Intro to Abstract Algebra
Spring 2020 - March 3
Prof: Keiko Kawamuro - TA: Mr. Camacho

Answer Key Quiz 5 - Section 9

Total: $12 / 12$

1. If $\mathcal{P}=\{\{1,4,5\},\{2,3\}\}$, then \mathcal{P} is a partition of $\{1,2,3,4,5\}$. For the corresponding equivalence relation \sim, which of the following are true? (Circle True or False).
(a) $4 \sim 5$

False
(b) $3 \sim 3$

False
(c) $1 \sim 2$

True False
(d) $5 \sim 1$

False
2. Define a relation \sim on the set \mathbb{N} of natural numbers by

$$
a \sim b \text { iff } a=b \cdot 10^{k} \text { for some } k \in \mathbb{Z} .
$$

Give a complete set of equivalence class representatives.

Solution:

As was mentioned during the quiz, you only needed to give an answer for this one, since it was proven in class. The answer is:

$$
\{a \in \mathbb{N}: 10 \not \subset a\}=\{1,2, \ldots, 9,11,12 \ldots, 19,21,22, \ldots\}
$$

3. For $x, y \in \mathbb{R}$, let $x \sim y$ mean that $x y>0$. Which properties of an equivalence $2 / 2$ relation does \sim satisfy?

Solution:

The relation \sim is not reflexive. We must have $x \sim x$ for all $x \in \mathbb{R}$. This is true for any $x \in \mathbb{R}$ that is not zero. But, $0 \nsim 0$ since $0 \cdot 0 \ngtr 0$.
Suppose $x, y \in \mathbb{R}$ and $x \sim y$, i.e. $x y>0$. Then $y x=x y>0$, which means $y \sim x$, and hence \sim is symmetric.
Suppose $x, y, z \in \mathbb{R}, x \sim y$, and $y \sim z$. Then $x y>0$ and $y z>0$. This means that either x, y, z are all negative or all positive. In either case, $x z>0$, meaning $x \sim z$, and hence \sim is transitive.
4. How many different equivalence relations are there on a four-element set? $2 / 2$

Solution:

There are 15. Since equivalence relations are in bijection with partitions, here are all 15:

$$
\begin{array}{cccc}
\{\{a, b, c, d\}\}, & \{\{a\},\{b, c, d\}\}, & \{\{b\},\{a, c, d\}\}, & \{\{c\},\{a, b, d\}\}, \\
\{\{d\},\{a, b, c\}\}, & \{\{a, b\},\{c, d\}\}, & \{\{a, d\},\{b, c\}\}, & \{\{a, c\},\{b, d\}\}, \\
\{\{a\},\{b\},\{c\},\{d\}\} & \{\{a\},\{b\},\{c, d\}\}, & \{\{a\},\{c\},\{b, d\}\}, & \{\{a\},\{d\},\{b, c\}\}, \\
\{\{b\},\{c\},\{a, d\}\}, & \{\{b\},\{d\},\{a, c\}\}, & \{\{c\},\{d\},\{a, b\}\}, &
\end{array}
$$

5. For points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ in a plane with rectangular coordinate system, $2 / 2$ let $\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right)$ mean that $x_{1}-x_{2}$ is an integer.
(a) Prove that \sim is an equivalence relation.

Proof. $\left(x_{1}, y_{1}\right) \sim\left(x_{1}, y_{1}\right)$ since $x_{1}-x_{1}=0 \in \mathbb{Z}$, so \sim is reflexive.
Suppose $\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right)$, i.e. $x_{1}-x_{2} \in \mathbb{Z}$. Then

$$
x-2-x_{1}=-\left(x_{1}-x_{2}\right) \in \mathbb{Z}
$$

which means $\left(x_{2}, y_{2}\right) \sim\left(x_{1}, y_{1}\right)$, so \sim is symmetric.

Suppose $\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right)$ and $\left(x_{2}, y_{2}\right) \sim\left(x_{3}, y_{3}\right)$, i.e. $x_{1}-x_{2} \in \mathbb{Z}$ and $x_{2}-x_{3} \in \mathbb{Z}$. Then

$$
x_{1}-x_{3}=\left(x_{1}-x_{2}\right)+\left(x_{2}-x_{3}\right) \in \mathbb{Z}
$$

since \mathbb{Z} is closed under addition. Hence $\left(x_{1}, y_{1}\right) \sim\left(x_{3}, y_{3}\right)$, so \sim is transitive. Since \sim is reflexive, symmetric, and transitive, then it is an equivalence relation.
(b) Give a complete set of equivalence class representatives.

Solution:

Consider the set

$$
S=\left\{(x, 0) \in \mathbb{R}^{2}: x \in[0,1)\right\}
$$

For $x \in \mathbb{R}$ let $\lfloor x\rfloor$ denote the largest integer less than or equal to x, (for example, $\lfloor-3.14\rfloor=-4$ and $\lfloor 10\rfloor=10)$. Then $x-\lfloor x\rfloor \in[0,1)$.
Now, suppose $(x, y) \in \mathbb{R}^{2}$. Consider the element $(x-\lfloor x\rfloor, 0) \in S$. Notice that

$$
x-(x-\lfloor x\rfloor)=\lfloor x\rfloor \in \mathbb{Z}
$$

which means $(x, y) \sim(x-\lfloor x\rfloor, 0)$. Suppose $(a, 0)$ is another element of S such that $x-a \in \mathbb{Z}$. Since $0 \leq a<1$, we have

$$
x-1<x-a \leq x
$$

Since $x-a$ is an integer, then $x-a$ must be equal to $\lfloor x\rfloor$, which means $a=x-\lfloor x\rfloor$. Hence S is a complete set of representatives.

