Intro to Abstract Algebra
Answer Key
Spring 2020 - February 4
Quiz 2 - Section 5
Prof: Keiko Kawamuro - TA: Mr. Camacho
Show all of your work in the space provided.

1. Determine if the following set of numbers forms a group with the given operation: $2 / 2$

$$
(\{-1,0,1\},+)
$$

Proof. $(\{-1,0,1\},+)$ is not a group, because the set is not closed under the " + " operation:

$$
1+1=2 \notin\{-1,0,1\} .
$$

2. Verify that $\left\{2^{m}: m \in \mathbb{Z}\right\}$ is a group with respect to multiplicaiton. Identify12/12 clearly the properties of \mathbb{Z} (and/or \mathbb{R}) that you use.

Proof. $\left\{2^{m}: m \in \mathbb{Z}\right\}$ is a group. For associativity,

$$
\left(2^{\ell} \cdot 2^{m}\right) \cdot 2^{n}=2^{\ell} \cdot\left(2^{m} \cdot 2^{n}\right) \forall \ell, m, n \in \mathbb{Z}
$$

because

$$
\begin{aligned}
\text { LHS } & =2^{\ell+m} \cdot 2^{n} \\
& =2^{(\ell+m)+n} \\
& \left.=2^{\ell+(m+n)} \quad \quad \text { (by associativity of }(\mathbb{Z},+)\right) \\
& =2^{\ell} \cdot\left(2^{m} \cdot 2^{n}\right) \\
& =\text { RHS. }
\end{aligned}
$$

The identity is $2^{0} \in\left\{2^{m}: m \in \mathbb{Z}\right\}$, because for all $m \in \mathbb{Z}$,

$$
\begin{aligned}
2^{0} \cdot 2^{m} & =2^{0+m} \\
& =2^{m} \quad(\text { since } 0 \text { is the identity of }(\mathbb{Z},+), \text { we have } 0+m=m=m+0) \\
& =2^{m+0} \\
& =2^{m} \cdot 2^{0} .
\end{aligned}
$$

The element 2^{-m} is in the set, and serves as the inverse of 2^{m}, because

$$
\begin{aligned}
2^{m} \cdot 2^{-m} & =2^{m+(-m)} \\
& =2^{0} \quad(-m \text { is the inverse of } m \text { in }(\mathbb{Z},+), \text { so } m+(-m)=0=(-m)+m) \\
& =2^{(-m)+m} \\
& =2^{-m} \cdot 2^{m}
\end{aligned}
$$

3. Let S be a nonempty set, let G be a group, and let G^{S} denote the set of all12/12 mappings from S to G . Find an operation on G^{S} that will yeild a group.

Proof. Let $f, g \in G^{S}$. Define an operation $*$ on G^{S} by

$$
(f * g)(s)=f(s) *_{G} g(s) \text { for all } s \in S
$$

where $*_{G}$ denotes the operation for the group G. Then $f * g \in G^{S}$. We need to check that $\left(G^{S}, *\right)$ yeilds a group.
For associativity, $(f * g) * h=f *(g * h)$ holds for all $f, h, g \in G^{S}$ because by the associativity of the group $\left(G, *_{G}\right)$,

$$
\left(f(s) *_{G} g(s)\right) *_{G} h(s)=f(s) *_{G}\left(g(s) *_{G} h(s)\right)
$$

for all $s \in S$.
Let id : $S \rightarrow G$ be given by $s \mapsto 1_{G}$ for all $s \in S$, where 1_{G} is the identity of G. Then id $\in G^{S}$, and id $* f=f=f *$ id for all $f \in G^{S}$ because for all $s \in S$,

$$
\begin{aligned}
(\mathrm{id} * f)(s) & =\operatorname{id}(s) *_{G} f(s) \\
& =1_{G} *_{G} f(s) \\
& =f(s) \\
& =f(s) *_{G} 1_{G} \\
& =f(s) *_{G} \operatorname{id}(s) \\
& =(f * \mathrm{id})(s)
\end{aligned}
$$

Finally, if $f \in G^{S}$, let $f^{-1}: S \rightarrow G$ be given by $s \mapsto(f(s))^{-1}$ for all $s \in S$. Then $f^{-1} \in G^{S}$, and $f * f^{-1}=\mathrm{id}=f^{-1} * f$ because for all $s \in S$,

$$
\begin{aligned}
\left(f^{-1} * f\right)(s) & =f^{-1}(s) *_{G} f(s) \\
& =(f(s))^{-1} *_{G} f(s) \\
& =1_{G} \\
& =f(s) *_{G}(f(s))^{-1} \\
& =f(s) *_{G} f^{-1}(s) \\
& =\left(f * f^{-1}\right)(s) .
\end{aligned}
$$

