Intro to Abstract Algebra	Answer Key
Spring 2020 – March 9	Quiz 6 – Sections 9 & 10
Prof: Keiko Kawamuro – TA: Mr. Camacho	Total: 10 / 10

1. Let G be a permutation group on S, and define a relation \sim on S by 3/3

$$a \sim b$$
 iff $\alpha(a) = b$ for some $\alpha \in G$.

Then \sim is an equivalence relation (you do **not** need to prove this). Find the equivalence classes and a complete set of equivalence class representatives in each of the following special cases:

2. For polynomials f(x) and g(x) with real coefficients, let $f(x) \sim g(x)$ mean 2 / 2 that f'(x) = g'(x) (where the primes denote derivatives). Give a complete set of equivalence class representatives. (A polynomial with real coefficients is an expression of the form $a_0 + a_1x + \cdots + a_nx^n$ were $a_0, a_1, \ldots, a_n \in \mathbb{R}$.)

Proof. Two polynmoials have the same derivative if and only if they are of the same degree and have the same non-constant coefficients. Consider the set

$$S = \{1 + a_1x + a_2x^2 + \dots + a_nx^n : n \in \mathbb{Z}_{\geq 1}, a_i \in \mathbb{R}\}\$$

If $f(x) = b_0 + b_1 x + \dots + b_n x^n$ is any polynomial with real coefficients, then the polynomial

$$g(x) = 1 + b_1 x + b_2 x^2 + \dots + b_n x^n$$

is an element in the set S such that f'(x) = g'(x). Now we need to show that g(x) is a *unique* element of S. So, suppose that

$$h(x) = 1 + c_1 x + c_2 x^2 + \dots + c_m x^m$$

is another element of S such that $f(x) \sim h(x)$, or in other words f'(x) = h'(x). In order for this to be true, it must be that m = n, i.e. f and h must have the same degree. Then, we obtain

$$b_1 + 2b_2x + 3b_3x^2 + \dots + nb_nx^{n-1} = f'(x) = h'(x) = c_1 + 2c_2x + 3c_3x^2 + \dots + nc_nx^{n-1}.$$

But this means that

$$(b_1 - c_1) + 2(b_2 - c_2)x + 3(b_3 - c_3)x^2 + \dots + n(b_n - c_n)x^{n-1} = 0,$$

which implies $(b_i - c_i) = 0$ for all $1 \le i \le n$, or in other words $b_i = c_i$ for all $1 \le i \le n$. Therefore g(x) = h(x). So, the set S is a complete set of equivalence class representatives.

3. There are ten integers x such that -25 < x < 25 and $x \equiv 3 \mod 5$. Find them 1 / 1 all.

Solution: Said another way, these are all the integers between -25 and 25 which are 3 more than multiple of 5. One way to do this problem is to simply pick one number which is 3 more than a multiple of 5, say 13, and then repeatedy add/subtract 5.

$$-22, -17, -12, -7, -2, 3, 8, 13, 18, 23.$$

- 4. For each pair a, b, find the unique integers q and r such that a = bq + r with 3 / 3 $0 \le r < b$.
 - (a) a = 19, b = 5.Solution:

$$q = 3, r = 4 \implies 19 = (5)(3) + 4.$$

(b) a = -7, b = 5.Solution:

$$q = -2, r = 3 \implies -7 = (5)(-2) + 3.$$

(c) *a* = 11, *b* = 17. Solution:

$$q = 0, r = 11 \implies 11 = (17)(0) + 11$$

1 / 1

5. Consider the following statement:

If
$$a \equiv b \mod n$$
, then $a^2 \equiv b^2 \mod n^2$.

If the statement is true, give a proof. If it is false, give a counterexample.

Solution: The statement is false. Notice that $1 \equiv 4 \mod 3$, but $1^2 = 1 \equiv 1 \mod 9$ and $4^2 = 16 \equiv 7 \mod 9$. There are many other counterexamples you could have chosen.