Show all of your work in the space provided.

1. Let $a, b \in \mathbb{R}$ with $a \neq 0$. Let A denote the set of mappings $\alpha_{a, b}: \mathbb{R} \rightarrow \mathbb{R}$ defined by $\alpha_{a, b}(x)=a x+b$ for each $x \in \mathbb{R}$. Show that (A, \circ) where \circ is the composition operation, is a group.

Proof. First, note that for all $a, a^{\prime}, b, b^{\prime} \in \mathbb{R}$ with $a, a^{\prime} \neq 0$, and for all $x \in \mathbb{R}$, we have

$$
\left(\alpha_{a^{\prime}, b^{\prime}} \circ \alpha_{a, b}\right)(x)=a^{\prime}(a x+b)+b^{\prime}=\alpha_{a^{\prime} a, a^{\prime} b+b^{\prime}}(x)
$$

In other words $\alpha_{a^{\prime}, b^{\prime}} \circ \alpha_{a, b}=\alpha_{a^{\prime} a, a^{\prime} b+b^{\prime}}$.
To show that the set A is a group with the operation \circ, we must show that this operation is associative, that there exists an element in A that serves as an identity, and that each element in A has an inverse.
For associativity, we have

$$
\begin{aligned}
\alpha_{a^{\prime \prime}, b^{\prime \prime}} \circ\left(\alpha_{a^{\prime}, b^{\prime}} \circ \alpha_{a, b}\right) & =\alpha_{a^{\prime \prime}, b^{\prime \prime}} \circ \alpha_{a^{\prime} a, a^{\prime} b+b^{\prime}} \\
& =\alpha_{a^{\prime \prime} a^{\prime} a, a^{\prime \prime}\left(a^{\prime} b+b^{\prime}\right)+b^{\prime \prime}}
\end{aligned}
$$

and on the other hand, we have

$$
\begin{aligned}
\left(\alpha_{a^{\prime \prime}, b^{\prime \prime}} \circ \alpha_{a^{\prime}, b^{\prime}}\right) \circ \alpha_{a, b} & =\alpha_{a^{\prime \prime} a^{\prime}, a^{\prime \prime} b^{\prime}+b^{\prime \prime}} \circ \alpha_{a, b} \\
& =\alpha_{a^{\prime \prime} a^{\prime} a, a^{\prime \prime}\left(a^{\prime} b+b^{\prime}\right)+b^{\prime \prime}}
\end{aligned}
$$

showing associativity.
The element $\alpha_{1,0} \in A$ serves as an identity under the operation \circ, since

$$
\begin{aligned}
& \alpha_{1,0} \circ \alpha_{a, b}=\alpha_{1 \cdot a, 1 \cdot b+0}=\alpha_{a, b} \\
& \alpha_{a, b} \circ \alpha_{1,0}=\alpha_{a \cdot 1, a \cdot 0+b}=\alpha_{a, b} .
\end{aligned}
$$

Finally, if $\alpha_{a, b} \in A$, the element $\alpha_{a^{-1},-b a^{-1}}$ is such that

$$
\begin{aligned}
\alpha_{a, b} \circ \alpha_{a^{-1},-b a^{-1}} & =\alpha_{a a^{-1},-a b a^{-1}+b}=\alpha_{1,0} \\
\alpha_{a^{-1},-b a^{-1}} \circ \alpha_{a, b} & =\alpha_{a^{-1} a, a^{-1} b-b a^{-1}}=\alpha_{1,0} .
\end{aligned}
$$

which means $\left(\alpha_{a, b}\right)^{-1}=\alpha_{a^{-1},-b a^{-1}}$, and hence each element in A has an inverse. Therefore, the set A, together with the operation \circ, defines a group.
2. Let $G L(2, \mathbb{R})$ be the set of 2×2 real matrices with non-zero determinant. Show that $G L(2, \mathbb{R})$ with matrix multiplication operation is a group. (No need to show associativity.)

Proof. We only need to show that $G L(2, \mathbb{R})$ (together with the operation of matrix multiplication) has an identity element, and that each element in $G L(2, \mathbb{R})$ has an inverse.
First, the element $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ serves as the identity element for $G L(2, \mathbb{R})$, since

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

and

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

for all $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in G L(2, \mathbb{R})$.
Next, if $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in G L(2, \mathbb{R})$, then the element

$$
\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

is such that

$$
\begin{aligned}
\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) & =\frac{1}{a d-b c}\left(\begin{array}{cc}
a d-b c & 0 \\
0 & a d-b c
\end{array}\right) \\
& =\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),
\end{aligned}
$$

and similarly,

$$
\begin{aligned}
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left[\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)\right] & =\frac{1}{a d-b c}\left(\begin{array}{cc}
a d-b c & 0 \\
0 & a d-b c
\end{array}\right) \\
& =\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) .
\end{aligned}
$$

However, we need to check that the element $\frac{1}{a d-b c}\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right)$ is in fact an element of $G L(2, \mathbb{R})$. We need to check that this element has nonzero determinant. So,

$$
\operatorname{det}\left[\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)\right]=\frac{1}{a d-b c} \operatorname{det}\left[\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)\right]=\frac{1}{a d-b c}(a d-b c)=1
$$

Hence, $\frac{1}{a d-b c}\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right) \in G L(2, \mathbb{R})$, which means $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right)$, completing the proof that $G L(2, \mathbb{R})$ is a group.

