MATH 1005: College Algebra	Answer Key
Spring 2019 – March 29	Quiz 7 – 2.8, 3.1, 3.2, & 3.3
Mr. Nicholas Camacho	Total: $25 / 25$

Show all of your work in the space provided. Clearly indicate your final answer.

1. Let
$$f(x) = \frac{5}{x}$$
 and $g(x) = \frac{5}{x+1}$. Find $(f \circ g)(x)$, and find the domain of $f \circ g$. $4 \neq 4$

Solution:

$$(f \circ g)(x) = f(g(x)) = f\left(\frac{5}{x+1}\right) = \frac{5}{\frac{5}{x+1}} = \frac{5}{1} \cdot \frac{x+1}{5} = x+1.$$

The domain of the function $f \circ g$ is the domain of g intersected with the domain of x + 1:

(domain of
$$g$$
) \cap (domain of $x + 1$) = $((-\infty, -1) \cup (-1, \infty)) \cap (-\infty, \infty)$
= $(-\infty, -1) \cup (-1, \infty)$

2. Express the function H as the composition of two functions f and g such that 3/3 $H(x) = (f \circ g)(x)$, where $H(x) = \sqrt{x+7}$.

Solution: Let
$$f(x) = \sqrt{x}$$
 and let $g(x) = x + 7$. Then
 $H(x) = (f \circ g)(x) = f(g(x)) = f(x + 7) = \sqrt{x + 7}$.

3. Find the quadratic function f that has vertex (3, 4) and passes through the point 3/3 (2, 6).

Solution: The standard form of a quadratic equation is $f(x) = a(x-h)^2 + k$, where (h, k) is the vertex. So

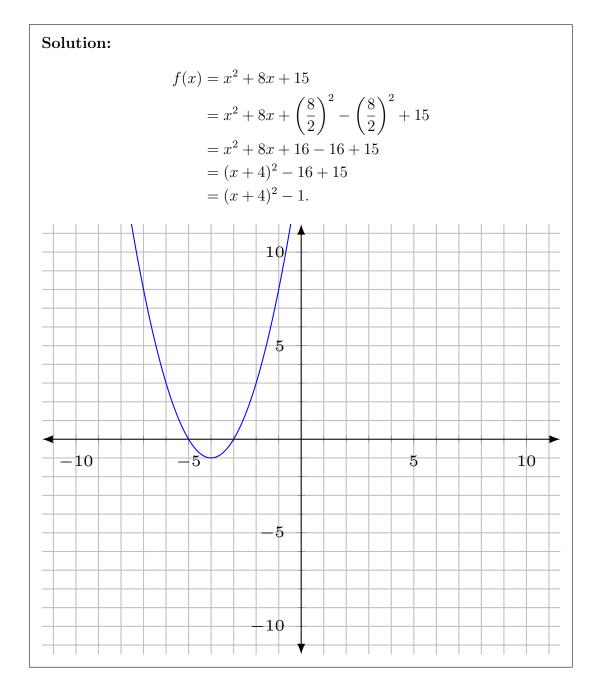
$$f(x) = a(x-3)^2 + 4$$

Now we need to find a. Since we know that the point (2,6) is on the graph of the function, this means f(2) = 6. So

$$6 = f(2) = a(2-3)^2 + 4 = a(-1)^2 + 4 = a + 4.$$

Hence a + 4 = 6, with means a = 2. Therefore, we have $f(x) = 2(x-3)^2 + 4$.

4. Write the quadratic function $f(x) = x^2 + 8x + 15$ in standard form, and then 5 / 5 graph f(x) without using an xy-table.



5. Describe the end behavior of the polynomial function f given by $f(x) = 4x - 2x^3$. 3 / 3

Solution: The leading term of the polynomial is $-2x^3$. Hence the graph of f has end behavior "like" that of the function $-x^3$. So

$$f(x) \to \infty \text{ as } x \to -\infty$$

 $f(x) \to -\infty \text{ as } x \to \infty.$

6. Use long division to find the quotient and remainder:

$$\frac{32x^2 - 28x - 15}{8x + 3}$$

Solution:	4x - 5	
	$8x+3$) $32x^2-28x-15$	
	$-32x^2 - 12x$	
	-40x - 15	
	40x + 15	
	0	
So, $\frac{32x^2 - 28x - 15}{8x + 3} =$	4x - 5.	

7. Use synthetic division

$$\frac{2x^3 + 2x^2 - 3x + 5}{x + 4}$$

Solution:
$$-4 \boxed{\begin{array}{cccc} 2 & 2 & -3 & 5 \\ -8 & 24 & -84 \\ \hline 2 & -6 & 21 & -79 \end{array}}$$
So,
$$\frac{2x^3 + 2x^2 - 3x + 5}{x + 4} = 2x^2 - 6x + 21 - \frac{79}{x + 4}.$$

3/3

4 / 4