MATH 1005: College Algebra
Spring 2019 - April 5
Mr. Nicholas Camacho

Answer Key
Quiz 8 - 3.3 , 3.4, \& 3.5
Total: $25 / 25$

Show all of your work in the space provided. Clearly indicate your final answer.

1. Use the factor theorem to determine if $x+6$ is a factor of $x^{3}+9 x^{2}+14 x-24$. $3 / 3$

Solution: The factor theorem says that $x+6$ is a factor of $x^{3}+9 x^{2}+14 x-24$ if and only if -6 is a zero of the polynomial $x^{3}+9 x^{2}+14 x-24$. So

$$
(-6)^{3}+9(-6)^{2}+14(-6)-24=-216+324-84-24=0
$$

Hence $x+6$ is a factor of $x^{3}+9 x^{2}+14 x-24$. Alternatively, being a zero of the polynomial is equivalent to saying that $\frac{x^{3}+9 x^{2}+14 x-24}{x+6}$ has remainder zero. So you can also use long division and see if there is a remainder of zero. However, since $x+6$ is of the form $x-a$, we can use synthetic division:

$-6 |$| 1 | 9 | 14 | -24 |
| ---: | ---: | ---: | ---: |
|  | -6 | -18 | 24 |
| 1 | 3 | -4 | 0 |

So we see that $\frac{x^{3}+9 x^{2}+14 x-24}{x+6}$ has remainder zero, which shows showing another way that $x+6$ is indeed a factor.
2. Find the set of possible rational zeros of the function $f(x)=5 x^{3}-5 x^{2}+2$.

Solution: This is a direct aplication of the remainder theorem: The possible rational zeros of $f$ are

$$
\pm 1, \pm 2, \pm \frac{1}{5}, \pm \frac{2}{5}
$$

3. A degree 3 polynomial $f(x)$ has zeros -5 and $2-i$. Find the polynomial $f(x)$. $4 / 4$

Solution: The fact that $f$ has degree 3 tells us that there should be three zeros of $f$. By the conjugate pairs theorem, since $2-i$ is a zero of $f$, then $2+i$ must also be a zero of $f$. Moreover, a number $a$ being a zero of $f$ is equivalent to $x-a$ being a factor of $f$. Hence

$$
\begin{aligned}
f(x) & =(x-(-5))(x-(2-i))(x-(2+i)) \\
& =(x+5)((x-2)+i)((x-2)-i) \\
& =(x+5)\left((x-2)^{2}-i^{2}\right) \\
& =(x+5)\left(x^{2}-4 x+5\right) \\
& =x^{3}+x^{2}-15 x+25 .
\end{aligned}
$$

4. Find the remaining zeros of a degree 5 polynomial with zeros $-1,3+7 i$, and $3 / 3$ $-2 i$.

Solution: The fact that the polynomial has degreee 5 tells us that it will have 5 total zeros. Since $3+7 i$ and $-2 i$ are complex zeros, then we must also have $3-7 i$ and $2 i$ as zeros as well, by the conjugate pairs theorem. This gives us all 5 zeros.
5. Find all the zeros of the polynomial $x^{3}-5 x^{2}+9 x-9$. (Hint: You'll need the quadratic formula.)

Solution: The goal of this problem is to factor the given polynomial completely. Then, all of the linear factors will give us the zeros of the polynomial, because once again: A number $a$ is a zero of a polynomial if and only if $x-a$ is a factor of the polynomial. So to find the zeros, we need to find all of the factors. Since our polynomial has degree 3, we expect that there are 3 total zeros.
Using the rational zeros theorem, we find that all possible rational zeros of the polynomial are: $\pm 1, \pm 3, \pm 9$. Using synthetic division, we find that 3 is a zero of the polynomial.
$3 \begin{array}{r}\left\lvert\, \begin{array}{rrrr}1 & -5 & 9 & -9 \\ & 3 & -6 & 9 \\ 1 & -2 & 3 & 0\end{array} . . . . ~ . ~\right.\end{array}$

This means that

$$
x^{3}-5 x^{2}+9 x-9=(x-3)\left(x^{2}-2 x+3\right) .
$$

Now we need to factor $x^{2}-2 x+3$. To do this, we will find its zeros by using the quadratic formula:

$$
x=\frac{2 \pm \sqrt{(-2)^{2}-4(1)(3)}}{2}=\frac{2 \pm \sqrt{-8}}{2}=\frac{2 \pm 2 i \sqrt{2}}{2}=1 \pm i \sqrt{2} .
$$

Hence

$$
x^{3}-5 x^{2}+9 x-9=(x-3)(x-(1+i \sqrt{2}))(x-(1-i \sqrt{2})),
$$

meaning that $x^{3}-5 x^{2}+9 x-9$ has zeros: $3,1+i \sqrt{2}$, and $1-i \sqrt{2}$.
6. Given that $3 i$ is a zero of the polynomial $P(x)=x^{3}-2 x^{2}+9 x-18$, find the $6 / 6$ remaining zeros of $P$.

Solution: Since $3 i$ is a complex zero of $x^{3}-2 x^{2}+9 x-18$, then $-3 i$ is also a zero of the polynomial. Hence we know

$$
x^{3}-2 x^{2}+9 x-18=(x-3 i)(x-(-3 i))(\text { somethin' else }) .
$$

Then

$$
(x-3 i)(x+3 i)=x^{2}-9 i^{2}=x^{2}+9
$$

Finally, we have

$$
\begin{aligned}
& x-2 \\
& \cline { 2 - 3 }
\end{aligned} \begin{array}{r}
x-2 x^{2}+9 x-18 \\
-x^{3}-9 x \\
\hline-2 x^{2} \\
\hline 2 x^{2} \\
\hline
\end{array}
$$

and hence

$$
x^{3}-2 x^{2}+9 x-18=(x-3 i)(x+3 i)(x-2)
$$

which means $x^{3}-2 x^{2}+9 x-18$ has zeros $2,3 i$, and $-3 i$.

