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1 General Topology/Algebraic Topology

1.1 “Basics”

1. Iowa Qual, Fall 2005

Let RP (n) be the quotient space obtained from Rn+1 \ {0} under the equivalence
relation, that two points are equivalent if they are scalar multiples of one another.
Prove that RP (n) is second countable, Hausdorff, and compact.

Proof. Write Rn+1
∗ in place of Rn+1 \ {0}. Let q : Rn+1

∗ → RP (n) be the quotient
map, and denote equivalence classes in RP (n) by brackets: [x].

We first show that the quotient map is open. Consider the maps fλ : Rn+1
∗ →

Rn+1
∗ , fλ(x) = λx where λ ∈ Rn+1

∗ . Notice that fλ is a homeomorphism since it has
inverse f1/λ, and both fλand f1/λ have component functions which are linear, and
hence are continuous. In particular, fλ is open. Now, let U ⊆ Rn+1

∗ be open. We
want to show that q(U) is open. By definition of the quotient topology, q(U) is open
if q−1(q(U) is open. Notice that

q−1(q(U)) = q−1

(⋃
x∈U

[x]

)
=
⋃
x∈U

q−1 ([x]) =
⋃
x∈U

λ∈Rn+1
∗

λx =
⋃

λ∈Rn+1
∗

fλ(U),

and so, being the union of open sets, q−1(q(U)) is open.

Now recall that Rn+1 is second countable, with countable basis consisting of all
products of intervals with rational endpoints, call it {Ui}. Then {q(Ui)} is a countable
basis for RP (n).

Since the quotient map is open, the quotient space is Hausdorff if and only if the
defining relation is closed. So, define

R = {(x, y) ∈ Rn+1
∗ × Rn+1

∗ | ∃λ ∈ Rn+1
∗ such that λx = y}.

Now (x0, . . . , xn, y0, . . . , yn) = (x, y) ∈ R precisely when det

[
x0 · · · xn
y0 · · · yn

]
= 0, since

the first row is a multiple of the second. For i < j, where i, j ∈ {0, . . . , n}, define maps

Di,j(x, y) = det

[
xi xj
yi yj

]
.

Since the determinant is continuous (since it is a polynomial in the global coordinates
of Rn+1), we get a continuous map

f(x, y) =
∑

0≤i<j≤n

Di,j(x, y).

Since R = f−1 ({0}), then R is closed, being the preimage of a closed set under a
continuous map.

Finally, notice that for [x] ∈ RP (n), we can find x′ ∈ Sn such that [x] = [x′]
since we can take λ = 1/||x||, and x′ = λx. So, the restriction q|Sn is a surjection
onto RP (n), and since Sn is compact and q is continuous, then RP (n) = q(Sn) is
compact.
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2. Iowa Qual, Fall 2006

Define the uniform and box topologies on a product of topological spaces. Let
X = RJ be the product of a countable number of copies of the real numbers. Prove
that the product, uniform, and box topologies yield three distinct, non-homeomorphic
topologies on X.

Proof. Given {Xα}, a collection of topological spaces, the box topology on X :=
∏
αXα

consists of basis elements of the form
∏
α Uα, where Uα ⊆ Xα is open. In the product

topology, we take as basis elements
∏
α Uα where again Uα ⊆ Xα is open, with the

restriction that for all but finitely many α, Uα = Xα.The uniform topology on X is
that topology induced by the metric

d((xn), (yn)) = sup
n∈N
{min{|xn − yn|, 1}}.

Now, letting X = RN, we will exhibit topological properties possessed by X in one
topology, but not in the others.

X is connected in the Product, but not in the Uniform or Box:

Consider X in the product topology and define R̃n to be the set of all sequences
in X which are zero after the nth coordinate. Being homeomorphic to Rn, R̃n is
connected. Then taking R∞ :=

⋃
n∈N R̃n, we get that R∞ is connected, since it is the

union of connected spaces which share the point (0, 0, . . . ). We now show that in fact
X = R∞, which will show that X is connected, since it is the closure of a connected
space. So, let (xn) ∈ X, and U =

∏
n∈N Un be a neighborhood of (xn). Since we are

in the product topology, there exists N ∈ N such that Uk = R for all k > N . Then,

(x1, x2, . . . , xN , 0, 0 . . . ) ∈ U ∩ R∞,

and so X = R∞.

Now, define A to be the set of bounded sequences in X, and B to be the set of
unbounded sequences in X. Evidently these sets are disjoint, nonempty, and their
union is all of X. We show that A and B are open in both the box and uniform
topologies, and therefore form a separation of X in each topology. Let (xn) ∈ X.
Then the set

U =
∏
n∈N

(xn − ε, xn + ε) (0 < ε < 1)

is open in the box topology and contains (xn). If (xn) ∈ A with bound M , then U is
contained in A, since any sequence (yn) ∈ U will be bounded (by M + ε). If, on the
other hand, (xn) ∈ B, the set U is contained in B since any sequence in U will be
unbounded.

In the uniform topology, the δ-ball B((xn), δ), 0 < δ < 1, is an open set containing
(xn). By similar reasoning as above, (xn) ∈ B((xn), δ) ⊂ A if (xn) ∈ A, and (xn) ∈
B((xn), δ) ⊂ B if (xn) ∈ B. Hence A and B are indeed open in the box topology.
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X is metrizable in the Uniform, but not in the Box:

Evidently X is metrizable in the uniform topology. Now, since metrizable spaces
are first countable, we show that X is not first countable, and hence not metrizable,
in the box topology. Suppose it were. Then for a point (xn) ∈ X, we find a countable
basis at (xn), {Ui}∞i=1. Write Ui =

∏∞
j=1 Uij for each i. Then, we can choose Vi ⊂ Uii

open so that (xn) ∈ Vi and Vi ⊂ Uii. But then V =
∏∞
i=1 Vi is a neighborhood of (xn)

which does not contain any Ui, a contradiction.

3. Iowa Qual, Fall 2006

Let X be S2 \ {(0, 0,±1)}, that is X is the result of removing the north and south
poles from the unit sphere. Define two points of X to be equivalent if and only if they
lie on the same great circle through the north and south poles. Identify the quotient
space of these equivalence classes, giving an explicit homeomorphism.

Proof.

4. Iowa Qual, Fall 2007

Suppose that p : X → Z is a quotient map and f : X → Y is continuous. Prove
that there exists a continuous map f : Z → Y with f ◦ p = f if and only if for every
x1, x2 with p(x1) = p(x2) it is the case that f(x1) = f(x2).

Proof. (⇒) If p(x1) = p(x2). Then indeed f(x1) = f(p(x1)) = f(p(x2)) = f(x2).

(⇐) Notice that for any [x] ∈ Z, the map f is constant on p−1([x]) since for any
x1, x2 ∈ p−1([x]), we have p(x1) = p(x2) =⇒ f(x1) = f(x2). Therefore, the map
f : Z → Y given by [x] 7→ f(p−1([x])) = f(x) is well-defined. Moreover,

f(p(x)) = f(p−1(p(x))) = f(p−1([x])) = f(x),

Finally, to see that f is continuous, let U be open in Y . Since f is continuous, f−1(U)

is open in X. So p−1(f
−1

(U)) = f−1(U) is open, and by definition of the quotient

topology, f
−1

(U) is open in Z. Hence f is continuous.

5. Iowa Qual, Spring 2008

Let X be a topological space and let

∆ = {(x, x) ∈ X ×X}.

Prove that X is Hausdorff if and only if ∆ ⊂ X ×X is closed.

Proof. (⇒) Suppose X is Hausdorff and pick (x, y) 6∈ ∆. Then since X is Hausdorff,
there exists disjoint neighborhoods U and V of x and y, respectively. Then U ×V is a
neighborhood of (x, y) not intersecting ∆, since otherwise if (w, z) ∈ U × V ∩∆, then
w = z ∈ U ∩ V , a contradiction. Hence ∆ is closed.

(⇐) Now suppose ∆ is closed and pick x 6= y in X. Since ∆c is open and (x, y) 6∈ ∆,
then by definition of the product topology, there exists open sets U, V of X containing
x, y, respectively, so that (x, y) ∈ U × V ⊂ ∆c. Now if w ∈ U ∩ V then (w,w) ∈
∆ ∩ U × V , a contradiction, since U × V is contained in ∆c. Hence U, V are disjoint
neighborhoods of the distinct points x, y, and so X is Hausdorff.
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6. Iowa Qual, Spring 2008

Prove that if X is compact, Y is Hausdorff, and f : X → Y is continuous, one-to-
one and onto then f is a homeomorphism.

Proof. We need only to show that f−1 is continuous, or equivalently, that f is a closed
map. So, take C ⊆ X closed. Since X is compact, and C is closed, then C is compact:

If O is an open cover of C then O ∪ X − C is an open cover of X, and so has a
finite subcover. If X − C is among the finite subcover, get rid of it. If not, leave the
finite subcover alone. What remains is a finite subcover of C.

Since f is continuous, f(C) is compact:

If O is an open cover of f(C), then f−1(O) is an open cover of C, and therefore
has a finite subcover since C is compact, say U . Then f(U) is a finite subcover of
f(C).

Since f(C) is a compact subspace of a Hausdorff space, then f(C) is closed:

If x ∈ Y \ f(C), then for each c ∈ f(C), pick disjoint neighborhoods Uc, Vc of x, c,
respectively. Then {Vc} covers the compact set f(C) and so there exists c1, . . . , cn
so that {Vci}ni=1 covers f(C). Then U := ∩ni=1Uci is a neighborhood of x disjoint
from f(C), since otherwise, if z ∈ U ∩ f(C), then z ∈ Vcj for some j and z ∈ Ucj , a
contradiction. So f(C) is closed.

7. Iowa Qual, Fall 2013

Let O be the collection of intervals Ia = (a,∞) in R including I∞ = ∅ and
I−∞ = R. Show that this is a topology on R and describe the closure of a set A ⊂ R.

Proof. Since I∞ = ∅ and I−∞ = R, we need only to check that arbitrary unions and
finite intersections of elements of O lie in O. So let J :=

⋃
α Iα be an arbitrary union

of elements in O. Let β = inf{α}, so that J = Iβ . Now let K =
⋂n
i=1 Iai . Let

b = maxi{ai}. Then K = Ib. Hence O is indeed a topology on R.

By definition, the closure of A is the intersection of all closed sets containing A;
that is

A =
⋂

A⊆(−∞,a]

(−∞, a].

Let β = sup{a ∈ A}. Then any closed set containing A will contain Jβ , and so A = Jβ .

8. Iowa Qual, Fall 2015

Let A ⊂ Rω be defined by A = {(xi) ∈ Rω|xi = 0 for all but finitely many i}.

• a. Is A dense in Rω with the product topology? Prove your answer.

• b. is A dense in Rω with the box topology? Prove your answer.

Proof. The set A is indeed dense in Rω in the product topology:
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Let (xn) ∈ X, and U =
∏
n∈N Un be a neighborhood of (xn). Since we are in the

product topology, there exists N ∈ N such that Uk = R for all k > N . Then,

(x1, x2, . . . , xN , 0, 0 . . . ) ∈ U ∩A,

and so Rω = A.

But of course, A is not dense in Rω in the box topology. Let (xn) = (1, 1, 1, . . . , ) ∈
Rω. Then the set

U =

(
1

2
,

3

2

)
×
(

1

2
,

3

2

)
×
(

1

2
,

3

2

)
× . . .

is a neighborhood of (xn) not intersecting A, since no point in U can have any 0
component.

9. Iowa Qual, Fall 2016

Let S1 be the circle S1 = {e2πit : t ∈ R}. Define an equivalence relation on S1

where two points are identified if t1 − t2 is an integer multiple of
√

2.

• a. Prove that the quotient space is not Hausdorff.

• b. Describe all continuous functions on the quotient space.

Proof. • a. Let p : S1 → S1
∗ be the quotient map, and denote equivalence classes

in S1
∗ by brackets:

[
e2πit

]
. Notice that

p
(
e2πis

)
=
[
e2πit

]
⇐⇒ s−t = n

√
2 for some n ∈ Z ⇐⇒ s = n

√
2+t for some n ∈ Z,

and so

p−1
([
e2πit

])
=
{
e2πis : ∃n ∈ Z such that e2πis = e2πi(n

√
2+t)

}
=
⋃
n∈Z

e2πi(n
√

2+t)

For all n ∈ Z, define maps 1 fn : S1 → S1 by e2πit 7→ e2πi(n
√

2+t). Then fn is
a homeomorphism since fn has inverse f−n, and moreover, both fn and f−n are
restrictions of the continuous multiplication map µ : C × C → C. In particular,

fn is the restriction of µ to {e2πit(n
√

2)} × S1, and similarly for f−n. Then

p−1
([
e2πit

])
=
⋃
n∈Z

e2πi(n
√

2+t) =
⋃
n∈Z

fn
(
e2πit

)
.

Now, the quotient space S1
∗ is Hausdorff if and only if p is open and the defining

relation is closed. So, suppose U is open in S1, U = {e2πit : x < t < y} for
some x, y ∈ R. Then by definition of the quotient topology, p(U) is open in S1

∗ if
p−1(p(U)) is open in S1. So

p−1(p(U)) = p−1

( ⋃
x<t<y

[
e2πit

])
=

⋃
x<t<y

p−1
([
e2πit

])
=

⋃
x<t<y

⋃
n∈Z

fn
(
e2πit

)
=
⋃
n∈Z

fn (U) ,

1fn is (left) multiplication by e2πi(n
√

2).
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and since the fn’s are homeomorphisms, they are in particular open maps, so
that fn (U) is open for all n ∈ Z, and hence p−1(p(U)) is open.

Now, define

R =
{(
e2πis, e2πit

)
∈ S1 × S1 : ∃n ∈ Z such that e2πis = e2πi(n

√
2+t)

}
.

Consider the map F : S1 × S1 → S1 given by

(
e2πis, e2πit

)
7→ e2πis

e2πit
.

Notice that F is the restriction of a composition of the continuous multiplication
and inversion maps in C, and hence F is continuous. Consider the set A ={
e2πin

√
2
}
n∈Z

. This set is dense in S1. So if x ∈ S1 \A, then any neighborhood

of x in S1 intersects a point in A, i.e., the complement of A in S1 is not open
and so A is open. Then R = F−1(A), and hence R is open. Therefore, S1

∗ is not
Hausdorff.

• b. Suppose f : S1 → X is a continuous map into some topological space X. If

f
(
e2πit

)
= f

(
e2πis

)
whenever t − s = n

√
2 for some n ∈ Z, then f descends to a continuous map

f : S1
∗ → X by defining f

([
e2πit

])
= f

(
p−1

([
e2πit

]))
. Then f is well-defined

since f is constant on the fibers above points in S1
∗ , and f is continuous since if

U is open in X, then f−1(U) is open in S1, and hence p−1(f
−1

(U)) = f−1(U) is

open in S1, which gives that f
−1

(U) is open in S1
∗ by definition of the quotient

topology.

Hence the continuous maps on S1
∗ are precisely those which come from continuous

maps on S1 which are constant on the fibers above points in S1
∗ .

10. UGA Qual, Fall 2016

Let S, T be topologies on a set X. Show that S ∩ T is a topology on X. Give an
example to show that S ∪ T need not be a topology.

Proof. Since ∅ and X are in S and T , then ∅, X ∈ S ∩ T . We show that arbitrary
unions and finite intersections of elements of S ∩ T lie in S ∩ T .

Let U =
⋂
α Uα be a union of elements of S ∩ T . Since Uα ∈ S for all α, then

U ∈ S since S is a topology, and similarly, U ∈ T . Hence U ∈ S ∩ T .

Let V =
⋃n
i=1 Vi be an intersection of elements of S ∩ T . Since then V ∈ S since

S is a topology and each Vi ∈ S, and similarly, V ∈ T . Hence V ∈ S ∩ T .

Let X = {a, b, c, d}, S = {∅, X, {a}}, and T = {∅, X, {b, c}}. Then S ∪ T =
{∅, X, {a}, {b, c}}, however S∪T is not a topology since {a}∪{b, c} = {a, b, c} 6∈ S∪T .
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1.2 Connectedness

1. Iowa Qual, Fall 2005

Give an example of a space that is connected but not path connected. Justify your
answer.

Solution: Consider the unit square I2 = [0, 1]2 = {x × y ∈ R2 : 0 ≤ x, y ≤ 1}
in the order topology. Being a linear continuum, I2 is connected. Suppose I2 was
path connected. Then there exists a continuous map f : [a, b] → I2 with f(a) =
0 × 0, f(b) = 1 × 1, i.e., a path from 0 × 0 to 1 × 1. By the Intermediate Value
Theorem, f([a, b]) = I2, i.e., f is surjective.

For each x ∈ [0, 1], the set {x}×(0, 1) is open. Hence Ux = f−1({x}×(0, 1)) is open
in [a, b]. Moreover, the collection {Ux}x∈[0,1] is pairwise disjoint, for if z ∈ Ux1

∩ Ux2
,

x1 6= x2, then f(z) ∈ ({x1} × (0, 1)) ∩ ({x2} × (0, 1)) = ∅, a contradiction. Since Q is
dense in R, for each x ∈ [0, 1], we can pick qx ∈ Ux ∩ Q. Since the Ux’s are disjoint,
this gives an injection x 7→ qx of [0, 1] into Q, and so the cardinality of [0, 1] is at most
countable, a contradiction. Hence I2 is not path connected.

2. Iowa Qual, Fall 2006

Suppose A = ∪Aα, where each Aα is connected, and so that there is a point x
common to all Aα. Prove that A is connected.

Proof. We first prove the following: If X is a topological space with nonempty con-
nected subspace B, and C,D is a separation of X, then B lies completely in C or
D.

By definition of the subspace topology, B ∩ C and B ∩ D are open in B and
moreover, B∩C and B∩D are disjoint and B = (B∩C)∪ (B∩D). If however, B∩C
and B ∩ D were both nonempty, we would obtain a separation of B, contradicting
the connectedness of B. Hence one of B ∩ C and B ∩D is empty, giving that B lies
completely in C or D.

Now let x ∈
⋂
αAα, and suppose C,D is a separation of A, and without loss of

generality, suppose x ∈ C. By what was shown above, Aα must lie completely in C
or D for all α. Since x ∈ Aα ∩ C for all α, then we must have Aα ⊆ C for all α, i.e.,
A ⊆ C, and so D is empty, a contradiction.

3. Iowa Qual, Fall 2007

Suppose that X and Y are connected, nonempty topological spaces. Prove that
X × Y is connected.

Proof. Fix (a, b) ∈ X × Y . For each x ∈ X, the set {x} × Y is connected, being
homeomorphic to Y , and similarly, (X × {b}) is connected. Then Tx = ({x} × Y ) ∪
(X × {b}) is connected, being the union of connected spaces sharing the point (x, b)
in common. But then

X × Y =
⋃
x∈X

Tx,

since
⋃
x∈X Tx ⊆ X × Y , and if (x, y) ∈ X × Y , then (x, y) ∈ {x} × Y ⊂ Tx. Hence

X × Y is connected, being the union of connected spaces which share the point (a, b)
in common.
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4. Iowa Qual, Fall 2013

Show that the subspace X ⊂ R2 consisting of all points (x, y) where at least one
of the coordinates is rational is connected.

Solution:
We show that X is path connected and hence connected. Let (a, b), (c, d) ∈ X. We
find a path from (a, b) to (c, d). There are four cases to consider:

(i) a, c ∈ Q, (ii) a, d ∈ Q, (iii) b, c ∈ Q, and (iv) b, d ∈ Q.

Case (i): Define continuous maps

f0 : [0, 1]→ X, t 7→ (a, (1− t)b),
f1 : [1, 2]→ X, t 7→ ((2− t)a+ (t− 1)c, 0),

f2 : [2, 3]→ X, t 7→ (c, (t− 2)d).

Notice that these maps do indeed map into X, since each map fixes a rational coordi-
nate. Now, we also have

f0(1) = (a, 0) = f1(1) and f1(2) = (c, 0) = f2(2).

So by the Pasting Lemma, the map

f : [0, 3]→ X, t 7→


f0(t) if t ∈ [0, 1]

f1(t) if t ∈ [1, 2]

f2(t) if t ∈ [2, 3]

is continuous since the components of f agree on their overlap. Moreover, f(0) = (a, b)
and f(3) = (c, d), and so we have a path from (a, b) to (c, d), as desired.

Case (ii):

Again define continuous maps

g0 : [0, 1]→ X, t 7→ (a, (1− t)b+ td),

g1 : [1, 2]→ X, t 7→ ((2− t)a+ (t− 1)c, d),

Then g0(1) = (a, d) = g1(1) and so by the Pasting Lemma, the map

g : [0, 2]→ X, t 7→

{
g0(t) if t ∈ [0, 1]

g1(t) if t ∈ [1, 2]

is continuous and g(0) = (a, b), g(2) = (c, d).

Cases (iii) and (iv) are similar.

1.3 Compactness

1. Iowa Qual, Fall 2005 (Poudel)

Prove the Lebesgue number lemma. That is if X is a compact metric space and U
is an open cover of X, there exists ε > 0 so that if D is any subset having diameter
less that or equal to ε then there exists U ∈ U with D ⊂ U .

9



Proof. Since (X, d) is compact, we find U1, . . . , Un ∈ U such that their union covers
X. Define Vi = X \ Ui for all 1 ≤ i ≤ n. If Ui = X for any i, then any open set with
any diameter in X is contained in an element of U . So we suppose Ui ( X for all i so
that each Vi is nonempty.

The map x 7→ d(x, Vi) = infz∈Vi
d(x, z) is continuous: If x, y ∈ X, then for all

z ∈ Vi, we have
d(x, Vi) ≤ d(x, z) ≤ d(x, y) + d(y, z),

which gives d(x, Vi) − d(x, y) ≤ d(y, z) and so d(x, Vi) − d(x, y) ≤ d(y, Vi), i.e.,
d(x, Vi) − d(y, Vi) ≤ d(x, y). Switching roles of x and y, we get d(y, Vi) − d(x, Vi) ≤
d(x, y), and so

|d(x, Vi)− d(y, Vi)| ≤ d(x, y).

Hence our map is continuous. So the averaging function

f(x) =
1

n

n∑
i=1

d(x, Vi)

is continuous. Notice that f is strictly positive, since for each x ∈ X, there is a Vi 63 x.
Hence d(x, Vi) = δ > 0, and so f(x) ≥ δ/n > 0.

Since f is continuous and X is compact, f attains a minimum value by the Extreme
Value Theorem, say ε > 0. We claim this is the desired ε. Pick A ⊂ X with diameter
less than ε. Then if x0 ∈ A, A ⊆ B(x0, ε). Pick j ∈ {1, . . . , n} for which d(x0, Vj) is
maximal. Then

ε ≤ f(x0) ≤ d(x0, Vj) =: γ.

Then A ⊆ B(x0, ε) ⊆ B(x0, γ) ⊆ X \ Vj = Aj .

2. Iowa Qual, Fall 2015

Let X be a compact metric space and suppose that f : X → X is an isometry, i.e.
d(f(x), f(y)) = d(x, y) for all x, y ∈ X. Prove that f is a homeomorphism.

Proof. First, its is easy to see that f is injective:

f(x) = f(y) =⇒ 0 = d(f(x), f(y)) = d(x, y) =⇒ x = y.

Now, f is continuous: If ε > 0 and d(x, y) < ε, then

d(f(x), f(y)) = d(x, y) < ε.

Suppose f is not surjective, and pick x ∈ X \ f(X). Since f is continuous and X is
compact, f(X) is compact, and since X is Hausdorff, f(X) is closed. Hence we can
find ε > 0 such that B(x, ε) ∩ f(X) = ∅. Then for natural numbers n < m,

d(fn(x), fm(x)) = d(fn−1(x), fm−1(x)) = · · · = d(fn−(n−2))(x), fm−(n−2))

= d(fn−(n−1))(x), fm−(n−1))

= d(x, fm−n(x)) ≥ ε.

10



So {fn(x)} is a sequence in X with no convergent subsequence, a contradiction since
X is a compact metric space. Finally, f−1 is continuous: If ε > 0 and d(x, y) < ε,
then

d(f−1(x), f−1(y)) = d(f(f−1(x), f(f−1(y))) = d(x, y) < ε.

3. Iowa Qual, Spring 2008

Tube Lemma Suppose that X is compact and X × {y} ⊂ U where U ⊂ X × Y
is open. Prove that there exists W ⊂ Y open so that X × {y} ⊂ X ×W ⊂ U.

Proof. For all x ∈ X, since U is open, then by definition of the product topology,
there exists Ux ⊆ X open and Vx ⊆ Y open so that

x× y ∈ Ux × Vx ⊆ U.

Since X is compact and {Ux}x∈X is an open cover of X, there exists x1, . . . xn ∈ X so
that X ⊆

⋃n
i=1 Uxi

. Define W =
⋂n
i=1 Vxi

. Then X × {y} ⊆ X ×W and

n⋃
i=1

(Uxi
× Vxi

) ⊆ U.

It remains to show that X ×W ⊆ U . To that end, let x × w ∈ X ×W . Let Uxj
be

the open set in {Uxi
}ni=1 containing x. Since w ∈ Vxj

, then

x× w ∈ Uxj × Vxj ⊆
n⋃
i=1

(Uxi × Vxi) ⊆ U.

4. Iowa Qual, January 2011

• a. PROVE: If a space X is compact, Hausdorff, and connected, and X has at
least two points, then X is uncountable.

• b. PROVE: If a space X is compact, Hausdorff, and perfect (i.e., each point of
X is a limit point of X) then X is uncountable.

Proof. • a. We first show that for any x ∈ X and any U ⊆ X open and nonempty,
there exists V ⊆ U open and nonempty so that V 63 x.

First,
choose y ∈ U different from x. (∗)

We argue why (∗) is possible: If x 6∈ U , this choice is possible simply because U is
nonempty. If x ∈ U and U contains no other points, then U = {x} is closed, since
singleton sets are closed in Hausdorff spaces. Hence U is both open and closed
in X, and is neither empty nor all of X, which contradicts the connectedness of
X.

11



Hence (∗) is possible, and since X is Hausdorff, we find a neighborhood W of y
not containing x. Then V = U ∩W is an open set in U for which x 6∈ V .

We show that any map f : N → X is not surjective, giving that |N| < |X|, i.e.,
X is uncountable. Let f(n) = xn. Let x1 ∈ X, and using U = X as above,
there exists V1 ⊂ X open and nonempty such that x 6∈ V1. For n > 1, given
Vn−1 open an nonempty such that xn−1 6∈ Vn−1, there exists a nonempty open
set Vn ⊆ Vn−1 such that xn 6∈ Vn. This gives an descending chain of closed sets

V1 ⊇ V2 ⊇ . . . ,

and hence the collection {Vn}n∈N has the finite intersection property, i.e., any
finite intersection of sets from this collection have nonempty intersection. Since X
is compact, this means that there exists x ∈

⋂
n∈N Vn. But then f(m) = xm 6= x

for any m, since x ∈ Vn for all n ∈ N, but xm 6∈ Vm.

• b. The proof here is the same, except we need to argue differently why (∗) is
possible:

If x 6∈ U , this choice is possible simply because U is nonempty. Since x is a limit
point in X, every neighborhood of x intersects X at a point other than x. So if
x ∈ U , then U contains a point y different from x.

5. Iowa Qual, Fall 2013

Is the intersection of two compact sets always compact? Prove or give a counterex-
ample.

Solution: Counterexample:

Let x, y ∈ R \ N and let X = N ∪ {x, y}. Give X the following topology:

T = {∅, X,N,N ∪ {x},N ∪ {y}, {1}, {2}, . . . }.

Then, any open cover for N ∪ {x} must contain N ∪ {x} itself, or X. Hence any open
cover of N ∪ {x} has a finite subcover, and so N ∪ {x} is compact. Similarly, N ∪ {y}
is compact. However

(N ∪ {x}) ∩ (N ∪ {y}) = N

is not compact since {{n}}n∈N is an open cover of N with no finite subcover.

6. Iowa Qual, Fall 2013

Is the closure of a compact set always compact? Prove or give a counterexample.

Solution: Counterexample:

Let X = N ∪ {x}, for a point x ∈ R \ N. Define all nonempty open sets in X
to be those which contain x. Then {x} is compact. We claim {x} = X. Indeed, if
y ∈ X, and U is an open set containing y, then by construction x ∈ U , and so every
neighborhood of every point of X intersects {x}. But

⋃
n∈N{x, n} is an open cover of

X with no finite subcover.

7. Iowa Qual, Winter 2016

12



• a. Show that compactness implies limit point compactness.

• b. Give an example of a space that is limit point compact but not compact.
Explain why your example works.

Solution:

• a. We show the contrapositive: If X is compact and A ⊆ X has no limit points,
then A is finite. The assumption gives A = A∪A′ = A, and so A is closed. Since
closed subspaces of compact spaces are compact, A is compact. Let a ∈ A. If
every neighborhood of a intersects A at a point other than a, then a ∈ A′ = ∅,
a contradiction. Hence for each a ∈ A, there exists a neighborhood Ua of a
intersecting the point a alone. Then {Ua}a∈A is an open cover of A, and since
A is compact, the open cover must admit a finite subcover of A. Since each Ua
intersects A at a single point, and finitely many such sets cover A, then A is
finite.

• b. Let X = N × {a, b} in the product topology, where N is given the discrete
topology and {a, b} is given the indiscrete topology. We show that X is limit
point compact but not compact. First, X is not compact since {{n}×{a, b}}n∈N
is an open cover of X with no finite subcover.

Now, let A ⊆ X be an infinite set and suppose (n, a) ∈ A. We show that (n, b)
is a limit point of A, which will show that X is limit point compact. Let Y be a
neighborhood of (n, b). Then by definition of the product topology, there exists
basic open sets U ⊆ N and V ⊆ {a, b} such that (n, b) ∈ U × V ⊆ Y . But what
can V be? Since {a, b} was given the indiscrete topology and b ∈ V , then we
must have V = {a, b}. Then (n, a) ∈ U × V ⊆ Y , giving that any neighborhood
of (n, b) intersects A, i.e., (n, b) is a limit point of A.

1.4 Separation/Countability Axioms

1. Iowa Qual, Fall 2005

Prove that every compact Hausdorff space is normal. That is prove that if A and
B are disjoint closed subsets of the compact Hausdorff space X, then there are open
sets U and V so that U ∩ V = ∅, with A ⊂ U,B ⊂ V .

Proof. We first show that A (and B) are compact in X: If U is an open cover of A,
then U ∪ (X \A) is an open cover of X, and since X is compact, there exists a finite
subcover of X from this collection. If X \ A is in this finite collection, remove it; if
not, leave it alone. What remains is a finite collection of sets from U which cover A.

Fix a ∈ A. Since X is Hausdorff, for every b ∈ B, we can choose disjoint open sets
Ub, Vb of a, b respectively. Then {Vb} is an open cover of B, and since B is compact,
there exists b1, . . . , bn ∈ B such that {Vbi}ni=1 covers B. Then

a ∈
n⋂
i=1

Ubi =: Ua and B ⊆
n⋃
i=1

Vbi =: Va

and Ua ∩ Va = ∅, since otherwise x ∈ Ua ∩ Va means that x ∈ Vbi for some i and also
x ∈ Ubi , a contradiction.

13



Repeating this for each a ∈ A, we obtain an open cover {Ua}a∈A of A, and a
collection of covers {Va}a∈A for B. Since A is compact, there exists a1, . . . am ∈ A
such that A ⊆

⋃m
j=1 Uaj . Define

U =

m⋃
j=1

Uaj and V =

m⋂
j=1

Vaj .

Then U, V are open and contain A,B respectively. If x ∈ U ∩V , then x ∈ Uaj for some
j and x ∈ Vaj ; but since Uaj ∩Vaj = ∅, we get a contradiction. Hence U ∩V = ∅.

2. Iowa Qual, Fall 2006

Prove or give a counterexample: The product of two regular spaces is regular.

Proof. We first prove the following: X is regular if and only if for every x ∈ X and
for every neighborhood U of x, there exists a neighborhood V of x such that V ⊂ U .

First suppose X is regular, and x, U are as above. Then X \U is closed, and since
X is regular, there exists disjoint open sets V,W containing x and X \U , respectively.
Then V ∩ (X \ U) = ∅ since for any z ∈ X \ U , W is a neighborhood of z not
intersecting V . Hence V ⊂ U .

Conversely, let x ∈ X, and A a closed set in X not containing x. Then X \ A
is open and contains x, and so by hypothesis, there exists a neighborhood V of x
such that V ⊂ X \ A. Then V and X \ V are disjoint open sets containing x and A,
respectively.

Now, the proof essentially follows from the fact that the closure of a product of
spaces is the product of the closures of those spaces (and indeed this will work for
arbitrary products: in the product topology, of course).

Let X and Y be regular spaces. Suppose x×y ∈ X×Y and N is a neighborhood of
x×y. By definition of the product topology, there exists basic open sets U ⊂ X,V ⊂ Y
containing x and y, respectively, such that x × y ∈ U × V ⊆ N . Since both X and
Y are regular, there exists open sets W ⊂ X,Z ⊂ Y containing x and y, respectively,
such that W ⊂ U and Z ⊂ V . Then

x× y ∈W × Z = W × Z ⊂ U × V ⊆ N,

and hence X × Y is regular.

3. Iowa Qual, Fall 2007

A space is separable if it has a countable dense subset. Prove that a topological
space is separable if it is second countable, and that a metric space is second countable
if it is separable. There are two things to prove here.

Proof. Suppose X is second countable with countable basis {Un}n∈N. For each n, pick
xn ∈ Un. Then {xn}n∈N is a countable dense subset of X; evidently it is countable,
and it is dense in X since if x ∈ X and U is a neighborhood of x, then there exists a
basic open set Un such that x ∈ Un ⊂ U , and xn ∈ U .

14



Now suppose (X, d) is a separable metric space, with countable dense subset S.
We claim that B = {B(s, 1/n) : s ∈ S, n ∈ N} is a countable basis for X. First, B is
countable since it is a collection of countably many balls at countably many points.
We show that B is a basis.

Let x ∈ X and U2 a neighborhood of x. Then there exists ε > 0 such that B(x, ε)
is contained in U . Now choose n ∈ N such that 1/n < ε/2. Since S is dense in X,
there exists s ∈ S such that s ∈ B(x, 1/n). Now if y ∈ B(s, 1/n), then

d(y, x) ≤ d(y, s) + d(s, x) < 1/n+ 1/n < ε/2 + ε/2 = ε,

and so B(s, 1/n) ⊆ B(x, ε). Therefore x ∈ B(s, 1/n) ⊆ B(x, ε) ⊆ U , and hence B is a
countable basis for X.

4. UGA Qual, Fall 2016

Prove that a metric space X is normal, i.e., if A,B ⊂ X are closed and disjoint
then there exist open sets A ⊂ U ⊂ X,B ⊂ V ⊂ X such that U ∩ V = ∅.

Proof. Fix a ∈ A and let δa = infb∈B d(a, b). Suppose δa = 0. Then for every n ∈ N,
there exists bn ∈ B such that d(a, bn) < 1/n. But then {bn} → a, and since B is
closed, it contains its limits points, and so a ∈ B, a contradiction since A and B are
disjoint. Hence δa > 0. Similarly, define 0 < δb = infa∈A d(b, a) for all b ∈ B. We
claim

U =
⋃
a∈A

B(a, δa/2) and V =
⋃
b∈B

B(b, δb/2)

are the desired open sets. Evidently A ⊆ U and B ⊆ V . Suppose x ∈ U ∩ V . Then
there exists a ∈ A and there exists b ∈ B such that x ∈ B(a, δa/2) ∩ B(b, δb/2).
Assume without loss of generality that δa ≤ δb. Then

δb ≤ d(a, b) ≤ d(a, x) + d(x, b) < δa/2 + δb/2 ≤ 2δb/2 = δb,

a contradiction.

1.5 Metrization

1. Iowa Qual, Winter 2016

Prove the Urysohn metrization theorem (Every regular space X with a countable
basis is metrizable.). You may assume that there exists a countable collection of
functions fn : X → [0, 1] such that for any point x0 ∈ X and any neighborhood U of
x0, there is some n so that fn is positive at x0 and 0 outside of U .

Proof. To show that X is metrizable, we will embed X into the metrizable space RN

(in the product topology). To that end, consider the map

F : X → RN, x 7→ (f1(x), f2(x), . . . ).

2The neighborhood U is coming from the topology induced by the metric on X; we are essentially showing
that B is finer than the topology induced by the metric, which will suffice to prove that B is a basis. See
Munkre’s Lemmas 13.2 and 13.3.
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Since each fn is continuous and X has the product topology, then F is continuous.
To see that F is injective, suppose x 6= y, and let U be a neighborhood of x not
containing y (such a neighborhood exists since X is Hausdorff). Then there exists n
so that fn(x) > 0 and fn(y) = 0, and so F (x) 6= F (y).

Now, we show that F is a homeomorphism onto its image Z := F (X). Since F is
continuous, we need only to show that F−1 : Z → X is continuous, or equivalently,
that F is an open map. So, let U ⊆ X be open and pick z ∈ F (U). We find a
neighborhood W of z contained in F (U).

Let x ∈ U be the unique point such that F (x) = z. Then there exists n such that
fn(x) > 0 and fn(y) = 0 for all y ∈ X \ U . Let πn : RN → R be projection onto the
n-th coordinate. Let

V = π−1
n (0,∞).

We claim W = V ∩ Z is the desired neighborhood of z contained in F (U). First,
z ∈W since z ∈ F (U) ⊆ Z and

πn(z) = πn(F (x)) = fn(x) > 0 =⇒ z ∈ V.

Now, if w ∈ V ∩ Z, then πn(w) > 0 and there exists a ∈ X with F (a) = w. So

fn(a) = πn(F (a)) = πn(w) > 0 =⇒ a ∈ U

Hence w = F (a) ∈ F (U). So z ∈W ⊆ F (U).

2. Munkres, §33, Problem 4

Let X be normal. Prove that there exists a continuous function f : X → [0, 1] such
that f(x) = 0 for x ∈ A and f(x) > 0 for x /∈ A if and only if A is a closed Gδ set in
X. (Recall that a Gδ set is one which can be expressed as the countable intersection
of open sets.)

Proof. (⇒) Suppose such a function f : X → [0, 1] exists. Since singleton sets are
closed in [0, 1], f is continuous, and A = f−1({0}), then A is closed.

1.6 Homotopy, Fundamental Group, Seifert-Van Kampen

1. Iowa Qual, Fall 2013

Consider the space obtained by removing from R3 the unit circle in the xy-plane
and the z-axis. Determine the fundamental group of this space.

Solution:

Let Z be the z-axis and U be the unit circle in the xy-plane, and X = R3 \(Z∪U).
For every α ∈ [0, 1/2), let T × {α} be the object obtained by rotating around the
z-axis the circle centered at (0, 1, 0) of radius 1/2 − α in the yz-plane. In particular,
T × {α} is a torus for each α. Then T × [0, 1/2) is a solid torus without the inner
circle.

We can then deformation retract X onto T × [0, 1/2). Then for each α ∈ (0, 1/2),
we can do a straight-line homotopy from T×{α} to T×{0}, or, perform a deformation
retract of T × [0, 1/2) onto T ×{0}, leaving just a torus, which has fundamental group
Z×Z. (The base point (0, 3/2, 0) is remained fixed by each homotopy, and so we can
consider π1(X, (0, 3/2, 0)) ∼= π1(T × {0}, (0, 3/2, 0)) ∼= Z× Z.)
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2. Iowa Qual, Fall 2014

What is the fundamental group of

X = {(x, y, z) ∈ R3|x 6= 0 or y 6= 0},

where we use (1, 0, 0) as the base point. X is the complement of the z-axis.

Solution: Since the projection map of R3 onto the xy-plane is a retract, we can
define a homotopy

H : X × [0, 1]→ R3, H(x, y, z, t) = (x, y, z(1− t)),

which is a deformation retract of X onto the xy-plane without the origin, call it A.
Using the retraction

r : A→ S1, (x, y, z) 7→ (x, y, z)√
x2 + y2

,

we can define a homotopy

G : A× [0, 1]→ R3, G(x, y, z, t) = (1− t) (x, y, z)√
x2 + y2

which is a deformation retract of A onto the unit circle S1 in the xy-plane. The
point (1, 0, 0) is fixed during each homotopy, and since the fundamental group does
not change under homotopy, we have π1(X, (1, 0, 0)) ∼= π1(S1, (1, 0, 0)) ∼= Z.

3. Iowa Qual, Fall 2015

Find the fundamental group of T 2 = S1 × S1 with k points removed.

Solution:

We proceed by induction on k to show that π1(T 2 \ {k pts}) is isomorphic to the
free product on k + 1 generators. If k = 1, then we have the T 2 with one boundary
component,

which is homotopy equivalent to the rose with k + 1 = 2 pedals:
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And hence π1(T 2 \ {pt}) ∼= Z ∗ Z, the free product on two generators. Now let k > 1
and suppose for induction that π1(T 2 \ {k − 1 pts}) ∼= Z ∗ · · · ∗ Z︸ ︷︷ ︸

k factors

.

Notice that X = T 2 \ {k pts} is a torus with k boundary components:

Let V be a neighborhood containing two of the boundary components of X, and
let U be the complement of a neighborhood contained in V which also contains two
boundary components:

Then U ∪ V = X, where U = T 2 \ {(k − 1) pts}, V is a disk with two boundary
components, and U ∩V is an annulus. Then V is homotopic to a rose with two pedals,
and U ∩ V is homotopic to S1, which gives π1(V ) ∼= Z ∗ Z and π1(U ∩ V ) ∼= Z. By
induction, we have π1(U) ∼= Z ∗ · · · ∗ Z, the free product on k generators. Write

π1(U) = 〈a1, . . . , ak| 〉
π1(V ) = 〈b1, b2| 〉

π1(U ∩ V ) = 〈c1| 〉

Let θ1 : π1(U ∩ V )→ π1(U)→ π1(U ∪ V ) be the composition of the induced maps of
inclusions, and similarly, define θ2 : π1(U ∩ V ) → π1(V ) → π1(U ∪ V ). Then by the
Seifert Van-Kampen Theorem, we have

π1(X) = 〈a1, . . . , ak, b1, b2 | θ1(c1) = θ2(c1)〉 ,

So, we find θ1(c1) and θ2(c1):
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Hence

π1(X) = 〈a1, . . . , ak, b1, b2 | a1 = b1b2〉 = 〈a2, . . . , ak, b1, b2| 〉 ∼= Z ∗ · · · ∗ Z︸ ︷︷ ︸
k+1 factors

.

4. Iowa Qual, Fall 2015

Let X be the so-called Hawaiian earring, which is defined by X = ∪∞i=1Cn, where
Cn = {(x, y) : (x − 1/n)2 + y2 = 1/n2}. So X is the union of the circles with center
(1/n, 0) and radius 1/n for n = 1, 2, 3, . . . . Let Y be the quotient space formed by
starting with R1 and defining x ∼ y if either x = y or x, y ∈ Z. Prove that X and Y
are not homeomorphic.

Proof. We show that X is compact and that Y is not compact, showing that these
spaces cannot be homeomorphic.

First, let {xk} be a Cauchy in X converging to x ∈ R2. We show that x ∈ X,
proving that X is closed. If there exists Ci containing infinitely many xk’s, then there
is a subsequence {xk`} ⊂ Ci, and since Ci is closed, {xk`} → x ∈ Ci, and so X is
closed. If all Ci contain at most finitely many xk’s, we claim x = (0, 0). Indeed, let
ε > 0; then there exists N large enough so that Ci ⊂ B(0, ε) for all i ≥ N . Since
∪N−1
i=1 Ci contains finitely many points of {xk}, then B(0, ε) contains infinitely many

xk’s, and hence {xk} → (0, 0) ∈ X, and so X is closed. Moreover, X is bounded since
|x| < 5 for all x ∈ X. Therefore, as a closed and bounded subset of R2, X is compact.

We exhibit an open cover of Y which contains no finite subcover of Y . Let brackets
denote equivalent classes in Y , and let q : R→ Y be the quotient map. Consider the

19



open interval I = (−1/2, 1/2). Then [0] ∈ q(I) =: U . Notice that

q−1(U) =
⋃
n∈Z

(
n− 1

2
, n+

1

2

)
,

which is open in R. Hence U is a neighborhood of [0] in Y . Now if Wn = (n, n + 1),
then

Vn := q(Wn) =
⋃

x∈(n,n+1)

[x],

and q−1(Vn) = (n, n+ 1) is open in R, and hence Vn is open in Y . Then U ∪
⋃
n∈Z Vn

is an open cover of Y which has no finite subcover. Indeed, if we remove U from the
cover then we do not cover [0]; if we remove any Vn from the cover, then we do not
cover the point [n+ 1/2]. Hence Y is not compact.

5. Iowa Qual, Winter 2016

Find the fundamental group of the object obtained by identifying each point of the
boundary of a disk with its antipodal point.

Solution:

This space is RP (2). We use the Seifert Van-Kampen Theorem to find its funda-
mental group. First, define U to be a disk within the disk, and let V be the complement
of a disk which lies inside U :

Then U is homotopy equivalent to a point, and U ∩ V is homotopy equivalent to S1;
so π1(U) = 1 and π1(U ∩ V ) = Z. Now, V retracts to the boundary of the disk, and
so we need to find the fundamental group of S1 with antipodal points identified:

and so V is homotopy equivalent to S1, giving π1(V ) = Z. Write

π1(U) = 〈| 〉
π1(V ) = 〈a| 〉

π1(U ∩ V ) = 〈b| 〉
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Let θ1 : π1(U ∩ V )→ π1(U)→ π1(U ∪ V ) be the composition of the induced maps of
inclusions, and similarly, define θ2 : π1(U ∩ V ) → π1(V ) → π1(U ∪ V ). Then by the
Seifert Van-Kampen Theorem, we have

π1(RP (2)) = 〈a | θ1(b) = θ2(b)〉 ,

and so we need to find θ1(b) and θ2(b). For θ1(b),

Now, we consider the generator a of π1(V ):

Now, when we include b into the V , we see that b traverses the upper and lower
semicircles of the boundary of the disk, but since these are identified, we get that b
“overlaps” a twice, which gives θ1(b) = a2:

Hence
π1(RP (2)) =

〈
a | a2 = 1

〉 ∼= Z/2Z

6. Iowa Qual, Winter 2016

Let D3 = {(x, y, z) ∈ R3 : x2 + y2 + z2 ≤ 1}. Let A = {a1, a2, . . . , an} ⊂ D3 be a
subset of distinct points in the 3-ball. Compute the fundamental group of the quotient
space π1(D3/A, b) where b ∈ D3 \A.

Solution:

We have
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and so π1(D3/A, b) = Z ∗ · · · ∗ Z︸ ︷︷ ︸
n−1 factors

.

7. Iowa Qual, Fall 2016

• a. State the Van-Kampen theorem. In particular, explicitly define all maps.

• b. Suppose that X,Y, Z are the yz, xz, xy-planes in R3 and S2 is the unit 2-sphere
in R3.

S2 = {(x, y, z) : x2 + y2 + z2 = 1}, X = {(x, y, z) : x = 0}

Y = {(x, y, z) : y = 0}, Z = {(x, y, z, ) : z = 0}.

If B is the space obtained as the union of these four sets, endowed with the
subspace topology, then compute the fundamental group of B.

Solution:

• a.

• b.

8. Iowa Qual, Winter 2017

Find the fundamental group of the space obtained by taking the surface of a cube
and removing all corner points.

Solution:

This space X is homotopy equivalent to the rose with 7 pedals:

and so π1(X) = Z ∗ · · · ∗ Z︸ ︷︷ ︸
7 factors

.

We also show here that the rose with n pedals, which we will call Rn, does indeed
have fundamental group the free product on n generators. By induction: For n = 1,
R1 = S1, which has fundamental group Z. For n = 2, let U and V be as shown:
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Write

π1(U) = 〈a | 〉
π1(V ) = 〈b | 〉

π1(U ∩ V ) = 〈 | 〉

Let θ1 : π1(U ∩ V )→ π1(U)→ π1(U ∪ V ) be the composition of the induced maps of
inclusions, and similarly, define θ2 : π1(U ∩ V ) → π1(V ) → π1(U ∪ V ). Then by the
Seifert Van-Kampen Theorem, we have

π1(R2) = 〈a, b | θ1(1) = θ2(1)〉 = 〈a, b | 〉 = Z ∗ Z.

Now suppose for induction that π1(Rn) = 〈a1, . . . , an | 〉. Let U and V be in Rn+1

as shown:

Then U is homotopy equivalent to Rn, V is homotopy equivalent so S1, and U ∩ V is
homotopy equivalent to a point. Write

π1(U) = 〈a1, . . . , an | 〉
π1(V ) = 〈an+1 | 〉

π1(U ∩ V ) = 〈 | 〉

Then

π1(Rn+1) = 〈a1, . . . , an+1 | θ1(1) = θ2(1)〉 = 〈a1, . . . , an+1 | 〉 = Z ∗ · · · ∗ Z.

9. Iowa Qual, Winter 2017

Suppose that S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1} is the unit 2-sphere in R3.
If Y ⊂ S2 is a subset of n distinct points then compute the fundamental group of the
quotient space: π1(S2/Y, [Y ]). Prove that your answer is correct.
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10. UGA Qual, Fall 2016 (Camacho)

Let Sk be the space obtained by removing k disjoint open discs from the sphere
S2, to leave a surface whose boundary is k circles. Form Xk by gluing k Möbius bands
onto Sk, one for each circle boundary component of Sk (by identifying the boundary
circle of a Möbius band homeomorphically with a given boundary component circle).
Use Van Kampen’s theorem to calculate π1(Xk) for each k > 0 and identify Xk in
terms of the classification of surfaces.

Solution:

Let the following sequence convince you that a Möbius band is RP (2) \B2:

Moreover, RP (2) \B2 ' S1/ ∼, where ∼ is the antipodal relation:

Hence, the effect of gluing in k Möbius bands onto Sk is that of identifying antipo-
dal points of each of the boundary components of Sk. We claim that π1(Xk) =〈
α1, . . . , αk | α2

1 · · ·α2
k = 1

〉
. To do this, we first show that the fundamental group of

a non-orientable surface of genus i with n − i boundary components (for i ≤ k, of
course), call it Ni,k−i, has fundamental group

π1(Ni,k−i) =
〈
ε, ε1, . . . , εi−1, αi, . . . , αk−1 | ε2 = ε21 · · · ε2i−1αi · · ·αk−1

〉
.

If we can show this, then setting i = k, we get

π1(Xk) = π1(Nk,0) =
〈
ε, ε1, . . . , εk−1 | ε2 = ε21 · · · ε2k−1

〉
=
〈
ε1, . . . , εk | ε21 · · · ε2k = 1

〉
. (letting ε = ε−1

k )

Note that N0,k is simply S2 with k boundary components, which is homotopy equiv-
alent to a rose with k − 1 petals, Rk−1:
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We proceed by induction; start with i = 1. Let U be a neighborhood of the boundary
component which has antipodal points identified, and let V be the complement of a
neighborhood which is inside U :

Then U is a Möbius band:

Also, V ' N0,k ' Rk−1, and U ∩ V ' S1. Write

π1(U) = 〈ε| 〉
π1(V ) = 〈α1, . . . , αk−1| 〉

π1(U ∩ V ) = 〈β| 〉

Let θ1 : π1(U ∩ V )→ π1(U)→ π1(U ∪ V ) be the composition of the induced maps of
inclusions, and similarly, define θ2 : π1(U ∩ V ) → π1(V ) → π1(U ∪ V ). Then by the
Seifert Van-Kampen Theorem, we have

π1(N1,k−1) = 〈ε, α1, . . . , αk−1 | θ1(β) = θ2(β)〉 .

So, we have

and
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Therefore π1(N1,k−1) =
〈
ε, α1, . . . , αk−1 | ε2 = α1 . . . , αk−1

〉
, as desired. Now for the

inductive step. Let 1 ≤ i < k, and suppose for induction that

π1(Ni,k−i) =
〈
ε, ε1, . . . , εi−1, αi, . . . , αk−1 | ε2 = ε21 · · · ε2i−1αi · · ·αk−1

〉
.

Now consider Ni+1,k−i−1, and let U be a neighborhood of one of the boundary com-
ponents of Ni+1,k−i−1 which has its antipodal points identified, and let V be the
complement of a neighborhood which is inside U :

Then U is a Möbius band, V ' Ni,k−i, and U ∩ V ' S1. Write

π1(U) = 〈εi| 〉
π1(V ) =

〈
ε, ε1, . . . , εi−1, αi, . . . , αk−1 | ε2 = ε21 · · · ε2i−1αi · · ·αk−1

〉
π1(U ∩ V ) = 〈β| 〉 .

Just as before, we get θ1(β) = ε2i . Now for θ2(β), we have:
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And so by the Seifert Van-Kampen Theorem, π1(Ni+1,k−i−1) is〈
εi, ε, ε1, . . . , εi−1, αi, . . . , αk−1 | ε2 = ε21 · · · ε2i−1αi · · ·αk−1, θ1(β) = θ2(β)

〉
=
〈
ε, ε1, . . . , εi, αi, . . . , αk−1 | ε2 = ε21 · · · ε2i−1αi · · ·αk−1, ε

2
i = αi

〉
=
〈
ε, ε1, . . . , εi, αi+1, . . . , αk−2 | ε2 = ε21 · · · ε2iαi+1 · · ·αk−2

〉
,

which is exactly what we were looking for!

1.7 Covering Spaces

1. Iowa Qual, Fall 2014 (Nevalainen)

Suppose B is connected, and locally path connected and Hausdorff. Suppose that
p : E → B is a covering map. Prove that for any two b1, b2 ∈ B, the cardinality of the
fibers p−1(b1) and p−1(b2) are the same.

2. Iowa Qual, Fall 2014 (Aceves)

Prove that if p : E → B is a covering map with B and E connected, locally
path connected and Hausdorff, and γ : [0, 1] → B is continuous with γ(0) = b, and
e ∈ p−1(b) that there exists a unique continuous map γ̃ : [0, 1]→ E with p◦ γ̃ = γ and
γ̃(0) = e. That is, prove the existence and uniqueness of liftings of paths for covering
maps of sufficiently nice topological spaces.

3. Iowa Qual, Fall 2015 (Oswald)

Let X = R3 \ ` where ` = {(0, 0, z) : z ∈ R} is the z-axis. Find a nontrivial
connected covering space π : Y → X. Prove that your example satisfies the required
properties.

4. Iowa Qual, Fall 2016 (Aceves)

Show how to construct a n-sheeted cover of a genus g surface for any positive
integer n.

5. Iowa Qual, Winter 2017 (Sanadhya)

Suppose that P = R2 \ {(0, 0)} is the plane minus the origin.

• (a) Compute the fundamental group π1(P, (0, 1)).

• (b) Construct a space X which is homeomorphic to the universal cover of P . (Do
not prove that X is the universal cover of P .)

• (c) Describe the action of π1(P, (0, 1)) on X.

6. UGA Qual, Fall 2015 (Malachi)

Explicitly give a collection of deck transformations on {(x, y)| − 1 ≤ x ≤ 1,−∞ <
y <∞} such that the quotient is a Möbius band.
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1.8 Simplicial Homology

1. General Topology, Fall 2016, Exam 1 (Oswald)

Recall that the Klein bottle K is obtained from a rectangle by identifying two of its
opposite sides with matching orientations, and the other two of its sides with reversed
orientations.

• (a) Give a triangulation of the Klein bottle.

• (b) Recall that in an n-complex, we call an (n − 1) simplex σi interior if it is a
face of precisely two n-simplices σi and σi. Recall further that an orientation of
an n-complex is coherent provided

[σi, σi] = −[σi, σi]

for every interior (n− 1)-simplex σi. Prove that your triangulation of the Klein
bottle from part (a) can admit no coherent orientation.

2. General Topology, Fall 2016, Exam 2 (Wickrama)

Let K denote the 2-complex shown below, with the indicated orientations. Com-
pute the homology groups of K. Since K has more than 9 vertices, be sure to include
the a’s in your notation (e.g. write 〈a1a2〉 instead of 〈12〉)

3. UGA Qual, January 2016 (Wood)

Give a list without repetitions of all compact surfaces (orientable or non-orientable
and with or without boundary) that have Euler characteristic negative one. Explain
why there are no repetitions on your list.

4. UGA Qual, January 2016 (Wickrama)

Give an example, with explanation, of a closed curve in a surface which is not null
homotopic but is null homologous.
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2 Smooth Manifolds

2.1 “Basics”

1. Iowa Qual, Fall 2005

• a. Define TpM where M is a smooth manifold and p ∈M.

• b. If F : M → N is a smooth map of smooth manifolds define F∗ : TpM →
TF (p)N .

• c. Prove the chain rule, that is, if F : M → N and G : N → P are smooth maps
of smooth manifolds then (G ◦ F )∗ = G∗ ◦ F∗.

Solution:

• a.

TpM =

{
D : C∞(M)→ R :

D is R-linear and D satisfies the Leibniz rule:
(D(fg))(p) = (Df)g(p) + f(p)(Dg)

}
• b. For all Xp ∈ TpM , and for all f ∈ C∞(N), the map F∗,p(Xp) ∈ TpN is given

by
(F∗,p(Xp))(f) = Xp(F

∗f) = Xp(f ◦ F ).

• c.

Proof. Let p ∈M , Xp ∈ TpM , and f ∈ C∞(P ). Then

((G ◦ F )∗,p(Xp))(f) = Xp((G ◦ F )∗f) = Xp(f ◦G ◦ F ),

and on the other hand

((G∗,F (p) ◦ F∗,p)(Xp))(f) = G∗,F (p)(F∗,p(Xp))(f)

= F∗,p(Xp)(f ◦G)

= Xp(f ◦G ◦ F ).

2. Iowa Qual, Fall 2005

State and prove the local immersion theorem.

Theorem (Local Immersion Theorem). Let F : Mm → Nn be a smooth map of
smooth manifolds. If F is an immersion at p ∈M , then there exists charts (U,ϕ), (V, ψ)
about p and F (p), respectively so that ψ ◦F ◦ϕ−1 = i : Rm ↪→ Rn, where i is inclusion.

Proof. Let (U,ϕ) = (U, x1, . . . , x
m) and (Ṽ , ψ̃) = (V, y1, . . . , yn) be charts centered3

around p and F (p), respectively. Since F is an immersion at p, then m ≤ n and map
g = ψ̃ ◦ F ◦ ϕ−1 is an immersion at 0. Hence, by an adjustment of the coordinates of
ψ̃ if necessary, we have

g∗,0 =

(
Im
0

)
,

3ϕ(p) = 0, ψ(F (p)) = 0
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Define G : ϕ(U)× Rn−m → Rn by G(a, b) = (g(a), b). Then

G∗,0 =

(
Im 0
0 In−m

)
.

Hence by the Inverse Function Theorem, G is a local diffeomorphism at 0, i.e., there
exists a neighborhood W ⊆ Rn of 0 such that G|W : W → G(W ) is a diffeomorphism.

So, define V := Ṽ ∩ ψ̃−1(W ) and ψ = G−1 ◦ ψ̃. Then F (p) ∈ V since F (p) ∈ Ṽ ,
and, ψ̃(F (p)) = 0 ∈W . Moreover, ψ is a diffeomorphism on V since both G−1 and ψ̃
are. Hence (V, ψ) is a chart in N about F (p). Notice that g = G ◦ i, and so

ψ ◦ F ◦ ϕ−1 = G−1 ◦ ψ̃ ◦ F ◦ ϕ−1 = G−1 ◦ g = G−1 ◦G ◦ i = i.

We also state and prove the local submersion theorem:

Theorem (Local Submersion Theorem). Let F : Mm → Nn be a smooth map
of smooth manifolds. If F is an submersion at p ∈ M , then there exists charts
(U,ϕ), (V, ψ) about p and F (p), respectively so that ψ ◦ F ◦ ϕ−1 = π : Rm � Rn,
where π is projection.

Proof. Let (Ũ , ϕ̃) = (Ũ , x1, . . . , x
m) and (V, ψ) = (V, y1, . . . , yn) be charts centered

around p and F (p), respectively. Since F is a submersion at p, then m ≥ n and map
g = ψ ◦ F ◦ ϕ̃−1 is a submersion at 0. Hence, by an adjustment of the coordinates of
ϕ̃ if necessary, we have

g∗,0 =
(
In 0

)
,

Define G : ϕ̃(U)→ Rm by G(a) = G(a1, . . . , am) = (g(a), an+1, . . . , am). Then

G∗,0 =

(
In 0
0 Im−n

)
.

Hence by the Inverse Function Theorem, G is a local diffeomorphism at 0, i.e., there
exists a neighborhood W ⊆ Rm of 0 such that G|W : W → G(W ) is a diffeomorphism.

So, define U := Ũ ∩ ϕ̃−1(W ) and ϕ = G ◦ ϕ̃. Then p ∈ U since p ∈ Ũ , and,
ϕ̃(p) = 0 ∈W . Moreover, ϕ is a diffeomorphism on U since both G and ϕ̃ are. Hence
(U,ϕ) is a chart in M about p. Notice that g = π ◦G, and so

ψ ◦ F ◦ ϕ−1 = ψ ◦ F ◦ ϕ̃−1 ◦G−1 = g ◦G−1 = π ◦G ◦G−1 = π.

3. Iowa Qual, Fall 2007

Suppose that M and N are smooth manifolds. Give M × N the structure of a
smooth manifold by producing a compatible atlas. Prove that your atlas is compatible.

Proof. Suppose that {(Uα, ϕα)} and {(Vβ , ψβ)} are smooth atlases for Mm and Nn,
respectively. We show that {(Uα×Vβ , ϕα×ψβ)} defines a smooth structure on M×N ,
where ϕα × ψβ : M ×N → Rm × Rn is given by (ϕα × ψβ)(m,n) = (ϕα(m), ψβ(n)).
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Evidently the collection of open sets {(Uα × Vβ)} covers M × N . Now suppose
(Uα1 × Vβ1 , ϕα1 × ψβ1) and (Uα2 × Vβ2 , ϕα2 × ψβ2) are overlapping charts in {(Uα ×
Vβ , ϕα × ψβ)}. Then the map

(ϕα1 × ψβ1) ◦ (ϕα2 × ψβ2)−1 : ϕα2(Uα1α2)× ψβ2(Vβ1β2)→ ϕα1(Uα1α2)× ψβ1(Vβ1β2)

is smooth at (x, y) ∈ ϕα2
(Uα1α2

)× ψβ2
(Vβ1β2

) ⊂ Rm × Rn because

(ϕα1 × ψβ1) ◦ (ϕα2 × ψβ2)−1(x, y) =
(

(ϕα1 × ψβ1)(ϕ−1
α2

(x), ψ−1
β2

(y))
)

=
(
ϕα1(ϕ−1

α2
(x)), ψβ1(ψ−1

β2
(y))

)
=
(

(ϕα1 ◦ ϕ−1
α2

)(x), (ψβ1 ◦ ψ−1
β2

)(y)
)
,

and (ϕα1
◦ϕ−1

α2
) and (ψβ1

◦ψ−1
β2

) are smooth at x and y, respectively. Hence our atlas
is compatible.

4. Iowa Qual, Spring 2008

Prove that the sphere S2 = {(x, y, z) ∈ R3 : x2 +y2 +z2 = 1} is a smooth manifold
by exhibiting charts. Carefully calculate one transition map and its derivative to
explain why the transition map is a diffeomorphism.

Proof. We have charts

X+ = {(x, y, z) ∈ S2 : x > 0}, ϕX+(x, y, z) = (y, z),

X− = {(x, y, z) ∈ S2 : x < 0}, ϕX−(x, y, z) = (y, z),

Y + = {(x, y, z) ∈ S2 : y > 0}, ϕY +(x, y, z) = (x, z),

Y + = {(x, y, z) ∈ S2 : y < 0}, ϕY −(x, y, z) = (x, z),

Z+ = {(x, y, z) ∈ S2 : z > 0}, ϕZ+(x, y, z) = (x, y),

Z+ = {(x, y, z) ∈ S2 : z < 0}, ϕZ−(x, y, z) = (x, y).

The inverse maps are,

ϕ−1
X+(y, z) =

(√
1− y2 − z2, y, z

)
,

ϕ−1
X−(y, z) =

(
−
√

1− y2 − z2, y, z
)
,

ϕ−1
Y +(x, z) =

(
x,
√

1− x2 − z2, z
)
,

ϕ−1
Y −(x, z) =

(
x,−

√
1− x2 − z2, z

)
,

ϕ−1
Z+(x, y) =

(
x, y,

√
1− x2 − y2

)
,

ϕ−1
Z−(x, y) =

(
x, y,−

√
1− x2 − y2

)
.

We compute the transition map ϕX− ◦ ϕ−1
Z+ : ϕZ+(X− ∩ Z+)→ ϕX−(X− ∩ Z+).(

ϕX− ◦ ϕ−1
Z+

)
(x, y) = ϕX−

(
x, y,−

√
1− x2 − y2

)
=
(
y,−

√
1− x2 − y2

)
.
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The derivative of ϕX− ◦ ϕ−1
Z+ at a point (x0, y0) ∈ ϕZ+(X− ∩ Z+) is

(
ϕX− ◦ ϕ−1

Z+

)
∗,(x0,y0)

=



∂y

∂x

∣∣∣
(x0,y0)

∂y

∂y

∣∣∣
(x0,y0)

∂
(
−
√

1− x2 − y2
)

∂x

∣∣∣∣∣
(x0,y0)

∂
(
−
√

1− x2 − y2
)

∂y

∣∣∣∣∣
(x0,y0)



=

 0
∣∣
(x0,y0)

1
∣∣
(x0,y0)

x(1− x2 − y2)−1/2
∣∣∣
(x0,y0)

y(1− x2 − y2)−1/2
∣∣∣
(x0,y0)



=

 0 1

x0(1− x2
0 − y2

0)−1/2 y0(1− x2
0 − y2

0)−1/2

 .

The above matrix fails to have full rank precisely when x0 = 0 or (1−x2
0−y2

0)−1/2 = 0.
The latter case is never true. Notice that

ϕZ+(X− ∩ Z+) =
{

(x, y) ∈ R2 : −1 < y < 1, −
√

1− y2 < x < 0
}
,

and so x0 6= 0. Hence
(
ϕX− ◦ ϕ−1

Z+

)
∗,(x,y)

has full rank. Then by the Inverse Function

Theorem, ϕX− ◦ ϕ−1
Z+ is a local diffeomorphism at (x, y). Since (x, y) was arbitrary,

ϕX− ◦ ϕ−1
Z+ is a diffeomorphism.

5. Iowa Qual, Spring 2008

Suppose X,Y, Z are smooth manifolds, f : X → Y is a diffeomorphism, and
g : Y → Z is a smooth map such that for some y ∈ Y , g∗,y : TyY → Tg(y)Z is
injective. Prove that for each x ∈ f−1(y), (g ◦ f)∗,x is injective.

Proof. Let x ∈ f−1(y). By the Chain Rule,

(g ◦ f)∗,x = g∗,f(x) ◦ f∗,x = g∗,y ◦ f∗,x.

Since g∗,y is injective, we need only to show that f∗,x is injective to obtain the desired
result. Since f is a diffeomorphism f−1 ◦ f = 1X and so again by the Chain Rule,

f−1
∗,f(x) ◦ f∗,x = (f−1 ◦ f)∗,x = (1X)∗,x,

from which it follows that f∗,x is injective.

6. Iowa Qual, January 2011

Let S2 = {(x, y, z) ∈ R3 : x2+y2+z2 = 1} be the standard unit sphere of dimension
2. Let F : S2 → S2 be defined by restricting the linear map T (x, y, z) = (−y, x,−z)

32



to S2, that is F = T |S2 . The stereographic projection φ given below defines a chart,
(S2 \ (0, 0, 1), φ).

φ(x, y, z) =

(
x

1− z
,

y

1− z

)
= (u, v) and

φ−1(u, v) =
1

1 + u2 + v2
(2u, 2v, u2 + v2 − 1)

Let p =
(

1√
2
, 1

2 ,
1
2

)
and q = F (p). Calculate the matrix of F∗ : TpS

2 → TqS
2 with

respect to the bases { ∂∂u |p,
∂
∂v |p} and { ∂∂u |q,

∂
∂v |q}.

Solution:

Let u, v denote the standard coordinates in R2, and let φ = (φ1, φ2).Then notice
that φ1 = u ◦ φ and φ2 = u ◦ φ. So the component functions of F with respect to the
chart (S2 \ (0, 0, 1), φ) are

F 1 = φ1 ◦ F = u ◦ φ ◦ F and F 2 = φ2 ◦ F = v ◦ φ ◦ F.

So,

F∗,p =


∂F 1

∂u
(p)

∂F 1

∂v
(p)

∂F 2

∂u
(p)

∂F 2

∂v
(p)

 =


∂(u ◦ φ ◦ F )

∂u
(p)

∂(u ◦ φ ◦ F )

∂v
(p)

∂(v ◦ φ ◦ F )

∂u
(p)

∂(v ◦ φ ◦ F )

∂v
(p)



=


∂(u ◦ φ ◦ F ◦ φ−1)

∂u
(φ(p))

∂(u ◦ φ ◦ F ◦ φ−1)

∂v
(φ(p))

∂(v ◦ φ ◦ F ◦ φ−1)

∂u
(φ(p))

∂(v ◦ φ ◦ F ◦ φ−1)

∂v
(φ(p))

 .

Now,

(φ ◦ F ◦ φ−1)(u, v) = (φ ◦ F )

(
1

1 + u2 + v2

(
2u, 2v, u2 + v2 − 1

))
= φ

(
1

1 + u2 + v2
(−2v, 2u,−(u2 + v2 − 1))

)
=

1

1 + u2 + v2

(
−2v

1 + u2+v2−1
1+u2+v2

,
2u

1 + u2+v2−1
1+u2+v2

)

=
1

1 + u2 + v2

(
−2v

2u2+2v2

1+u2+v2

,
2u

2u2+2v2

1+u2+v2

)

=

(
−2v

2u2 + 2v2
,

2u

2u2 + 2v2

)
.

33



So,

∂(u ◦ φ ◦ F ◦ φ−1)

∂u
=
∂
(
−2v

2u2+2v2

)
∂u

=
8uv

(2u2 + 2v2)2
,

∂(u ◦ φ ◦ F ◦ φ−1)

∂v
=
∂
(
−2v

2u2+2v2

)
∂v

=
(2u2 + 2v2)(−2)− (−2v)(4v)

(2u2 + 2v2)2

= − 1

u2 + v2
+

8v2

(2u2 + 2v2)2
,

∂(v ◦ φ ◦ F ◦ φ−1)

∂u
=
∂
(

2u
2u2+2v2

)
∂u

=
(2u2 + 2v2)(2)− (2u)(4u)

(2u2 + 2v2)2

=
1

u2 + v2
− 8u2

(2u2 + 2v2)2
,

∂(v ◦ φ ◦ F ◦ φ−1)

∂v
=
∂
(

2u
2u2+2v2

)
∂v

=
−8uv

(2u2 + 2v2)2
.

Then φ(p) =
(√

2, 1
)
, and so finally, we get

F∗,p =


∂F 1

∂u
(p)

∂F 1

∂v
(p)

∂F 2

∂u
(p)

∂F 2

∂v
(p)

 =

 8
√

2
36 − 1

3 + 8
36

1
3 −

16
36 −−8

√
2

36

 =

 2
√

2
9 − 1

9

1
9

−2
√

2
9

 .

7. Iowa Qual, Fall 2014

Recall that RP (2) is the quotient space of R3 \ {~0} by the equivalence relation
(x, y, z) = (x′, y′, z′) if there exists λ ∈ R \ {0} so that λ(x, y, z) = (x′, y′, z′). Denote
the equivalence class of (x, y, z) by [x, y, z]. Give RP (2) the standard smooth structure.
Consider the map f : RP (2)→ R2 given by

f([x, y, z]) =

(
xy

x2 + y2 + z2
,

yz

x2 + y2 + z2

)
.

• a. Prove that f is smooth.

• b. Find the set where f has rank 1.

Proof. • a. Define f̃ : R3 \ {~0} → R2 by

(x, y, z) 7→
(

xy

x2 + y2 + z2
,

yz

x2 + y2 + z2

)
.

As a rational expression, f̃ is smooth. Suppose λ(x, y, z) = (x′, y′, z′) for λ ∈
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R \ {0}. Then

f̃((x′, y′, z′)) =

(
x′y′

x′2 + y′2 + z′2
,

y′z′

x′2 + y′2 + z′2

)
=

(
(λx)(λy)

(λx)2 + (λy)2 + (λz)2
,

(λy)(λz)

(λx)2 + (λy)2 + (λz)2

)
=

(
xy

x2 + y2 + z2
,

yz

x2 + y2 + z2

)
= f(x, y, z),

and hence, f̃ is constant on the fibers above points in the quotient. Therefore,
f̃ descends to a smooth map f : RP (2) → R2 such that f̃ = f ◦ p, where
p : R3 \ {0} → RP (2) is the quotient map. Evidently the map f is the one
described in the problem.

• b. Recall that the standard smooth structure on RP (2) is given by the atlas
{(Ui, φi)}2i=0, where

U0 = {[x, y, z] ∈ RP (2) : x 6= 0}, φ0([x, y, z]) =
(y
x
,
z

x

)
, φ−1

0 (x, y) = [1, x, y],

U1 = {[x, y, z] ∈ RP (2) : y 6= 0}, φ1([x, y, z]) =

(
x

y
,
z

y

)
, φ−1

1 (x, y) = [x, 1, y],

U2 = {[x, y, z] ∈ RP (2) : z 6= 0}, φ2([x, y, z]) =
(x
z
,
y

z

)
, φ−1

2 (x, y) = [x, y, 1].

Let q0 = [x0, y0, z0] ∈ U0. Then

f∗,q0 =


∂f1

∂x
(q0)

∂f1

∂y
(q0)

∂f2

∂x
(q0)

∂f2

∂y
(q0)

 =


x2

(q0)
∂f1

∂y
(q0)

∂f2

∂x
(q0)

∂f2

∂y
(q0)



8. Iowa Qual, Fall 2015

• (a) Recall S1 = {z ∈ C||z| = 1}. Consider that map µ : Z × S1 → S1 given

by µ(n, z) = e2πin
√

2z. Prove that µ defines a C∞ action of Z on the smooth
manifold S1.

• (b) Is S1/Z a manifold? Prove or disprove.

Proof. • (a)

• (b)
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9. Iowa Qual, Winter 2016

Recall that for any point x ∈ Sn, where Sn = Sn1 , the space Sn\{x} is diffeomorphic
to Rn. Find a map ϕ : Sn \ {x} → Rn. Prove that the map ϕ is a diffeomorphism.

Proof. Note that Sn = {(x1, . . . , xn+1) ∈ Rn+1 : x2
1 · · · + x2

n+1 = 1}. By possibly
rotating Sn as needed, we may assume that x = N = (0, . . . , 0, 1). We view Rn ⊂ Rn+1

as all points with last coordinate 0; that is, Rn = {(x1, . . . , xn+1) ∈ Rn+1 : xn+1 = 0}.
Consider the line from N through a point p = (x1, . . . , xn, xn+1) ∈ Sn,

Lp : [0,∞)→ Rn+1, t 7→ (1− t)N + tp = (tx1, . . . , txn, txn+1 + (1− t)).

Then if tp = 1
1−xn+1

, Lp(tp) has last coordinate 0, and so Lp(tp) ∈ Rn. So we define

ϕ : Sn \ {N} → Rn by

t 7→ Lp(tp) =
1

1− xn+1
(x1, . . . , xn, 0).

On the other hand, if y = (x1, . . . , xn, 0) ∈ Rn, consider the line from N to y,

Ly : [0,∞)→ Rn+1, t 7→ (1− t)N + ty = (tx1, . . . , txn, 1− t).

Then Ly(ty) ∈ Sn if ty = 2
x1+···+xn+1 , and so we have an inverse map ϕ−1 : Rn →

Sn \ {N} given by

(x1, . . . , xn, 0) 7→ Ly(ty) =
1

x2
1 + · · ·+ x2

n + 1
(2x1, . . . , 2xn, x

2
1 + · · ·+ x2

n − 1).

We argue why ϕ and ϕ−1 are smooth. First, ϕ−1, is smooth map on all of Rn since
its component functions are given in the global coordinates of Rn and are therein
smooth.

Consider A = Rn+1 \ {pts w/ last coord. 1}. If π : Rn+1 → R is projection onto
the last coordinate, then A = Rn+1 \ f−1({1}), and so A is open since f−1({1}) is
closed. So, as a function on the open subset A of Rn+1, the map ϕ is smooth since it
is given the the global coordinates of Rn+1 and is indeed smooth with respect to those
coordinates. Since Sn \ {N} ⊂ A is a regular submanifold of Rn+1, then ϕ restricts to
a smooth map on Sn \ {N}.

10. Iowa Qual, Winter 2016

Suppose that M is a C∞-smooth manifold.

• a. Define the ring C(M).

• b. Define the ring C∞(M).

• c. Define the rings Cr(M), for r = 1, 2, . . . .

• d. Prove that there are injective ring homomorphisms:

C0(M) ⊂ · · · ⊂ Cr(M) ⊂ Cr+1(M) ⊂ · · · ⊂ C∞(M).

• e. Prove that at least two of the homomorphisms in the previous part are not
surjective.
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2.2 Regular Submanifolds

1. Iowa Qual, Fall 2005

• a. Prove that the hyperboloid H of points in R3 that satisfy

x2 + y2 − z2 = 1

is a smooth [i.e., regular] submanifold of R3.

• b. Let p : H → R2 be the resriction of orthogonal projection to the xz-plane to
H. What are the regular values and critical values of p? Justify your answer.

Proof. • a. We exhibit H as a regular level set of a smooth map from R3 to R,
showing that H is a regular submanifold of R3 of dimension 2. Consider the
smooth map f(x, y, z) = x2 + y2 − z2 − 1. Evidently H = f−1({0}), and so it
remains to show that 0 is a regular value of f . Observe that

f∗,(x,y,z) =
(
2x 2y −2z

)
,

and so f∗ fails to be surjective precisely at the origin; hence the only critical value
of f is f(0, 0, 0) = 1, giving that 0 is a regular value of f .

• b. To find the critical values of p, we want to find the points q ∈ H for which
the differential

p∗,q : TqH → Tp(f)R2 ∼= R2

fails to be surjective. Since p∗ is a linear map between 2-dimensional vector
spaces, this happens precisely when dim Ker(p∗) > 0.

Let π : R3 → R2 denote projection onto the xz-plane, so that p = π|H . Note
that since π is a linear map, π∗ = π. For q ∈ H, we have

Ker p∗,q = Ker (π|H)∗,q = Ker (π∗,q) |TqH = Ker (π) |TqH = Kerπ ∩ TqH

Recall that since H is a regular level set of f , then for any q ∈ H, we have
TqH = Ker f∗,q, and so the above becomes

Ker p∗,q = Kerπ ∩Ker f∗,q.

We have
Kerπ = {(a, b, c) ∈ R3 : (a, c) = (0, 0)},

and letting q = (x0, y0, z0), we have

Ker f∗,q =

(a, b, c) ∈ TqH :
(
2x0 2y0 −2z0

)ab
c

 = 0


= {(a, b, c) ∈ TqH : 2x0a+ 2y0b− 2z0c = 0} .

Hence
Ker p∗,q = {(a, b, c) ∈ TqH : 2y0b = 0}
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For an arbitrary q, there certainly exists (a, b, c) ∈ TqH with b 6= 0, and so q is a
critical point of p if and only if y0 = 0. Therefore, the critical points of p are

C = {(x0, y0, z0) ∈ H : y0 = 0} = {(x, y, z) ∈ R3 : x2 − z2 = 1}

and so the critical values of p are p(C) = {(x, z) ∈ R2 : x2−z2 = 1}. Graphically,
p(C) is a hyperbola in the xz-plane. The regular values of p are therefore

Rv{(x, z) ∈ R2 : x2 − z2 6= 1} = {(x, z) ∈ R2 : x2 − z2 < 1},

where the last set equality follows from the fact that no point (x, y, z) ∈ H is such
that x2−z2 > 1, because then 1 = x2 +y2−z2 > 1+y2, which is a contradiction
for any value of y. So R is the region inside of the hyperbola p(C).

2. Iowa Qual, Fall 2006

Let Wc = {(x, y, z, w) ∈ R4 : xyz = c} and Yc = {(x, y, z, w) ∈ R4 : xzw = c}.
For what real numbers c is Yc a three-manifold? For what pairs (c1, c2) is Wc1 ∩ Yc2
a two-manifold?

Proof. Define a map f : R4 → R, (x, y, z, w) 7→ xzw − c. Then Yc = f−1({0}), and

f∗,(x,y,z,w) =
(
zw 0 xw xz

)
.

Therefore, f∗,(x,y,z,w) fails to be surjective – i.e., we obtain critical points of f – when
any two of the coordinates x, z, w is zero. Therefore, the regular points of f are

R = {(x, y, z, w) ∈ R4 : y ∈ R, and, at most one coordinate among x, y, w is 0}.

Suppose c 6= 0. Then in fact none of the coordinates among x, z, w is zero. In other
words, Yc ⊂ R when c 6= 0. Hence by the Regular Level Set Theorem, Yc is a three-
manifold when c 6= 0. On the other hand, we claim that Y0 is not a three-manifold.
In this case, Y0 = {(x, y, z, w) ∈ R4 : xzw = 0}, or equivalently,

Y0 = {(x, y, z, w) ∈ R4 : x = 0}∪{(x, y, z, w) ∈ R4 : z = 0}∪{(x, y, z, w) ∈ R4 : w = 0}.

In other words, Yc is the union of the yzw, xyw, and xyz hyperplanes in R4. Recall
the the dimension of the tangent space at any point in a manifold is the same as that
of said manifold. We show that dimT(0,0,0,0)Y0 > 3, showing that Y0 cannot be a
three-manifold.

Consider the following curves, which all start at (0, 0, 0, 0):

α1 : (−ε, ε)→ Y0, t 7→ (t, 0, 0, 0)

α2 : (−ε, ε)→ Y0, t 7→ (0, t, 0, 0)

α3 : (−ε, ε)→ Y0, t 7→ (0, 0, t, 0)

α4 : (−ε, ε)→ Y0, t 7→ (0, 0, 0, t)

The vectors Xi = α′i(0) are therefore elements of T(0,0,0,0)Y0, and are linearly inde-
pendent.
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For the second question, first observe

Wc1 ∩ Yc2 = {(x, y, z, w) ∈ R4 : xyz = c1 and xzw = c2}.

Define a map g : R4 → R2 by (x, y, z, w) 7→ (xyz, xzw). ThenWc1∩Yc2 = g−1({(c1, c2)}),
and

g∗,(x,y,z,w) =

(
yz xz xy 0
zw 0 xw xz

)
.

Then g∗ fails to have maximal rank when all of its 2 × 2–minors have determinant
zero:

0 =

∣∣∣∣yz xz
zw 0

∣∣∣∣ = −xz2w, 0 =

∣∣∣∣yz xy
zw xw

∣∣∣∣ = xyzw − xyzw, 0 =

∣∣∣∣yz 0
zw xz

∣∣∣∣ = xyz2,

0 =

∣∣∣∣xz xy
0 xw

∣∣∣∣ = x2zw, 0 =

∣∣∣∣xz 0
0 xz

∣∣∣∣ = x2z2, 0 =

∣∣∣∣xy 0
xw xz

∣∣∣∣ = x2yz.

From here we see immediately that if x = 0 or y = 0, then g∗ fails to have maximal
rank. If y and/or w is 0, the fifth determinant above shows that g∗ can still have
maximal rank if both x and z are nonzero. Hence the g∗ has maximal rank if and only
if x 6= 0 and z 6= 0. In other words, the regular points of g are

R′ = {(x, y, z, w) ∈ R4 : x 6= 0, z 6= 0}.

If c1 and c2 are nonzero, then Wc1 ∩ Yc2 ⊂ R′. If c1 = 0 and c2 6= 0 or if c1 6= 0 and
c2 = 0, then x, z are nonzero and so Wc1∩Yc2 ⊂ R′. Hence Wc1∩Yc2 is a two-manifold
when at most one of c1, c2 is 0 by the Regular Lever Set Theorem.

Now suppose c1 = c2 = 0, then we have

W0 ∩ Y0 = {(x, y, z, w) ∈ R4 : xyz = 0 and xzw = 0}
= {x = 0} ∪ {y = 0} ∪ {z = 0} ∪ {w = 0}

In other words, W0∩Y0 is the union of the yzw, xzw, xyw, and xyz hyperplanes in R4.
An analogous argument with curves as before shows that dimT(0,0,0,0)W0 ∩ Y0 > 2.
Hence W0 ∩ Y0 is not a two-manifold.

3. Iowa Qual, Fall 2007

Let T 2 be the subset of R3 that is the result of rotating the circle in the yz plane
of radius 1 centered at (0, 2, 0) about the z-axis. It may be useful to note that T 2 is
the set of points in 3-space satisfying the equation ((x2 + y2)1/2 − 2)2 + z2 = 1.

• a. Prove that T 2 is a smooth 2-manifold.

• b. Let p : T 2 → R2 be the restriction of p : R3 → R2 given by p(x, y, z) = (x, y).
Identify the regular values of p : T 2 → R2.

Proof. • a. By the Regular Level Set Theorem: Define a smooth map f : R3 → R,
(x, y, z) 7→ ((x2 + y2)1/2 − 2)2 + z2 − 1. Then T 2 = f−1({0}) and so we must
show that 0 is a regular value of f , or equivalently, that f−1({0}) is contained in
the set of regular points of f . For (x, y, z) ∈ T 2, we have

f∗,(x,y,z) =
(

2x((x2+y2)1/2−2)
(x2+y2)1/2

2y((x2+y2)1/2−2)
(x2+y2)1/2

2z
)
.
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Notice that if x2 + y2 = 0 then z2 = −3 =⇒ x 6∈ R. Hence f∗,(x,y,z) is well-
defined for all (x, y, z) ∈ T 2. Now, f∗ fails to have maximal rank when all of its
components are 0; that is, when

0 =
2x((x2 + y2)1/2 − 2)

(x2 + y2)1/2
=

2y((x2 + y2)1/2 − 2)

(x2 + y2)1/2
= 2z,

i.e., when x = 0, y = 0, and z = 0, or when, x2 + y2 = 4 and z = 0. The former
case is not true for any (x, y, z) ∈ T 2 and the latter case also never happens in
T 2 since that would imply 0 = 1. Hence f∗ has full rank on all of T 2, and so T 2

is a regular submanifold of R3 of dimension 2.

• b. To find the critical values of p, we want to find the points q ∈ T 2 for which
the differential

p∗,q : TqT
2 → Tp(f)R2 ∼= R2

fails to be surjective. Since p∗ is a linear map between 2-dimensional vector
spaces, this happens precisely when dim Ker(p∗) > 0.

Let π : R3 → R2 denote projection onto the xy-plane, so that p = π|T 2 . Note
that since π is a linear map, π∗ = π. For q ∈ T 2, we have

Ker p∗,q = Ker (π|T 2)∗,q = Ker (π∗,q) |TqT 2 = Ker (π) |TqT 2 = Kerπ ∩ TqT 2

Recall that since T 2 is a regular level set of f , then for any q ∈ T 2, we have
TqT

2 = Ker f∗,q, and so the above becomes

Ker p∗,q = Kerπ ∩Ker f∗,q.

We have
Kerπ = {(a, b, c) ∈ R3 : (a, b) = (0, 0)},

and letting q = (x0, y0, z0), we have

Ker f∗,q =

(a, b, c) ∈ TqT 2 : f∗,q

ab
c

 = 0


=

{
(a, b, c) ∈ TqH :

(2ax0 + 2by0)((x2
0 + y2

0)1/2 − 2)

(x2
0 + y2

0)1/2
+ 2cz0 = 0

}
.

Hence
Ker p∗,q =

{
(a, b, c) ∈ TqT 2 : 2cz0 = 0

}
For an arbitrary q, there certainly exists (a, b, c) ∈ TqH with c 6= 0, and so q is a
critical point of p if and only if z0 = 0. Therefore, the critical points of p are

C = {(x0, y0, z0) ∈ T 2 : z0 = 0}
= {(x, y, z) ∈ R3 : ((x2 + y2)1/2 − 2)2 = 1}
=
{

(x, y, z) ∈ R3 : x2 + y2 = 1 or x2 + y2 = 9
}

and so the critical values of p are

p(C) =
{

(x, y) ∈ R2 : x2 + y2 = 1 or x2 + y2 = 9
}
.

40



Graphically, p(C) is two circles in the the xy-plane; one of radius 1, and the other
of radius 3. The regular values of p are therefore

Rv = {(x, z) ∈ R2 : ((x2 + y2)1/2 − 2)2 6= 1}
∗
= {(x, z) ∈ R2 : ((x2 + y2)1/2 − 2)2 < 1}
= {(x, z) ∈ R2 : 1 < x2 + y2 < 9}

where ∗ follows from the fact that no points of T 2 are such that ((x2 + y2)1/2 −
2)2 > 1. For then, 1 = (x2 + y2)1/2 − 2)2 + z2 > 1 + z2, a contradiction for any
z ∈ R. Graphically, Rv is an open annulus in the xy-plane between the circles of
radii 1 and 3.

4. Iowa Qual, Spring 2008

Let A = {(x, y, z) ∈ R3 : z = 2x + 3y} and let B = the z-axis. Prove A and B
meet transversally.

Solution 1:

Since A and B are submanifolds of R3, we need to show that for all p ∈ A∩B, we
have

TpA+ TpB = TpR3 ∼= R3.

Now,

A ∩B = {(x, y, z) ∈ R3 : z = 2x+ 3y, x = y = 0} = {(x, y, z) ∈ R3 : z = x = y = 0}
= {(0, 0, 0)}.

and so we let p = (0, 0, 0). We need to describe elements in TpA and TpB. Define
smooth maps f : R3 → R, (x, y, z) 7→ 2x + 3y − z, g : R3 → R2, (x, y, z) 7→ (x, y).
Then A = f−1({0}) and B = g−1({(0, 0)}), and

f∗,(x,y,z) =
(
2 3 −1

)
, g∗,(x,y,z) =

(
1 0 0
0 1 0

)
.

So f and g have no critical values, giving that A and B are regular submanifolds of
R3 of dimensions 2 and 1, respectively. So we have

TpA = Ker(f∗,p) = {(x, y, z) ∈ R3 : 2x+ 3y = z}

and
TpB = Ker(g∗,p) = {(x, y, z) ∈ R3 : x = y = 0}.

Now evidently TpA+ TpB ⊆ R3 and conversely if (x0, y0, z0) ∈ R3, then pick (x0/2−
(3/2)y0, y0, 0) ∈ TpA and (0, 0, z0) ∈ TpB so that

(x0, y0, z0) = (x0/2− (3/2)y0, y0, 0) + (0, 0, z0) ∈ TpA+ TpB.

Solution 2: We exhibit two vectors in TpA and one vector in TpB which are
linearly independent for p = (0, 0, 0).
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5. Iowa Qual, Fall 2015

Let ∆ = {(~v, ~w) ∈ R3 × R3|~v = ~w}, S2 = {~x ∈ R3|||~x|| = 1} and C = R3 × R3 \∆.
Defined the map g : C → S2 by

g(~v, ~w) =
~v − ~w

||~v − ~w||
,

where ||~v − ~w|| means the norm of the difference. (This problem is computational.)

• a. Prove that g is a smooth mapping.

• b. Let N = g−1(0, 0, 1). Prove that N is a regular submanifold of C.

6. Introduction to Smooth Manifolds, Spring 2017, Final Review

Let H = {(x, y, z) ∈ R3|x2 + y2 − z2 = 1}.

• a. Prove that H is a regular submanifold of R3 and describe its tangent space at
each point.

• b. Let r > 0. Let Sr = {(x, y, z)|x2 + y2 + z2 = r2}. Prove that Sr is a regular
submanifold of R3 and identify its tangent space at each point.

• c. For which r is Sr transverse to H?

Proof. • a. Define a smooth map f : R3 → R, (x, y, z) 7→ x2 + y2 − z2 − 1. Then
H = f−1({0}), ans so we show that 0 is a regular value of f and apply the
Regular Level Set Theorem to conclude that H is a regular submanifold of R3 of
dimension 2. For (x, y, z) ∈ H, we have

f∗(x,y,z) =
(
2x 2y −2z

)
,

and so f∗,(x,y,z) fails to be surjective if and only if (x, y, z) = (0, 0, 0). Since
(0, 0, 0) 6∈ H, then every point in H is a regular point of f , and so 0 is a regular
value of f .

• b. Just as above, 0 is a regular value of a map g(x, y, z) = z2 +y2 +z2−r2, since

g∗(x,y,z) =
(
2x 2y 2z

)
fails to be surjective if and only if (x, y, z) = (0, 0, 0) and since (0, 0, 0) 6∈
g−1({0}) = Sr. So Sr is a regular submanifold of R3 of dimension 2. The
tangent space at any point in (x, y, z) ∈ Sr can be identified with the kernel of
g∗,(x,y,z); that is

Ker g∗(x,y,z) = {(a, b, c) ∈ R3 : 2ax+ 2by − 2cz = 0}.

• c. A normal vector to H is
(
2x 2y −2z

)
, and a normal vector to Sr is(

2x 2y 2z
)
. So H and Sr will fail to be transverse precisely when these normal

vectors are parallel, which happens if and only if z = 0. In this case, x2 + y2 = 1
on H and so 1 = x2 + y2 = r2 on Sr. Hence H and Sr are transverse if and only
if r 6= 1.
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2.3 Lie Groups

1. Iowa Qual, Fall 2005

• a. Define Lie group.

• b. Let SLnR denote n × n matrices with real entries of determinant 1. Prove
that SLnR is a Lie group.

• c. What is the tangent space of SLnR at the identity?

Solution:

• a. A Lie group is a manifold G which is also a group so that the multiplication
and inversion maps are smooth.

• b. SLnR is a group: Since the identity matrix has determinant 1, SLnR 6= ∅. If

A,B ∈ SLnR, then det(AB−1) = det(A) det(B−1) = 1 and so SLnR ≤ GLnR.

SLnR is a manifold: Since GLnR = det−1((−∞, 0) ∪ (0,∞)), then GLnR is an

open subset of Rn2

; hence GLnR inherits a manifold structure from Rn2

. Let
f : GLnR → R be the determinant function. Evidently, f−1({1}) = SLnR,
and so we show that 1 is a regular value of f , giving that SLnR is a regular
submanifold of GLnR of dimension n2 − 1 by the Regular Level Set Theorem.

Let A = (aij) ∈ SLnR. Denote by mi,j the determinant of the matrix obtained
from A by deleting its ith row and jth column. Then, expanding along the ith
row of A, we have f(A) = det(A) = (−1)i+1ai1mi1 + · · · + (−1)i+nainmin, and
so

f∗,A =

(
∂f

∂ai1
. . .

∂f

∂ain

)
=
(
(−1)i+1mi1 · · · (−1)i+nmin

)
.

Hence f∗,A fails to be surjective precisely when all mij are zero, but this occurs
if and only if det(A) = 0. Since A ∈ SLnR, det(A) = 1, and so f∗,A is surjective.

SLnR has smooth multiplication and inversion maps: Since matrix multiplication

in GLnR are polynomials in the coordinates of Rn2

, it is smooth. The inverse of
a matrix A = (aij) ∈ GLnR has (i, j)-entry

(A−1)(i,j) =
1

detA
(−1)i+j((i, j)-minor of A),

which is smooth in aij if detA 6= 0. Hence inversion in GLnR is smooth. Since
SLnR is a regular submanifold of GLnR, the inclusion map ι : SLnR ↪→ GLnR
is smooth. Since restriction of the multiplication and inversion maps of GLnR to
SLnR is composition of said maps with ι, we get that multiplication and inversion
in SLnR is smooth.

• c. Since SLnR is a regular level set of the determinant function, then TISLnR =
Ker det∗,I . Pick X ∈ TISLnR, and define a curve c : (−ε, ε)→ SLnR by t 7→ etX .
Then c(0) = I and c′(0) = X, and we get

0 = det ∗,I(X) =
d

dt

∣∣∣∣∣
t=0

det(etX) =
d

dt

∣∣∣∣∣
t=0

etTrX = TrXetTrX

∣∣∣∣∣
t=0

= TrX.

Hence TISLnR is contained in the vector space V which consists of all those
matrices with trace 0. But V has dimension n2 − 1, as does TISLnR; hence
TISLnR = V .
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2. Iowa Qual, Fall 2007

Let O(n) denote the set of n× n matrices with real entries, A so that AAT = Id.
Prove that O(n) is a Lie group, and identify the tangent space at the identity.

Proof. O(n) is a group: O(n) 6= ∅ since I ∈ O(n), and if A,B ∈ O(n), then

(AB−1)(AB−1)T = AB−1(BT )−1(AT )−1 = A(BTB)−1(AT )−1 = (ATA)−1 = I.

and so O(n) ≤ GLnR.

O(n) is a manifold: Let f : GLnR → GLnR be given by A 7→ AAT . Notice that

(AAT )T = AAT , and so in fact f(GLnR) = Sn = {n× n symmetric matrices}. Note
that a matrix in Sn is determined by its values on the diagonal and upper triangle,

and so dimSn = n+ (n− 1) + · · ·+ 1 = n(n+1)
2 = n2+n

2 .

Obviously, O(n) = f−1(I), and so we show that I is a regular value of f , which
gives that O(n) is a regular submanifold of GLnR of dimension dimGLnR−dimSn =

n2 − n2+n
2 = n2−n

2 by the Regular Level Set Theorem.

To that end, pick A ∈ f−1(I) = O(n) and X ∈ TAGLnR ∼= GLnR. Then we can
find a curve c : (ε, ε)→ GLnR starting at A with initial velocity X. Then

f∗,A(X) =
d

dt

∣∣∣∣∣
t=0

f(c(t)) =
d

dt

∣∣∣∣∣
t=0

c(t)c(t)T = c(t)c′(t)T+c′(t)c(t)T
∣∣∣
t=0

= AXT+XAT .

We argue why f∗,A is surjective. If B ∈ Sn, pick X = 1
2BA, and then the above

computation gives

f∗,A(X) = A

(
1

2
BA

)T
+

(
1

2
BA

)
AT =

1

2
AATBT +

1

2
BAAT =

1

2
(BT +B) = B,

and so f∗,A is surjective.

O(n) has smooth multiplication and inversion maps: Since O(n) is a regular sub-
manifold of GLnR, the inclusion map ι : O(n)R ↪→ GLnR is smooth. Since restriction
of the multiplication and inversion maps of GLnR to O(n) is composition of said maps
with ι, we get that multiplication and inversion in O(n) is smooth.

Since O(n) is a regular level set of f , then TIO(n) = Ker f∗,I . The computation
earlier gives that if X ∈ TIO(n),

0 = f∗,I(X) = XT +X,

and so TIO(n) is contained in the vector space V of skew symmetric matrices. But
every element in V is determined by its values on the upper triangle, and so dimV =

(n − 1) + (n − 2) + . . . 1 = (n−1)n
2 = n2−n

2 , and since also dimTIO(n) = dimO(n) =
n2−n

2 , then in fact TIO(n) = V .

3. Iowa Qual, Fall 2014 (Balz)

Let

B =


a b c

0 d e
0 0 f

 ∈M3,3(R)|adf 6= 0


be the set of invertible upper triangular matrices.
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• a. Prove that B equipped with matrix multiplication is a Lie group.

• b. Compute the tangent space to B at the identity as a linear subspace of
M3,3(R) = R9.

4. Iowa Qual, Fall 2015 (Sanadhya)

• a. Define g is a Lie algebra.

• b. Recall the cross product × : R3×R3 → R3, and prove that R3 equipped with
the cross product is a Lie algebra.

Solution:

• a. A Lie algebra g is a vector space together with a product [, ] : g× g→ g that

– is bilinear: [aX+bY, Z] = a[X,Z]+b[X,Z], [X, aY +bZ] = a[X,Z]+b[X,Y ].

– is anticommutative: [X,Y ] = −[Y,X].

– satisfies the Jacobi Identity: 0 = [X, [Y,Z]] + [Z, [X,Y ]] + [Y, [Z,X]].

• b. R3 is a real vector space, and so we show that × is bilinear, anticommutative
and satisfies the Jacobi Identity. The cross product is given by

[X,Y ] = ×(X,Y ) = ×

x1

x2

x3

 ,

y1

y2

y3

 =

x2y3 − x3y2

x3y1 − x1y3

x1y2 − x2y1


So

[aX + bY, Z] =

(ax2 + by2)z3 − (ax3 + by3)z2

(ax3 + by3)z1 − (ax1 + by1)z3

(ax1 + by1)z2 − (ax2 + by2)z1


=

ax2z3 + by2z3 − ax3z2 + by3z2

ax3z1 + by3z1 − ax1z3 + by1z3

ax1z2 + by1z2 − ax2z1 + by2z1


= a

x2z3 − x3z2

x3z1 − x1z3

x1z2 − x2z1

+ b

y2z3 − y3z2

y3z1 − y1z3

y1z2 − y2z1


= a[X,Z] + b[Y,Z],

and similarly [X, aY +bZ] = a[X,Z]+b[X,Y ]. Hence the cross product is bilinear.

Now,

[X,Y ] =

x2y3 − x3y2

x3y1 − x1y3

x1y2 − x2y1

 = −

−
x2y3 − x3y2

x3y1 − x1y3

x1y2 − x2y1

 = −

x3y2 − x2y3

x1y3 − x3y1

x2y1 − x1y2

 = −[Y,X],
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and hence the cross product is anticommutative. Finally,

[X, [Y,Z]] + [Z, [X,Y ]] + [Y, [Z,X]] =

X,
y2z3 − y3z2

y3z1 − y1z3

y1z2 − y2z1

+

Z,
x2y3 − x3y2

x3y1 − x1y3

x1y2 − x2y1


+

Y,
z2x3 − z3x2

z3x1 − z1x3

z1x2 − z2x1


=

x2(y1z2 − y2z1)− x3(y3z1 − y1z3)
x3(y2z3 − y3z2)− x1(y1z2 − y2z1)
x1(y3z1 − y1z3)− x2(y2z3 − y3z2)


+

z2(x1y2 − x2y1)− z3(x3y1 − x1y3)
z3(x2y3 − x3y2)− z1(x1y2 − x2y1)
z1(x3y1 − x1y3)− z2(x2y3 − x3y2)


+

y2(z1x2 − z2x1)− y3(z3x1 − z1x3)
y3(z2x3 − z3x2)− y1(z1x2 − z2x1)
y1(z3x1 − z1x3)− y2(z2x3 − z3x2)


=

0
0
0

 ,

and hence the cross product satisfies the Jacobi Identity.

5. Introduction to Smooth Manifolds, Spring 2017, Final Review

Let

B =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 .

Let O(3, 1) be the set of all four by four matrices A with real entries so that ABAt = B.
Prove that O(3, 1) is a Lie group. Calculate its tangent space at the identity and
determine its dimension as a manifold.

2.4 Vector Fields

1. Iowa Qual, Fall 2006

Define the notion of a smooth action of a Lie group G on a smooth manifold M .
Give an example of S1 acting smoothly on S2. Prove that in general an action of S1

yields a flow on M and therefore a vector field on M. Must this vector field be never
zero?

2. Iowa Qual, Fall 2007

Let M be a smooth manifold.

• a. Given P ∈M define TPM .

• b. Define smooth vector field on M .
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• c. If X and Y are smooth vector fields on M define [X,Y ].

• d. Compute [X,Y ] where X = x ∂
∂y + ∂

∂x and Y = ∂
∂x + ∂

∂y are vector fields on
the plane.

Solution:

• a. For p ∈M , we have

TpM =

{
D : C∞(M)→ R :

D is R-linear and D satisfies the Leibniz rule:
(D(fg))(p) = (Df)g(p) + f(p)(Dg)

}
.

• b. A smooth vector field on M is a smooth section X of the tangent bundle,
π : TM → M . In other words, X is a map X : M → TM such that π ◦ X is
smooth. In local coordinates, if (U,ϕ) = (U, x1, . . . , xn) is a chart of M containing

p, then X(p) = Xp =
∑n
i=1 ai(p)

∂

∂xi

∣∣∣
p
, and we say that X is a smooth vector

field if for every p and every chart about p, the coordinate functions ai are smooth
on U .

• c. Let f ∈ C∞(M). The Lie Bracket, [X,Y ] of X and Y is a smooth vector field
on M given by

[X,Y ]f = (XY − Y X)f = X(Y f)− Y (Xf).

• d.

[X,Y ] =

(
x
∂

∂y
+

∂

∂x

)(
∂

∂x
+

∂

∂y

)
−
(
∂

∂x
+

∂

∂y

)(
x
∂

∂y
+

∂

∂x

)
=

{(
x
∂

∂y

(
∂

∂x
+

∂

∂y

))
+

(
∂

∂x

(
∂

∂x
+

∂

∂y

))}
−
{(

∂

∂x

(
x
∂

∂y
+

∂

∂x

))
+

(
∂

∂y

(
x
∂

∂y
+

∂

∂x

))}
=

{
x

(
∂2

∂y∂x
+

∂2

∂y2

)
+

(
∂2

∂x2
+

∂2

∂x∂y

)}
−
{((

∂x

∂x

∂

∂y
+ x

∂2

∂x∂y

)
+

∂2

∂x2

)
+

((
∂x

∂y

∂

∂y
+ x

∂2

∂y2

)
+

∂2

∂y∂x

)}
=

{
x

∂2

∂y∂x
+ x

∂2

∂y2
+

∂2

∂x2
+

∂2

∂x∂y

}
−
{
∂

∂y
+ x

∂2

∂x∂y
+

∂2

∂x2
+ x

∂2

∂y2
+

∂2

∂y∂x

}
= − ∂

∂y
.

3. Iowa Qual, Fall 2014

Suppose that N ⊂M is a regular submanifold of the smooth manifold M .

• (a) Let X be a smooth vector field on M , so that for every p ∈ N , Xp ∈ TpN .
Show that X|N is a smooth vector field on N .
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Proof. Let ι : Nn ↪→ Mm be inclusion. Since N is a regular submanifold, ι is
smooth: Let p ∈ N and (U ∩ N,ϕ|N) = (U, x1, . . . , xn, 0, . . . , 0) be an adapted
chart about p. Then

ϕ ◦ ι ◦ ϕ−1 : ϕ(U ∩N)→ ϕ(U ∩N)

is smooth at ϕ(p) since

(ϕ ◦ ι ◦ ϕ−1)(ϕ(p)) = ϕ(ι(ϕ−1(ϕ(p))) = ϕ(ι(p)) = ϕ(p),

and ϕ is smooth at p. Therefore, X|N = X ◦ ι : N → TM is a smooth map since
both X and ι are smooth. Moreover, if p ∈ N , then

(X|N )(p) = (X ◦ ι)(p) = X(p) = Xp ∈ TpN

and so in fact X|N : N → TN . Now, to show that X|N is a smooth vector field,
we show that it is a section of the tangent bundle, π : TM →M

π ◦X|N = π ◦X ◦ ι = 1M ◦ ι = 1N .

• (b) Suppose that f̃ : M → R is smooth and f : N → R is the restriction of f̃ to
N . Prove or disprove,

X|N (f) = X(f̃).

[I’m pretty sure this last equation should read “X|N (f) = X(f̃)|N”, for otherwise
the equals sign is meaningless. I’ve transcribed it as it was written on the qual.
JH]

Proof. First note that f = f̃ ◦ ι

2.5 Vector Bundles

1. Iowa Qual, Fall 2006 (Balz)

Suppose M is a Lie group. Sketch the proof that M is parallelizable.

2. Iowa Qual, Fall 2016 (Sanadhya)

• (a) Define the notion of a vector bundle E → X over X.

• (b) Assume that X is a smooth compact manifold. Prove that every vector bundle
E → X is homotopic to X : E ' X.

3. Iowa Qual, Winter 2017 (Singh)

Recall that cocycle data is a collection of maps {gij : Ui∩Uj → GL(n,R)}(i,j)∈Λ×Λ

from the pairwise intersections Ui∩Uj of an open cover {Ui}i ∈ Λ of M which satisfy:

gijgji = 1Ui∩Uj
and gijgjkgki = 1Ui∩Uj∩Uk

.

• (a) Prove that a real vector bundle E →M determines a choice of cocycle data.

• (b) Prove that a choice of cocycle data allows one to construct a real vector
bundle E →M .
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2.6 Differential Forms

1. Iowa Qual, Spring 2008

Consider the following 1-form on R3.

ω = xy dx+ x dy + x dz

• (i) Calculate the 2-form dω.

• (ii) Show by explicit calculation that d(dω) = 0.

• (iii) Does there exist a 1-form α on R3 such that ddα = (x5y3z9)dx ∧ dy ∧ dz?
(Do not try to find such α; just state in one or two sentences why such a 1-form
does or does not exist.)

Solution:

• (i)

dω = d(xy) ∧ dx+ dx ∧ dy + dx ∧ dz

=

(
∂(xy)

∂x
dx+

∂(xy)

∂y
dy

)
∧ dx+ dx ∧ dy + dx ∧ dz

= (ydx+ xdy) ∧ dx+ dx ∧ dy + dx ∧ dz
= ydx ∧ dx+ xdy ∧ dx+ dx ∧ dy + dx ∧ dz
= xdy ∧ dx+ dx ∧ dy + dx ∧ dz
= −xdx ∧ dy + dx ∧ dy + dx ∧ dz
= (1− x)dx ∧ dy + dx ∧ dz

• (ii)

d(dω) = d((1− x)dx ∧ dy + dx ∧ dz)
= d(1− x) ∧ dx ∧ dy + d(1) ∧ dx ∧ dz

=

(
∂(1− x)

∂x
dx

)
∧ dx ∧ dy + 0 ∧ dx ∧ dz

= −xdx ∧ dx ∧ dy
= 0.

• (iii) Such a 1 form does not exist. The exterior derivative d has square zero:
d2 ≡ 0. To see this, let ω = fdxI be a k form. Then

d(dω) = d

∑
I

∑
j

∂f

∂xj
dxj ∧ dxI

 =
∑
I

∑
i

∑
j

∂2f

∂xi∂xj
dxi ∧ dxj ∧ dxI .

If i = j in the last sum, then dxi ∧ dxj = 0, getting rid of that term. If i 6= j,
then for each term

∂2f

∂xj∂xi
dxj ∧ dxi,
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we have a corresponding term

∂2f

∂xi∂xj
dxi ∧ dxj .

Since mixed partials are the same (f is assumed to be smooth), and dxi ∧ dxj =
−dxj ∧ dxi, we get

∂2f

∂xj∂xi
dxj ∧ dxi = − ∂2f

∂xi∂xj
dxi ∧ dxj .

Hence all the terms in d(dω) are zero. Since d is Rlinear, we can extend this to
the case when ω =

∑
fIdx

I .

2. Iowa Qual, Fall 2013

Let (x, y, z, w) be the standard coordinates on the Euclidean space R4. Let X = ∂
∂z

be a vector field. Let ω = (xyz)dz∧dx be a 2-form. Compute the Lie derivative LXω.

Solution:

LXω = [LX((xyz)dz) ∧ dx] + (xyz)dz ∧ LX(dx)

= [((LXxyz) dz + xyzLXdz) ∧ dx] + (xyz)dz ∧ LX(dx)

= [(LX(xyz)dz + xyz(dLXz)) ∧ dx] + (xyz)dz ∧ (dLXx)

= [((Xxyz)dz + xyz(dXz)) ∧ dx] + (xyz)dz ∧ (dXx)

= [((xy)dz + xyz(d(1))) ∧ dx] + (xyz)dz ∧ (d(0))

= (xy)dz ∧ dx

3. Iowa Qual, Fall 2013

Let M be an n-manifold. Let α ∈ Ω1(M). Is α ∧ α = 0? Give reasons.

Solution:

Indeed, α ∧ α = 0. This follows from the fact that the wedge product is anticom-
mutative; that is, if ω ∈ Ωk(M) and τ ∈ Ω`(M), then ω ∧ τ = (−1)k`τ ∧ ω. Here’s a
proof: Let ρ ∈ Sk+` be given by

ρ(i) =

{
k + i if 1 ≤ i ≤ k
i− ` if k + 1 ≤ i ≤ k + `

50



Then

(ω ∧ τ)(v1, . . . , vk+`) =
∑

(k,`)-shuffles
σ∈Sk+`

sgnσ ω(vσ(1), . . . , vσ(k)) · τ(vσ(k+1), . . . , vσ(k+`))

=
∑

(k,`)-shuffles
σ∈Sk+`

sgnσ ω(vσρ(k+1), . . . , vσρ(k+`)) · τ(vσρ(1), . . . , vσρ(k))

=
∑

(k,`)-shuffles
σ∈Sk+`

sgnσ(sgn ρ)2 τ(vσρ(1), . . . , vσρ(k)) · ω(vσρ(k+1), . . . , vσρ(k+`))

= sgn ρ
∑

(k,`)-shuffles
µ∈Sk+`

sgnµ τ(vµ(1), . . . , vµ(k)) · ω(vµ(k+1), . . . , vµ(k+`))

= (−1)k`(τ ∧ ω)(v1, . . . , vk+`)

4. Iowa Qual, Winter 2017

Suppose that (x1, y1, x2, y2) are standard coordinates in R4. Let ω = dx1 ∧ dy1 +
dx2 ∧ dy2 ∈ Ω2(R4) be the standard symplectic form. Let X = x1∂/∂x1.

• a. Compute LX(ω).

• b. Prove that ω determines a map

αp : Tp(R4)→ T ∗p (R4)

from the tangent space to the cotangent space at p ∈ R4.

• c. Compute the covector αp(Xp) for each p ∈ R4.

Proof. • a.

LXω = LX(dx1) ∧ dy1 + dx1 ∧ LXdy1 + LX(dx2) ∧ dy2 + dx2 ∧ LXdy2

= dLX(x1) ∧ dy1 + dx1 ∧ dLXy1 + dLX(x2) ∧ dy2 + dx2 ∧ dLXy2

= d(Xx1) ∧ dy1 + dx1 ∧ d(Xy1) + d(Xx2) ∧ dy2 + dx2 ∧ d(Xy2)

= d

(
x1
∂x1

∂x1

)
∧ dy1 + dx1 ∧ d

(
x1
∂y1

∂x1

)
+ d

(
x1
∂x2

∂x1

)
∧ dy2 + dx2 ∧ d

(
x1
∂y2

∂x1

)
= dx1 ∧ dy1 + dx1 ∧ d(0) + d(0) ∧ dy2 + dx2 ∧ d(0)

= dx1 ∧ dy1

• b. Consider the map Zp 7→ ιZp
ωp, where ι is interior multiplication. Then for

Yp ∈ Tp(R4),

(αp(Zp))(Yp) = (ιZp
ωp)(Yp)

= ωp(Zp, Yp)

= dx1 ∧ dy1(Zp, Yp) + dx2 ∧ dy2(Zp, Yp)

= dx1(Zp)dy1(Yp)− dx1(Yp)dy1(Zp)

+ dx2(Zp)dy2(Yp)− dx2(Yp)dy2(Zp).
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• c. By b., we have

(αp(Xp))(Yp) = dx1(Xp)dy1(Yp)− dx1(Yp)dy1(Xp)

+ dx2(Xp)dy2(Yp)− dx2(Yp)dy2(Xp)

= (Xpx1)(Ypy1)− (Ypx1)(Xpy1) + (Xpx2)(Ypy2)− (Ypx2)(Xpy2)

=

(
x1
∂x1

∂x1

)
(Ypy1)− (Ypx1)

(
x1
∂y1

∂x1

)
+

(
x1
∂x2

∂x1

)
(Ypy2)− (Ypx2)

(
x1
∂y2

∂x1

)
= (x1) (Ypy1).

5. Introduction to Smooth Manifolds, Spring 2017, Final Review (Burke)

Let X = x ∂
∂x + y ∂

∂y + z ∂
∂z , let Y = xy ∂

∂x + y ∂
∂z . Let α = dz − y dx, β =

x dx∧dy+y dx∧dz+z dx∧dy. Let f(x, y, z) = xyz. Compute LXf,LXα,LXβ,LXY .
What is α ∧ dα? Write out the maximal flow underlying X.

Solution:

LXf = Xf =

(
x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z

)
xyz = x

∂xyz

∂x
+ y

∂xyz

∂y
+ z

∂xyz

∂z
= 3xyz.

LXα = LXdz − LXy = dLXz − LXy = dXz −Xy = dz − y.
LXβ = LX(xdx ∧ dy) + LX(ydx ∧ dz) + LX(zdx ∧ dy)

= LX(xdx) ∧ dy + xdx ∧ LX(dy)

+ LX(ydx) ∧ dz + ydx ∧ LX(dz)

+ LX(zdx) ∧ dy + zdx ∧ LX(dy)

= (LXx ∧ dx+ xLX(dx)) ∧ dy + xdx ∧ LX(dy)

+ (LX(y) ∧ dx+ yLX(dx)) ∧ dz + ydx ∧ LX(dz)

+ (LX(z) ∧ dx+ zLX(dx)) ∧ dy + zdx ∧ LX(dy)

= (LXx ∧ dx+ xdLX(x)) ∧ dy + xdx ∧ dLX(y)

+ (LX(y) ∧ dx+ ydLX(x)) ∧ dz + ydx ∧ dLX(z)

+ (LX(z) ∧ dx+ zdLX(x)) ∧ dy + zdx ∧ dLX(y)

= (Xx ∧ dx+ xd(Xx)) ∧ dy + xdx ∧ d(X(y))

+ (Xy ∧ dx+ yd(Xx)) ∧ dz + ydx ∧ d(Xz)

+ (Xz ∧ dx+ zd(Xx)) ∧ dy + zdx ∧ d(Xy)

= (xdx+ xdx) ∧ dy + xdx ∧ dy
+ (ydx+ ydx) ∧ dz + ydx ∧ dz

+ (zdx+ zdx) ∧ dy + zdx ∧ dy
= 3xdx ∧ dy + 3ydx ∧ dz + 3zdx ∧ dy
= (3x+ 3z)dx ∧ dy + 3ydx ∧ dz.
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LXY = [X,Y ] = XY − Y X

=

(
x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z

)(
xy

∂

∂x
+ y

∂

∂z

)
−
(
xy

∂

∂x
+ y

∂

∂z

)(
x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z

)
= x

(
∂xy

∂x

∂

∂x
+ xy

∂2

∂x2
+
∂y

∂x

∂

∂z
+ y

∂2

∂x∂z

)
+ y

(
∂xy

∂y

∂

∂x
+ xy

∂2

∂y∂x
+
∂y

∂y

∂

∂z
+ y

∂2

∂y∂z

)
+ z

(
∂xy

∂z

∂

∂x
+ xy

∂2

∂z∂x
+
∂y

∂z

∂

∂z
+ y

∂2

∂z2

)
− xy

(
∂x

∂x

∂

∂x
+ x

∂2

∂x2
+
∂y

∂x

∂

∂y
+ y

∂2

∂x∂y
+
∂z

∂x

∂

∂z
+ z

∂2

∂x∂z

)
− y

(
∂x

∂z

∂

∂x
+ x

∂2

∂z∂x
+
∂y

∂z

∂

∂y
+ y

∂2

∂z∂y
+
∂z

∂z

∂

∂z
+ z

∂2

∂z∂z

)
= x

(
y
∂

∂x
+ xy

∂2

∂x2
+ y

∂2

∂x∂z

)
+ y

(
x
∂

∂x
+ xy

∂2

∂y∂x
+

∂

∂z
+ y

∂2

∂y∂z

)
+ z

(
xy

∂2

∂z∂x
+ y

∂2

∂z2

)
− xy

(
∂

∂x
+ x

∂2

∂x2
+ y

∂2

∂x∂y
+ z

∂2

∂x∂z

)
− y

(
x
∂2

∂z∂x
+ y

∂2

∂z∂y
+

∂

∂z
+ z

∂2

∂z∂z

)
= xy

∂

∂x
.

2.7 Integration

1. Iowa Qual, January 2011

Let ω = xy dx∧dz+ 3x dy∧dz+xz dx∧dy be a 2-form on R3 (with the standard
coordinates (x, y, z)).

• a. Calculate dω.

• b. Is ω exact? Justify your answer.

• c. Calculate
∫
S2 i
∗ω by using Stokes’ Theorem, where S2 = {(x, y, z) ∈ R3 :

x2 + y2 + z2 = 1} is given the standard (outward-pointing) orientation as the
boundary of the unit ball, and i : S2 → R3 is the standard embedding.

Solution:
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• a.

dω = d(xy) ∧ dx ∧ dz + d(3x) ∧ dy ∧ dz + d(xz) ∧ dx ∧ dy
= (ydx+ xdy) ∧ dx ∧ dz + 3dx ∧ dy ∧ dz + (zdx+ xdz) ∧ dx ∧ dy
= xdy ∧ dx ∧ dz + 3dx ∧ dy ∧ dz + xdz ∧ dx ∧ dy
= 3dx ∧ dy ∧ dz.

• b. No, ω is not exact. For if it were, and dτ = ω, then dω = ddτ = 0 since
d2 ≡ 0, but dω 6= 0.

• c. Recall that i∗ω = ω|S2 , and so by Stokes Theorem,∫
S2

i∗ω =

∫
S2

ω|S2 =

∫
S2

ω|∂B3 =

∫
B3

dω

We use the following parametrization of B3:

F : [0, 1]× [0, π]× [0, 2π]→ R3, F (ρ, ϕ, θ) = (ρ sinϕ cos θ, ρ sinϕ sin θ, ρ cosϕ).

Let’s check to see if F is an orientation preserving diffeomorphism:

det(J(F )) =

∣∣∣∣∣∣
sinϕ cos θ ρ cosϕ cos θ −ρ sinϕ sin θ
sinϕ sin θ ρ cosϕ sin θ ρ sinϕ cos θ

cosϕ −ρ sinϕ 0

∣∣∣∣∣∣
= cosϕ(ρ2 cos2 θ sinϕ cosϕ+ ρ2 sin2 θ sinϕ cosϕ)

+ ρ sinϕ(ρ sin2 ϕ cos2 θ + ρ sin2 ϕ sin2 θ)

= ρ2 cos2 ϕ sinϕ(cos2 θ + sin2 θ)

+ ρ2 sin3 ϕ(cos2 θ + sin2 θ)

= ρ2 sinϕ(cos2 ϕ+ sin2 ϕ)

= ρ2 sinϕ

Since det(J(F )) is almost everywhere positive, we get that F is orientation pre-
serving. So∫

B3

dω =

∫ 2π

0

∫ π

0

∫ 1

0

F ∗dω = 3

∫ 2π

0

∫ π

0

∫ 1

0

F ∗dx ∧ F ∗dy ∧ F ∗dz

= 3

∫ 2π

0

∫ π

0

∫ 1

0

det(J(F )) dρ ∧ dϕ ∧ dθ

= 3

∫ 2π

0

∫ π

0

∫ 1

0

ρ2 sinϕ dρdϕdθ

=

∫ 2π

0

(− cos(π)− cos(0)) dθ

= 2

∫ 2π

0

dθ

= 4π.

2. Iowa Qual, Fall 2014
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• a. Prove that

S = {(x, y, z) ∈ R3|x2 +
y2

4
+
z2

9
= 1}

is a regular submanifold of R3, and compute its tangent space as a subspace of
the tangent space of R3 at the point ( 1√

3
, 2√

3
, 3√

3
).

• (b) Note that S is the boundary of the domain

R = {(x, y, z) ∈ R3|x2 +
y2

4
+
z2

9
≤ 1}.

Give R the standard orientation from R3 and give S the induced boundary ori-
entation. Let ω = x dy ∧ dz + y dz ∧ dx + z dx ∧ dy. Compute both

∫
S
ω and∫

R
dω and check that they are equal.

Solution:

• a.

• b. We can parametrize S by

F : [0, π]× [0, 2π]→ R3, F (ϕ, θ) = (cos θ sinϕ, 2 sin θ sinϕ, 3 cosϕ).

A normal vector to S is f∗ =
(
2x y/2 2z/9

)
, and so a smooth outward pointing

vector field on S is X := f∗. In terms of F ,

X =

(
2 cos θ sinϕ, sin θ sinϕ,

2 cosϕ

3

)
So if τ = dx ∧ dy ∧ dz is the standard orientation form on R3, then ιXτ is an
induced boundary orientation form for S. To see that the parametrization F
coincides with this orientation, we compute ιXτ(Fϕ, Fθ):

ιXτ(Fϕ, Fθ) = (dx ∧ dy ∧ dz)(X,Fϕ, Fθ)

= det

∣∣∣∣∣∣
2 cos θ sinϕ 2 cos θ cosϕ −2 sin θ sinϕ
sin θ sinϕ sin θ cosϕ cos θ sinϕ
2 cosϕ/3 −2 sinϕ/3 0

∣∣∣∣∣∣
= 2 cosϕ/3(2 cos2 θ sinϕ cosϕ+ 2 sin2 θ cosϕ sinϕ)

+ 2 sinϕ/3(2 cos2 θ sin2 ϕ+ 2 sin2 θ sin2 ϕ)

= 2 cosϕ/3(2 sinϕ cosϕ) + 2 sinϕ/3(2 sin2 ϕ)

=
4

3
cos2 ϕ sinϕ+ sin3 ϕ,
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which is almost everywhere positive for ϕ ∈ [0, π]. So∫
S

ω =

∫ π

0

∫ 2π

0

F ∗ω

=

∫ π

0

∫ 2π

0

F ∗x F ∗dy ∧ F ∗dz

+

∫ π

0

∫ 2π

0

F ∗y F ∗dz ∧ F ∗dx

+

∫ π

0

∫ 2π

0

F ∗z F ∗dx ∧ F ∗dy

=

∫ π

0

∫ 2π

0

cos θ sinϕ

∣∣∣∣2 sin θ cosϕ 2 cos θ sinϕ
−2 sinϕ 0

∣∣∣∣ dϕdθ
+

∫ π

0

∫ 2π

0

2 sin θ sinϕ

∣∣∣∣ −2 sinϕ 0
cos θ cosϕ − sin θ sinϕ

∣∣∣∣ dϕdθ
+

∫ π

0

∫ 2π

0

3 cosϕ

∣∣∣∣ cos θ cosϕ − sin θ sinϕ
2 sin θ cosϕ 2 cos θ sinϕ

∣∣∣∣ dϕdθ
=

∫ π

0

∫ 2π

0

4 cos2 θ sin3 ϕ dϕdθ

+

∫ π

0

∫ 2π

0

4 sin2 θ sin3 ϕ dϕdθ

+

∫ π

0

∫ 2π

0

6 cos2 ϕ sinϕ dϕdθ

3. Iowa Qual, Winter 2016 (Wickrama)

Let ω ∈ Ω1(R2) be a compactly supported 1-form such that dω = dx∧dy. Consider
the inclusion map i : S1 → R2, i(x) = x where S1 = {(x, y) ∈ R2 : x2 + y2 = 1}.
Compute the integral: ∫

S1

i∗(ω).

4. Iowa Qual, Fall 2016 (Oswald)

Consider the upper hemisphere X = {(x, y, z) : x2 + y2 + z2 = 1, z ≥ 0} ⊂ R3 and
let i : X ↪→ R3 be the inclusion of X into R3. If ω = dxdy + dydz + dzdx ∈ Ω2(R3)
[Yes, they neglected to include the “∧”.] then compute the integral:∫

X

i∗(ω).

5. Iowa Qual, Fall 2016 (Singh)

Let T = S1×S1 be the torus and H : S1× [0, 1]→ S1×S1 be a smooth embedding
of an annulus into the torus. Each side of the annulus defines an embedding of a circle
into the torus: α = H(t, 0) and β = H(t, 1). Prove that if ω ∈ Ω1(T ) is a 1-form
which satisfies dω = 0 then integrating ω over α is the same as integrating ω over β
up to sign: ∫

α

ω = ±
∫
β

ω.
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6. Introduction to Smooth Manifolds, Spring 2017, Final Review (Poudel)

Realize the three sphere as the set of vectors in four space of length one, and give
it the orientation from the outward normal. The volume form on the three sphere is
x dy ∧ dz ∧ dw − y dx ∧ dz ∧ dw + z dx ∧ dy ∧ dw − w dx ∧ dy ∧ dz. Compute the
volume of the three sphere.

2.8 De Rham Cohomology

1. Iowa Qual, Fall 2006 (Aceves)

Let M be a connected smooth manifold. Prove that the De Rham cohomology
group H0(M) = R. [This should be proved without just citing the result that says
that H0 measures the number of connected components of a smooth manifold.]

2. UGA Qual, January 2015 [slightly modified] (Wood)

Let X be a manifold and U, V ⊂ X be open subsets with X = U ∪ V . Prove that
the Euler characteristics of U, V, U ∩ V and X obey the relation

χ(X) = χ(U) + χ(V )− χ(U ∩ V ).

(You may assume that the De Rham cohomologies of U, V, U ∩ V and X are finite-
dimensional so that their Euler characteristics are well-defined.)

3. UGA Qual, Fall 2015 [slightly modified] (Poudel)

Express a Klein bottle as the union of two annuli. Use the Mayer-Vietoris sequence
and this decomposition to compute its De Rham cohomology.

4. Introduction to Smooth Manifolds, Spring 2017, Final Review (Wood)

Let Σg,k denote the orientable surface of genus g with k boundary components.
Starting with Σ1,1 give an inductive proof of the cohomology of Σg,1. Use this to
compute the cohomology of all closed orientable surfaces Σg,0.
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