Intro to Abstract Algebra Spring 2020 – February 4 Prof: Keiko Kawamuro – TA: Mr. Camacho Answer Key Quiz 2 – Section 5 Total: 26 / 26

Show all of your work in the space provided.

1. Determine if the following set of numbers forms a group with the given operation: 2/2

$$(\{-1,0,1\},+)$$

Proof. $(\{-1, 0, 1\}, +)$ is not a group, because the set is not closed under the "+" operation:

$$1 + 1 = 2 \notin \{-1, 0, 1\}.$$

2. Verify that $\{2^m : m \in \mathbb{Z}\}$ is a group with respect to multiplication. Identify 12 / 12 clearly the properties of \mathbb{Z} (and/or \mathbb{R}) that you use.

Proof. $\{2^m : m \in \mathbb{Z}\}$ is a group. For associativity,

$$(2^{\ell} \cdot 2^m) \cdot 2^n = 2^{\ell} \cdot (2^m \cdot 2^n) \ \forall \ell, m, n \in \mathbb{Z}$$

because

LHS =
$$2^{\ell+m} \cdot 2^n$$

= $2^{(\ell+m)+n}$
= $2^{\ell+(m+n)}$ (by associativity of $(\mathbb{Z}, +)$)
= $2^{\ell} \cdot (2^m \cdot 2^n)$
= RHS.

The identity is $2^0 \in \{2^m : m \in \mathbb{Z}\}$, because for all $m \in \mathbb{Z}$,

$$2^{0} \cdot 2^{m} = 2^{0+m}$$

$$= 2^{m} \qquad (\text{since 0 is the identity of } (\mathbb{Z}, +), \text{ we have } 0 + m = m = m + 0)$$

$$= 2^{m+0}$$

$$= 2^{m} \cdot 2^{0}.$$

The element 2^{-m} is in the set, and serves as the inverse of 2^m , because

$$2^{m} \cdot 2^{-m} = 2^{m+(-m)}$$

= 2⁰ (-m is the inverse of m in (Z, +), so m + (-m) = 0 = (-m) + m)
= 2^{(-m)+m}
= 2^{-m} · 2^m.

3. Let S be a nonempty set, let G be a group, and let G^S denote the set of all 2/12 mappings from S to G. Find an operation on G^S that will yield a group.

Proof. Let $f, g \in G^S$. Define an operation * on G^S by

$$(f * g)(s) = f(s) *_G g(s)$$
 for all $s \in S$,

where $*_G$ denotes the operation for the group G. Then $f * g \in G^S$. We need to check that $(G^S, *)$ yields a group.

For associativity, (f * g) * h = f * (g * h) holds for all $f, h, g \in G^S$ because by the associativity of the group $(G, *_G)$,

$$(f(s) *_G g(s)) *_G h(s) = f(s) *_G (g(s) *_G h(s))$$

for all $s \in S$.

Let $id: S \to G$ be given by $s \mapsto 1_G$ for all $s \in S$, where 1_G is the identity of G. Then $id \in G^S$, and id * f = f = f * id for all $f \in G^S$ because for all $s \in S$,

$$(\operatorname{id} *f)(s) = \operatorname{id}(s) *_G f(s)$$
$$= 1_G *_G f(s)$$
$$= f(s)$$
$$= f(s) *_G 1_G$$
$$= f(s) *_G \operatorname{id}(s)$$
$$= (f * \operatorname{id})(s)$$

Finally, if $f \in G^S$, let $f^{-1}: S \to G$ be given by $s \mapsto (f(s))^{-1}$ for all $s \in S$. Then $f^{-1} \in G^S$, and $f * f^{-1} = \mathrm{id} = f^{-1} * f$ because for all $s \in S$,

$$(f^{-1} * f)(s) = f^{-1}(s) *_G f(s)$$

= $(f(s))^{-1} *_G f(s)$
= 1_G
= $f(s) *_G (f(s))^{-1}$
= $f(s) *_G f^{-1}(s)$
= $(f * f^{-1})(s).$