Answer Key
Spring 2019 - April 19
Quiz $10-4.2 \& 4.3$
Mr. Nicholas Camacho

Show all of your work in the space provided. Clearly indicate your final answer.

1. Convert the following exponential equations to logarithmic equations.
a) $4^{-2}=\frac{1}{16}$
b) $\left(\frac{1}{3}\right)^{-3}=27$

Solution:

a) $\log _{4} \frac{1}{16}=-2$
b) $\log _{\frac{1}{3}} 27=-3$
2. Convert the following logarithmic equations to exponential equations.
a) $\log _{25}(125)=\frac{3}{2}$
b) $\ln x=y$

Solution:

a) $25^{\frac{3}{2}}=125$
b) $e^{y}=x$
3. Find the domain of the logarithmic function $f(x)=\log _{4}(x-5)$.

Solution: The argument of the logarithm (any base) must be strictly positive. So $x-5>0$, which means $x>5$, meaning the domain of f is $(5, \infty)$.
4. Use rules of logarithms to change the given expressions as directed.
a) Write $\log (a \sqrt[3]{b})$ in expanded form.
b) Write $\frac{5}{2} \ln x+3 \ln y$ in condensed form.

Solution:

a) $\log (a \sqrt[3]{b})=\log a+\log \sqrt[3]{b}=\log a+\log b^{\frac{1}{3}}=\log a+\frac{1}{3} \log b$.
b) $\frac{5}{2} \ln x+3 \ln y=\ln x^{\frac{5}{2}}+\ln y^{3}=\ln \sqrt{x^{5}}+\ln y^{3}=\ln \left(\sqrt{x^{5}} y^{3}\right)$.
5. Given that $\log _{3} x=2$ and $\log _{3} y=4$, evaluate the following.
a) $\frac{\log _{3} x y}{\log _{3} x}$
b) $\log _{3}\left(\frac{1}{4} x\right)+\log _{3}(4 x)$

Solution:

a) $\frac{\log _{3} x y}{\log _{3} x}=\frac{\log _{3} x+\log _{3} y}{\log _{3} x}=\frac{2+4}{2}=3$.
b) $\log _{3}\left(\frac{1}{4} x\right)+\log _{3}(4 x)=\log _{3}\left(\left(\frac{1}{4} x\right)(4 x)\right)=\log _{3}\left(x^{2}\right)=2 \log _{3} x=2 \cdot 2=4$.
6. Evaluate $\left(2^{\log _{2} 5}+\log _{2} 8\right)^{\log _{x} x^{2}}$.

Solution: The number $\log _{2} 5$ is the number so that 2 raised to that number is 5 . We don't know what the number is without a calculator, but if we raise 2 to such a number, we get 5 , i.e. $2^{\log _{2} 5}=5$.
The number $\log _{2} 8$ is the number so that 2 raised to that number is 8 , and we can compute that without a calculator: $\log _{2} 8=3$.
Finally, $\log _{x} x^{2}$ is the number so that when x raised to that number is x^{2}, so $\log _{x} x^{2}=2$. So

$$
\left(2^{\log _{2} 5}+\log _{2} 8\right)^{\log _{x} x^{2}}=(5+3)^{2}=8^{2}=64
$$

