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General Topology/Algebraic Topology

“Basics”

. ITowa Qual, Fall 2005

Let RP(n) be the quotient space obtained from R"*1\ {0} under the equivalence
relation, that two points are equivalent if they are scalar multiples of one another.
Prove that RP(n) is second countable, Hausdorff, and compact.

Proof. Write R?*! in place of R"*1\ {0}. Let ¢ : R?"! — RP(n) be the quotient
map, and denote equivalence classes in RP(n) by brackets: [z].

We first show that the quotient map is open. Consider the maps fy : R? ™1 —
R fA(z) = Ax where A € R?T!. Notice that fy is a homeomorphism since it has
inverse f1,y, and both fyand fi,5 have component functions which are linear, and
hence are continuous. In particular, f is open. Now, let U C R?*! be open. We
want to show that ¢(U) is open. By definition of the quotient topology, ¢(U) is open
if ¢71(q(U) is open. Notice that

q‘l(q(U)):q‘1<U[x]>=Uq‘l([w])= U x= |J A,

xeU xzeU zeU AER? L
Aer7H *
and so, being the union of open sets, ¢~!(¢(U)) is open.

Now recall that R™*! is second countable, with countable basis consisting of all
products of intervals with rational endpoints, call it {U;}. Then {q(U;)} is a countable
basis for RP(n).

Since the quotient map is open, the quotient space is Hausdorff if and only if the
defining relation is closed. So, define

R={(x,y) € RTT! x R | I\ € RTT! such that Az = y}.

Zo E— Tn

Yo - Yn
the first row is a multiple of the second. For i < j, where 4, j € {0,...,n}, define maps

Now (zg,.-.,Zn,Yo,---,Yn) = (z,y) € R precisely when det { ] = 0, since

Ti X
D; i(xz,y) =det |7" } )
z,j( Y) |:yz y;
Since the determinant is continuous (since it is a polynomial in the global coordinates
of R"1) we get a continuous map

f(:v,y) = Z Di,j(may)'

0<i<j<n

Since R = f~1({0}), then R is closed, being the preimage of a closed set under a
continuous map.

Finally, notice that for [z] € RP(n), we can find 2’ € S™ such that [z] = [2]
since we can take A = 1/||z||, and 2’ = Az. So, the restriction ¢|s» is a surjection
onto RP(n), and since S™ is compact and ¢ is continuous, then RP(n) = ¢(S™) is
compact. O



2. Iowa Qual, Fall 2006

Define the uniform and box topologies on a product of topological spaces. Let
X = R’ be the product of a countable number of copies of the real numbers. Prove
that the product, uniform, and box topologies yield three distinct, non-homeomorphic
topologies on X.

Proof. Given {X,}, a collection of topological spaces, the box topology on X :=[] Xa
consists of basis elements of the form [[, U, where U, C X, is open. In the product
topology, we take as basis elements [] U, where again U, C X, is open, with the
restriction that for all but finitely many a, U, = X,.The uniform topology on X is
that topology induced by the metric

d((@n), (yn)) = sup{min{lzn = ynl, 11}

Now, letting X = RY, we will exhibit topological properties possessed by X in one
topology, but not in the others.

X is connected in the Product, but not in the Uniform or Box:

Consider X in the product topology and define R™ to be the set of all sequences
in X which are zero after the nth coordinate. Being homeomorphic to R", R™ is
connected. Then taking R> :=J, oy R™, we get that R* is connected, since it is the
union of connected spaces which share the point (0,0,...). We now show that in fact
X = R%°, which will show that X is connected, since it is the closure of a connected
space. So, let (z,) € X, and U = [],, oy Un be a neighborhood of (x,,). Since we are
in the product topology, there exists N € N such that U = R for all £ > N. Then,

(x17l'27...,:17N,0,0.-.) GUQROO7

and so X = R,

Now, define A to be the set of bounded sequences in X, and B to be the set of
unbounded sequences in X. FEvidently these sets are disjoint, nonempty, and their
union is all of X. We show that A and B are open in both the box and uniform
topologies, and therefore form a separation of X in each topology. Let (z,) € X.
Then the set

U:H($n76,$n+€) (0<e<)
neN

is open in the box topology and contains (z,). If (z,) € A with bound M, then U is
contained in A, since any sequence (y,) € U will be bounded (by M + ¢). If, on the
other hand, (z,) € B, the set U is contained in B since any sequence in U will be
unbounded.

In the uniform topology, the d-ball B((x,),d), 0 < d < 1, is an open set containing
(). By similar reasoning as above, (z,) € B((zy),d) C A if (z,) € A, and (z,,) €
B((zy),0) C B if (x,,) € B. Hence A and B are indeed open in the box topology.



X is metrizable in the Uniform, but not in the Box:

Evidently X is metrizable in the uniform topology. Now, since metrizable spaces
are first countable, we show that X is not first countable, and hence not metrizable,
in the box topology. Suppose it were. Then for a point (x,) € X, we find a countable
basis at (), {U;}2,. Write U; = H;’il U;; for each i. Then, we can choose V; C Uj;
open so that (z,,) € V; and V; C Uy;. But then V = [1:2, Vi is a neighborhood of (z,)
which does not contain any U;, a contradiction. O

. Iowa Qual, Fall 2006

Let X be S\ {(0,0,+1)}, that is X is the result of removing the north and south
poles from the unit sphere. Define two points of X to be equivalent if and only if they
lie on the same great circle through the north and south poles. Identify the quotient
space of these equivalence classes, giving an explicit homeomorphism.

Proof. O

. Iowa Qual, Fall 2007

Suppose that p : X — Z is a quotient map and f : X — Y is continuous. Prove
that there exists a continuous map f: Z — Y with fop = f if and only if for every
x1, T2 with p(z1) = p(a2) it is the case that f(x1) = f(x2).

Proof. (=) If p(x1) = p(22). Then indeed f(z1) = f(p(x1)) = f(p(z2)) = f(z2).

(<) Notice that for any [x] € Z, the map f is constant on p~!([z]) since for any
z1,22 € p~Y([z]), we have p(x1) = p(x2) = f(z1) = f(x2). Therefore, the map
f:Z =Y given by [z] — f(p~!([z])) = f(x) is well-defined. Moreover,

Fp(2)) = flp~ (p(2))) = fF(p~ " ([a])) = f(=),
Finally, to see that f is continuous, let U be open in Y. Since f is continuous, f~1(U)
is open in X. So pil(?il(U)) = f~1(U) is open, and by definition of the quotient
topology, f (U) is open in Z. Hence f is continuous. O
. Iowa Qual, Spring 2008
Let X be a topological space and let

A={(z,r)e X x X}
Prove that X is Hausdorff if and only if A C X x X is closed.

Proof. (=) Suppose X is Hausdorff and pick (z,y) € A. Then since X is Hausdorff,
there exists disjoint neighborhoods U and V of x and y, respectively. Then U x V is a
neighborhood of (x,y) not intersecting A, since otherwise if (w,z) € U x VN A, then
w=2z€UNV, a contradiction. Hence A is closed.

(<) Now suppose A is closed and pick z # y in X. Since A€ is open and (z,y) € A,
then by definition of the product topology, there exists open sets U, V of X containing
x,y, respectively, so that (z,y) € U x V C A° Now if w € UNV then (w,w) €
ANU x V, a contradiction, since U x V is contained in A°. Hence U,V are disjoint
neighborhoods of the distinct points z,y, and so X is Hausdorff. O



6. Towa Qual, Spring 2008

Prove that if X is compact, Y is Hausdorff, and f : X — Y is continuous, one-to-
one and onto then f is a homeomorphism.

Proof. We need only to show that f~! is continuous, or equivalently, that f is a closed
map. So, take C C X closed. Since X is compact, and C'is closed, then C' is compact:

If O is an open cover of C' then O U X — C' is an open cover of X, and so has a
finite subcover. If X — C' is among the finite subcover, get rid of it. If not, leave the
finite subcover alone. What remains is a finite subcover of C.

Since f is continuous, f(C) is compact:

If O is an open cover of f(C), then f~(0O) is an open cover of C, and therefore
has a finite subcover since C' is compact, say Y. Then f(U) is a finite subcover of

F(C).
Since f(C') is a compact subspace of a Hausdorff space, then f(C) is closed:

Ifx €Y\ f(C), then for each ¢ € f(C), pick disjoint neighborhoods U,, V. of z, c,
respectively. Then {V.} covers the compact set f(C) and so there exists c1,...,¢y
so that {V.,}; covers f(C). Then U := NI ,U,, is a neighborhood of z disjoint
from f(C), since otherwise, if z € U N f(C), then z € V,, for some j and z € U, a
contradiction. So f(C) is closed. O

7. Towa Qual, Fall 2013

Let O be the collection of intervals I, = (a,00) in R including I, = @ and
I_o, = R. Show that this is a topology on R and describe the closure of a set A C R.

Proof. Since I, = @ and I_,, = R, we need only to check that arbitrary unions and
finite intersections of elements of O lie in O. So let J :=J,, I, be an arbitrary union
of elements in O. Let 8 = inf{a}, so that J = Ig. Now let K = (", I,,. Let
b= max;{a;}. Then K = I,. Hence O is indeed a topology on R.

By definition, the closure of A is the intersection of all closed sets containing A;
that is
A= ﬂ (—00, al.
AC(—00,a]

Let 3 = sup{a € A}. Then any closed set containing A will contain Jz, and so A = J3.
O

8. Iowa Qual, Fall 2015
Let A C R¥ be defined by A = {(z;) € R¥|x; = 0 for all but finitely many 4}.
e a. Is A dense in R¥ with the product topology? Prove your answer.

e b. is A dense in R* with the box topology? Prove your answer.

Proof. The set A is indeed dense in R“ in the product topology:



Let () € X, and U = [],,c Un be a neighborhood of (x,). Since we are in the
product topology, there exists N € N such that Uy = R for all £k > N. Then,

(r1,22,...,2n5,0,0...) e UN A,

and so R¥ = A.
But of course, A is not dense in R¥ in the box topology. Let (z,,) = (1,1,1,...,) €

R%. Then the set
13 13 13
U=(z,z)x{=zz)x[=z,2) X
(53)*(53)*(53)

is a neighborhood of (z,) not intersecting A, since no point in U can have any 0
component. O

9. Iowa Qual, Fall 2016

Let S* be the circle S' = {€?™ : ¢t € R}. Define an equivalence relation on S*
where two points are identified if t; — to is an integer multiple of v/2.

e a. Prove that the quotient space is not Hausdorff.

e b. Describe all continuous functions on the quotient space.

Proof. e a. Let p: S' — S! be the quotient map, and denote equivalence classes
in S! by brackets: [e*"]. Notice that

P (62’”5) = [62””] = s—t=nV?2for somen € Z < s=ny2+t for some n € Z,

and so

p—l ([62771'1&]) — { 27is - In € 7 such that 627\'25 — e?‘n’i(nﬁ+t)} — U e27'ri(n\/§—i-t)
neL

For all n € Z, define maps [Y| f, : S1 — S1 by €27t 1y 27i(nV2+t)  Then f,, is
a homeomorphism since f, has inverse f_,, and moreover, both f, and f_,, are
restrictions of the continuous multiplication map u : C x C — C. In particular,
fn is the restriction of u to {62”“("‘/5)} x S, and similarly for f_,,. Then

—1 271'175 271 n\f—i-t o 27rzt
P = emEm = fa (
neZ nez

Now, the quotient space S! is Hausdorff if and only if p is open and the defining
relation is closed. So, suppose U is open in S', U = {e?™ : z < t < y} for
some x,y € R. Then by definition of the quotient topology, p(U) is open in S} if
p~(p(U)) is open in S*. So

p—l(p<U)) :p—l ( U [e2ﬂ'it}> — U p—l ([627‘-“}) — U U f 27711‘

r<t<y r<t<y r<t<yn€Z

U @),

neZ

£ is (left) multiplication by e2mi(nv2),



and since the f,’s are homeomorphisms, they are in particular open maps, so
that f, (U) is open for all n € Z, and hence p~!(p(U)) is open.
Now, define

R= {(62“5,62”“) e S x S': 3n € Z such that 2™ = 62”(”‘/5“)} )

Consider the map F : S x S' — S! given by

2mis

(6271'713, eZTrit) sz't .

Notice that F'is the restriction of a composition of the continuous multiplication

and inversion maps in C, and hence F' is continuous. Consider the set A =

{62”"\/5} . This set is dense in S'. So if x € S1\ A, then any neighborhood
ne

of z in S intersects a point in A, i.e., the complement of A in S! is not open

and so A is open. Then R = F~1(A), and hence R is open. Therefore, S} is not
Hausdorf.

e b. Suppose f: S' — X is a continuous map into some topological space X. If

f (627rit) _ f (€2Tris)
whenever ¢ — s = nv2 for some n € Z, then f descends to a continuous map
f 51 — X by defining f ([¢*™]) = f (p~* ([¢*"*])). Then f is well-defined
since f is constant on the fibers above points in S}, and f is continuous since if
U is open in X, then f~1(U) is open in S!, and hence p_l(?_l(U)) =f1U)is
open in S!, which gives that f_l(U ) is open in S} by definition of the quotient
topology.

Hence the continuous maps on S} are precisely those which come from continuous
maps on S which are constant on the fibers above points in S..

O

10. UGA Qual, Fall 2016

Let S, T be topologies on a set X. Show that SN 7T is a topology on X. Give an
example to show that S U T need not be a topology.

Proof. Since @ and X are in § and T, then @, X € SN 7T. We show that arbitrary
unions and finite intersections of elements of SN7T liein SNT.

Let U = (), Ua be a union of elements of SN 7. Since U, € S for all a, then
U € S since S is a topology, and similarly, U € T. Hence U € SNT.

Let V = J!_, V; be an intersection of elements of S N 7. Since then V € S since
S is a topology and each V; € S, and similarly, V € T. Hence V€ SNT.

Let X = {a,b,c,d}, S = {&,X,{a}}, and T = {&,X,{b,c}}. Then SUT =
{,X,{a}, {b,c}}, however SUT is not a topology since {a}U{b,c} = {a,b,c} & SUT.

O



1.2 Connectedness

1. Towa Qual, Fall 2005

Give an example of a space that is connected but not path connected. Justify your
answer.

Solution: Consider the unit square I? = [0,1]> = {z x y € R? : 0 < z,y < 1}
in the order topology. Being a linear continuum, I? is connected. Suppose I? was
path connected. Then there exists a continuous map f : [a,b] — I? with f(a) =
0x0,f(b) =1x1, ie, a path from 0 x 0 to 1 x 1. By the Intermediate Value
Theorem, f([a,b]) = I?, i.e., f is surjective.

For each z € [0, 1], the set {x} x (0, 1) is open. Hence U, = f~1({z}x (0,1)) is open
in [a, b]. Moreover, the collection {Uy },¢[0,1) is pairwise disjoint, for if z € Uy, NU,,,
X1 # g, then f(z) € ({1} x (0,1)) N ({z2} x (0,1)) = &, a contradiction. Since Q is
dense in R, for each = € [0, 1], we can pick ¢, € U, N Q. Since the U,’s are disjoint,
this gives an injection x — ¢, of [0,1] into Q, and so the cardinality of [0, 1] is at most
countable, a contradiction. Hence I? is not path connected.

2. Iowa Qual, Fall 2006

Suppose A = UA,, where each A, is connected, and so that there is a point x
common to all 4,. Prove that A is connected.

Proof. We first prove the following: If X is a topological space with nonempty con-
nected subspace B, and C, D is a separation of X, then B lies completely in C' or
D.

By definition of the subspace topology, BN C and B N D are open in B and
moreover, BNC and BN D are disjoint and B = (BNC)U (BN D). If however, BNC
and B N D were both nonempty, we would obtain a separation of B, contradicting
the connectedness of B. Hence one of BN C and BN D is empty, giving that B lies
completely in C' or D.

Now let z € (1, A, and suppose C, D is a separation of A, and without loss of
generality, suppose x € C'. By what was shown above, A, must lie completely in C'
or D for all a. Since x € A, N C for all a, then we must have A, C C for all o, i.e.,
A C C, and so D is empty, a contradiction. O

3. Iowa Qual, Fall 2007

Suppose that X and Y are connected, nonempty topological spaces. Prove that
X xY is connected.

Proof. Fix (a,b) € X xY. For each x € X, the set {x} x Y is connected, being
homeomorphic to Y, and similarly, (X x {b}) is connected. Then T,, = ({z} x Y) U
(X x {b}) is connected, being the union of connected spaces sharing the point (z,b)
in common. But then
X XY = U T,,
reX
since Jyex To € X X Y, and if (z,y) € X x Y, then (z,y) € {z} xY C T,. Hence
X XY is connected, being the union of connected spaces which share the point (a, )
in common. O



4.

1.3

Iowa Qual, Fall 2013

Show that the subspace X C R? consisting of all points (z,y) where at least one
of the coordinates is rational is connected.

Solution:
We show that X is path connected and hence connected. Let (a,b),(c,d) € X. We
find a path from (a,b) to (¢, d). There are four cases to consider:

(i) a,ceQ, (i) a,deQ, (iii) b,ceQ, and (iv) b,d e Q.

Case (i): Define continuous maps

fo:10,1] = X, t — (a, (1 —1t)d),
fi:[L,2] =X, t— ((2—t)a+ (t—1)c,0),
fo:[2,3] = X, t— (¢, (t —2)d).

Notice that these maps do indeed map into X, since each map fixes a rational coordi-
nate. Now, we also have

fo(1) = (a,0) = f1(1) and f1(2) = (c,0) = f2(2).
So by the Pasting Lemma, the map
fo(®) ifte|0,1]
f:00,3] = X, t— ¢ f1(t) ifte[l,2]
fa(t) ifte]2,3]

is continuous since the components of f agree on their overlap. Moreover, f(0) = (a,b)
and f(3) = (¢,d), and so we have a path from (a,b) to (¢, d), as desired.

Case (ii):

Again define continuous maps
go : [0, 1] — X, t— (a7 (]. — t)b+td),
g1:[L,2) = X, t—~ ((2—t)a+ (t —1)c,d),

Then go(1) = (a,d) = ¢g1(1) and so by the Pasting Lemma, the map

go(t) ifte0,1]

g:[O,Q} — X, t— {91@) ifte [172]

is continuous and ¢(0) = (a,b), g(2) = (¢, d).

Cases (iii) and (iv) are similar.

Compactness

. Iowa Qual, Fall 2005 (Poudel)

Prove the Lebesgue number lemma. That is if X is a compact metric space and U
is an open cover of X, there exists € > 0 so that if D is any subset having diameter
less that or equal to e then there exists U € U with D C U.



Proof. Since (X,d) is compact, we find Uy,...,U, € U such that their union covers
X. Define V; = X\ U; for all 1 < i <n. If U; = X for any 4, then any open set with
any diameter in X is contained in an element of U. So we suppose U; C X for all ¢ so
that each V; is nonempty.

The map = — d(z,V;) = inf,cy, d(x, 2) is continuous: If z,y € X, then for all
z € V;, we have
d(z,Vi) < d(z,z) < d(z,y) +d(y, 2),

which gives d(x,V;) — d(z,y) < d(y,z) and so d(z,V;) — d(z,y) < d(y,V;), i.e.,
d(z,V;) — d(y, Vi) < d(z,y). SW1tch1ng roles of z and y, we get d(y,V;) — d(z,V;) <
d(z,y), and so

Hence our map is continuous. So the averaging function

1 n
= E;d(:ﬂ,Vi)

is continuous. Notice that f is strictly positive, since for each x € X, thereisa V; Z x.
Hence d(z,V;) = > 0, and so f(z) > d/n > 0.

Since f is continuous and X is compact, f attains a minimum value by the Extreme
Value Theorem, say € > 0. We claim this is the desired €. Pick A C X with diameter
less than e. Then if g € A, A C B(xg,¢). Pick j € {1,...,n} for which d(z¢,V;) is
maximal. Then

€ < fwo) < d(zo, V) = 7.

Then A C B(xg,€) C B(zo,7) C X\ V; = A;. O

. Iowa Qual, Fall 2015

Let X be a compact metric space and suppose that f : X — X is an isometry, i.e.
d(f(z), f(y)) = d(z,y) for all z,y € X. Prove that f is a homeomorphism.

Proof. First, its is easy to see that f is injective:

f(@) = fly) = 0=d(f(2), f(y)) =d(z,y) = z=y.

Now, f is continuous: If € > 0 and d(zx,y) < €, then

d(f(x), f(y)) = d(z,y) <€

Suppose f is not surjective, and pick z € X \ f(X). Since f is continuous and X is
compact, f(X) is compact, and since X is Hausdorff, f(X) is closed. Hence we can
find € > 0 such that B(z,¢) N f(X) = @. Then for natural numbers n < m,

d(f™(@), f™(@)) = d(f" (@), [N (@) = = AT (@), )
d(fn (n— 1)) .T) fm (n— 1))
=d(z, " "(x) 2

10



So {f™(x)} is a sequence in X with no convergent subsequence, a contradiction since
X is a compact metric space. Finally, f~! is continuous: If ¢ > 0 and d(z,y) < e,
then

d(f (), f7H(y) = d(f(f (@), F(F 1 W) = d(z.y) <e.

. Iowa Qual, Spring 2008

Tube Lemma Suppose that X is compact and X X {y} C U where U C X x Y
is open. Prove that there exists W C Y open so that X x {y} C X x W C U.

Proof. For all z € X, since U is open, then by definition of the product topology,
there exists U, C X open and V, C Y open so that

rxyelU, xV, CU.

Since X is compact and {U, }.cx is an open cover of X, there exists x1,...z, € X so
that X C |J;_, U,,. Define W =(_, Va,. Then X x {y} C X x W and

n

UWs, x V2 CU.

i=1

It remains to show that X x W C U. To that end, let z x w € X x W. Let Uy, be
the open set in {Uy, }{_; containing z. Since w € V,,, then

zxwe Uy, x Vo, €| J(Us, x Vo) CU.
i=1

. Iowa Qual, January 2011

e a. PROVE: If a space X is compact, Hausdorff, and connected, and X has at
least two points, then X is uncountable.

e b. PROVE: If a space X is compact, Hausdorff, and perfect (i.e., each point of
X is a limit point of X) then X is uncountable.

Proof. e a. We first show that for any x € X and any U C X open and nonempty,
there exists V' C U open and nonempty so that V' Z .
First,
choose y € U different from . (%)

We argue why (x) is possible: If z ¢ U, this choice is possible simply because U is
nonempty. If z € U and U contains no other points, then U = {z} is closed, since
singleton sets are closed in Hausdorff spaces. Hence U is both open and closed
in X, and is neither empty nor all of X, which contradicts the connectedness of
X.

11



Hence (*) is possible, and since X is Hausdorff, we find a neighborhood W of y
not containing x. Then V = U N W is an open set in U for which = ¢ V.

We show that any map f : N — X is not surjective, giving that |[N| < |X], i.e.,
X is uncountable. Let f(n) = x,. Let z; € X, and using U = X as above,
there exists V) C X open and nonempty such that z ¢ V;. For n > 1, given
Vi—1 open an nonempty such that z,,_1 & V,,_1, there exists a nonempty open
set V,, C V,,_1 such that x,, & V,,. This gives an descending chain of closed sets

VidVaD...,

and hence the collection {V,},ecn has the finite intersection property, i.e., any
finite intersection of sets from this collection have nonempty intersection. Since X

is compact, this means that there exists @ € [, oy Va- But then f(m) = z,, #
for any m, since x € V,, for all n € N, but x,,, & V;,.

e b. The proof here is the same, except we need to argue differently why (x) is
possible:

If « ¢ U, this choice is possible simply because U is nonempty. Since z is a limit
point in X, every neighborhood of x intersects X at a point other than z. So if
x € U, then U contains a point y different from z.

O

5. Jowa Qual, Fall 2013

Is the intersection of two compact sets always compact? Prove or give a counterex-
ample.

Solution: Counterexample:

Let x,y € R\ Nand let X = NU{x,y}. Give X the following topology:
T={o, X,NNNU{z},NU{y}, {1},{2},... }.

Then, any open cover for NU {z} must contain NU {z} itself, or X. Hence any open
cover of NU {z} has a finite subcover, and so NU {z} is compact. Similarly, NU {y}
is compact. However

(Nu{z}h) n(NU{y}) =N

is not compact since {{n}}n,en is an open cover of N with no finite subcover.
6. Iowa Qual, Fall 2013
Is the closure of a compact set always compact? Prove or give a counterexample.

Solution: Counterexample:

Let X = NU {z}, for a point + € R\ N. Define all nonempty open sets in X
to be those which contain x. Then {z} is compact. We claim {z} = X. Indeed, if
y € X, and U is an open set containing y, then by construction x € U, and so every
neighborhood of every point of X intersects {x}. But |J,y{z,n} is an open cover of
X with no finite subcover.

7. Towa Qual, Winter 2016

12



e a. Show that compactness implies limit point compactness.

e b. Give an example of a space that is limit point compact but not compact.
Explain why your example works.

Solution:

e a. We show the contrapositive: If X is compact and A C X has no limit points,
then A is finite. The assumption gives A = AUA’ = A, and so A is closed. Since
closed subspaces of compact spaces are compact, A is compact. Let a € A. If
every neighborhood of a intersects A at a point other than a, then a € A’ = &,
a contradiction. Hence for each a € A, there exists a neighborhood U, of a
intersecting the point a alone. Then {U,}.c4 is an open cover of A, and since
A is compact, the open cover must admit a finite subcover of A. Since each U,
intersects A at a single point, and finitely many such sets cover A, then A is
finite.

e b. Let X = N x {a,b} in the product topology, where N is given the discrete
topology and {a,b} is given the indiscrete topology. We show that X is limit
point compact but not compact. First, X is not compact since {{n} x {a, b} } nen
is an open cover of X with no finite subcover.

Now, let A C X be an infinite set and suppose (n,a) € A. We show that (n,b)
is a limit point of A, which will show that X is limit point compact. Let Y be a
neighborhood of (n,b). Then by definition of the product topology, there exists
basic open sets U C N and V' C {a, b} such that (n,b) € U x V CY. But what
can V be? Since {a,b} was given the indiscrete topology and b € V, then we
must have V = {a,b}. Then (n,a) € U x V CY, giving that any neighborhood
of (n,b) intersects A, i.e., (n,b) is a limit point of A.

1.4 Separation/Countability Axioms
1. ITowa Qual, Fall 2005

Prove that every compact Hausdorff space is normal. That is prove that if A and
B are disjoint closed subsets of the compact Hausdorff space X, then there are open
sets U and V sothat UNV =g, with ACU,BCV.

Proof. We first show that A (and B) are compact in X: If U/ is an open cover of A,
then U U (X \ A) is an open cover of X, and since X is compact, there exists a finite
subcover of X from this collection. If X \ A is in this finite collection, remove it; if
not, leave it alone. What remains is a finite collection of sets from I/ which cover A.

Fix a € A. Since X is Hausdorff, for every b € B, we can choose disjoint open sets
Uy, Vi of a,b respectively. Then {V;} is an open cover of B, and since B is compact,
there exists by,...,b, € B such that {V4,}" ; covers B. Then

a€ ﬁUbi::Ua and BQOVbi::Va

i=1 i=1

and U, NV, = @, since otherwise x € U, NV, means that z € V;, for some ¢ and also
x € Uyp,, a contradiction.

13



Repeating this for each a € A, we obtain an open cover {U,}sea of A, and a
collection of covers {V,},eca for B. Since A is compact, there exists ai,...a,, € A
such that A C U;”:l U,, - Define

U= OU%. and V = ﬁVa]..
j=1

j=1

Then U,V are open and contain A, B respectively. If x € UNV, then z € U,, for some
Jand x € Vg, ; but since U,; NV, = &, we get a contradiction. Hence UNV =@. [

. Iowa Qual, Fall 2006

Prove or give a counterexample: The product of two regular spaces is regular.

Proof. We first prove the following: X is regular if and only if for every x € X and
for every neighborhood U of x, there exists a neighborhood V of z such that V" C U.

First suppose X is regular, and z, U are as above. Then X \ U is closed, and since
X is regular, there exists disjoint open sets V, W containing « and X \ U, respectively.
Then V N (X \ U) = @ since for any z € X \ U, W is a neighborhood of z not
intersecting V. Hence V C U.

Conversely, let x € X, and A a closed set in X not containing . Then X \ A
is open and contains z, and so by hypothesis, there exists a neighborhood V' of x
such that V'.C X \ A. Then V and X \ V are disjoint open sets containing = and A,
respectively.

Now, the proof essentially follows from the fact that the closure of a product of
spaces is the product of the closures of those spaces (and indeed this will work for
arbitrary products: in the product topology, of course).

Let X and Y be regular spaces. Suppose zxy € X XY and N is a neighborhood of
x xy. By definition of the product topology, there exists basic opensets U C X,V C Y
containing = and y, respectively, such that x x y € U x V. C N. Since both X and
Y are regular, there exists open sets W C X, Z C Y containing x and y, respectively,
such that W c U and Z C V. Then

TXxyEWXxZ=WxZcCUxVCN,

and hence X x Y is regular. O

. Iowa Qual, Fall 2007

A space is separable if it has a countable dense subset. Prove that a topological
space is separable if it is second countable, and that a metric space is second countable
if it is separable. There are two things to prove here.

Proof. Suppose X is second countable with countable basis {U,, },en. For each n, pick
Zn € U,. Then {z,},en is a countable dense subset of X; evidently it is countable,
and it is dense in X since if x € X and U is a neighborhood of x, then there exists a
basic open set U,, such that x € U,, C U, and z,, € U.

14



Now suppose (X,d) is a separable metric space, with countable dense subset S.
We claim that B = {B(s,1/n) : s € S,n € N} is a countable basis for X. First, B is
countable since it is a collection of countably many balls at countably many points.
We show that B is a basis.

Let x € X and UE| a neighborhood of . Then there exists € > 0 such that B(z,¢€)
is contained in U. Now choose n € N such that 1/n < €/2. Since S is dense in X,
there exists s € S such that s € B(z,1/n). Now if y € B(s,1/n), then

d(y,z) <d(y,s) +d(s,z) <1/n+1/n<e/2+¢€/2=F¢,

and so B(s,1/n) C B(x,¢€). Therefore z € B(s,1/n) C B(x,e) C U, and hence B is a
countable basis for X. O

4. UGA Qual, Fall 2016

Prove that a metric space X is normal, i.e., if A, B C X are closed and disjoint
then there exist open sets A CU C X, BCV C X such that UNnV = @.

Proof. Fix a € A and let §, = infpep d(a,b). Suppose 6, = 0. Then for every n € N,
there exists b, € B such that d(a,b,) < 1/n. But then {b,} — a, and since B is
closed, it contains its limits points, and so a € B, a contradiction since A and B are
disjoint. Hence &, > 0. Similarly, define 0 < 0, = inf,ca d(b,a) for all b € B. We
claim

U= |]J B(a,6.,/2) and V =] B(b,6,/2)

acA beB

are the desired open sets. Evidently A C U and B C V. Suppose z € UNV. Then
there exists a € A and there exists b € B such that x € B(a,d,/2) N B(b,d/2).
Assume without loss of generality that d, < §,. Then

I < d(a,b) < d(a,z)+d(z,b) < Io/24 0p/2 < 20p/2 = b,

a contradiction. O

1.5 Metrization
1. Towa Qual, Winter 2016

Prove the Urysohn metrization theorem (Every regular space X with a countable
basis is metrizable.). You may assume that there exists a countable collection of
functions f, : X — [0, 1] such that for any point o € X and any neighborhood U of
xo, there is some n so that f, is positive at g and 0 outside of U.

Proof. To show that X is metrizable, we will embed X into the metrizable space RY
(in the product topology). To that end, consider the map

F:X %RNam*_) (fl(x)va(x)a)

2The neighborhood U is coming from the topology induced by the metric on X; we are essentially showing
that B is finer than the topology induced by the metric, which will suffice to prove that B is a basis. See
Munkre’s Lemmas 13.2 and 13.3.
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1.6

Since each f, is continuous and X has the product topology, then F' is continuous.
To see that F' is injective, suppose x # y, and let U be a neighborhood of x not
containing y (such a neighborhood exists since X is Hausdorff). Then there exists n
so that f,(x) > 0 and f,(y) =0, and so F(z) # F(y).

Now, we show that F' is a homeomorphism onto its image Z := F(X). Since F is
continuous, we need only to show that F~' : Z — X is continuous, or equivalently,
that F' is an open map. So, let U C X be open and pick z € F(U). We find a
neighborhood W of z contained in F(U).

Let « € U be the unique point such that F'(x) = z. Then there exists n such that
fn(x) > 0and f,(y) =0 forall y € X\ U. Let 7, : RY — R be projection onto the
n-th coordinate. Let

V =7,1(0,00).
We claim W = V N Z is the desired neighborhood of z contained in F(U). First,
z € W since z € F(U) C Z and

Tn(2) = T (F(z)) = fo(z) >0 = z e V.
Now, if w € V N Z, then 7, (w) > 0 and there exists a € X with F(a) = w. So

fnla) = mp(F(a)) = mp(w) >0 = a €U
Hence w = F(a) € F(U). So z € W C F(U). O
Munkres, §33, Problem 4

Let X be normal. Prove that there exists a continuous function f : X — [0, 1] such
that f(z) =0 for v € A and f(z) > 0 for « ¢ A if and only if A is a closed Gs set in
X. (Recall that a Gs set is one which can be expressed as the countable intersection
of open sets.)

Proof. (=) Suppose such a function f : X — [0,1] exists. Since singleton sets are
closed in [0,1], f is continuous, and A = f~1({0}), then A is closed. O

Homotopy, Fundamental Group, Seifert-Van Kampen

. Iowa Qual, Fall 2013

Consider the space obtained by removing from R? the unit circle in the zy-plane
and the z-axis. Determine the fundamental group of this space.

Solution:

Let Z be the z-axis and U be the unit circle in the zy-plane, and X = R3\ (ZUU).
For every o € [0,1/2), let T x {a} be the object obtained by rotating around the
z-axis the circle centered at (0,1,0) of radius 1/2 — « in the yz-plane. In particular,
T x {a} is a torus for each a. Then T x [0,1/2) is a solid torus without the inner
circle.

We can then deformation retract X onto T x [0,1/2). Then for each a € (0,1/2),
we can do a straight-line homotopy from T x {«} to T'x {0}, or, perform a deformation
retract of T' x [0,1/2) onto T x {0}, leaving just a torus, which has fundamental group
Z x Z. (The base point (0,3/2,0) is remained fixed by each homotopy, and so we can
consider 71 (X, (0,3/2,0)) 22 71 (T x {0}, (0,3/2,0)) = Z x Z.)
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2. Iowa Qual, Fall 2014
What is the fundamental group of

X ={(z,y,2) €R’|z # 0 or y # 0},
where we use (1,0,0) as the base point. X is the complement of the z-axis.

Solution: Since the projection map of R? onto the zy-plane is a retract, we can
define a homotopy
H:X x[0,1] = R3 H(z,y,2t) = (z,y, 2(1 — 1)),

which is a deformation retract of X onto the xy-plane without the origin, call it A.
Using the retraction
r: A= S (2,y,2) — @92 ,
/x2 + y2
we can define a homotopy
G AxX[0,1] > R, Gla,y, 2, 1) = (1 — )82

which is a deformation retract of A onto the unit circle S' in the xy-plane. The
point (1,0,0) is fixed during each homotopy, and since the fundamental group does
not change under homotopy, we have (X, (1,0,0)) = m;(St, (1,0,0)) = Z.
3. Iowa Qual, Fall 2015
Find the fundamental group of 7% = S x S' with k points removed.

Solution:

We proceed by induction on k to show that 71 (72 \ {k pts}) is isomorphic to the
free product on k + 1 generators. If k = 1, then we have the T2 with one boundary
component,

which is homotopy equivalent to the rose with k + 1 = 2 pedals:

17



And hence 71 (T? \ {pt}) = Z * Z, the free product on two generators. Now let k > 1
and suppose for induction that 71 (T2 \ {k — 1 pts}) X Zx---x Z.
—_—

k factors

Notice that X = T2\ {k pts} is a torus with k& boundary components:

le pom’ri removed ,
k"\ ‘oa\/\d:s

Let V be a neighborhood containing two of the boundary components of X, and
let U be the complement of a neighborhood contained in V' which also contains two
boundary components:

Then UUV = X, where U = T? \ {(k — 1) pts}, V is a disk with two boundary
components, and UNV is an annulus. Then V is homotopic to a rose with two pedals,
and U NV is homotopic to S, which gives 71 (V) 2 Z «Z and m(UNV) = Z. By
induction, we have 7, (U) 2 Z % - - - % Z, the free product on k generators. Write

7'r1(U) = <a17...,ak| >
m (V) = (b1, b2] )
m(UNV) = {c])

Let 61 : m(UNV) = 7 (U) = 71 (U UV) be the composition of the induced maps of

inclusions, and similarly, define 6 : 1 (U NV) — 7 (V) = 71 (U U V). Then by the
Seifert Van-Kampen Theorem, we have

(X)) = (a1,...,ar,b1,b2 | O1(c1) = b2(c1)),

So, we find 0;(c1) and 03(cy):

18



= 0, (c)= bt

Hence

7T1(X):<a17...,ak,b1,b2 |(L1:b1b2> :<a2,...,ak,b17b2| > %Z**Z
k+1 factors

. Iowa Qual, Fall 2015

Let X be the so-called Hawaiian earring, which is defined by X = U2, C,,, where
Cn = {(z,y) : (x —1/n)? +y* = 1/n?}. So X is the union of the circles with center
(1/n,0) and radius 1/n for n = 1,2,3,.... Let ¥ be the quotient space formed by
starting with R' and defining & ~ y if either x = y or z,y € Z. Prove that X and Y
are not homeomorphic.

Proof. We show that X is compact and that Y is not compact, showing that these
spaces cannot be homeomorphic.

First, let {z;} be a Cauchy in X converging to z € R?. We show that z € X,
proving that X is closed. If there exists C; containing infinitely many x’s, then there
is a subsequence {zy,} C C;, and since C; is closed, {z,} — = € C;, and so X is
closed. If all C; contain at most finitely many xj’s, we claim x = (0,0). Indeed, let
e > 0; then there exists N large enough so that C; C B(0,¢) for all i > N. Since
UN1C; contains finitely many points of {z}}, then B(0,€) contains infinitely many
xy’s, and hence {z;} — (0,0) € X, and so X is closed. Moreover, X is bounded since

|z| < 5 for all z € X. Therefore, as a closed and bounded subset of R?, X is compact.

We exhibit an open cover of Y which contains no finite subcover of Y. Let brackets
denote equivalent classes in Y, and let ¢ : R — Y be the quotient map. Consider the
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open interval I = (—1/2,1/2). Then [0] € ¢(I) =: U. Notice that

0= (n—;n-i—;)

nez
which is open in R. Hence U is a neighborhood of [0] in Y. Now if W, = (n,n + 1),

then
Vi = Q(Wn) = U [3:],
z€(n,n+1)
and ¢~ '(V,,) = (n,n+1) is open in R, and hence V,, is open in Y. Then UUJ,,c;, Va
is an open cover of Y which has no finite subcover. Indeed, if we remove U from the
cover then we do not cover [0]; if we remove any V,, from the cover, then we do not
cover the point [n + 1/2]. Hence Y is not compact. O

. Iowa Qual, Winter 2016

Find the fundamental group of the object obtained by identifying each point of the
boundary of a disk with its antipodal point.

Solution:

This space is RP(2). We use the Seifert Van-Kampen Theorem to find its funda-
mental group. First, define U to be a disk within the disk, and let V' be the complement
of a disk which lies inside U:

Then U is homotopy equivalent to a point, and U NV is homotopy equivalent to S*;
so m(U) =1 and m (U NV) =Z. Now, V retracts to the boundary of the disk, and
so we need to find the fundamental group of S! with antipodal points identified:

Y- -0

and so V is homotopy equivalent to S!, giving 7, (V) = Z. Write

m(U) = ()
m(V) = (a| )
m(UNV) =)
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Let 6 : m(UNV) = 7 (U) = 7 (U UV) be the composition of the induced maps of

inclusions, and similarly, define 65 : 7 (UNV) — 71 (V) — 7 (U U V). Then by the
Seifert Van-Kampen Theorem, we have

m(RP(2)) = (a [ 01(b) = 02(b)),
and so we need to find 0;(b) and 6(b). For 0;(b),

Now, we consider the generator a of m (V):

—_ /’k\
. = m ==

Now, when we include b into the V, we see that b traverses the upper and lower

semicircles of the boundary of the disk, but since these are identified, we get that b
“overlaps” a twice, which gives 01 (b) = a?:

v
S
iy \/Q) = 6,(k)= 0"
\$_’{A

Hence
m(RP(2)) = (a |a® =1) 2 Z/2Z
6. Iowa Qual, Winter 2016

Let D3 = {(z,y,2) € R® : 22 + y? 4+ 22 < 1}. Let A = {ay,az,...,a,} C D3> be a
subset of distinct points in the 3-ball. Compute the fundamental group of the quotient
space 71 (D3/A,b) where b € D3\ A.

Solution:
We have
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and so 7 (D3 /A b) =Z*---x 7,

n—1 factors

7. Jowa Qual, Fall 2016

e a. State the Van-Kampen theorem. In particular, explicitly define all maps.

e b. Suppose that X,Y, Z are the yz, 2z, xy-planes in R? and S? is the unit 2-sphere
in R3.

522{(x,y,z):x2+y2+22:1}7 X:{(x,y,z)xZO}

Y:{(x,y,z):y:O}, Z:{(x,%z,):z:()}.

If B is the space obtained as the union of these four sets, endowed with the
subspace topology, then compute the fundamental group of B.

Solution:

e a.
e b.

8. Iowa Qual, Winter 2017

Find the fundamental group of the space obtained by taking the surface of a cube
and removing all corner points.

Solution:

This space X is homotopy equivalent to the rose with 7 pedals:

%
=) = (o°lo
N o

and so m(X)=Z=*---xZ.

7 factors

We also show here that the rose with n pedals, which we will call R,,, does indeed
have fundamental group the free product on n generators. By induction: For n =1,
R, = S', which has fundamental group Z. For n = 2, let U and V be as shown:

22



m(U) =(a [)
m((V)=1([)
mUNV)=(|)

Let 6, : m(UNV) = m(U) = 7 (UUV) be the composition of the induced maps of
inclusions, and similarly, define 65 : 1 (UNV) — 71 (V) = 7 (U U V). Then by the
Seifert Van-Kampen Theorem, we have

m1(Re) = (a,b | 01(1) = 02(1)) = (a,b |) = Z + Z.

Now suppose for induction that 71 (R,) = (a1,...,a, | ). Let U and V be in R,41

as shown:
U= = {E% V= \Kj
&&S : !
2%

LAY = N

Then U is homotopy equivalent to R,, V is homotopy equivalent so S', and U NV is
homotopy equivalent to a point. Write

7T1(U)=<a17~-~7an |>
771<V>:<an+1 | >
mUNV)=(1[)
Then
Wl(Rn+1):<a1,...,an+1 \91(1):02(1)>:<a1,...,an+1 |>:Z**Z

. Iowa Qual, Winter 2017

Suppose that S? = {(x,y,2) € R? : 22 + y? + 2% = 1} is the unit 2-sphere in R3.
If Y C S? is a subset of n distinct points then compute the fundamental group of the
quotient space: m1(S5?/Y,[Y]). Prove that your answer is correct.
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10. UGA Qual, Fall 2016 (Camacho)

Let Sy be the space obtained by removing k disjoint open discs from the sphere
52, to leave a surface whose boundary is k circles. Form X}, by gluing & Mobius bands
onto Sy, one for each circle boundary component of Sy (by identifying the boundary
circle of a Mobius band homeomorphically with a given boundary component circle).
Use Van Kampen’s theorem to calculate m(Xj) for each & > 0 and identify X}, in
terms of the classification of surfaces.

Solution:

Let the following sequence convince you that a Mébius band is RP(2) \ B%:

i B v S e A U

Moreover, RP(2) \ B? ~ S!/ ~, where ~ is the antipodal relation:

- O

Hence, the effect of gluing in & Mobius bands onto Sy is that of identifying antipo-
dal points of each of the boundary components of S;. We claim that (X)) =
<a1, oo |afeal = 1>. To do this, we first show that the fundamental group of
a non-orientable surface of genus i with n — ¢ boundary components (for i < k, of
course), call it N, _;, has fundamental group

T (Nig—i) = (€, €1, o, €1, iy .o, Qg1 | € = e%--~6?_1ai~-~ozk_1>.

If we can show this, then setting i = k, we get

m1(Xg) = m(Nko) = <€,€1,...,€k_1 | e = e% . ~ei_1>

=(e1,....ex | € =1). (letting € = ¢ ")

Note that Ny is simply S? with k& boundary components, which is homotopy equiv-
alent to a rose with k — 1 petals, Rgx_1:

\)
W‘(S .
S rose wf
= — X k-1 petalt
Shretih one
of Hine woles
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We proceed by induction; start with ¢ = 1. Let U be a neighborhood of the boundary
component which has antipodal points identified, and let V' be the complement of a
neighborhood which is inside U:

Also, V ~ Ny ~ Rg_1, and U NV ~ S1. Write

m(U) = (€] )
7T1(V) = <O[1, ce ,Ckk,1| >
m(UNV) =)
Let 61 : m(UNV) = 7 (U) = 71 (U UV) be the composition of the induced maps of

inclusions, and similarly, define 6 : 1 (U NV) — 7 (V) = 71 (U U V). Then by the
Seifert Van-Kampen Theorem, we have

m(N1gp—1) = (€, a1,...,a5—1 | 01(8) = 62(5)) .

So, we have

P nlr SN :
M‘/\Q )= e(p-gt
Ve
N\

o 2 g
and
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Therefore 71 (N1 k1) = (€,01,...,ap-1 | € =0a1...,0,_1), as desired. Now for the
inductive step. Let 1 <7 < k, and suppose for induction that

1 (N i) = <e,61, ey €1, Oy e Q| e = e% . ~-ef_1o¢¢ . ~ak_1>.

Now consider N;41 x—i—1, and let U be a neighborhood of one of the boundary com-
ponents of Njiq ,—;—1 which has its antipodal points identified, and let V be the
complement of a neighborhood which is inside U:

Then U is a Mébius band, V >~ N; _;, and UNV =~ St. Write

m(U) = (el )
7T1(V) = <e,61,...,ei,l,ai,...,ak,l |€2 :G%"‘Ggflai"'ak,1>
mUNV)=l).

Just as before, we get 01(3) = €2. Now for 02(3), we have:
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And so by the Seifert Van-Kampen Theorem, 71 (Nj41,5—i—1) i8

<€i,6,61,...,Ei_l,Oéi,...,Ozk_l |€2:6%“'612_1041""0%_1,91(5):eg(ﬂ)>
:<e,61,...,ei,ai,...,ak_1 |2 =€ el ja; a1, e?:ai>
:<67€17~'~75i7ai+17«-~>0lk72 |€2:6%"'61204¢+1“'0lk72>,

which is exactly what we were looking for!

Covering Spaces

1. Towa Qual, Fall 2014 (Nevalainen)

Suppose B is connected, and locally path connected and Hausdorff. Suppose that
p: E — B is a covering map. Prove that for any two b1, by € B, the cardinality of the
fibers p~1(by) and p~!(by) are the same.
Iowa Qual, Fall 2014 (Aceves)

Prove that if p : F — B is a covering map with B and E connected, locally
path connected and Hausdorff, and « : [0,1] — B is continuous with v(0) = b, and
e € p~1(b) that there exists a unique continuous map 7 : [0,1] — E with poy =~ and
¥(0) = e. That is, prove the existence and uniqueness of liftings of paths for covering
maps of sufficiently nice topological spaces.

Iowa Qual, Fall 2015 (Oswald)

Let X = R3?\ ¢ where ¢ = {(0,0,2) : z € R} is the z-axis. Find a nontrivial
connected covering space 7 : Y — X. Prove that your example satisfies the required
properties.

TIowa Qual, Fall 2016 (Aceves)

Show how to construct a mn-sheeted cover of a genus g surface for any positive

integer n.
Iowa Qual, Winter 2017 (Sanadhya)
Suppose that P =R?\ {(0,0)} is the plane minus the origin.

e (a) Compute the fundamental group 71 (P, (0,1)).

o (b) Construct a space X which is homeomorphic to the universal cover of P. (Do
not prove that X is the universal cover of P.)

e (c) Describe the action of (P, (0,1)) on X.
UGA Qual, Fall 2015 (Malachi)

Explicitly give a collection of deck transformations on {(z,y)| -1 <z <1,—0c0 <
y < oo} such that the quotient is a Mébius band.
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1.8 Simplicial Homology

1. General Topology, Fall 2016, Exam 1 (Oswald)

Recall that the Klein bottle K is obtained from a rectangle by identifying two of its
opposite sides with matching orientations, and the other two of its sides with reversed
orientations.

e (a) Give a triangulation of the Klein bottle.

o (b) Recall that in an n-complex, we call an (n — 1) simplex o; interior if it is a
face of precisely two n-simplices &; and ;. Recall further that an orientation of
an n-complex is coherent provided

i, 0] = —[o3, 01

for every interior (n — 1)-simplex o;. Prove that your triangulation of the Klein
bottle from part (a) can admit no coherent orientation.

2. General Topology, Fall 2016, Exam 2 (Wickrama)

Let K denote the 2-complex shown below, with the indicated orientations. Com-
pute the homology groups of K. Since K has more than 9 vertices, be sure to include
the a’s in your notation (e.g. write (ajaz) instead of (12))

a,

3. UGA Qual, January 2016 (Wood)

Give a list without repetitions of all compact surfaces (orientable or non-orientable
and with or without boundary) that have Euler characteristic negative one. Explain
why there are no repetitions on your list.

4. UGA Qual, January 2016 (Wickrama)

Give an example, with explanation, of a closed curve in a surface which is not null
homotopic but is null homologous.
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2 Smooth Manifolds

2.1 “Basics”

1. Iowa Qual, Fall 2005

e a. Define T),M where M is a smooth manifold and p € M.

e b. If F: M — N is a smooth map of smooth manifolds define F, : T,M —
Tr@p)N.

e c. Prove the chain rule, that is, if F : M — N and G : N — P are smooth maps
of smooth manifolds then (G o F'), = G, o Fi.

Solution:

® a.

T, M = {D L O (M) > R : D is R-linear and D satisfies the Leibniz rule: }

(D(fg))(p) = (Df)g(p) + f(p)(Dg)

e b. For all X, € T, M, and for all f € C*°(N), the map F\ ,(X,) € T,N is given
by
(Fep(Xp))(f) = Xp(F"f) = Xp(f o F).

e C.
Proof. Let pe M, X, € T,M, and f € C*°(P). Then
(G o F)up(Xp)(f) = Xp((Go F)" f) = Xp(foGo F),
and on the other hand
(Ga,p@p) © Fiep)(Xp))(f) = G p(p) (Frp(Xp)) (f)

= Fop(Xp)(f0G)
=X,(foGoF).

2. Towa Qual, Fall 2005
State and prove the local immersion theorem.
Theorem (Local Immersion Theorem). Let F' : M™ — N" be a smooth map of

smooth manifolds. If F is an immersion atp € M, then there exists charts (U, @), (V, 1)
about p and F(p), respectively so that o Fop™t =i : R™ — R™, where i is inclusion.

Proof. Let (U, @) = (U,x1,...,2™) and (V,¢) = (V,y*,...,y") be charts centere
around p and F(p), respectively. Since F' is an immersion at p, then m < n and map
g=tvokFo ¢~ 1 is an immersion at 0. Hence, by an adjustment of the coordinates of

1 if necessary, we have
I,
9,0 = < 6n) y
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Define G : p(U) x R*™™ — R" by G(a,b) = (g9(a),b). Then

I, 0
G- 0

Hence by the Inverse Function Theorem, G is a local diffeomorphism at 0, i.e., there
exists a neighborhood W C R” of 0 such that G|y : W — G(W) is a diffeomorphism.

So, define V := V N4~ (W) and ¢ = G~ 0 9. Then F(p) € V since F(p) € V,
and, ¥(F(p)) = 0 € W. Moreover, v is a diffeomorphism on V since both G=1 and v
are. Hence (V,4) is a chart in N about F(p). Notice that ¢ = G o4, and so

YpoFop =G looFop =G log=G loGoi=i.

We also state and prove the local submersion theorem:

Theorem (Local Submersion Theorem). Let F' : M™ — N™ be a smooth map
of smooth manifolds. If F is an submersion at p € M, then there exists charts
(U, ), (V,9) about p and F(p), respectively so that ) o Fop™t = 7 : R™ —» R",
where w 18 projection.

Proof. Let (U,@) = (U,x1,...,2™) and (V,¢) = (V,y',...,y") be charts centered
around p and F(p), respectively. Since F' is a submersion at p, then m > n and map
g =1 0F o@ ! is asubmersion at 0. Hence, by an adjustment of the coordinates of
@ if necessary, we have

9x,0 = (In O) ’
Define G : ¢(U) — R™ by G(a) = G(a1,-..,am) = (9(a), ant1,--.,am). Then

1, 0
G0 = (o Im_n) '

Hence by the Inverse Function Theorem, G is a local diffeomorphism at 0, i.e., there
exists a neighborhood W C R™ of 0 such that G|y : W — G(W) is a diffeomorphism.

So, define U := UN@ Y(W) and ¢ = Go@. Then p € U since p € U, and,
@(p) =0 € W. Moreover, ¢ is a diffeomorphism on U since both G and ¢ are. Hence
(U, ) is a chart in M about p. Notice that g = 7 o G, and so

YpoFop t=¢poFop oG l=goG l=10GoG 1 =m.

. Iowa Qual, Fall 2007

Suppose that M and N are smooth manifolds. Give M x N the structure of a
smooth manifold by producing a compatible atlas. Prove that your atlas is compatible.

Proof. Suppose that {(Ua, )} and {(Vs,13)} are smooth atlases for M™ and N™,

respectively. We show that {(Uy x Vg, 9o X 15)} defines a smooth structure on M x N,
where ¢, X g : M x N — R™ x R” is given by (pq X ¢g)(m,n) = (¢a(m),a(n)).
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Evidently the collection of open sets {(U, x V3)} covers M x N. Now suppose
(Uay X VB, 0oy X ¥a,) and (Ua, X Va,, @a, X 9¥5,) are overlapping charts in {(U, X
V3, 9a X ¥g)}. Then the map

(90041 X ¢ﬁ1) ° (90042 X wﬁb)il FPay (Ua1062) X 7/}52 (V5152) = Pay (Ua1a2) X wBl (Vﬂlﬁz)
is smooth at (2,Y) € Ya, (Uaras) X ¥8,(Va,8,) C R™ x R™ because
(e % 05,) 0 (P X 03) " (2) = (P X 03) (00 (@), 031 ()
= (o (0t (@) v, (V5 9)))
= (s 092D @), (W, 0 W5 (W))

and (¢, 0 @,)) and (g, o wgzl) are smooth at = and y, respectively. Hence our atlas
is compatible. ]

. Iowa Qual, Spring 2008

Prove that the sphere S? = {(z,y,2) € R®: 22 + 9% + 22 = 1} is a smooth manifold
by exhibiting charts. Carefully calculate one transition map and its derivative to
explain why the transition map is a diffeomorphism.

Proof. We have charts

XF={(z,y,2) € 812> 0}, px+(2,,2) = (y.2),
X~ ={(x,y,2) € 5?12 <0}, px—(2,9,2) = (y,2),
Y ={(z,y,2) € 5% 1y > 0}, oy (2,.2) = (z,2),
Yt ={(z,y,2) € $% 1y <0}, py—(,9,2) = (2,2),
Zt ={(z,y,2) € S*: 2> 0}, vz (z,y,2) = (2,9),
Zt ={(z,y,2) € S*: 2 <0}, py(x,y,2) = (z,y).

We compute the transition map ¢x- 0,1 1 pz+ (X~ NZT) = px- (X~ NZH).
(QOX_ O@E}r) (xvy):@X_ (xayaf\/ 17$27y2> = <y77\/ 17$27y2>'
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The derivative of px- o ¢} at a point (zg,y0) € ¢z+(X~ N Z*) is

9y %
0z |(z0,y0) 31/ (z0,Y0)
—1 o
(px-© @Z+)*7(ro,yo) - a(_ /T — 22 — yz) (’)(— T 22— yz)
0 0
“ (z0,Y0) Y (z0,Y0)

0|($o,y0) 1|(Io7y0)

l‘(l _ x2 _ y2)—1/2 y(l _ $2 _ y2)—1/2

(z0,Y0) (z0,Y0)

0 1

ol =g — ) ™? o1 —af —ug)/?

The above matrix fails to have full rank precisely when zg = 0 or (1—x3 —yg)_l/ 2=0.
The latter case is never true. Notice that

oz (X~ NZY) = {(w,y) ER?:—1<y<1, —\/1—y? <:c<0},

and so zg # 0. Hence (cp x-© gp}i) ) has full rank. Then by the Inverse Function

*,(z
Theorem, px- o @21 is a local diffeomorphism at (z,y). Since (z,y) was arbitrary,
Yx- o0 wgi is a diffeomorphism. O

5. Towa Qual, Spring 2008

Suppose X,Y,Z are smooth manifolds, f : X — Y is a diffeomorphism, and
g Y — Z is a smooth map such that for some y € Y, g., : T,Y — Ty)Z is
injective. Prove that for each z € f=1(y), (g o f)«. is injective.

Proof. Let x € f~1(y). By the Chain Rule,

(go f)*,x = Ox,f(x) © Jex = G,y © frz

Since g,y is injective, we need only to show that f, , is injective to obtain the desired
result. Since f is a diffeomorphism f~!o f = 1x and so again by the Chain Rule,

f":ch(x) °© f*W = (f_l © f)*,ac = (]lX)*,w,

from which it follows that f. , is injective. O

6. Iowa Qual, January 2011

Let S? = {(z,9,2) € R?: 224+y>+22 = 1} be the standard unit sphere of dimension
2. Let F : S? — S? be defined by restricting the linear map T'(z,y, 2) = (—y,z, —2)
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to S2, that is F' = T|g2. The stereographic projection ¢ given below defines a chart,
(S*\(0,0,1),9).

¢<z,yvz>=< r_ Y ):<u7v>and

1—2"1—2

o (u,v) (2u, 2v,u® + 0% — 1)

- 1+ u2+ 02

Let p = (%, % %) and ¢ = F(p). Calculate the matrix of Fy : T,S? — T,S? with

respect to the bases {a%|p, %|p} and {% s 8%|q}~.
Solution:

Let u,v denote the standard coordinates in R?, and let ¢ = (¢1, ¢2).Then notice
that ¢1 = uo ¢ and ¢3 = u o ¢. So the component functions of F' with respect to the
chart (S2\ (0,0,1), ) are

Fl=¢i0F =uo¢oF and F?=¢po0F =vo¢oF.

So,
o o ) duedol)y,) dwedel),
M) 2 \2eoeely,) dvetel),
oo lod )iy 2020l ()
- Vo Qo o -1 Vo o o -1
Hwedo ot )iy 20220l ) 4
Now,
1

(¢oFo¢1)(u,u):(¢oF)< (2u,21},u2—|—v2—1)>

14+ u? +02

1
=¢ (1_’_“2_’_”2(—21), 2u, —(u? +v? — 1)))

o ( —2 2u )
- 2 2 24 921" 24921
I+u+v 1+ 7f+ug+v2 1+ 11L+u12)+v2

1 ( —2v 2u )
- 2 2 2u242v2 7 2u242v2
L+u+wv 14+u24+0v2  14+u2+402

_ —2v 2u
o\ 2u2 4+ 2027 2u2 + 202 )
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So,

O(uogoFogpt _ 8<2u;-i2-;v2) _ Suv
ou N u (2u? + 202)27
duopoFogp™t) a(2u;i§v2) (20 + 20?)(—2) — (—20)(4v)
v N Ov B (2u? + 20v2)?
1 8v?

w402 * (2u? + 202)2’

d(vogpoFogpl) 6(21/4’2%) (2u? + 2v2)(2) — (2u)(4u)

ou ou (2u? + 202)2
_ 1 Su?
T w2+ (2u + 02)2
dvogoFogp™t) a(m’fﬁ) B —8uw
v N v C(2u? + 202)2°

Then ¢(p) = (v/2,1), and so finally, we get

oF . 9F

- —_— 8v2 1 8 2v2 1

au P gy @ 36 37136 R
F*,p: = —

OF oy 2 R I 52

ou P ov P

. Towa Qual, Fall 2014

Recall that RP(2) is the quotient space of R3\ {0} by the equivalence relation
(x,y,2) = (2,9, 2") if there exists A € R\ {0} so that A(z,y,2) = (2/,9', 2’). Denote
the equivalence class of (z,y, 2) by [z, y, z]. Give RP(2) the standard smooth structure.
Consider the map f : RP(2) — R? given by

o) = (s )

1‘2+y2+22,$2+y2+22
e a. Prove that f is smooth.
e b. Find the set where f has rank 1.

Proof. e a. Define f : R®\ {0} — R? by

(z,y,2) — ( il vz ) .

$2+y2+2271'2+y2+22

As a rational expression, f is smooth. Suppose A(z,y,z) = (2/,y',2") for A €
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R\ {0}. Then

f('y',2")

(Z‘/2+y/2+2/2 J)/2+y/2+2/2>
Ax Ay) (y)(r2)
( <Az>2’ ()? + (A)? + (W)

(x2+y 2422 x2+y + 22
_f(xvya )7

and hence, f is constant on the fibers above points in the quotient. Therefore,
f descends to a smooth map f : RP(2) — R2 such that f = f o p, where
p : R¥\ {0} — RP(2) is the quotient map. Evidently the map f is the one
described in the problem.

e b. Recall that the standard smooth structure on RP(2) is given by the atlas

{(U, ¢:) Y2y, where

Us = {lw.9.2) € RP(2) 12 # 0}, dollr,v.2) = (£.2) 65" (e,9) = L)

Ur :{[x7y7z} GRP( ) y7é0} (bl([x Y,z ])

Uz = {[x,y,z] € RP(2> tR 7é O}a ¢2([mayvz]) =

-1
9 (bl

(z,y) = [z,1,y],

(53)
(

=2) 61 (@y) = oy 1)

Let go = [%0, Y0, 20) € Up. Then

f*#lo -

8. Iowa Qual, Fall 2015

o) ) [ @)
T ]\ )

e (a) Recall S' = {z € C||z| = 1}. Consider that map u : Z x S — ST given
by pu(n,z) = €2™mV2; Prove that p defines a C* action of Z on the smooth

manifold S?.

e (b) Is S'/Z a manifold? Prove or disprove.

Proof.
e (b)

* (a)
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9. Iowa Qual, Winter 2016

Recall that for any point € S™, where S™ = ST, the space S™\{z} is diffeomorphic
to R™. Find a map ¢ : ™\ {#} — R". Prove that the map ¢ is a diffeomorphism.

Proof. Note that S™ = {(z1,...,2n41) € R"™ : 23... + 22 | = 1}. By possibly
rotating S™ as needed, we may assume that x = N = (0,...,0,1). We view R" C R"*!
as all points with last coordinate 0; that is, R" = {(z1,...,2p+1) € R*™ 1 2,1 = 0}.

Consider the line from N through a point p = (21, ..., %, Tnt1) € S,
L, :[0,00) = R™ ¢t (1 —t)N +tp = (txy, ..., txy, tonyr + (1 —1)).

Then if ¢, = ﬁ, L, (t,) has last coordinate 0, and so L,(t,) € R™. So we define

©:S"\ {N} - R" by

1

t— Lp(tp) == 1—753_’_1
n

(z1,...,2n,0).

On the other hand, if y = (z1,...,2,,0) € R™, consider the line from N to y,
Ly : [0,00) = R"™ ¢ (1 —t)N + ty = (tzy, ..., tx,, 1 —t).

Then Ly(t,) € S™ if t, =
S™\ {N} given by

2 : -1 . pn
o T— and so we have an inverse map ¢~ : R” —

1
(€1 s Ty 0) > Ly(ty) = —

201, 20, 2 4 22 —1).
z1+...+x%+1( T1yeees 2T, @7+ +ay, — 1)

We argue why ¢ and ¢ ~! are smooth. First, ¢!, is smooth map on all of R™ since

its component functions are given in the global coordinates of R™ and are therein
smooth.

Consider A = R"*1\ {pts w/ last coord. 1}. If 7 : R®*! — R is projection onto
the last coordinate, then A = R"*1\ f~1({1}), and so A is open since f~1({1}) is
closed. So, as a function on the open subset A of R"*!, the map ¢ is smooth since it
is given the the global coordinates of R"*! and is indeed smooth with respect to those
coordinates. Since S™\ {N} C A is a regular submanifold of R"*1, then ¢ restricts to
a smooth map on S™\ {N}. O

10. Towa Qual, Winter 2016
Suppose that M is a C'°°-smooth manifold.

e a. Define the ring C(M).
e b. Define the ring C*>°(M).
e c. Define the rings C" (M), for r = 1,2,....

e d. Prove that there are injective ring homomorphisms:

COM)yc---cC"(M)c C™™ (M) c---cC®(M).

e. Prove that at least two of the homomorphisms in the previous part are not
surjective.
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2.2 Regular Submanifolds
1. Towa Qual, Fall 2005

e a. Prove that the hyperboloid H of points in R? that satisfy
P2yt 2=1

is a smooth [i.e., regular] submanifold of R3.

e b. Let p: H — R? be the resriction of orthogonal projection to the zz-plane to
H. What are the regular values and critical values of p? Justify your answer.

Proof. e a. We exhibit H as a regular level set of a smooth map from R3 to R,
showing that H is a regular submanifold of R® of dimension 2. Consider the
smooth map f(z,y,2) = 2? + y?> — 22 — 1. Evidently H = f~'({0}), and so it
remains to show that 0 is a regular value of f. Observe that

Jolwyn = (20 2y —22),
and so f, fails to be surjective precisely at the origin; hence the only critical value
of fis f(0,0,0) =1, giving that 0 is a regular value of f.

e b. To find the critical values of p, we want to find the points ¢ € H for which
the differential
Prq: TyH = Ty nR® = R?

fails to be surjective. Since p, is a linear map between 2-dimensional vector
spaces, this happens precisely when dim Ker(p,) > 0.

Let 7 : R® — R? denote projection onto the xz-plane, so that p = 7|g. Note
that since 7 is a linear map, 7, = w. For ¢ € H, we have

Kerp. 4 = Ker (7|n), , = Ker (7. g) |rgu = Ker (7) |rqn = Kerm NT, H

Recall that since H is a regular level set of f, then for any ¢ € H, we have
T,H = Ker f, 4, and so the above becomes

Kerp, ¢ = Kerm NKer f, 4.

We have
Kerm = {(a,b,¢c) € R®: (a,c) = (0,0)},

and letting ¢ = (x0, Yo, 20), we have

Ker fi g =< (a,b,¢c) e T,H : (2350 240 —220) bl =0
c

= {(a,b,c) € T,H : 2xpa + 2yob — 2z9c = 0} .

Hence
Kerp, q = {(a,b,c) € T,H : 2yob = 0}
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For an arbitrary ¢, there certainly exists (a,b,c) € T,H with b # 0, and so ¢ is a
critical point of p if and only if yo = 0. Therefore, the critical points of p are

C:{(Z‘anmZO) EH:yOZO}:{(.ﬁ,y,Z) €R3:$2_Z2:1}

and so the critical values of p are p(C) = {(z, 2) € R? : 2% —2? = 1}. Graphically,
p(C) is a hyperbola in the zz-plane. The regular values of p are therefore

R{(z,2) eR?: 2% — 22 #1} = {(2,2) e R? : 2? — 2% < 1},

where the last set equality follows from the fact that no point (z,y,z) € H is such
that 22 — 22 > 1, because then 1 = 22 +y2 — 22 > 1442, which is a contradiction
for any value of y. So R is the region inside of the hyperbola p(C).

O

2. Towa Qual, Fall 2006

Let W, = {(z,y,2,w) € R* : 2yz = ¢} and Y. = {(z,y,2,w) € R? : 22w = c}.
For what real numbers ¢ is Y, a three-manifold? For what pairs (¢1,cz) is W,, NY,
a two-manifold?

Proof. Define a map f: R* = R, (x,y,2,w) — rzw — c¢. Then Y, = f~1({0}), and

foteyow =(zw 0 2w z2).

Therefore, f, (s, w) fails to be surjective —i.e., we obtain critical points of f — when
any two of the coordinates x, z, w is zero. Therefore, the regular points of f are

R = {(z,y,z,w) € R*: y € R, and, at most one coordinate among x, y,w is 0}.

Suppose ¢ # 0. Then in fact none of the coordinates among x, z,w is zero. In other
words, Y. C R when ¢ # 0. Hence by the Regular Level Set Theorem, Y, is a three-
manifold when ¢ # 0. On the other hand, we claim that Yj is not a three-manifold.
In this case, Yo = {(x,y,2,w) € R* : z2w = 0}, or equivalently,

Yo = {(z,y,z,w) € R* : z = 0}U{(2, ¥, 2, w) € R*: 2 = 0}U{(z,y, 2, w) € R* : w = 0}.

In other words, Y, is the union of the yzw, zyw, and zyz hyperplanes in R*. Recall
the the dimension of the tangent space at any point in a manifold is the same as that
of said manifold. We show that dimT{g,0,0)Y0 > 3, showing that Yy cannot be a
three-manifold.

Consider the following curves, which all start at (0,0,0,0):

€,€) = Yy, t—

) £.0,0,0
€,€) = Yy, t—

)

)

)

0,t,0,0)
— Yo, t— )
€,€) =Yy, t— )

0,0,¢,0
0,0,0,¢

€, €

~

ay:(—
g (—
ag: (—
oy (—

The vectors X; = «;(0) are therefore elements of T(g ,0,0)Y0, and are linearly inde-
pendent.
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For the second question, first observe
W,, NYe., = {(z,y,z2,w) € R* : 2yz = ¢; and z2w = ¢3}.

Define amap g : R* — R? by (z,y, z, w) — (zyz, z2w). Then W, NY,, = g1 ({(c1,¢2)}),

and
_(yz zz zy O
Gx,(z,y,z,w) = 2w 0 2w xzz2/°

Then g, fails to have maximal rank when all of its 2 X 2-minors have determinant
Z€ero:

_|yrz w2l o _|yz wy| _ B _ |y _ 9
0= o 0= W, 0 w xw‘ zyzw — xyzw, 0 PO ryz~,
0= R xzzw, 0= vz 0 = :1:222, 0= Ty = x2yz.

0 xw 0 zz TW X2

From here we see immediately that if x = 0 or y = 0, then g, fails to have maximal
rank. If y and/or w is 0, the fifth determinant above shows that g, can still have
maximal rank if both x and z are nonzero. Hence the g, has maximal rank if and only
if x # 0 and z # 0. In other words, the regular points of g are

R ={(z,y,z,w) €ER*: 2 # 0,2 #0}.

If ¢; and co are nonzero, then W, NY,, C R'. If ¢; =0 and ¢2 # 0 or if ¢; # 0 and
¢o = 0, then z, z are nonzero and so W, NY,, C R'. Hence W, NY,, is a two-manifold
when at most one of ¢y, ¢y is 0 by the Regular Lever Set Theorem.

Now suppose ¢; = ¢ = 0, then we have

WoNYy = {(z,y,z,w) € R : zyz = 0 and zzw = 0}
={z=0}U{y=0u{z=0}U{w=0}

In other words, WyNYj is the union of the yzw, rzw, zyw, and zyz hyperplanes in R*.
An analogous argument with curves as before shows that dim 7 ,0,0)Wo N Yo > 2.
Hence Wy N'Y) is not a two-manifold. O

. Iowa Qual, Fall 2007

Let T2 be the subset of R? that is the result of rotating the circle in the yz plane
of radius 1 centered at (0,2,0) about the z-axis. It may be useful to note that T2 is
the set of points in 3-space satisfying the equation ((z2 4+ 32)'/? — 2)% + 22 = 1.

e a. Prove that T2 is a smooth 2-manifold.

e b. Let p: T? — R? be the restriction of p : R® — R? given by p(z,y, 2) = (z,y).
Identify the regular values of p : T? — R2.

Proof. e a. By the Regular Level Set Theorem: Define a smooth map f : R?® — R,
(z,y,2) = (22 +y*)/2 = 2)2 + 22 — 1. Then T? = f~1({0}) and so we must
show that 0 is a regular value of f, or equivalently, that f~1({0}) is contained in
the set of regular points of f. For (z,y,z) € T?, we have

(22 ?) /2 2y 1/2_
f*,(x,y,z) = (2 (((12:7?:2))1/2 2) 2y(((zziyyz))1/2 2) 22’) .
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Notice that if 22 + 42 = 0 then 22 = -3 = 2 € R. Hence Ja(zy,2) 18 well-
defined for all (z,y,z) € T?. Now, f. fails to have maximal rank when all of its
components are 0; that is, when

20((2® +9°)? - 2) _ 2y((a® +4°)"/2 - 2)

0= (22 + y2)1/2 - (22 + y2)1/2

=2z,

i.e., when x = 0, y = 0, and z = 0, or when, 22 + 32 = 4 and z = 0. The former
case is not true for any (r,y,z) € T2 and the latter case also never happens in
T? since that would imply 0 = 1. Hence f, has full rank on all of 72, and so T2
is a regular submanifold of R? of dimension 2.

b. To find the critical values of p, we want to find the points ¢ € T2 for which
the differential
Pasqg : TyT? = Ty R?* = R?

fails to be surjective. Since p, is a linear map between 2-dimensional vector
spaces, this happens precisely when dim Ker(p,) > 0.

Let 7 : R® — R? denote projection onto the xy-plane, so that p = 7|72. Note
that since 7 is a linear map, 7, = 7. For ¢ € T?, we have

Kerp, g = Ker (7|72), , = Ker (7. 4) |72 = Ker () [7gr2 = Kerm N T,T?

Recall that since T2 is a regular level set of f, then for any ¢ € T?, we have
TqT2 = Ker f. 4, and so the above becomes

Kerp, , = Kerm N Ker f, 4.

We have
Kerm = {(a,b,c) € R*: (a,b) = (0,0)},

and letting ¢ = (¢, Yo, 20), we have
a

Ker fu, =1 (a,b,c) €T, T*: fuy | b] =0
C

(2az0 + 20y (a3 + 43)2 ~ )
(a3 + )2

{(a,b,c)ETqH: +ZCZOO}.

Hence
Kerp., = {(a,b, c) € TqT2 1 2¢z0 = O}

For an arbitrary g, there certainly exists (a,b,c) € T,H with ¢ # 0, and so g is a
critical point of p if and only if zg = 0. Therefore, the critical points of p are

C: {($07y0720) € T2 120 :0}
= {(1‘7%2) GRB . ((m2+y2)1/2 _2)2 _ 1}
= {(z,9,2) ER3:5152‘f‘y2=101f332—&-y2:9}

and so the critical values of p are

p(C) ={(z,y) eR*:2® +y* =1 or 2® + y* = 9}.
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Graphically, p(C) is two circles in the the zy-plane; one of radius 1, and the other
of radius 3. The regular values of p are therefore

Ry, ={(z,2) eR?: ((2® +¢y»)'/? —2)* #£ 1}
= {(z,2) eR?: (22 +2)Y2 -2)2 < 1}
={(z,2) eR?: 1< 2® +¢* <9}

where * follows from the fact that no points of 72 are such that ((22 + y?)'/2 —

2)2 > 1. For then, 1 = (22 4 »?)Y/2 — 2)2 + 22 > 1 + 22, a contradiction for any
z € R. Graphically, R, is an open annulus in the zy-plane between the circles of
radii 1 and 3.

O

4. Towa Qual, Spring 2008

Let A = {(x,y,2) € R® : 2 = 22 + 3y} and let B = the z-axis. Prove A and B
meet transversally.

Solution 1:

Since A and B are submanifolds of R, we need to show that for all p € AN B, we
have
T,A+T,B =T,R* = R®.

Now,

AﬂB:{(x,y,z)€R3:z:2x+3y,w:y:0}:{(x,y,z)GR?’:z:x:y:O}

and so we let p = (0,0,0). We need to describe elements in 7T,A and T, B. Define
smooth maps f : R® = R, (2,9,2) = 22+ 3y — 2, g : R® = R? (z,y,2) — (x,9).
Then A = f~1({0}) and B = ¢g=1({(0,0)}), and

1 0 0
f*,(z,y,z) = (2 3 *1)7 x,(z,y,2) = (0 1 ()) :

So f and g have no critical values, giving that A and B are regular submanifolds of
R3 of dimensions 2 and 1, respectively. So we have

T,A =Ker(f.p) = {(z,y,2) € R®: 2z + 3y = 2}

and
TPB = Ker(g*’p) = {(l’,y72’) € R3 Cr = y = 0}

Now evidently 7,A + T}, B C R? and conversely if (zo, yo, 20) € R3, then pick (zo/2 —
(3/2)y0,40,0) € T, A and (0,0, z9) € T,B so that

(l‘o,yo,ZO) = (1‘0/2 — (3/2)y0,y0,0) + (0,0,Zo) S TpA + TpB.

Solution 2: We exhibit two vectors in 7,4 and one vector in T,B which are
linearly independent for p = (0,0, 0).
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5. Iowa Qual, Fall 2015

Let A = {(v,%) € R® x R3|7 =}, S = {# € R®|||Z]| = 1} and C = R3 x R?\ A.
Defined the map g : C — S? by

where ||¥ — @|| means the norm of the difference. (This problem is computational.)

e a. Prove that g is a smooth mapping.
e b. Let N =¢1(0,0,1). Prove that N is a regular submanifold of C.

6. Introduction to Smooth Manifolds, Spring 2017, Final Review
Let H = {(z,y,2) € R3|z? +y? — 22 = 1}.
e a. Prove that H is a regular submanifold of R? and describe its tangent space at
each point.

e b. Let 7 > 0. Let S, = {(z,y, 2)|2? + y? + 22 = r?}. Prove that S, is a regular
submanifold of R? and identify its tangent space at each point.

e c. For which r is S, transverse to H?

Proof. e a. Define a smooth map f: R? — R, (2,y,2) — 2% + 4% — 22 — 1. Then
H = f71({0}), ans so we show that 0 is a regular value of f and apply the
Regular Level Set Theorem to conclude that H is a regular submanifold of R3 of
dimension 2. For (z,y,2) € H, we have

f*(x,y,z) = (21’ 2y _22)7

and so0 fy (24,2 fails to be surjective if and only if (z,y,z) = (0,0,0). Since
(0,0,0) ¢ H, then every point in H is a regular point of f, and so 0 is a regular
value of f.

e b. Just as above, 0 is a regular value of a map g(z,vy,2) = 22 +y*+ 2% —r2, since

Gx(z,y,2) = (2:10 2y 22)

fails to be surjective if and only if (z,y,z) = (0,0,0) and since (0,0,0) ¢
g 1({0}) = S.. So S, is a regular submanifold of R® of dimension 2. The
tangent space at any point in (z,y,2) € S, can be identified with the kernel of
Gx(2,y,2); that is

Ker g,(a,y,2) = {(a,b,¢) € R3 : 2ax 4 2by — 2cz = 0}.

e c. A normal vector to H is (Qx 2y 722), and a normal vector to S, is
(2x 2y 22). So H and S, will fail to be transverse precisely when these normal
vectors are parallel, which happens if and only if z = 0. In this case, 22 +y% =1
on H and so 1 = 2?2+ 4% =72 on S,. Hence H and S, are transverse if and only

if r # 1.
O

42



2.3 Lie Groups
1. Towa Qual, Fall 2005

e a. Define Lie group.

e b. Let SL,R denote n X n matrices with real entries of determinant 1. Prove
that SL,R is a Lie group.

e c. What is the tangent space of SL,R at the identity?

Solution:

e a. A Lie group is a manifold G which is also a group so that the multiplication
and inversion maps are smooth.

e b. SL,R is a group: Since the identity matrix has determinant 1, SL,R # @. If
A, B € SL,R, then det(AB~1) = det(A) det(B~1) =1 and so SL,R < GL,R.
SL,R is a manifold: Since GL,R = det™'((—o0,0) U (0,00)), then GL,R is an
open subset of R”z; hence GL,R inherits a manifold structure from R™. Let
f : GL,R — R be the determinant function. Evidently, f~*({1}) = SL,R,
and so we show that 1 is a regular value of f, giving that SL,R is a regular
submanifold of GL,R of dimension n? — 1 by the Regular Level Set Theorem.
Let A = (a;5) € SL,R. Denote by m, ; the determinant of the matrix obtained
from A by deleting its ith row and jth column. Then, expanding along the ith
row of A, we have f(A) = det(A) = (=1)"a;ymi + -+ + (=1)"a;,m4,, and
S0

fon= (af of ) = (1) ma - (= 1)) -

(’)ail o 8am
Hence f. 4 fails to be surjective precisely when all m;; are zero, but this occurs
if and only if det(A) = 0. Since A € SL,R, det(A) =1, and so f, 4 is surjective.
SL,R has smooth multiplication and inversion maps: Since matrix multiplication

in GL,R are polynomials in the coordinates of R”Q, it is smooth. The inverse of
a matrix A = (a;;) € GL,R has (i, j)-entry
(A gy = g ()" ((0,3)minor of 4),

which is smooth in a;; if det A # 0. Hence inversion in GL,R is smooth. Since
SL,R is a regular submanifold of GL,R, the inclusion map ¢ : SL,R — GL,R
is smooth. Since restriction of the multiplication and inversion maps of GL,R to
SL,R is composition of said maps with ¢, we get that multiplication and inversion
in SL,R is smooth.

e c. Since SL,R is a regular level set of the determinant function, then T;SL,R =
Kerdet, ;. Pick X € T;SL,R, and define a curve ¢ : (—¢,€) — SL,R by t — etX.
Then ¢(0) = I and ¢/(0) = X, and we get

et X = Tr Xt T X =Tr X.
t=0 t=0

det(e!X) = d

d
O:det*’[(X):— _a

dt

t=0
Hence T7SL,R is contained in the vector space V which consists of all those

matrices with trace 0. But V has dimension n? — 1, as does T;SL,R; hence
T;SL,R=1V.
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2. Iowa Qual, Fall 2007

Let O(n) denote the set of n x n matrices with real entries, A so that AAT = Id.
Prove that O(n) is a Lie group, and identify the tangent space at the identity.

Proof. O(n) is a group: O(n) # @ since I € O(n), and if A, B € O(n), then

(AB™")(AB™ )T = AB™(BT) 1 (AT) "' = ABTB) N (AT) T = (ATA) T = L.
and so O(n) < GL,R.

O(n) is a manifold: Let f : GL,R — GL,R be given by A — AAT. Notice that
(AAT)T = AAT, and so in fact f(GL,R) = S,, = {n x n symmetric matrices}. Note
that a matrix in 5, is determined by its values on the diagonal and upper triangle,
and so dimS, =n+(n—1)+---+1= @:”2%

Obviously, O(n) = f~1(I), and so we show that I is a regular value of f, which
gives that O(n) is a regular submanifold of GL,R of dimension dim GL,R —dim S,, =
n? — "2% = "22_ ™ by the Regular Level Set Theorem.

To that end, pick A € f~1(I) = O(n) and X € TAGL,R = GL,R. Then we can
find a curve ¢ : (¢,€) — GL,R starting at A with initial velocity X. Then

d

d
fea(X) = 7

== c(t)e(t)T = c(t)d )T+ (t)e(t)T T AXT4X AT,

fle(®))

t=0

t=0

We argue why f, 4 is surjective. If B € S,, pick X = %BA, and then the above
computation gives

T
fea(X)=A (;BA> + (;BA) AT = %AATBT + %BAAT = %(BT + B) = B,

and so f, 4 is surjective.

O(n) has smooth multiplication and inversion maps: Since O(n) is a regular sub-
manifold of GL,R, the inclusion map ¢ : O(n)R — GL,R is smooth. Since restriction
of the multiplication and inversion maps of GL,R to O(n) is composition of said maps
with ¢, we get that multiplication and inversion in O(n) is smooth.

Since O(n) is a regular level set of f, then T7O(n) = Ker f, ;. The computation
earlier gives that if X € TrO(n),

0=for(X)=X"+X,

and so TrO(n) is contained in the vector space V of skew symmetric matrices. But
every element in V is determined by its values on the upper triangle, and so dimV =
m-—1)+n-2)+...1= w = ”22_", and since also dim770(n) = dim O(n) =

w=n then in fact T;0(n) = V. -
3. Towa Qual, Fall 2014 (Balz)
Let
a b ¢
B=q (0 d e|€MssR)adf #0
00 f

be the set of invertible upper triangular matrices.
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e a. Prove that B equipped with matrix multiplication is a Lie group.
e b. Compute the tangent space to B at the identity as a linear subspace of
M;3(R) = RO.
4. Towa Qual, Fall 2015 (Sanadhya)

e a. Define g is a Lie algebra.

e b. Recall the cross product x : R3 x R? — R3, and prove that R3 equipped with
the cross product is a Lie algebra.

Solution:
e a. A Lie algebra g is a vector space together with a product [,]: g x g — g that
— is bilinear: [aX +bY, Z] = a[X, Z]+b[X, Z], [X,aY +bZ] = o[ X, Z]+b[X,Y].
— is anticommutative: [X,Y] = —[Y, X].

— satisfies the Jacobi Identity: 0 = [X,[Y, Z]] + [Z, [ X, Y]] + [V, [Z, X]].

e b. R? is a real vector space, and so we show that x is bilinear, anticommutative
and satisfies the Jacobi Identity. The cross product is given by

T W T2Y3 — T3Y2
[Xv Y] = X(Xa Y) =X 2 |, | Y2 = | T3Y1 — T1Y3
T3 Y3 T1Y2 — T2Y1

So

(axe + by2)z3 — (axs + bys)ze

[aX +bY, Z] = | (axs + bys)z1 — (ax1 + by1)zs
(axy + byr)ze — (axz + by2) 21

axoz3 + byszz — axszze + byszs

= | awzz1 + bysz1 — aw1z3 + by123

az12z2 + by1zo — axez1 + bys 21

Toz3 — L322 Y223 — Y322
=a | w321 — w123 | +b| Y321 — Y123

T122 — X221 Y122 — Y221
= a[X, Z} + b[Y, Z],

and similarly [X,aY +bZ] = a[X, Z]+b[X,Y]. Hence the cross product is bilinear.

Now,
T2Y3 — T3Y2 T2Y3 — T3Y2 T3Y2 — T2Y3

(X, Y]=[23p1n —21ys | =— | — | zsy1 — x1y3 =—|zys —zsyn | =-[V. X
T1Y2 — T2Y1 T1Y2 — T2Y1 T2Y1 — T1Y2
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and hence the cross product is anticommutative. Finally,

Y223 — Y322 T2Y3 — T3Y2
(X, Y, 2+ 12, X, Y|+ [V, [Z,X]] = | X, | yz3z1 —wzs | | + | Z, | 231 — 2193
Y122 — Y221 T1Y2 — T2Y1

22X3 — Z3X2
+ Y, | 2371 — 2173
21T2 — 2271

$2(y122 - y2z1) - $3(y321 - y123)
= I3(y223 - y32’2) - xl(y122 - yzzl)
931@321 - y1Z3) - 992(2/223 - y322)

22(21y2 — 332?/1) - 23(x3y1 - $1y3)

+ | 23(z2ys — 3y2) — 21(21y2 — T291)

z1(x3y1 — 11y3) — 22(T2y3 — T3Y2)
Y2(2122 — 2271) — y3(z321 — 2103)
+ | y3(z2w3 — 2322) — Y1 (2122 — 22w1)
y1(23:171 - 21173) - y2(22x3 - 2’3I2)

Il
c oo

and hence the cross product satisfies the Jacobi Identity.

5. Introduction to Smooth Manifolds, Spring 2017, Final Review

Let
1 0 0 O
01 0 O
B = 0 01 O
0 00 -1

Let O(3, 1) be the set of all four by four matrices A with real entries so that ABA? = B.
Prove that O(3,1) is a Lie group. Calculate its tangent space at the identity and
determine its dimension as a manifold.

2.4 Vector Fields

1. Towa Qual, Fall 2006

Define the notion of a smooth action of a Lie group G on a smooth manifold M.
Give an example of S* acting smoothly on S2. Prove that in general an action of S!
yields a flow on M and therefore a vector field on M. Must this vector field be never
zero?

2. Iowa Qual, Fall 2007
Let M be a smooth manifold.

e a. Given P € M define TpM.
e b. Define smooth vector field on M.
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e c. If X and Y are smooth vector fields on M define [X, Y.

e d. Compute [X,Y] where X = xay + a and Y = 4~ o 4 8% are vector fields on
the plane.

Solution:
e a. For p € M, we have

T, M = {D L C°(M) 5 R : D is R-linear and D satisfies the Leibniz rule: } .

(D(fg))(p) = (Df)g(p) + f(p)(Dg)

e b. A smooth vector field on M is a smooth section X of the tangent bundle,
m:TM — M. In other words, X is a map X : M — TM such that 7 o X is
smooth. In local coordinates, if (U, p) = (U, z?,...,2") is a chart of M containing

n 0 .
p, then X(p) = X, = > ai(p)@ , and we say that X is a smooth vector
P

field if for every p and every chart about p, the coordinate functions a; are smooth
onU.

e c. Let f € C°(M). The Lie Bracket, [X,Y] of X and Y is a smooth vector field
on M given by

(X, Y]f = (XY =Y X)f = X(Vf) - Y(X[).

0 0 0 0
i )(ax*aﬁ(a*a)
0 0
)+ (o (o v o))}
0 0 0 0 0 0
_{<3 <3y+3w>>+<5y( Toy 8))}
0?2 0?2 02 0?2
:{x(az/a+ay2>+ 8+8way)}
ox 0 0?2 02 ox O 0? 0?
‘{<<axay”axay)+ax2)*((ayay”ayz)%ym)}
02 02 0?2 0?
:{f”aya* aﬂw*axay}
{a+x62+82+ il + 5 il }
Oy 0zxdy = Ox2 Oy? | Oyox
0
2

Il
—
N

S
S|
7N
SN
+
SE
N———

3. Iowa Qual, Fall 2014
Suppose that N C M is a regular submanifold of the smooth manifold M.

e (a) Let X be a smooth vector field on M, so that for every p € N, X, € T,N.
Show that X |y is a smooth vector field on N.
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Proof. Let v : N™ — M™ be inclusion. Since N is a regular submanifold, ¢ is
smooth: Let p € N and (U NN, ¢|N) = (U,at,...,2",0,...,0) be an adapted
chart about p. Then

potop t:p(UNN)—= oUNN)
is smooth at ¢(p) since

(poroe ™)) = (e (0(p) = ¢(ulp)) = ¢(p),

and ¢ is smooth at p. Therefore, X|y = X o¢: N — TM is a smooth map since
both X and ¢ are smooth. Moreover, if p € N, then

(X[n)(p) = (X o1)(p) = X(p) = X, € T,N

and so in fact X|y : N — T'N. Now, to show that X|y is a smooth vector field,
we show that it is a section of the tangent bundle, 7 : TM — M

moX|y=moXor=1por=1y.
O

e (b) Suppose that f : M — R is smooth and f : N — R is the restriction of f to
N. Prove or disprove, B
XIn(f) = X(f)-
['m pretty sure this last equation should read “X|n(f) = X (f)|n”, for otherwise

the equals sign is meaningless. I've transcribed it as it was written on the qual.
JH]

Proof. First note that f = fo. O

Vector Bundles

. Towa Qual, Fall 2006 (Balz)

Suppose M is a Lie group. Sketch the proof that M is parallelizable.
Iowa Qual, Fall 2016 (Sanadhya)

e (a) Define the notion of a vector bundle £ — X over X.

e (b) Assume that X is a smooth compact manifold. Prove that every vector bundle
FE — X is homotopic to X : F ~ X.

Iowa Qual, Winter 2017 (Singh)

Recall that cocycle data is a collection of maps {g;; : U NU; — GL(n,R)}; j)eaxa
from the pairwise intersections U; NU; of an open cover {U;}; € A of M which satisfy:

9i95i = lu.nu; and 9ij9ik9ki = lu,nu;nU -

e (a) Prove that a real vector bundle E — M determines a choice of cocycle data.

e (b) Prove that a choice of cocycle data allows one to construct a real vector
bundle £ — M.
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2.6 Differential Forms
1. Towa Qual, Spring 2008

Consider the following 1-form on R3.
w=zxydr+xdy+xdz

e (i) Calculate the 2-form dw.
e (ii) Show by explicit calculation that d(dw) = 0.

e (iii) Does there exist a 1-form o on R? such that dda = (z°y32%)dz A dy A dz?
(Do not try to find such «; just state in one or two sentences why such a 1-form
does or does not exist.)

Solution:
o (i)
dw = d(zy) AN dx + dx A dy + dz N dz
I(zy) O(zy)
= d
( or " * dy

= (ydx + zdy) Ndx + dz AN dy + dx AN dz
=ydx Ndx + xdy Ndx +dx ANdy + dz N dz
=xdy Ndx + dx AN dy + dx A dz

= —xdr ANdy+dx Ndy +dx ANdz
=(1—2z)dz ANdy+dx Ndz

dy)/\dm+dm/\dy+dm/\dz

o (ii)
d(dw) = d((1 — z)dz N dy + dx A dz)
=d(l—z)ANdx ANdy+d(1) Ndx Adz

oz
= —xdx ANdzx Ady
=0.

1_
_ (de>/\dx/\dy+0/\da:/\dz

e (iii) Such a 1 form does not exist. The exterior derivative d has square zero:
d? = 0. To see this, let w = fdz! be a k form. Then

_ of . ; _ *f ;
d(dw) =d ;;@daﬂ ANdx! | = ;Z; ipmy ' A da? Ada.

If i = j in the last sum, then dz? A da? = 0, getting rid of that term. If i # j,
then for each term
% f

OxI dx'

dz’ A dat,

49



we have a corresponding term

92 f
D19z

dz' A da?.

Since mixed partials are the same (f is assumed to be smooth), and dz’ A dz’ =
—dx? N dx', we get

O goi naat =~ O

dx® A dzd.
0z Ozt Ozt 0xI @t A dw

Hence all the terms in d(dw) are zero. Since d is Rlinear, we can extend this to
the case when w = > frda!.
2. Towa Qual, Fall 2013
Let (,y, z, w) be the standard coordinates on the Euclidean space R*. Let X = %
be a vector field. Let w = (zyz)dz Adz be a 2-form. Compute the Lie derivative £ xw.

Solution:

x((zyz)dz) A dz] + (xyz)dz A Lx(dx)
(Lxzyz)dz + zyzLxdz) A dz] + (xyz)dz A Lx(dzx)
Lx(zyz)dz + xyz(dLxz)) N dx] + (zyz)dz A (dLxx)
(Xzyz)dz + zyz(dX 2)) Adx] + (zyz)dz A (dX )
(xy)dz + zyz(d(1))) Adz] + (zyz)dz A (d(0))
xy)dz A dx

EXw:

(
(
(
(

£
[
[
[
[
= (

3. Iowa Qual, Fall 2013
Let M be an n-manifold. Let a € QY(M). Is a A a = 0?7 Give reasons.

Solution:

Indeed, a A a = 0. This follows from the fact that the wedge product is anticom-
mutative; that is, if w € Q¥(M) and 7 € QY(M), then w A 7 = (=1)*7 A w. Here’s a
proof: Let p € Si1¢ be given by

. k+i if1<i<k
p(i) =< . . .
i—4 fk+1<i<k+/
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Then

(WAT) (V1,0 Vkpe) = Z SgN T W(Vg(1)s -+ s Vo(k)) " T(Vo(kt1)s - - > Vo(kte))
(k,£)-shuffles
0ESK4e

= Z SEN T W(Vgp(kt1)s - - > Vop(kt)) * T(Vap(1)s -+ > Vap(k))
(k,£)-shuffles
0ESK4e

= Z sgn o (sgn p)? T(Vop(1)s -+ 2 Vop(k)) - W(Vop(lt1)s - -+ s Vop(kte))
(k,£)-shuffles
0ESK4e

=sgnp E SgN L T(Vp(1)s -+ Vp(k)) * W(Vp(kt1)s -+ Vp(lete))
(k,£)-shuffles
HESk+e

= (—1)k€(7' A w)(vl, L. ,Uk+g)

4. Towa Qual, Winter 2017

Suppose that (x1,y1,72,2) are standard coordinates in R*. Let w = dz; A dy; +
dxy A dys € Q%(R*) be the standard symplectic form. Let X = 210/0x;.

e a. Compute Ly (w).

e b. Prove that w determines a map
ap 1 Tp(RY) — T (RY)
from the tangent space to the cotangent space at p € R*.
e c. Compute the covector a,(X,) for each p € R*.
Proof. e a.

Lxw= £X(d$1) ANdyy + dxy A Lxdy + £X(dl‘2) A dys + dzo A Lxdys
=dLx(z1) Ndyr + dzqy ANdLxyr + dﬁx(mg) Adys + dxo AN dLxys

=d xl% ANdy, +dxi ANd xl%
0xq Oz

+d ((Elaw) ANdys +dxs ANd (IlayQ)

0xq 0y
= d:l?l A dyl
e b. Consider the map Z, — tz,w,, where ¢ is interior multiplication. Then for
1/17 € TP(R4)7
(ap(Zp))(Yp) = (Lprp)(Yp)

= wp(Zp, Yp)
=dx1 Ndy1(Z,,Y,) + dza A dya(Zp,Y))
= dx1(Zp)dy: (Yy) — dz1(Yy)dy1 (Z,)
+ dz2(Zy)dya(Yy) — daa(Yy)dy2(Zy).
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e c. By b., we have
(ap(Xp))(Yp) = d1(Xp)dy1 (Yy) — da (Yy)dyr (X))
- das(X, )y (V) — da(Yy)dya(X,)
= (Xpz1)(Ypy1) — (Yp21)(Xpy1) + (Xpz2)(Ypy2) — (Yp22)(Xpy2)

ox dy
= <x18x1> (Ypy1) — (Yp21) (931(%1>
ox dy
+ (301 5‘:;) (Ypy2) — (Ypz2) (301 ('M?)

= (z1) (Ypu1)-

5. Introduction to Smooth Manifolds, Spring 2017, Final Review (Burke)
Let X = :ca%—l—ya%—f—z%, let Y = xya%—i—y%. Let « = dz —y dx, B =
x deAdy+y deAdz+2z deAdy. Let f(x,y,z) = xzyz. Compute Lx f, Lxa, LxB,LxY.
What is a A da? Write out the maximal flow underlying X.

Solution:

0 ) Oxyz Oxyz Oxyz
TYZ =T + = 3zy=z.

[ZXf:Xf:<x£E+y(%+z(% ox yay T 0z
Lxa=Lxdz—Lxy=dLxz—Lxy=dXz— Xy=dz—y.
LxB = Lx(xdr ANdy) + Lx(ydz A dz) + Lx (zdz A dy)

= Lx(xzdz) AN dy + zdz A Lx (dy)
+ Lx(ydx) ANdz + ydx AN Lx (dz)
+ Lx (zdz) Ndy + zdx N Lx (dy)
= (Lxxz ANdx + xLx(dz)) A dy + zdx A Lx(dy)
+ (Lx(y) Ndx + yLx(dx)) Adz + ydx A Lx(dz)
+ (Lx(2) Ndx + zLx (dz)) ANdy + zdz A Lx (dy)
= (Lxx ANdx 4+ xdLx(z)) ANdy + xzdx A dLx (y)
+ (Lx(y) Ndx + ydLx(x)) ANdz + ydx A dLx(z)
+ (Lx(2) Ndx + zdLx (x)) Ndy + zdz A dLx (y)
= (Xz ANdx + zd(Xz)) ANdy + zdx A d(X (y))
+ (Xy Ade 4+ yd(Xz)) ANdz + yde A d(X z)
+ (XzAdx+ zd(Xx)) ANdy + zdz A d(Xy)
= (xdx + zdz) AN dy + xdx A dy
+ (ydz + ydz) AN dz + ydz AN dz
+ (zdx + zdx) ANdy + zdx A dy
= 3zdx N\ dy + 3ydx A dz + 3zdx A dy
= (3x + 3z)dx A dy + 3ydz A dz.
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LxY =[X,Y]=XY -YVX

(000N, 0D
N x@x yay Zaz xyax yc?z

(0 ON( D 0D
Wor "oz ) \"ox yay “02

o2 L B2, )
Or Ox o0r? Oz 0z 0x0z
+y<8xya—|—xy > —&-@g—f—y o )
dy Ox Oydx Oy 0z 0y0z
LRV N L
0z Ox 0z0x 0z 0z 072

—xy(axa+x82+aya+y o +%g+z o )

Ox Oz Ox?  Ox Oy Oxdy  Ox 0z 0x0z
dx 0 02 dy 0 0? 0z 0 02

_y<8z8m+x(928m 9z 0y y828y+(92827+zazaz)

o 52 2
— (yax T yamaz)
0 2 0 9?
ty (Iﬁx ery@yam * 0z * y@y&z)
0? 02
T (myazax * y822>

Y\ oz 0x? y@a:@y 0x0z

02 0? 02
Y (x(?z@a: + y@z@y + 0z * Z@z@z)
0

2.7 Integration

1. Towa Qual, January 2011
Let w = 2y dx Adz +3x dy Adz+ 2z dz Ady be a 2-form on R? (with the standard
coordinates (z,y, z)).

e a. Calculate dw.
e b. Is w exact? Justify your answer.

e c. Calculate fs2 i*w by using Stokes’ Theorem, where S? = {(z,y,2) € R? :
22 + y? + 22 = 1} is given the standard (outward-pointing) orientation as the
boundary of the unit ball, and i : S — R? is the standard embedding.

Solution:
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dw = d(zy) Ndz ANdz+ d(3z) ANdy N dz + d(xz) Adx A dy
= (ydz + zdy) A dz AN dz + 3dx A dy N dz + (zdx + xdz) Adz A dy
=xzdy ANdx Ndz+ 3dx ANdy N dz + xdz Adx A dy
=3dx ANdy Ndz.

e b. No, w is not exact. For if it were, and dr = w, then dw = ddr = 0 since
d? =0, but dw # 0.

e c. Recall that i*w = w|g2, and so by Stokes Theorem,

/ i*w:/ w\szz/ w|333=/ dw
S2 92 52 B3

We use the following parametrization of B3:
F:]0,1] x [0,7] x [0,27] = R3, F(p,,0) = (psin ¢ cos b, psin psin b, pcos ).
Let’s check to see if F' is an orientation preserving diffeomorphism:

sinpcosf pcospcost —psinpsind
det(J(F)) = |sinpsinf pcosesingd  psinpcosd
cos —psing 0

= cos ¢(p? cos? fsin ¢ cos ¢ + p? sin? O sin @ cos @)
+ psin p(psin? ¢ cos? 6 + psin? psin® 0)

= p? cos? psin p(cos? O + sin? 9)
+ p? sin® p(cos? 6 4 sin? )

= p?sin p(cos? p + sin? p)

= p?sing

Since det(J(F')) is almost everywhere positive, we get that F' is orientation pre-
serving. So

2m s 1 2m s 1
/ dwz/ / / F*dw:i’)/ / / F*dx N F*dy A F*dz
B3 0 o Jo 0 o Jo
27 T 1
= 3/ / / det(J(F)) dp A dop A df
0 o Jo
2 s 1
=3 / / P sin @ dpdpdd
0 o Jo
2

= / (— cos(m) — cos(0)) db
0

27
:2/ a6
0

= 4r.

2. Towa Qual, Fall 2014
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e a. Prove that ) )

Y z

J 42 1

4 + 9 }
is a regular submanifold of R3, and compute its tangent space as a subspace of
the tangent space of R? at the point (%, %, %)

e (b) Note that S is the boundary of the domain

S ={(z,y,2) e R*|2® +

2 2
R={(z,y,%2) 6R3|x2+%+% <1}

Give R the standard orientation from R? and give S the induced boundary ori-
entation. Let w =z dy Adz +y dz ANdx + z dx A dy. Compute both fs w and
/ r dw and check that they are equal.

Solution:

® a.

e b. We can parametrize S by
F:[0,7] x [0,27] — R3, F(p,0) = (cos fsin g, 2sin §sin ¢, 3 cos p).

A normal vector to S'is f, = (Qx y/2 2z/9), and so a smooth outward pointing
vector field on S is X := f,. In terms of F,

2 3
X = (2c0595in<p,sin9sin<p, C?;SD>

So if 7 = dx A dy A dz is the standard orientation form on R3, then ¢x7 is an
induced boundary orientation form for S. To see that the parametrization F'
coincides with this orientation, we compute ¢x7(F,,, Fp):

ixT(Fy, Fp) = (de Ndy N dz) (X, Fy, Fy)

2cosfsiny 2cosfcosp —2sinfsinp
=det| sinfsiny  sinfcosyp cos 0 sin @
2cosp/3  —2sinp/3 0

= 2c0s ¢/3(2 cos? fsin ¢ cos ¢ + 2sin? f cos psin @)
+ 2sin ¢/3(2 cos? O sin? ¢ + 2sin? fsin? )
= 2c0s ¢/3(2sin ¢ cos ) + 2sin p/3(2sin® )

=3 cos? @ sin ¢ + sin® ¢,

55



which is almost everywhere positive for ¢ € [0, 7]. So

I 27
/w:/ / F*w
S 0 0

T 2
:/ / F*x F*dy N F*dz
0 0
T 2T
—|—// F*y F*dz AN F*dx
0 0

27
+/ F*z F*dx A F*dy
o Jo

T 27 . .
:// cos fsin o QSIIIQ.COSQD 2cost93mga’d<pd9
o Jo —2singp 0
7r 2m .
+/ / 2sinfsing —2sing . 0 . ’dg&d@
o Jo cosfcosp —sinfsingp
cosfcosp —sinfsingp

pdb

2sinfcosy 2cosfsinp

™ 2m
+/ / 3cosy
0 0

™ 2m
= / / 4 cos? Osin® p dpdf
o Jo

T 2
+ / / 4sin? B sin® o dpdf
o Jo

™ 27
+ / / 6 cos? @ sin ¢ dpdf
o Jo

3. Towa Qual, Winter 2016 (Wickrama)

Let w € Q'(R?) be a compactly supported 1-form such that dw = dxAdy. Consider
the inclusion map i : S1 — R2, i(x) = o where S! = {(z,y) € R? : 22 +¢% = 1}.

Compute the integral:
/ i* ().
g1
. Iowa Qual, Fall 2016 (Oswald)
Consider the upper hemisphere X = {(z,y,2) : 22 +y?>+ 22 =1,2 > 0} C R and

let i : X < R? be the inclusion of X into R?. If w = dwdy + dydz + dzdx € Q*(R3)
[Yes, they neglected to include the “A”.] then compute the integral:

/ i*(w).
X
. Towa Qual, Fall 2016 (Singh)

Let T'= S* x S be the torus and H : S x [0,1] — S x S* be a smooth embedding
of an annulus into the torus. Each side of the annulus defines an embedding of a circle
into the torus: a = H(t,0) and 3 = H(t,1). Prove that if w € Q}(T) is a 1-form
which satisfies dw = 0 then integrating w over « is the same as integrating w over 3

up to sign:
/wzi/w.
a B
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2.8

Introduction to Smooth Manifolds, Spring 2017, Final Review (Poudel)

Realize the three sphere as the set of vectors in four space of length one, and give
it the orientation from the outward normal. The volume form on the three sphere is
rdyNdz ANdw—1y dr ANdz ANdw + z de ANdy A dw —w dx A dy N dz. Compute the
volume of the three sphere.

De Rham Cohomology

. Iowa Qual, Fall 2006 (Aceves)

Let M be a connected smooth manifold. Prove that the De Rham cohomology
group H°(M) = R. [This should be proved without just citing the result that says
that H° measures the number of connected components of a smooth manifold.]
UGA Qual, January 2015 [slightly modified] (Wood)

Let X be a manifold and U,V C X be open subsets with X = U U V. Prove that
the Euler characteristics of U, V,U NV and X obey the relation

X(X) =x(U) +x(V) =x(UNV).

(You may assume that the De Rham cohomologies of U,V,U NV and X are finite-
dimensional so that their Euler characteristics are well-defined.)

UGA Qual, Fall 2015 [slightly modified] (Poudel)

Express a Klein bottle as the union of two annuli. Use the Mayer-Vietoris sequence
and this decomposition to compute its De Rham cohomology.

Introduction to Smooth Manifolds, Spring 2017, Final Review (Wood)

Let ¥4 denote the orientable surface of genus g with & boundary components.
Starting with ¥;; give an inductive proof of the cohomology of ¥, ;. Use this to
compute the cohomology of all closed orientable surfaces ¥ .
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