$$
a \sim b \quad \text { iff } \quad \alpha(a)=b \quad \text { for some } \alpha \in G .
$$

Then \sim is an equivalence relation (you do not need to prove this). Find the equivalence classes and a complete set of equivalence class representatives in each of the following special cases:
2. For polynomials $f(x)$ and $g(x)$ with real coefficients, let $f(x) \sim g(x)$ mean that $f^{\prime}(x)=g^{\prime}(x)$ (where the primes denote derivatives). Give a complete set of equivalence class representatives. (A polynomial with real coefficients is an expression of the form $a_{0}+a_{1} x+\cdots+a_{n} x^{n}$ were $a_{0}, a_{1}, \ldots, a_{n} \in \mathbb{R}$.)

Proof. Two polynmoials have the same derivative if and only if they are of the same degree and have the same non-constant coefficients. Consider the set

$$
S=\left\{1+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}: n \in \mathbb{Z}_{\geq 1}, a_{i} \in \mathbb{R}\right\}
$$

If $f(x)=b_{0}+b_{1} x+\cdots+b_{n} x^{n}$ is any polynomial with real coefficients, then the polynomial

$$
g(x)=1+b_{1} x+b_{2} x^{2}+\cdots+b_{n} x^{n}
$$

is an element in the set S such that $f^{\prime}(x)=g^{\prime}(x)$. Now we need to show that $g(x)$ is a unique element of S. So, suppose that

$$
h(x)=1+c_{1} x+c_{2} x^{2}+\cdots+c_{m} x^{m}
$$

is another element of S such that $f(x) \sim h(x)$, or in other words $f^{\prime}(x)=h^{\prime}(x)$. In order for this to be true, it must be that $m=n$, i.e. f and h must have the same degree. Then, we obtain
$b_{1}+2 b_{2} x+3 b_{3} x^{2}+\cdots+n b_{n} x^{n-1}=f^{\prime}(x)=h^{\prime}(x)=c_{1}+2 c_{2} x+3 c_{3} x^{2}+\cdots+n c_{n} x^{n-1}$.
But this means that

$$
\left(b_{1}-c_{1}\right)+2\left(b_{2}-c_{2}\right) x+3\left(b_{3}-c_{3}\right) x^{2}+\cdots+n\left(b_{n}-c_{n}\right) x^{n-1}=0
$$

which implies $\left(b_{i}-c_{i}\right)=0$ for all $1 \leq i \leq n$, or in other words $b_{i}=c_{i}$ for all $1 \leq i \leq n$. Therefore $g(x)=h(x)$. So, the set S is a complete set of equivalence class representatives.
3. There are ten integers x such that $-25<x<25$ and $x \equiv 3 \bmod 5$. Find them all.

Solution: Said another way, these are all the integers between -25 and 25 which are 3 more than multiple of 5 . One way to do this problem is to simply pick one number which is 3 more than a multiple of 5 , say 13 , and then repeatedy add/subtract 5 .

$$
-22,-17,-12,-7,-2,3,8,13,18,23
$$

4. For each pair a, b, find the unique integers q and r such that $a=b q+r$ with $3 / 3$ $0 \leq r<b$.
(a) $a=19, b=5$.

Solution:

$$
q=3, r=4 \Longrightarrow 19=(5)(3)+4 .
$$

(b) $a=-7, b=5$.

Solution:

$$
q=-2, r=3 \Longrightarrow-7=(5)(-2)+3
$$

(c) $a=11, b=17$.

Solution:

$$
q=0, r=11 \Longrightarrow 11=(17)(0)+11 .
$$

5. Consider the following statement:

$$
\text { If } a \equiv b \quad \bmod n, \text { then } a^{2} \equiv b^{2} \quad \bmod n^{2} .
$$

If the statement is true, give a proof. If it is false, give a counterexample.
Solution: The statement is false. Notice that $1 \equiv 4 \bmod 3$, but $1^{2}=1 \equiv 1$ $\bmod 9$ and $4^{2}=16 \equiv 7 \bmod 9$. There are many other counterexamples you could have chosen.

