Intro to Abstract Algebra Spring 2020 – January 28 Mr. Camacho Answer Key Quiz 1 – Section 5 Total: 15 / 15

Show all of your work in the space provided.

1. Let $a, b \in \mathbb{R}$ with $a \neq 0$. Let A denote the set of mappings $\alpha_{a,b} : \mathbb{R} \to \mathbb{R}$ defined 9 / 9 by $\alpha_{a,b}(x) = ax + b$ for each $x \in \mathbb{R}$. Show that (A, \circ) where \circ is the composition operation, is a group.

Proof. First, note that for all $a, a', b, b' \in \mathbb{R}$ with $a, a' \neq 0$, and for all $x \in \mathbb{R}$, we have

$$(\alpha_{a',b'} \circ \alpha_{a,b})(x) = a'(ax+b) + b' = \alpha_{a'a,a'b+b'}(x).$$

In other words $\alpha_{a',b'} \circ \alpha_{a,b} = \alpha_{a'a,a'b+b'}$.

To show that the set A is a group with the operation \circ , we must show that this operation is *associative*, that there exists an element in A that serves as an *identity*, and that each element in A has an *inverse*.

For associativity, we have

$$\alpha_{a'',b''} \circ (\alpha_{a',b'} \circ \alpha_{a,b}) = \alpha_{a'',b''} \circ \alpha_{a'a,a'b+b'}$$
$$= \alpha_{a''a'a,a''(a'b+b')+b''},$$

and on the other hand, we have

$$(\alpha_{a'',b''} \circ \alpha_{a',b'}) \circ \alpha_{a,b} = \alpha_{a''a',a''b'+b''} \circ \alpha_{a,b}$$
$$= \alpha_{a''a'a,a''(a'b+b')+b''},$$

showing associativity.

The element $\alpha_{1,0} \in A$ serves as an identity under the operation \circ , since

$$\alpha_{1,0} \circ \alpha_{a,b} = \alpha_{1 \cdot a, 1 \cdot b+0} = \alpha_{a,b}$$
$$\alpha_{a,b} \circ \alpha_{1,0} = \alpha_{a \cdot 1, a \cdot 0+b} = \alpha_{a,b}.$$

Finally, if $\alpha_{a,b} \in A$, the element $\alpha_{a^{-1},-ba^{-1}}$ is such that

$$\alpha_{a,b} \circ \alpha_{a^{-1},-ba^{-1}} = \alpha_{aa^{-1},-aba^{-1}+b} = \alpha_{1,0}$$

$$\alpha_{a^{-1},-ba^{-1}} \circ \alpha_{a,b} = \alpha_{a^{-1}a,a^{-1}b-ba^{-1}} = \alpha_{1,0}.$$

which means $(\alpha_{a,b})^{-1} = \alpha_{a^{-1},-ba^{-1}}$, and hence each element in A has an inverse. Therefore, the set A, together with the operation \circ , defines a group. 2. Let $GL(2,\mathbb{R})$ be the set of 2×2 real matrices with non-zero determinant. Show 6 / 6that $GL(2,\mathbb{R})$ with matrix multiplication operation is a group. (No need to show associativity.)

Proof. We only need to show that $GL(2,\mathbb{R})$ (together with the operation of matrix multiplication) has an identity element, and that each element in $GL(2,\mathbb{R})$ has an inverse.

First, the element $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ serves as the identity element for $GL(2, \mathbb{R})$, since

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

and

for all
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL(2, \mathbb{R}).$$

Next, if $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL(2, \mathbb{R})$, then the element

$$\frac{1}{ad-bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

is such that

$$\frac{1}{ad-bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \frac{1}{ad-bc} \begin{pmatrix} ad-bc & 0 \\ 0 & ad-bc \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix},$$

and similarly,

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{bmatrix} 1 \\ ad - bc \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \end{bmatrix} = \frac{1}{ad - bc} \begin{pmatrix} ad - bc & 0 \\ 0 & ad - bc \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

However, we need to check that the element $\frac{1}{ad-bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$ is in fact an element of $GL(2,\mathbb{R})$. We need to check that this element has nonzero determinant. So,

$$\det \begin{bmatrix} \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \end{bmatrix} = \frac{1}{ad - bc} \det \begin{bmatrix} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \end{bmatrix} = \frac{1}{ad - bc} (ad - bc) = 1.$$

Hence, $\frac{1}{ad-bc}\begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \in GL(2,\mathbb{R})$, which means $\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad-bc}\begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$, completing the proof that $GL(2,\mathbb{R})$ is a group.