Intro to Abstract Algebra Spring 2020 – March 3 Prof: Keiko Kawamuro – TA: Mr. Camacho Answer Key Quiz 5 – Section 9 Total: 12 / 12

1. If $\mathcal{P} = \{\{1, 4, 5\}, \{2, 3\}\}$, then \mathcal{P} is a partition of $\{1, 2, 3, 4, 5\}$. For the corresponding equivalence relation \sim , which of the following are true? (Circle True or False).

2. Define a relation \sim on the set \mathbb{N} of natural numbers by

$$a \sim b$$
 iff $a = b \cdot 10^k$ for some $k \in \mathbb{Z}$.

Give a complete set of equivalence class representatives.

Solution:

As was mentioned during the quiz, you only needed to give an answer for this one, since it was proven in class. The answer is:

$$\{a \in \mathbb{N} : 10 \ | a\} = \{1, 2, \dots, 9, 11, 12 \dots, 19, 21, 22, \dots\}$$

3. For $x, y \in \mathbb{R}$, let $x \sim y$ mean that xy > 0. Which properties of an equivalence 2/2 relation does \sim satisfy?

Solution:

The relation \sim is not reflexive. We must have $x \sim x$ for all $x \in \mathbb{R}$. This is true for any $x \in \mathbb{R}$ that is not zero. But, $0 \not\sim 0$ since $0 \cdot 0 \not\geq 0$.

Suppose $x, y \in \mathbb{R}$ and $x \sim y$, i.e. xy > 0. Then yx = xy > 0, which means $y \sim x$, and hence \sim is symmetric.

Suppose $x, y, z \in \mathbb{R}$, $x \sim y$, and $y \sim z$. Then xy > 0 and yz > 0. This means that either x, y, z are all negative or all positive. In either case, xz > 0, meaning $x \sim z$, and hence \sim is transitive.

4. How many different equivalence relations are there on a four-element set? 2/2

Solution:

There are 15. Since equivalence relations are in bijection with partitions, here are all 15:

$\{\{a,b,c,d\}\},\$	$\{\{a\}, \{b, c, d\}\},\$	$\{\{b\}, \{a, c, d\}\},\$	$\{\{c\}, \{a, b, d\}\},\$
$\{\{d\}, \{a, b, c\}\},\$	$\{\{a,b\},\{c,d\}\},$	$\{\{a,d\},\{b,c\}\},\$	$\{\{a,c\},\{b,d\}\},$
$\{\{a\},\{b\},\{c\},\{d\}\}$	$\{\{a\}, \{b\}, \{c, d\}\},$	$\{\{a\}, \{c\}, \{b, d\}\},$	$\{\{a\},\{d\},\{b,c\}\},$
$\{\{b\}, \{c\}, \{a, d\}\},\$	$\{\{b\},\{d\},\{a,c\}\},$	$\{\{c\}, \{d\}, \{a, b\}\}.$	

- 5. For points (x_1, y_1) and (x_2, y_2) in a plane with rectangular coordinate system, 2/2 let $(x_1, y_1) \sim (x_2, y_2)$ mean that $x_1 x_2$ is an integer.
 - (a) Prove that \sim is an equivalence relation.

Proof. $(x_1, y_1) \sim (x_1, y_1)$ since $x_1 - x_1 = 0 \in \mathbb{Z}$, so \sim is reflexive. Suppose $(x_1, y_1) \sim (x_2, y_2)$, i.e. $x_1 - x_2 \in \mathbb{Z}$. Then

$$x - 2 - x_1 = -(x_1 - x_2) \in \mathbb{Z}$$

which means $(x_2, y_2) \sim (x_1, y_1)$, so ~ is symmetric.

Suppose $(x_1, y_1) \sim (x_2, y_2)$ and $(x_2, y_2) \sim (x_3, y_3)$, i.e. $x_1 - x_2 \in \mathbb{Z}$ and $x_2 - x_3 \in \mathbb{Z}$. Then

$$x_1 - x_3 = (x_1 - x_2) + (x_2 - x_3) \in \mathbb{Z}$$

since \mathbb{Z} is closed under addition. Hence $(x_1, y_1) \sim (x_3, y_3)$, so \sim is transitive. Since \sim is reflexive, symmetric, and transitive, then it is an equivalence relation.

(b) Give a complete set of equivalence class representatives.

Solution:

Consider the set

$$S = \{ (x, 0) \in \mathbb{R}^2 : x \in [0, 1) \}.$$

For $x \in \mathbb{R}$ let $\lfloor x \rfloor$ denote the largest integer less than or equal to x, (for example, $\lfloor -3.14 \rfloor = -4$ and $\lfloor 10 \rfloor = 10$). Then $x - \lfloor x \rfloor \in [0, 1)$. Now, suppose $(x, y) \in \mathbb{R}^2$. Consider the element $(x - \lfloor x \rfloor, 0) \in S$. Notice

Now, suppose $(x, y) \in \mathbb{R}^2$. Consider the element $(x - \lfloor x \rfloor, 0) \in S$. Notice that

$$x - (x - \lfloor x \rfloor) = \lfloor x \rfloor \in \mathbb{Z},$$

which means $(x, y) \sim (x - \lfloor x \rfloor, 0)$. Suppose (a, 0) is another element of S such that $x - a \in \mathbb{Z}$. Since $0 \le a < 1$, we have

$$x - 1 < x - a \le x.$$

Since x - a is an integer, then x - a must be equal to $\lfloor x \rfloor$, which means $a = x - \lfloor x \rfloor$. Hence S is a complete set of representatives.