Mr. Nicholas Camacho

Quiz 9 - 3.6, 2.9, \& 4.1
Total: $25 / 25$

Show all of your work in the space provided. Clearly indicate your final answer.

1. Find the vertical asymptote(s), if any, of the graph of the following rational function $f(x)=\frac{(x+1)(2 x-2)}{(x-3)(x+4)}$

Solution: The vertical asymptotes are the lines $x=a$ and $x=b$ where a and b are the numbers that make the denominator equal to zero, after simplifying. In this case, the expression cannot be simplified further, so the vertical asymptotes are $x=3$ and $x=-4$.
2. Find the horizontal asymptote(s), if any, of the graph of the rational function $f(x)=\frac{10 x}{7 x+6 x^{2}}$

Solution: Since the highest power on x in the denominator is larger, the horizontal asymptote is the line $y=0$.
3. Find the domain, range, and inverse function for the one-to-one function

$$
f(x)=\frac{x+1}{x-2} .
$$

Solution: The domain of f is $(-\infty, 2) \cup(2, \infty)$. The range of f is the domain
of f^{-1}. So let's find f^{-1} :

$$
\begin{aligned}
y & =\frac{x+1}{x-2} \\
x & =\frac{y+1}{y-2} \\
x(y-2) & =y+1 \\
x y-2 x & =y+1 \\
x y-y & =2 x+1 \\
y(x-1) & =2 x+1 \\
y & =\frac{2 x+1}{x-1}
\end{aligned}
$$

So $f^{-1}(x)=\frac{2 x+1}{x-1}$. Since the domain of f^{-1} is $(-$ infty, 1$) \cup(1, \infty)$, this is the range of f.
4. Let f be a one-to-one function given by $f(x)=2 x-3$. If f^{-1} is the inverse $4 / 4$ function for f, what is $\left(f \circ f^{-1}\right)(\pi)$?

Solution: By definition of the inverse function, we have $\left(f \circ f^{-1}\right)(x)=x$. Let's think about what that means: When we first plug in a number x into f^{-1}, and then plug that output value into f, we just get x back. So $\left(f \circ f^{-1}\right)(\pi)=\pi$. It actually didn't matter what $f(x)$ was.
5. Verify that the funtions $f(x)=2 x+3$ and $g(x)=\frac{x-3}{2}$ are inverses of each $4 / 4$ other.

Solution:

$$
\begin{aligned}
f(g(x)) & =2\left(\frac{x-3}{2}\right)+3 \\
& =(x-3)+3 \\
& =x \\
g(f(x)) & =\frac{(2 x+3)-3}{2} \\
& =\frac{2 x}{2} \\
& =x
\end{aligned}
$$

Since $f(g(x))=x$ and $g(f(x))=x$, the functions f and g are inverse to one another.
6. Find the exponential function of the form $f(x)=c \cdot a^{x}$ whose graph contains the $3 / 3$ points $(0,3)$ and $(2,12)$.

Solution: We have

$$
\begin{aligned}
& 3=f(0)=c a^{0}=c \cdot 1=c \\
& 12=f(2)=c a^{2} .
\end{aligned}
$$

Since the first equation gives $c=3$, we can plug this into the second equation to find a :

$$
\begin{aligned}
12 & =(3) a^{2} \\
4 & =a^{2} \\
a & \pm 2 .
\end{aligned}
$$

Since we must always have $a>0$ in exponential functions, we take $a=2$. So $f(x)=3 \cdot 2^{x}$.
7. The U.S. population was 308 million in 2010. The U.S. Census Bureau reported

Solution: I forgot the word "exponentially" in the statement of the problem on the actual quiz. But no one asked me about this during the quiz, and I think it's safe to say that everyone assumed it should be there. We have an exponential growth model function

$$
A(t)=A_{0} e^{k t}
$$

where A_{0} is the initial (or principal) amount at time $t=0$. So $A(0)=A_{0}=$ 308. This means that the year 2010 is considered time $t=0$. Our k is the rate of growth, which is $k=.097$. So the population in the year 2000 corresponds to time $t=-10$, so

$$
A(-10)=308 e^{(.097)(-10)}
$$

