MATH 1005: College Algebra Spring 2019 - April 24
Mr. Nicholas Camacho

Answer Key (Final Answers only)
In-Class Practice Midterm III
Sections 2.9, 3.1 to $3.6, \& 4.1$ to 4.4

1. Find the quadratic function that has vertex $(3,2)$ and passes through $(1,5)$.

$$
f(x)=\frac{3}{4}(x-3)^{2}+2
$$

2. Graph the polynomial $x^{2}-4 x+1=(x-2)^{2}-3$

3. We want to build a rectangular pen that borders a river on one side. We have 120 feet of fence to work with. What is the maximum area that can be enclosed?
see the online notes on section 3.1.
4. Describe the end behavior of the polynomial function $f(x)=(x+1)(x+4)^{2}(x-4)$.

$$
\begin{aligned}
& \text { (... } f(x) \rightarrow \infty \text { as } x \rightarrow-\infty \text {. (up \& to the left.) } \\
& \cdot f(x) \rightarrow \infty \text { as } x \rightarrow \infty \text {. (up \& to the right) }
\end{aligned}
$$

5. Find the set of possible rational zeros of the function $6 x^{4}-7 x^{2}+18 x+14$.

$$
\pm 1, \pm \frac{1}{2}, \pm \frac{1}{3}, \pm \frac{1}{6}, \pm 2, \pm \frac{2}{3}, \pm 7, \pm \frac{7}{2}, \pm \frac{7}{3}, \pm \frac{7}{6}, \pm\left(4, \pm \frac{14}{3}\right.
$$

6. Given that 3 is a zero of the polynomial $x^{3}-7 x^{2}+13 x-3$, find the other zeros.

$$
\text { Other zeros: } 2+\sqrt{3}, 2-\sqrt{3}
$$

7. A degree 3 polynomial $f(x)$ has zeroes 3 and $5+3 i$. Find $f(x)$. You do not have to simplify.

$$
f(x)=(x-3)(x-(5+3))(x-(5-33)
$$

8. Find the vertical and horizontal asymptotes, if any, and the domain of the rational function $f(x)=\frac{x^{2}-4}{(x+2)(x+1)}$.

$$
\begin{array}{ll}
\text { V.a.: } & x=-1 \\
\text { h.a: } & y=1 \\
\text { domain: } & (-\infty,-2) \cup(-2,-1) \cup(-1, \infty)
\end{array}
$$

9. Find the inverse function, f^{-1}, of the rational function $f(x)=\frac{x+3}{x-4}$. Also give the ranges for both f and f^{-1}.

$$
\begin{aligned}
& f^{-1}(x)=\frac{4 x+3}{x-1} \\
& \text { range of } f:(-\infty, 1) \cup(1, \infty) \\
& \text { range of } f^{-1}:(-\infty, 4) \cup(4, \infty)
\end{aligned}
$$

10. You invest $\$ 300$ into a savings account at an annual interest rate of 2% that compounts monthly. How much money will be in the account after 4 years?

$$
A=(300)\left(1+\frac{.02}{12}\right)^{(4)(12)}
$$

11. Graph the logarithmic function $f(x)=\ln (x-5)$.

12. Evaluate the following expressions:
(a) $\log \frac{1}{100}=-2$
(b) $\ln \frac{e^{2 x}}{e^{3}}=2 x-3$
(c) $3^{\log _{5} 25}-3 \log _{x^{2}} x^{4}=3$
13. Given that $\log x=4$ and $\log y=2$, evaluate the following:
(a) $\frac{\log x^{2} y}{\log x}=\frac{5}{2}$
(b) $\log \sqrt[5]{\frac{x^{3}}{y^{2}}}=\frac{8}{5}$
14. Write the following in expanded form:
(9) $\log \frac{\sqrt{x+9}}{x+1}=\frac{1}{2} \log (x+9)-\log (x+1)$
(b) $\log _{a}\left(x y^{2} z^{3}\right)=\log _{a} x+2 \log y+3 \log z$
15. Write the following expressions in condensed form:
(a) $\frac{3}{2} \ln y^{2}+3 \ln x=\ln \left(\sqrt{y^{6}} x^{3}\right)$
(b) $\frac{1}{5}\left(\log _{2} z+2 \log _{2} y\right)=\log _{2}\left(\sqrt[5]{z} y^{2}\right)$
16. Solve for x in the following exponential and logarithmic equations:
(a) $3^{3 x+1}=5^{2 x+1}$

$$
x=\frac{\ln 5-\ln 3}{3 \ln 3-2 \ln 5}
$$

(b) $\log _{2}(x+4)-\log _{2}(x+3)=1$

$$
x=-2
$$

