11. Simpson's Rule with $n=6$ to approximate

$$
\int_{0}^{\pi} \cos \left(x^{2}\right) d x
$$

Solution:

$$
\begin{aligned}
& \quad \Delta x=\frac{\pi-0}{6}=\frac{\pi}{6} \\
& \cdot x_{i}=a+i \Delta x=0+i\left(\frac{\pi}{6}\right), i=0,1,2, \ldots, 6 \\
& f(x)=\cos \left(x^{2}\right) \\
& \begin{aligned}
& \int_{0}^{\pi} \cos \left(x^{2}\right) d x \approx \frac{\Delta x}{3}\left[f\left(x_{0}\right)+4 f\left(x_{1}\right)+2 f\left(x_{2}\right)+\cdots+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right] \\
&= \frac{\pi}{18}\left[\cos (0)+4 \cos \left(\left(\frac{\pi}{6}\right)^{2}\right)+2 \cos \left(\left(\frac{\pi}{3}\right)^{2}\right)\right. \\
&+4 \cos \left(\left(\frac{\pi}{2}\right)^{2}\right)+2 \cos \left(\left(\frac{2 \pi}{3}\right)^{2}\right) \\
&\left.+4 \cos \left(\left(\frac{5 \pi}{6}\right)^{2}\right)+\cos \left(\pi^{2}\right)\right]
\end{aligned}
\end{aligned}
$$

2.) Suppose you know that $\left|f^{(4)}(x)\right| \leq 90$ on $[0,2]$. How large should $n$ be so that the error, Es, in the Simpson's Rule approximation is such that $\left|E_{\delta}\right|<10^{-3}$ ?
Solution:
We knew that $\left|E_{s}\right| \leq \frac{k(b-a)^{5}}{180 n^{4}}$, where $\left|f^{(4)}(x)\right| \leq K$ for all $x$ in $[a, b]$.

Thinetore, $\left|E_{s}\right| \leq \frac{90(2-0)^{5}}{180 n^{4}}$ since $\left|f^{(4)}(x)\right| \leq 90$ on $[0,2]$.
So, if we want $\left|E_{s}\right| \leq 10^{-3}$, then we need suck that:

$$
\begin{gathered}
\left|E_{s}\right| \leq \frac{90(2)^{5}}{180 n^{4}} \leq 10^{-3}=\frac{1}{1000} \\
\frac{1(32)}{2 n^{4}} \leq \frac{1}{1000} \\
\frac{2 n^{4}}{32} \geq 1000 \\
n \geq \sqrt[4]{16000}
\end{gathered}
$$

