Intro to Abstract AlgebraAnswer KeySpring 2020 - February 25Quiz 4 - Section 8Prof: Keiko Kawamuro - TA: Mr. CamachoTotal: 20 / 20

1. Consider the following square, with lines of symmetry V, H, D_1 , and D_2 : 5 / 5

Note that μ_{180} denotes 180° clockwise rotation, and $\rho_V, \rho_H, \rho_{D_1}, \rho_{D_2}$ denote reflection through the various lines. Compute the following, and draw figures to verify.

Solution:

2. Determine the group of symmetries of the equilateral triangle:

10 / 10

Solution:

Let ρ_T , ρ_U , and ρ_V denote reflection across the lines T, U, V, respectively. There are 3 rotations: $\mu_0, \mu_{120}, \mu_{240}$. Hence the group of symmetries of the equilateral triangle is a group with 6 elements with the following Cayley table:

0	μ_0	μ_{120}	μ_{240}	ρ_T	$ ho_U$	$ ho_V$
μ_0	μ_0	μ_{120}	μ_{240}	ρ_T	$ ho_U$	$ ho_V$
μ_{120}	μ_{120}	μ_{240}	μ_0	$ ho_V$	ρ_T	$ ho_U$
μ_{240}	μ_{240}	μ_0	μ_{120}	$ ho_U$	$ ho_V$	$ ho_T$
$ ho_T$	$ ho_T$	$ ho_U$	$ ho_V$	μ_0	μ_{120}	μ_{240}
$ ho_U$	$ ho_U$	$ ho_V$	ρ_T	μ_{240}	μ_0	μ_{120}
$ ho_V$	$ ho_V$	$ ho_T$	$ ho_U$	μ_{120}	μ_{240}	μ_0

3. Determine the group of symmetries of the following figure:

Solution:

The only rotation is the 0-degree rotation, μ_0 , and the only line of symmetry is a vertical line in the middle of the rectangle. Call the reflection across this line ρ_V . Therefore, the group of symmetries of the figure is a group with two elements, with the following Cayley table:

$$\begin{array}{c|c} \circ & \mu_0 & \rho_V \\ \hline \mu_0 & \mu_0 & \rho_V \\ \rho_V & \rho_V & \mu_0 \end{array}$$