Intro to Abstract Algebra	Answer Key
Spring 2020 – February 11	Quiz $3 - $ Section 6
Prof: Keiko Kawamuro – TA: Mr. Camacho	Total: 10 / 10

2/21. Write each of the following as a single cycle or a product of disjoint cycles:

(a) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 6 & 4 & 5 & 3 & 2 \end{pmatrix}$

Solution: (2 6)(3 4 5)

(b) $(1\ 2\ 3)^{-1}(2\ 3)(1\ 2\ 3)$

Solution: $(1\ 2\ 3)^{-1}(2\ 3)(1\ 2\ 3) = (1\ 3\ 2)(2\ 3)(1\ 2\ 3) = (1\ 2)$

- (a) Write $(a_1a_2\cdots a_k)^{-1}$ in cycle notation (without the symbol for inverse). 2/22.Solution: $(a_1a_2\cdots a_k)^{-1} = (a_ka_{k-1}a_{k-2}\cdots a_3a_2a_1).$
 - (b) For which values of k will every k-cycle be its own inverse? **Solution:** For k = 1 and k = 2, every k cycle will be its own inverse. Although you didn't need to provide an explanation on the quiz, here is why:

Let $\alpha = (a_1 a_2 \cdots a_k)$ be a k-cycle in S_n , where evidently $k \leq n$. Then

$$\alpha \circ \alpha = (a_1 a_2 \cdots a_k)(a_1 a_2 \cdots a_k) = \begin{cases} (a_1 a_3 \cdots a_{k-2} a_k a_2 a_4 \cdots a_{k-3} a_{k-1}) & \text{if } k \text{ is odd} \\ (a_1 a_3 \cdots a_{k-3} a_{k-1})(a_2 a_4 \cdots a_{k-2} a_k) & \text{if } k \text{ is even} \end{cases}$$

Note that these are the ways we write $\alpha \circ \alpha$ uniquely as a product of disjoint cycles.

Now if α is its own inverse, then $\alpha \circ \alpha = (1)$. So if k is odd, then

$$(1) = \alpha \circ \alpha = (a_1 a_3 \cdots a_{k-2} a_k a_2 a_4 \cdots a_{k-3} a_{k-1}),$$

which, by uniqueness of cycle decomposition, is only possible if k = 1. Remember that we can write the identity (1) in *n* different ways:

$$(1) = (1)(2) = (1)(2)(3) = \dots = (1)(2)(3) \dots (n).$$

If k is even, then

$$(1)(2) = (1) = \alpha \circ \alpha = (a_1 a_3 \cdots a_{k-3} a_{k-1})(a_2 a_4 \cdots a_{k-2} a_k).$$

which, by uniqueness of cycle decomposition, is only possible if k = 2.

3. Let $\sigma \in S_n$ be a 3-cycle. How many conjugates does σ have? (You may use the 2/2) fact that any two k-cycles in S_n are conjugate to each other.)

Proof. By the hint, we know that any conjugate of a 3-cycle is also a 3-cycle. Hence, we need to count the number of 3-cycles in S_n . Consider an arbitrary 3-cycle $(a_1a_2a_3) \in S_n$. Then, we have *n* choices for a_1 , n-1 choices for a_2 , and n-2 choices for a_3 . So far, we've counted n(n-1)(n-2) 3-cycles in S_n . However, we have counted some cycles too many times: We know that

$$(a_1a_2a_3) = (a_2a_3a_1) = (a_3a_1a_2),$$

and hence there are 3 ways to write the same 3-cycle. Therefore, there are $\frac{n(n-1)(n-2)}{3}$ 3-cycles in S_n .

- 4. Assume that α and β are dijoint cycles representing elements of S_n , say $\alpha = 4 / 4$ $(a_1 a_2 \cdots a_s)$ and $\beta = (b_1 b_2 \cdots b_t)$ with $a_i \neq b_j$ for all i and j.
 - (a) Compute $(\alpha \circ \beta)(a_k)$ and $(\beta \circ \alpha)(a_k)$ for $1 \le k \le s$. [Here $(\alpha \circ \beta)(a_k)$ denotes the image of a_k under the mapping $\alpha \circ \beta$; that is, (a_k) is not 1-cycle.] Solution:

$$(\alpha \circ \beta)(a_k) = \alpha(\beta(a_k))$$

= $\alpha(a_k)$. (since β fixes a_k .)
 $(\beta \circ \alpha)(a_k) = \beta(\alpha(a_k))$
= $\alpha(a_k)$. (since β fixes $\alpha(a_k)$.)

(b) Compute $(\alpha \circ \beta)(b_k)$ and $(\beta \circ \alpha)(b_k)$ for $1 \le k \le t$. Solution:

$$(\alpha \circ \beta)(b_k) = \alpha(\beta(b_k))$$

= $\beta(b_k)$. (since α fixes $\beta(b_k)$.)
 $(\beta \circ \alpha)(b_k) = \beta(\alpha(b_k))$
= $\beta(b_k)$. (since α fixes b_k .)

(c) Compute $(\alpha \circ \beta)(m)$ and $(\beta \circ \alpha)(m)$ for $1 \le m \le n$ with $m \ne a_i$ and $m \ne b_j$ for all i and j.

Solution:

$$(\alpha \circ \beta)(m) = \alpha(\beta(m))$$

= $\alpha(m)$ (since β fixes m .)
= m . (since α fixes m .)
 $(\beta \circ \alpha)(m) = \beta(\alpha(m))$
= $\beta(m)$ (since α fixes m .)
= m . (since β fixes m .)

(d) What do parts (a), (b), (c), taken together, prove about the relationship between $\alpha \circ \beta$ and $\beta \circ \alpha$?

Answer: We showed for any number ℓ , that $(\alpha \circ \beta)(\ell) = (\beta \circ \alpha)(\ell)$. In other words, $\alpha \circ \beta$ and $\beta \circ \alpha$ are really the same map: $\alpha \circ \beta = \beta \circ \alpha$. Therefore, we proved that when two cycles are disjoint, they commute with each other.