MATH 1005: College Algebra
Spring 2019 - March 29
Mr. Nicholas Camacho

Answer Key
Quiz 7 - 2.8, 3.1, 3.2, \& 3.3
Total: $25 / 25$

Show all of your work in the space provided. Clearly indicate your final answer.

1. Let $f(x)=\frac{5}{x}$ and $g(x)=\frac{5}{x+1}$. Find $(f \circ g)(x)$, and find the domain of $f \circ g$. $4 / 4$

Solution:

$$
(f \circ g)(x)=f(g(x))=f\left(\frac{5}{x+1}\right)=\frac{5}{\frac{5}{x+1}}=\frac{5}{1} \cdot \frac{x+1}{5}=x+1 .
$$

The domain of the function $f \circ g$ is the domain of g intersected with the domain of $x+1$:

$$
\begin{aligned}
(\text { domain of } g) \cap(\text { domain of } x+1) & =((-\infty,-1) \cup(-1, \infty)) \cap(-\infty, \infty) \\
& =(-\infty,-1) \cup(-1, \infty)
\end{aligned}
$$

2. Express the function H as the composition of two functions f and g such that $3 / 3$ $H(x)=(f \circ g)(x)$, where $H(x)=\sqrt{x+7}$.

Solution: Let $f(x)=\sqrt{x}$ and let $g(x)=x+7$. Then

$$
H(x)=(f \circ g)(x)=f(g(x))=f(x+7)=\sqrt{x+7} .
$$

3. Find the quadratic function f that has vertex $(3,4)$ and passes through the point $3 / 3$ $(2,6)$.

Solution: The standard form of a quadratic equation is $f(x)=a(x-h)^{2}+k$, where (h, k) is the vertex. So

$$
f(x)=a(x-3)^{2}+4
$$

Now we need to find a. Since we know that the point $(2,6)$ is on the graph of the function, this means $f(2)=6$. So

$$
6=f(2)=a(2-3)^{2}+4=a(-1)^{2}+4=a+4
$$

Hence $a+4=6$, with means $a=2$. Therefore, we have $f(x)=2(x-3)^{2}+4$.
4. Write the quadratic function $f(x)=x^{2}+8 x+15$ in standard form, and then $5 / 5$ graph $f(x)$ without using an $x y$-table.

5. Describe the end behavior of the polynomial function f given by $f(x)=4 x-2 x^{3}$. $\quad 3 / 3$

Solution: The leading term of the polynomial is $-2 x^{3}$. Hence the graph of f has end behavior "like" that of the function $-x^{3}$. So

$$
\begin{gathered}
f(x) \rightarrow \infty \text { as } x \rightarrow-\infty \\
f(x) \rightarrow-\infty \text { as } x \rightarrow \infty .
\end{gathered}
$$

6. Use long division to find the quotient and remainder:

$$
\frac{32 x^{2}-28 x-15}{8 x+3}
$$

$$
\begin{aligned}
& \text { Solution: } \\
& 8 x+3) \frac{4 x-5}{32 x^{2}-28 x-15} \\
& -32 x^{2}-12 x \\
& -40 x-15 \\
& \begin{array}{r}
40 x+15 \\
0
\end{array}
\end{aligned}
$$

So, $\frac{32 x^{2}-28 x-15}{8 x+3}=4 x-5$.
7. Use synthetic division

$$
\frac{2 x^{3}+2 x^{2}-3 x+5}{x+4}
$$

Solution: -4 | 2 | 2 | -3 | 5 | |
| ---: | ---: | ---: | ---: | ---: |
| | | -8 | 24 | -84 |
| 2 | -6 | 21 | -79 | |

So,

$$
\frac{2 x^{3}+2 x^{2}-3 x+5}{x+4}=2 x^{2}-6 x+21-\frac{79}{x+4} .
$$

