MATH 1005: College Algebra
Spring 2019 - March 8
Mr. Nicholas Camacho

Answer Key
Quiz 6 - 2.4, 2.5, 2.6, \& 2.7
Total: $25 / 25$

Show all of your work in the space provided. Clearly indicate your final answer.

1. Let $f(x)=\frac{2 x}{\sqrt{9-x^{2}}}$. Find $f(0), f(1)$, and $f(3)$.

Solution:

$$
\begin{aligned}
& f(0)=\frac{2(0)}{\sqrt{9-0^{2}}}=\frac{0}{3}=0 \\
& f(1)=\frac{2(1)}{\sqrt{9-1^{2}}}=\frac{2}{\sqrt{8}} \\
& f(3)=\frac{2(3)}{\sqrt{9-3^{2}}} \text { is undefined. }
\end{aligned}
$$

2. Find the domain of the function $G(x)=\frac{\sqrt{x-7}}{x+3}$. Write your answer in interval notation.

> Solution: We have two restrictions on what we are allowed to plug in: First, we must have $x \neq-3$ and second, we must have $x-7 \geq 0$, i.e. $x \geq 7$. Combining these restrictions, we get that our domain is $[7, \infty)$.
3. Determine algebraically whether the function $h(x)=\frac{3 x^{3}}{3 x^{2}-5}$ is even, odd, or $5 / 5$ neither. Describe what this means about the graph of h.

Solution: The function h is odd if $h(-x)=-h(x)$, and is even if $h(-x)=$ $h(x)$. The graph of an odd function is symmetric about the origin, and that of an even function is symmetric about the y-axis.

So, let's look at $h(-x)$:

$$
\begin{aligned}
h(-x) & =\frac{3(-x)^{3}}{3(-x)^{2}-5} \\
& =\frac{-3 x^{3}}{3 x^{2}-5} \\
& =-\frac{3 x^{3}}{3 x^{2}-5} \\
& =-h(x),
\end{aligned}
$$

and hence h is odd and therefore the graph of h is symmetric about the origin.
4. Find the average rate of change of the function $f(x)=2 x+c$ as x changes from $x=2$ to $x=3$, where c is any real number.

Solution:

$$
\frac{f(3)-f(2)}{3-2}=\frac{(6+c)-(4+c)}{1}=\frac{6+c-4-c}{1}=2 .
$$

5. Graph the function $f(x)=(x-2)^{2}+1$ without using an $x y$ table.

Solution:

We recognize that this is the graph of x^{2} shifted right 2 and up 1 , so:

6. Let $f(x)=x^{3}$. Find the function $g(x)$ obtained from shifting the graph of f by $5 / 5$ shifting two units upward and three units to the left. Then graph $g(x)$.

Solution: First, we let $y=x^{3}$. Then

$$
\begin{aligned}
y & =x^{3} \\
y & =(x+3)^{3} \\
y-2 & =(x+3)^{3} \\
y & =(x+3)^{3}+2
\end{aligned}
$$

(shift 3 left, so replace x with $x+3$)
(shift 2 up, so replace y with $y-2$)

$$
\text { (solve for } y \text {) }
$$

$$
\text { So } g(x)=(x+3)^{3}+2
$$

