Intro to Abstract Algebra
Spring 2020 - February 25
Prof: Keiko Kawamuro - TA: Mr. Camacho

Answer Key
Quiz 4 - Section 8
Total: $20 / 20$

1. Consider the following square, with lines of symmetry V, H, D_{1}, and D_{2} : $5 / 5$

Note that μ_{180} denotes 180° clockwise rotation, and $\rho_{V}, \rho_{H}, \rho_{D_{1}}, \rho_{D_{2}}$ denote reflection through the various lines. Compute the following, and draw figures to verify.

Solution:

(a) $\mu_{180} \circ \rho_{V}=\rho_{H}$

(b) $\rho_{V} \circ \mu_{180}=\rho_{H}$

2. Determine the group of symmetries of the equilateral triangle:

Solution:

Let ρ_{T}, ρ_{U}, and ρ_{V} denote reflection across the lines T, U, V, respectively. There are 3 rotations: $\mu_{0}, \mu_{120}, \mu_{240}$. Hence the group of symmetries of the equilateral triangle is a group with 6 elements with the following Cayley table:

\circ	μ_{0}	μ_{120}	μ_{240}	ρ_{T}	ρ_{U}	ρ_{V}
μ_{0}	μ_{0}	μ_{120}	μ_{240}	ρ_{T}	ρ_{U}	ρ_{V}
μ_{120}	μ_{120}	μ_{240}	μ_{0}	ρ_{V}	ρ_{T}	ρ_{U}
μ_{240}	μ_{240}	μ_{0}	μ_{120}	ρ_{U}	ρ_{V}	ρ_{T}
ρ_{T}	ρ_{T}	ρ_{U}	ρ_{V}	μ_{0}	μ_{120}	μ_{240}
ρ_{U}	ρ_{U}	ρ_{V}	ρ_{T}	μ_{240}	μ_{0}	μ_{120}
ρ_{V}	ρ_{V}	ρ_{T}	ρ_{U}	μ_{120}	μ_{240}	μ_{0}

3. Determine the group of symmetries of the following figure:

Solution:

The only rotation is the 0 -degree rotation, μ_{0}, and the only line of symmetry is a vertical line in the middle of the rectangle. Call the reflection across this line ρ_{V}. Therefore, the group of symmetries of the figure is a group with two elements, with the following Cayley table:

\circ	μ_{0}	ρ_{V}
μ_{0}	μ_{0}	ρ_{V}
ρ_{V}	ρ_{V}	μ_{0}

