K containing
both K1 and K2 then K1K2 ✓ L, and hence K1K2 = L. K

(b) Prove that K1 \K2 is a splitting field over F .

Proof. Let p(x) 2 F [x] be an irreducible polynomial which has a root in K1 \ K2.
Then p(x) splits into linear factors in both K1[x] and K2[x], and hence K1 and K2

are splitting fields of p(x). Now since K1 and K2 are contained in K, then the
factorizations of p(x) in K1[x] and K2[x] are contained in K[x]. But since K[x] is
a UFD, these factorizations of p(x) di↵er by at most a unit in K. Hence the linear
factors of p(x) in K1[x] and K2[x] are the same, i.e., p(x) splits into linear factors in
(K1 \K2)[x], and hence K1 \K2 is a splitting field over F . K

3
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Exercise 1. Let a be a real number such that a4 = 7. Let Q be the field of rational
numbers, and let i be a square root of �1. Show that Q(ia2) is normal over Q. Show that
Q(a+ ia) is normal over Q(ia2). Show that Q(a+ ia) is not normal over Q.

Proof. We show that Q(ia2) is a splitting field over Q and hence normal over Q. Consider
the polynomial x2+7 2 Q[x]. The roots of this polynomial are ±ia2 and hence has splitting
field Q(±ia2) = Q(ia2).

Similarly, we show that Q(a + ia) is a splitting field over Q(ia2). The polynomial
x2 � 2ia2 = (x � (a + ia))(x + (a + ia)) 2 Q(ia2)[x] has roots ±(a + ia), and hence has
splitting field Q(ia2)(±(a + ia)) = Q(ia2, a + ia). Now since ia2 = (1/2)(a + ai)2, then
Q(ia2, a+ ia) = Q(a+ ia).

Notice that f(x) := x4 + 28 is irreducible over Q by Eisenstein’s Criterion. Moreover
±a± ia are the roots of this polynomial. However, a� ia 62 Q(a+ ia). To see this, suppose
otherwise. Since f(x) is the minimal polynomial then a� ia will have the form

a� ia = ↵+ �(a+ ia) + �(a+ ia)2 + �(a+ ia)3

= ↵+ �(a+ ia) + �(2ia2) + �(2ia3 � 2a3).

Comparing the coe�cients of i, we get

a = �a+ 2�a2 + 2�a3.

However, this would give that a is a root of the polynomial g(x) := 2�x2 + 2�x +
(� � 1) 2 Q[x], which means g(x) is divisible by f(x). But this cannot happen since
deg g(x) < deg f(x). So Q(a + ia) contains the root a + ia of the irreducible polynomial
f(x) 2 Q[x] but not all of its roots. Hence Q(a+ ia) is not a normal extension of Q. K

Exercise 13.5.3. Prove that d divides n if and only if xd � 1 divides xn � 1. [Note that if
n = qd+ r then xn � 1 = (xqd+r � xr) + (xr � 1).]

Proof. We have the following formula (which I found online because I could not, for the life
of me, figure out this problem):

xdq � 1 = (xd � 1)

 
q�1X

k=1

�
xd
�k
!

(¡)

()) Supposing d divides n, we have n = dq for some q. So xn� 1 = xdq � 1 and the desired
result follows from (¡).

(() Suppose now that xd� 1 divides xn� 1. By the division algorithm, there exists q, r
with 0  r < d so that n = qd+ r. Then using the hint and applying (¡) to , we have

xn � 1 = (xdqxr � xr) + (xr � 1) = (xr)(xdq � 1) + (xr � 1)

= (xr)(xd � 1)

 
q�1X

k=1

�
xd
�k
!

+ (xr � 1).

Now xd � 1 divides the first term above. However, if 0 < r < d, then xd � 1 does not divide
the second term since the degree of the degree of xd � 1 is greater than xr � 1. Hence r = 0
and so n = qd, i.e., d divides n. K

1
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Exercise 13.5.4. Let a > 1 be an integer. Prove for any positive integers n, d that d
divides n if and only if ad � 1 divides an � 1. Conclude in particular that Fpd ✓ Fpn if and
only if d divides n.

Proof. ()) This direction follows immediately from the previous problem.
(() This follows almost immediately from the previous problem, except now in the

last step we argue that if 0 < r < d, then ad � 1 does not divide the second term since
ad � 1 > ar � 1. Hence r = 0 and so n = qd, i.e., d divides n.

Note that |(Fpn)⇥| = pn � 1 and so if ↵ 2 Fpn , then ↵pn�1 = 1. Now, if d divides n then

pd � 1 divides pn � 1, say pn � 1 = (pd � 1)q. So if � 2 Fpd then �pn�1 = (�pd�1)q = 1, and
so � 2 Fpn .

Conversely, suppose Fpd ✓ Fpn . Now, xpk�x is separable since its derivative is pkxpk�1�
1 = �1. So, since every root of xpd � x is also root of xpn � x, then xpd � x divides xpn � x.
Then

xpd

� x
���xpn

� x =) xpd�1 � 1
���xpn�1 � 1

Exer.5.3
=) pd � 1

���pn � 1
Exer.5.4
=) d|n.

K

2



Nicholas Camacho Abstract Algebra II — Homework 9A April 4, 2017

Exercise 13.5.5. For any prime p and any nonzero a 2 Fp prove that xp�x+a is irreducible
and separable over Fp. [For the irreducibility: One approach — prove first that if ↵ is a
root then ↵ + 1 is also a root. Another approach — suppose it’s reducible and compute
derivatives.]

Proof. If ↵ is a root of f(x) := xp�x+a, then (↵+1)p�(↵+1)+a = ↵p+1�↵�1+a = 0,
and so ↵+ 1 is also root of f(x). Continuing inductively

↵+ 1 + 1 + · · ·+ 1| {z }
k summands

is a root of f(x) for all 0  k  p�1. Hence {↵+�}�2Fp are the p distinct roots of f(x). So
Fp(↵) is a splitting field for f(x), and in particular f(x) is separable since it has p distinct
roots in Fp(↵). Now if ↵ 2 Fp then 0 = ↵+ (�↵) is a root of f(x), which is a contradiction
since a 6= 0Fp . So ↵ 62 Fp and so none of the roots of f(x) lie in Fp.

Before moving on to show that f(x) is irreducible, we prove the following by induction:
For n � 2, the product (x � a1)(x � a2) . . . (x � an) will have �

Pn
i=1 ai as the coe�cient

on the xn�1 term. We have

(x� a1)(x� a2) = x2 � (a1 + a2)x+ a1a2.

Now suppose for induction that (x� a1)(x� a2) . . . (x� an�1) has coe�cient �
Pn�1

i=1 ai on
the xn�2. Then

(x� a1) . . . (x� an�1)(x� an) =

 
xn�1 �

 
n�1X

i=1

ai

!
xn�2 + . . .

!
(x� an)

=

 
xn �

 
nX

i=1

ai

!
xn�1 + . . .

!

+

 
�anx

n�1 �
 
an +

n�1X

i=1

ai

!
xn�2 + . . .

!

=

 
xn �

 
nX

i=1

ai

!
xn + . . .

!
.

This completes the induction. Now, any proper factor of f(x) will be of the form

Y

�i2S,
S(Fp

(x� ↵+ �i)

in Fp(↵)[x]. Suppose |S| = k. Then

Y

�i2S,
S(Fp

(x� ↵+ �i) = xk �
 

kX

i=1

(↵+ �i)

!
xk�1 + · · · = xk �

 
kX

i=1

�i + k↵

!
xk�1 + . . .

However, k↵ 62 Fp, and so no proper factor of f(x) is in Fp[x]. Hence f(x) is irreducible
over Fp. K

3
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Exercise 1. Let F be a field, let f(x) 2 F [x] be of degree n � 1, and let K be a splitting

field of f(x) over F . Prove that [K : F ] divides n!. Hint: Use induction on n and distinguish

between the cases when f(x) is irreducible, resp. reducible, in F [x]. It may be helpful to

remember that if n1 + n2 = n for positive integers n1 and n2, then the product n1! · n2!

divides n!.

Proof. When n = 1, f(x) is irreducible and K = F , and so certainly 1 = [K : F ] divides 1!.

Suppose for induction that for g(x) 2 F [x] of degree less than n, if L is a splitting field

of g(x) over F, then [L : F ] divides (deg g(x))!. Let f(x) 2 F [x] be of degree n, and let K
be its splitting field over F . First suppose that f(x) is reducible. Let p(x) an irreducible

factor of f(x) and let L be the splitting field of p(x) over F . Let K be the splitting field of

f(x)/p(x) over L. Then K is a splitting field for f(x) over F . By the induction hypothesis,

[L : F ] divides (deg p(x))! and [K : L] divides (deg f(x)/p(x))!.

So,

[K : F ] = [L : F ][K : L] divides (deg p(x))!(deg f(x)/p(x))!. (¡)

By the hint, deg f(x)/p(x) + deg p(x) = deg f(x) implies that (deg f(x)/p(x))!(deg p(x))!
divides (deg f(x))!. So by (¡), [K : F ] divides (deg f(x))!.

Now suppose f(x) is irreducible, and let ↵ be a root of f(x) in K. Let L = F (↵). Then
[F (↵) : F ] = deg f(x) = n. By the induction hypothesis, [K : L] divides deg(f(x)/x�↵)! =
(n� 1)!. Hence [K : F ] = [K : F (↵)][F (↵) : F ] divides (n� 1)! · n = n! = (deg f(x))!. K

Exercise 13.5.7. Suppose K is a field of characteristic p which is not a perfect field:

K 6= Kp
. Prove there exists irreducible inseparable polynomials over K. Conclude that

there exists inseparable finite extensions of K.

Proof. Since K 6= Kp
and Kp ( K, let a 2 K \Kp

. Then define f(x) := xp � a, and let

↵ be a root of f(x). This implies ↵p
= a. Hence f(x) = xp � ↵p

= (x � ↵)p and so f(x)
is inseparable since it has a repeated root. Now, let g(x) be an irreducible factor of f(x).
Then g(x) will have the form g(x) = (x� ↵)k for some 1  k  p. If k = 1, then ↵ 2 K, a

contradiction. So, 1 < k  p. Now since

g(x) = xk � k↵xk�1
+ · · ·+ (�↵)k,

we have that �k↵ 2 K. If k 6= p, then k = 1+1+· · ·+1 2 K, and so ↵ 2 K, a contradiction.

Hence k = p and so f(x) = g(x). K

Exercise 13.5.11. Suppose K[x] is a polynomial ring over the field K and F is a subfield

of K. If F is a perfect and f(x) 2 F [x] has no repeated irreducible factors in F [x], prove
that f(x) has no repeated irreducible factors in K[x].

Proof. Without loss of generality, suppose f(x) is monic. Then let f(x) = f1(x)f2(x) · · · fn(x)
for distinct, monic, and irreducible polynomials {fi}. We show that f(x) has no repeated

roots, and hence cannot have a repeated irreducible factor in K[x]. (If f(x) has a repeated

irreducible factor in K[x], then f(x) has a repeated root.)

Since F is perfect, each fi is separable and so each fi has no repeated roots. Therefore,

f(x) has a repeated root if and only if two of its irreduble factors share a root. Suppose

↵ is a root of fi and fj for i 6= j. Then fi and fj are minimal polynomials for ↵, and by

uniqueness of the minimal polynomial, fi = fj , a contradiction. K

1
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Exercise 14.1.10. Let K be an extension of the field F . Let ' : K ! K 0
be an isomor-

phism of K with a field K 0
which maps F to the subfield F 0

of K 0
. Prove that the map

� 7! '�'�1
defines a group isomorphism Aut(K/F )

⇠�! Aut(K 0/F 0
).

Proof. Note that for � 2 Aut(K/F ), '(�('�1
(F 0

))) = '(�(F )) = '(F ) = F 0
and so

'�' 22 Aut(K 0/F 0
). Define a map � : Aut(K/F ) ! Aut(K 0/F 0

) by � 7! '�'�1
. If

�, � 2 Aut(K/F ), then

�(��) = '��'�1
= ('�'�1

)('�'�1
) = �(�)�(�),

and so � is a group homomorphism. If '�'�1
= '�'�1

then � = � and so � is injective. Fi-

nally, if ⌧ 2 Aut(K 0/F 0
) then '�1⌧' 2 Aut(K/F ) since '�1⌧' : K ! K is an isomorphism

(as the composition of isomorphisms) and '�1
(⌧('(F ))) = '�1

(⌧(F 0
)) = '�1

(F 0
) = F .

Then

�('�1⌧') = ''�1⌧''�1
= ⌧,

and so � is surjective. K

Exercise 14.2.14. Show that Q(

p
2 +

p
2) is a cyclic quartic field i.e. is a Galois extension

of degree 4 with cyclic Galois group.

Proof. Let K = Q(

p
2 +

p
2). Notice that f(x) = x4 � 4x+ 2 is an irreducible polynomial

over Q by Eisenstein’s Criterion. The roots of f(x) are ±
p
2 +

p
2 and ±

p
2�

p
2. Hence

f(x) is separable since it has no repeated roots and Q
⇣p

2 +
p
2,
p

2�
p
2

⌘
is a splitting

field of f(x) over Q. Now,
p
2 =

⇣p
2 +

p
2

⌘2
� 2 2 K, which gives

q
2�

p
2 =

p
2�

p
2

p
2 +

p
2p

2 +
p
2

=

p
2p

2 +
p
2

2 K.

So K = Q
⇣p

2 +
p
2,
p

2�
p
2

⌘
, and so K is a splitting field for the separable polynomial

f(x) over Q, and hence K/Q is Galois with |Gal(K/Q)| = [K : Q] = 4. So G = Gal(K/Q)

is a subgroup of S4 of order 4. There exists � 2 G such that �
⇣p

2�
p
2

⌘
= �

p
2 +

p
2.

Now,

�(
p
2) = �

 
�
✓q

2�
p
2

◆2

+ 2

!
= ��

✓q
2�

p
2

◆2

+ �(2) = �
⇣
2 +

p
2

⌘
+ 2 = �

p
2.

This gives

�

✓
�
q
2 +

p
2

◆
= �

 
�
p
2 +

p
2

p
2�

p
2p

2�
p
2

!
=

��
�p

2
�

�
⇣p

2�
p
2

⌘ = �
q
2�

p
2.

Finally, we have

�

✓
�
q
2�

p
2

◆
= ��

✓q
2�

p
2

◆
=

q
2 +

p
2.

Therefore,

� =

✓q
2�

p
2,�

q
2 +

p
2,�

q
2�

p
2,

q
2 +

p
2

◆
,

and so | h�i | = 4, which means G = h�i. K

1
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Exercise 14.2.15. (Biquadratic Extensions) Let F be a field of characteristic 6= 2.

(a) If K = F (
p
D1,

p
D2) where D1, D2 2 F have the property that none of D1, D2,

or D1D2 is a square in F , prove that K/F is a Galois extension with Gal(K/F )

isomorphic to the Klein 4-group.

Proof. Let

f(x) =
⇣
x�

p
D1

⌘⇣
x+

p
D1

⌘⇣
x�

p
D2

⌘⇣
x+

p
D2

⌘
2 F [x].

Then f(x) is separable since it has no multiple roots and moreover, f(x) has splitting
field K. Hence K/F is Galois since K is the splitting field of a separable polynomial

in F [x]. By Exercise 13.2.8, [K : F ] = 4 and so G = Gal(K/F ) has order 4.

Notice that f(x) = (x2 � D1)(x2 � D2), and both factors of f(x) are irreducible

since they do not contain a root in F [x]. Since elements of G permute the roots of the

irreducible factors of f(x), we get the following (nonidentity) elements of G:

� =

⇣p
D1,�

p
D1

⌘
, ⌧ =

⇣p
D2,�

p
D2

⌘
, and �⌧ =

⇣p
D1,�

p
D1

⌘⇣p
D2,�

p
D2

⌘
.

Then |�| = |⌧ | = |�⌧ | = 2, and hence G ⇠= V4. K

(b) Conversely, supposeK/F is a Galois extension with Gal(K/F ) isomorphic to the Klein

4-group. Prove that K = F (
p
D1,

p
D2) where D1, D2 2 F have the property that

none of D1, D2, or D1D2 is a square in F .

Proof. Suppose G = Gal(K/F ) = {1,�, ⌧,�⌧} ⇠= V4. By the Fundamental Theorem

of Galois Theory, we have corresponding lattices:

1

h�i h⌧i h�⌧i

G

2
2

2

2
2

2

b=

K

E1 E2 E3

F

2
2

2

2
2

2

where E1, E2, and E3 are intermediate fields of K/F .

Since h�i and h⌧i are normal subgroups of G, then E1/F and E2/F are Galois

(again by the Fundamental Theorem). In particular, E1/F and E2/F are finite sep-

arable and hence E1 = F (↵) and E2 = F (�) for some ↵,� algebraic over F by the

Primitive Element Theorem. By the example on page 522 (on quadratic extensions

of fields of characteristic 6= 2), we must have ↵ =
p
D1 and � =

p
D2 for D1, D2 2 F

which are not squares in F . If D1D2 was a square in F then
p
D1D2 2 F and so

p
D2 =

p
D1

p
D2p

D1
2 F

⇣p
D1

⌘
,

and similarly
p
D1 2 F

�p
D2

�
. So F

�p
D1

�
= F

�p
D2

�
, a contradiction since the

fixed fields of h�i and h⌧i are unique.

Now, E1E2 = F (
p
D1,

p
D2) ✓ K and [E1E2 : F ] = 4 by Exercise 13.2.8. Since

[K : F ] = 4, then F (
p
D1,

p
D2) = K. K

2
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Exercise 14.2.4. Let p be a prime. Determine the elements of the Galois group of x
p � 2.

Proof. Let
p
p
2 2 R. The roots of f(x) are p

p
2 and ⇠

i p
p
2 for 1  i  p�1 where ⇠ = e

(2⇡i)/p
.

So K = Q(
p
p
2, ⇠) is a splitting field for f(x) over Q. We have the diagram

K = Q(
p
p
2), ⇠)

Q(
p
p
2) Q(⇠)

Q
p p�1

Since p and p � 1 are coprime, [K : F ] = p(p � 1), and so G = Gal(K/F ) = p(p � 1). Let

� 2 G and suppose that �(
p
p
2) = ⇠

a p
p
2 and �(⇠

p
p
2) = ⇠

b p
p
2. Then

�(⇠) = �

 
⇠

p
p
2

p
p
2

!
= ⇠

b�a
= ⇠

i
for some i 2 {1, . . . , p� 1}.

Hence the elements of G are given by

�i,j =

(
⇠ 7�! ⇠

i
, 1  i  p� 1,

p
p
2 7�! ⇠

j p
p
2, 0  j  p.

K

Exercise 14.2.5. Prove that the Galois group of x
p � 2 for p a prime is isomorphic to the

group of matrices

✓
a b

0 1

◆
where a, b 2 Fp, a 6= 0.

Proof. Using the notation in the previous exercise, define a map �i,j 7!
✓
i j

0 1

◆
. Let

�i,j ,�k,` 2 G. Then

�i,j�k,` =

(
⇠ 7�! ⇠

ik

p
p
2 7�! ⇠

i`+j p
p
2,

and �i,j�k,` 7!
✓
ik i`+ j

0 1

◆
=

✓
i j

0 1

◆✓
k `

0 1

◆
. So the map is a homomorphism, and if

�i,j maps to the identity matrix, then i = 1 and j = 0, i.e., �i,j is the identity permutation.

Finally, the map is surjective by definition of �i,j . K

1
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Exercise 14.2.12. Determine the Galois group of the splitting field over Q of x
4�14x

2
+9.

Proof. Using the quadratic formula x
2
= 7+2

p
10 and so the roots of f(x) = x

4 � 14x
2
+9

are ±
p
7± 2

p
10. Let ↵ =

p
7 + 2

p
10 and � =

p
7� 2

p
10. Since

f(x) = (x� ↵) (x+ ↵) (x� �) (x+ �) =
�
x
2 � ↵

2
� �

x
2 � �

2
�
,

then f(x) is irreducible over Q because none of its quadratic factors lie in Q[x]. (Since Q[x]

is a UFD, this factorization into quadratic factors is unique). Now, f(x) is separable since

it has no repeated roots, and so K = Q(↵,�) is Galois over Q. Notice that

q
7� 2

p
10 =

p
7� 2

p
10

p
7 + 2

p
10p

7 + 2
p
10

=
3p

7 + 2
p
10

2 Q(↵),

and so K = Q(↵). Now G = Gal(K/F ) has order 4. If � 2 G and �(↵) = �, then

�(�) = �(3/↵) = 3/� = ↵. If ⌧ 2 G and ⌧(↵) = ��, then �(��) = �(�3/↵) = �3/�� = ↵.

Then �⌧(↵) = �(��) = �↵ and �⌧(�↵) = �(�) = ↵. Hence the (nonidentity) elements of

G are

� = (↵,�), ⌧ = (↵,��), and �⌧ = (↵,�↵).

Then |�| = |⌧ | = |�⌧ | = 2, and hence G ⇠= V4. K

Exercise 14.2.16.

(a) Prove that x
4 � 2x

2 � 2 is irreducible over Q.

Solution: Eisenstien.

(b) Show the roots of this quartic are

↵1 =

q
1 +

p
3 ↵3 = �

q
1 +

p
3

↵2 =

q
1�

p
3 ↵4 = �

q
1�

p
3

Solution:

By the quadratic formula x
2
=

2±
p
12

2 = 1±
p
3, and so the roots are as above.

2
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(c) Let K1 = Q(↵1) and K2 = Q(↵2). Show that K1 6= K2, and K1 \K2 = Q(
p
3) = F .

Proof. Since K1 ✓ R but K2 ( R, then K1 6= K2. since K1 \K2 ( K2, we have the

tower

K2

K1 \K2

Q(
p
3)

Q

>1

4 �1

2

Hence we must have [K2 : K1 \ K2] = 2, which gives [K1 \ K2 : Q(
p
3)] = 1, i.e.,

K1 \K2 = Q(
p
3). K

(d) Prove that K1,K2 and K1K2 are Galois over F with Gal(K1K2/F ) the Klein 4-group.

Write out the elements of Gal(K1K2/F ) explicitly. Determine all the subgroups of

the Galois group and give their corresponding fixed subfields of K1K2 containing F .

Proof. Let f(x) = x
4 � 2x

2 � 2 = (x
2 � ↵

2
1)(x

2 � ↵
2
2). Then f(x) and each of its

quadratic factors are separable. Hence K1,K2, and K1K2 are Galois over Q since

they are the splitting fields of (x
2 � ↵

2
1), (x

2 � ↵
2
2), and f(x), respectively.

Define � = (↵1,↵3), ⌧ = (↵2,↵3). Then G = Gal(K1K2/F ) = {1,�, ⌧,�⌧}. We

then get the corresponding lattices

1

h�i h⌧i h�⌧i

G

b=

K1K2

K2 K1 F (
p
�2)

F

We have h�⌧i b=F (
p
�2) since �⌧(

p
�2) = �⌧(↵1↵2) = (�↵1)(�↵2) = ↵1↵2 =

p
�2.

K

(e) Prove that the splitting field of x
4� 2x

2� 2 over Q is of degree 8 with dihedral Galois

group.

Proof. Since [K1K2 : Q] = [K1K2 : F ][F : Q] = 4 · 2, then H = Gal(K1K2/Q) has

order 8. Then H  S4 and H ⇠= D8, since the only subgroup of S4 of order 8 is

D8. K

3
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Exercise 14.2.17. Let K/F be any finite extension and let ↵ 2 K. Let L be a Galois

extension of F containing K and let H  Gal(L/F ) be the subgroup corresponding to K.

Define the norm of ↵ from K to F to be

NK/F (↵) =

Y

�

�(↵),

where the product is taken over all the embeddings of K into an algebraic closure of F

(so over a set of coset representatives for H in Gal(L/F ) by the Fundamental Theorem of

Galois Theory). This is a product of Galois conjugates of ↵. In particular, if K/F is Galois

this is
Q

�2Gal(K/F ) �(↵).

(a) Prove that NK/F (↵) 2 F .

Proof. Without loss of generality, we assume that a fixed algebraic closure F of F

contains L. Then if ⌧ 2 Gal(L/F ) and � : K ! F is an embedding, ⌧� : K ! L ✓ F

is an embedding of K into an an algebraic closure of F . So

⌧
�
NK/F (↵)

�
= ⌧

 
Y

�

�(↵)

!
=

Y

�

⌧�(↵) = NK/F (↵),

and hence NK/F (↵) 2 F . K

(b) Prove that NK/F (↵�) = NK/F (↵)NK/F (�), so that the norm is a multiplicative map

from K to F .

Proof.

NK/F (↵�) =

Y

�

�(↵)�(�) =

Y

�

�(↵)

Y

�

�(�) = NK/F (↵)NK/F (�).

K

(c) LetK = F (
p
D) be a quadratic extension of F . Show thatNK/F (a+b

p
D) = a

2�Db
2
.

Proof. Since p(x) = mp
D,F (x) = x

2 �D, then [K : F ] = 2. Also, gcd(p(x), p
0
(x)) = 1

and so p(x) is separable. Hence K is Galois over F since it is a splitting field for p(x)

over F . Then G = Gal(K/F ) = {id,�} where �b=(
p
D,�

p
D). Then

NK/F (a+ b

p
D) =

Y

�2G

�(a+ b

p
D) = (a+ b

p
D)(a� b

p
D) = a

2 �Db
2
.

K

1
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(d) Let m↵(x) = x
d
+ ad�1x

d�1
+ · · · + a1x + a0 2 F [x] be the minimal polynomial for

↵ 2 K over F . Let n = [K : F ]. Prove that d divides n, that there are d distinct

Galois conjugates of ↵ which are all repeated n/d times in the product above and

conclude that NK/F (↵) = (�1)
n
a
n/d
0 .

Proof. We have the tower F ✓ F (↵) ✓ K ✓ L. Then d = [F (↵) : F ] divides [K : F ] =

n by multiplicativity of degrees. Now, since L/F is Galois, it is in particular separable,

and hence K/F is separable. So m↵(x) has d distinct roots, and so there are d distinct

Galois conjugates of ↵. Let �1, . . . ,�d 2 Gal(L/F ) be such that �1(↵), . . . ,�d(↵) are

the distinct roots of m↵(x). By restricting each �i to F (↵), we consider each as an

embedding �i : F (↵) ! L.

We now argue thatK/F (↵) is separable. Then for each i, we know that the number

of distinct ways to extend �i to embeddings of K into L is [K : F (↵)] = n/d. To that

end, notice that since L/F is separable then if � 2 K, m�,F (x) is separable. Then

m�,F (↵)(x) divides the m�,F (x), and so any root of the former must also be a root of

the later. So m�,F (a)(x) must have distinct roots, because otherwise, a repeated root

of m�,F (↵)(x) would be a repeated root of m�,F (x), a contradiction. Hence K/F (a)

is separable.

Now for all 1  i  d, let ⌧i,1, . . . , ⌧i,n/d : K ! L be distinct embeddings extending

�i. Hence each Galois conjugate is repeated n/d times in the product above. Note

that ⌧i,j(↵) = �i(↵) for all 1  i  d and for all 1  j  n/d. Then, we can write

m↵(x) =
Qd

i=1(x � �i(↵)), which means a0 = (�1)
d
Qd

i=1 �i(↵). So
Qd

i=1 �i(↵) =

(�1)
d
a0 and thus

NK/F (↵) =

dY

i=1

n/dY

j=1

⌧i,j(↵) =

dY

i=1

(�i(↵))
n/d

=

 
dY

i=1

�i(↵)

!n/d

=
�
(�1)

d
a0

�n/d

= (�1)
n
a
n/d
0 .

K

Exercise 14.3.8. Determine the splitting field of the polynomial x
p � x� a over Fp where

a 6= 0, a 2 Fp. Show explicitly that the Galois group is cyclic.

Proof. Let f(x) = x
p � x� a, and suppose ↵ is a root of f(x). Then f(↵+ 1) = (↵+ 1)

p �
(↵ + 1) � a = ↵

p
+ 1 � ↵ � 1 � a = 0. So ↵ + 1 is a root of f(x). Continuing inductively,

we get that

↵+ 1 + · · ·+ 1| {z }
k�summands

is a root of f(x) for all 0  k  p � 1. Hence {↵ + �}�2Fp are the p distinct roots of

f(x). So the splitting field Fp(↵) of f(x) over Fp is Galois over Fp. Then there exists

� 2 G = Gal(Fp(↵),Fp) such that �(↵) = ↵ + 1. If ⌧ 2 G then ⌧(↵) = ⌧ + � for some

� 2 Fp. Hence

�
�
(↵) = �

��1
(↵+ 1) = �

��2
(↵+ 2) = · · · = �

2
(↵+ � � 2) = �(↵+ � � 1) = ↵+ �,

and so �
�
= ⌧ . So h�i = G. K

2
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Exercise 14.5.7. Show that complex conjugation restricts to the automorphism ��1 2
Gal(Q(⇣n)/Q) of the cyclotomic field of n

th
roots of unity. Show that the field K

+
=

Q(⇣n + ⇣
�1
n ) is the subfield of real elements in K = Q(⇣n), called the maximal real subfield

of K.

Proof. Let ⌧ : C ! C be complex conjugation, and let ⇣n = e
2⇡i/n

. Then

⌧(⇣n) = e
�2⇡i/n

= ⇣
�1
n = ��1(⇣n).

Notice that K
h��1i = K \ R, i.e., the fixed field of h��1i in K is the maximal real subfield

of K. Since ��1(⇣n + ⇣
�1
n ) = ��1(⇣n) + ��1(⇣

�1
n ) = ⇣

�1
n + ⇣n, then K

+ ✓ K
h��1i. So we

have the tower

Q ⇢ K
+ ⇢ K

h��1i ⇢ K

Since | h��1i | = 2, then by the Fundamental Theorem of Galois Theory, [K : K
h��1i] =

2. Notice that K = K
+
(⇣n), and that m⇣n,K+(x) = x

2�(⇣n+⇣
�1
n )x+1 = (x�⇣n)(x�⇣

�1
n ).

So [K : K
+
] = 2. This forces [K

h��1i : K+
] = 1, i.e., K

+
= K

h��1i = K \ R. K

Exercise 14.5.8. Let Kn = Q(⇣2n+2) be the cyclotomic field of 2
n+2

-th roots of unity,

n � 0. Set ↵n = (⇣2n+2 + ⇣
�1
2n+2) and K

+
n = Q(↵n), the maximal real subfield of Kn.

(a) Show that for all n � 0, [Kn : Q] = 2
n+1

, [Kn : K
+
n ] = 2, [K

+
n : Q] = 2

n
, and

[K
+
n+1 : K

+
n ] = 2.

Proof. In the first case, [Kn : Q] = deg�2n+2(x) = '(2
n+2

) = 2
n+1

(2 � 1) = 2
n+1

,

where �2n+2 is the 2
n+2

cyclotomic polynomial and ' is the Euler phi function. Then

the minimal polynomial of ⇣2n+2 over K
+
n is (x� ⇣2n+2)(x� ⇣

�1
2n+2), which gives [Kn :

K
+
n ] = 2.

Then [K
+
n : Q] = [K

+
n : Q]/[Kn : K

+
n ] = 2

n+1
/2 = 2

n
. And finally [K

+
n+1 : K

+
n ] =

[K
+
n+1 : Q]/[K

+
n : Q] = 2

n+1
/2

n
= 2. K

(b) Determine the quadratic equation satisfied by ⇣2n+2 over K
+
n in terms of ↵n.

Proof.

(x� ⇣2n+2)(x� ⇣
�1
2n+2) = x

2 � (⇣2n+2 + ⇣
�1
2n+2)x+ ⇣2n+2⇣

�1
2n+2

= x
2 � ↵n + (↵n � ⇣

�1
2n+2)(↵n � ⇣2n+2)

K

(c) Show that for n � 0, ↵
2
n+1 = 2 + ↵n and hence show that

↵n = ±

s

2±

r

2±
q
· · · ±

p
2 (n times)

giving an explicit formula for the (constructable) 2
n+2

-th roots of unity.

Proof. We have

↵
2
n+1 = ⇣

2
2n+3 + 2⇣2n+3⇣

�1
2n+3 + (⇣

�1
2n+3)

2
= ⇣2n+2 + 2(1) + ⇣

�1
2n+2 = 2 + ↵n,

which gives ↵n = ±
p
2 + ↵n�1 = ±

p
2±

p
2± ↵n�2 = ±

r

2±
q

2±
p

· · · ±
p
2. K

3
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Exercise 14.3.11. Prove that x
pn

� x + 1 is irreducible over Fp only when n = 1 or

n = p = 2.

Proof. Suppose f(x) is irreducible over Fp. Let ↵ be a root of f(x) = x
pn

� x+ 1 inside a

fixed algebraic closure Fp of Fp. Then for any � 2 Fp

f(↵+�) = (↵+�)
pn

�(↵+�)+1 = ↵
pn

+�
pn

�↵��+1 = (↵
pn

� ↵+ 1)| {z }
=0 since ↵

is a root of f(x)

+ (�
pn

� �)| {z }
=0 since

�pn=� 8�2Fpn

= 0.

Hence {↵+ �}�2Fpn
are the p

n
roots of the irreducible polynomial f(x), which gives

p
n
= [Fp(↵) : Fp] = [Fp(↵+ �) : Fp].

Now, know that for all r 2 Z+
, Fp contains a unique subfield of order p

r
. So, since

[Fppn : Fp] = p
n

and Fp(↵+ �),Fp(↵) ⇢ Fp,

then

Fp(↵+ �) = Fppn = Fp(↵)

in Fp. Now, let � 2 Fpn . Then ↵ + �,↵ 2 F(↵), and so � = ↵ + � � ↵ 2 F(↵), hence
Fpn ✓ Fp(↵).

Then Fp(↵)/Fpn is cyclic Galois (all the Galois groups of finite fields over subfields are

cyclic). So let h�i = G = Gal(Fp(↵)/Fpn). Then �(↵) = ↵ + � for some � 2 Fpn . Since

� 2 Fpn then �(�) = �. So

�(↵) = ↵+ �

�(↵+ �) = �(↵) + �(�) = ↵+ 2�

�(↵+ 2�) = �(↵) + 2�(�) = ↵+ 3�

.

.

.

�(↵+ (p� 1)�) = �(↵) + (p� 1)�(�) = ↵+ p� = ↵.

Therefore,

�b=(↵,↵+ �,↵+ 2�, . . . ,↵+ (p� 1)�),

and hence p = | h�i | = |G| = [Fp(↵) : Fpn ]. So we have the tower

Fp(↵)

Fpn

Fp

p

pn

n

So pn = p
n
. If n = 1 then the equality holds. If n = 2, then 2 = p

2�1
= p. If n � 3, the

equation n = p
n�1

has no solution. K

1
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Exercise 14.4.4. Let K/F be a finite Galois extension, and K be an algebraic closure of

K. Let f(x) 2 F [x] be separable and irreducible over F , with splitting field L inside K. Let

↵ be a root of f(x) inside L. Show that f(x) factors in K[x] into a product of m irreducible

polynomials each of degree d over K, where m = [F (↵) \K : F ] and d = [K(↵) : K].

Proof. If f(x) = p1(x)p2(x) · · · pm(x) for irreducibles pi(x) 2 K[x], then since f(x) splits

completely into linear factors in L[x], the coe�cients of pi(x) are sums of products of the

roots of f(x), and so the pi(x) all lie in L[x]. Hence this factorization of f(x) in K[x] is the

same as that in (L \K)[x].

Suppose �i is a root of pi(x) for some i. If � 2 H := Gal(L/L \ K), then �(�i) is

also a root of pi(x), since the elements of H permute the roots of the irreducible factors of

f(x). Hence the orbit O�i precisely contains the roots of pi(x). So we get a correspondence

{pi(x)} $ {H�i}. Since H acts transitively on the roots of f , then by Exercise 9 of Section

4.1, that the H�i each have the same cardinality, i.e., the degrees of all the pi(x) are all the

same.

If ↵ is a root of f(x) then without loss of generality, suppose ↵ is a root of p1(x). Also

suppose deg p1(x) = d. Then [K(↵) : K] = d since p1(x) is irreducible. Hence all factors

pi(x) have degree d.

Since p1(x) 2 K[x] is of degree K and has ↵ 2 L as a root, then [K(↵) : K] = d. Since

↵ 2 L is a root of the irreducible polynomial f(x) over F , then [F (↵) : F ] = md. So we

have the tower

K(↵) = K \ F (↵)

F (↵) K

K \ F (↵)

F

d

md

So we have by the formula given in Corollary 20, (page 592, D& F),

[K \ F (↵)] =
[K : F ][F (↵) : F ]

[K(↵) : F ]
=

[K : F ]md

[K : F ][K(↵) : K]
=

md

d
= m.

K

2
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Exercise 14.7.4. Let K = Q( n
p
a), where a 2 Q, a > 0 and suppose [K : Q] = n (i.e.,

x
n
�a is irreducible). Let E be an subfield of K and let [E : Q] = d. Prove that E = Q( d

p
a).

[Consider NK/E(
n
p
a) 2 E.]

Proof. The elements of Gal(K/E) are {�i} where �i(
n
p
a) = ⇣

i n
p
a for all 0  i  (n/d)� 1.

So we have

NK/E(
n
p
a) =

(n/d)�1Y

i=0

�i(
n
p
a) = ⇣

P
i
(

n
p
a)

n/d
= ⇣

P
i d
p
a 2 E.

Now since E ⇢ K ⇢ R, then ⇣

P
i
= ±1. So Q( d

p
a) ✓ E, and we have the tower

K

E

Q( d
p
a)

Q

n/d

1

d

d

Hence E = Q( d
p
a). Now suppose ↵ is an arbitrary root of x

n
� a with K = Q(↵), E ✓ K,

and [E : Q] = d. We have an isomorphism Q( n
p
a) ⇠= Q(↵) given by n

p
a 7! ↵. This induces

an isomorphism Q( d
p
a) ⇠= Q(↵

n/d
) given by d

p
a 7! ↵

n/d
. So E = Q(↵

n/d
).

Q( n
p
a) Q(↵)

Q( d
p
a) Q(↵

n/d
)

Q Q

⇠=

⇠=

d d

K

3


