1. Write each of the following as a single cycle or a product of disjoint cycles:
(a) $\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 6 & 4 & 5 & 3 & 2\end{array}\right)$

Solution: $(26)(345)$
(b) $\left(\begin{array}{ll}1 & 2\end{array}\right)^{-1}(23)(123)$

Solution: $\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)^{-1}\left(\begin{array}{ll}2 & 3\end{array}\right)\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)=\left(\begin{array}{lll}1 & 3 & 2\end{array}\right)(23)\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)=\left(\begin{array}{ll}1 & 2\end{array}\right)$
2. (a) Write $\left(a_{1} a_{2} \cdots a_{k}\right)^{-1}$ in cycle notation (without the symbol for inverse). $2 / 2$

Solution: $\left(a_{1} a_{2} \cdots a_{k}\right)^{-1}=\left(a_{k} a_{k-1} a_{k-2} \cdots a_{3} a_{2} a_{1}\right)$.
(b) For which values of k will every k-cycle be its own inverse?

Solution: For $k=1$ and $k=2$, every k cycle will be its own inverse.
Although you didn't need to provide an explanation on the quiz, here is why:
Let $\alpha=\left(a_{1} a_{2} \cdots a_{k}\right)$ be a k-cycle in S_{n}, where evidently $k \leq n$. Then
$\alpha \circ \alpha=\left(a_{1} a_{2} \cdots a_{k}\right)\left(a_{1} a_{2} \cdots a_{k}\right)= \begin{cases}\left(a_{1} a_{3} \cdots a_{k-2} a_{k} a_{2} a_{4} \cdots a_{k-3} a_{k-1}\right) & \text { if } k \text { is odd } \\ \left(a_{1} a_{3} \cdots a_{k-3} a_{k-1}\right)\left(a_{2} a_{4} \cdots a_{k-2} a_{k}\right) & \text { if } k \text { is even }\end{cases}$
Note that these are the ways we write $\alpha \circ \alpha$ uniquely as a product of disjoint cycles.
Now if α is its own inverse, then $\alpha \circ \alpha=(1)$. So if k is odd, then

$$
(1)=\alpha \circ \alpha=\left(a_{1} a_{3} \cdots a_{k-2} a_{k} a_{2} a_{4} \cdots a_{k-3} a_{k-1}\right),
$$

which, by uniqueness of cycle decomposition, is only possible if $k=1$. Remember that we can write the identity (1) in n different ways:

$$
(1)=(1)(2)=(1)(2)(3)=\cdots=(1)(2)(3) \cdots(n) .
$$

If k is even, then

$$
(1)(2)=(1)=\alpha \circ \alpha=\left(a_{1} a_{3} \cdots a_{k-3} a_{k-1}\right)\left(a_{2} a_{4} \cdots a_{k-2} a_{k}\right) .
$$

which, by uniqueness of cycle decomposition, is only possible if $k=2$.
3. Let $\sigma \in S_{n}$ be a 3 -cycle. How many conjugates does σ have? (You may use the $2 / 2$ fact that any two k-cycles in S_{n} are conjugate to each other.)

Proof. By the hint, we know that any conjugate of a 3 -cycle is also a 3 -cycle. Hence, we need to count the number of 3 -cycles in S_{n}. Consider an arbitrary 3 -cycle $\left(a_{1} a_{2} a_{3}\right) \in S_{n}$. Then, we have n choices for $a_{1}, n-1$ choices for a_{2}, and $n-2$ choices for a_{3}. So far, we've counted $n(n-1)(n-2) 3$-cycles in S_{n}. However, we have counted some cycles too many times: We know that

$$
\left(a_{1} a_{2} a_{3}\right)=\left(a_{2} a_{3} a_{1}\right)=\left(a_{3} a_{1} a_{2}\right)
$$

and hence there are 3 ways to write the same 3 -cycle. Therefore, there are $\frac{n(n-1)(n-2)}{3} 3$-cycles in S_{n}.
4. Assume that α and β are dijoint cycles representing elements of S_{n}, say $\alpha=4 / 4$ $\left(a_{1} a_{2} \cdots a_{s}\right)$ and $\beta=\left(b_{1} b_{2} \cdots b_{t}\right)$ with $a_{i} \neq b_{j}$ for all i and j.
(a) Compute $(\alpha \circ \beta)\left(a_{k}\right)$ and $(\beta \circ \alpha)\left(a_{k}\right)$ for $1 \leq k \leq s$. [Here $(\alpha \circ \beta)\left(a_{k}\right)$ denotes the image of a_{k} under the mapping $\alpha \circ \beta$; that is, $\left(a_{k}\right)$ is not 1-cycle.]

Solution:

$$
\begin{array}{rlrl}
(\alpha \circ \beta)\left(a_{k}\right) & =\alpha\left(\beta\left(a_{k}\right)\right) & \\
& =\alpha\left(a_{k}\right) . & & \left.\quad \text { (since } \beta \text { fixes } a_{k} .\right) \\
(\beta \circ \alpha)\left(a_{k}\right) & =\beta\left(\alpha\left(a_{k}\right)\right) \\
& =\alpha\left(a_{k}\right) . & \left.\quad \text { (since } \beta \text { fixes } \alpha\left(a_{k}\right) .\right)
\end{array}
$$

(b) Compute $(\alpha \circ \beta)\left(b_{k}\right)$ and $(\beta \circ \alpha)\left(b_{k}\right)$ for $1 \leq k \leq t$.

Solution:

$$
\begin{array}{rlrl}
(\alpha \circ \beta)\left(b_{k}\right) & =\alpha\left(\beta\left(b_{k}\right)\right) & \\
& =\beta\left(b_{k}\right) . & & \\
(\beta \circ \alpha)\left(b_{k}\right) & =\beta\left(\alpha\left(b_{k}\right)\right) & & \\
& =\beta\left(b_{k}\right) . & & \text { (since } \left.\alpha \text { fixes } \beta\left(b_{k}\right) .\right) \\
\left(\text { fixes } b_{k} .\right)
\end{array}
$$

(c) Compute $(\alpha \circ \beta)(m)$ and $(\beta \circ \alpha)(m)$ for $1 \leq m \leq n$ with $m \neq a_{i}$ and $m \neq b_{j}$ for all i and j.

Solution:

$$
\begin{aligned}
(\alpha \circ \beta)(m) & =\alpha(\beta(m)) & & \\
& =\alpha(m) & & (\text { since } \beta \text { fixes } m .) \\
& =m . & & (\text { since } \alpha \text { fixes } m .) \\
(\beta \circ \alpha)(m) & =\beta(\alpha(m)) & & \\
& =\beta(m) & & \text { (since } \alpha \text { fixes } m .) \\
& =m . & & \text { (since } \beta \text { fixes } m .)
\end{aligned}
$$

(d) What do parts (a), (b), (c), taken together, prove about the relationship between $\alpha \circ \beta$ and $\beta \circ \alpha$?
Answer: We showed for any number ℓ, that $(\alpha \circ \beta)(\ell)=(\beta \circ \alpha)(\ell)$. In other words, $\alpha \circ \beta$ and $\beta \circ \alpha$ are really the same map: $\alpha \circ \beta=\beta \circ \alpha$. Therefore, we proved that when two cycles are disjoint, they commute with each other.

