In-Class Practice Midterm 2 Sections 1.4 to $1.6 \& 2.1$ to 2.8

Show all of your work in the space provided. Clearly indicate your final answer.

1. Use the quadratic formula to solve the quadratic equation $2 x^{2}+4 x+5=0$.

$$
\begin{gathered}
x=-1+\frac{1}{2} \sqrt{6} i \text { and } x=-1-\frac{1}{2} \sqrt{6} i \\
\text { Page 126, Example } 8
\end{gathered}
$$

2. Solve the equation $3|x+5|+4=-2 \quad \mid \quad$ Try: $3|x+5|-4=2$

$$
\begin{aligned}
& \text { No solution } \\
& \text { since } \\
& |x+5|=-2 \\
& \begin{array}{l}
1=-2 \\
\text { was no solutions. }
\end{array}
\end{aligned}
$$

3. Solve the inequality $|2 x-4|+4 \geq 10$

$$
(-\infty,-1] \cup[5, \infty)
$$

$$
\text { Page } 161 \text { Example } 4
$$ Pay 162 Gramps 6

4. Solve the rational inequality using the test point method. Write you final answer in interval notation.

$$
\frac{x^{2}-2 x-15}{x-3} \geq 0
$$

$$
\begin{aligned}
& {[-3,3] \cup[5, \infty)}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (} A \backslash s 0 \text { see }
\end{aligned}
$$

5. Consider the points $P=(4,6)$ and $Q=(1,-5)$.
(a) Find the distance between P and Q.

$$
\sqrt{(3)^{2}+(11)^{2}}=\sqrt{130}{ }_{\text {Page }} 178,{\operatorname{taxap})^{13}}^{3}
$$

(b) Find the midpoint between P and Q.

$$
\left(\frac{5}{2}, \frac{1}{2}\right)
$$

$$
\text { ea } 180,68 \mathrm{ma}^{12} 6
$$

(c) Find the slope of the line between P and Q.

6. Find the center and radius of the circle given by the equation

$$
\begin{aligned}
& \begin{array}{l}
x^{2}+y^{2}+2 x-6 y-14=0 \rightarrow(x+1)^{2}+(y-3)^{2}=24 \\
\text { Centers }(-1,3) \\
\text { radius: } \sqrt{24}=2 \sqrt{6} \\
\text { Page } 194, \text { Example } 8
\end{array}
\end{aligned}
$$

7. Give the equation of the line passing through the point $(-1,3)$ and perpendicular to the line containing the points $(2,3)$ and $(-1,5)$.

$$
y-3=\frac{3}{2}(x+1)
$$

$$
\begin{aligned}
& \text { +1) } \\
& \text { page 206, Example } 9 \\
& \text { cell lecture notes }
\end{aligned}
$$

8. Find the domain of the function $g(x)=\frac{\sqrt{x+1}}{x-3}$.

$$
[-1,3) \cup(3, \infty)
$$

Page 220 Example 5

$$
\begin{aligned}
& \text { Lo Example } \\
& \text { (Also see lective notes on } 2.4 \text {) }
\end{aligned}
$$

9. Does the following graph depict the graph of a function? Explain.

10. Determine algebraically whether the function f given by $f(x)=3 x^{3}+2 x+7$ is odd, even, or neither. Do the same for the function g given by $g(x)=\frac{x^{4}-x^{2}}{x^{6}}$.

$$
\begin{aligned}
& g(x) \text { is even } \\
& g(-x)=g(x) \\
& f(x) \text { is neither } \\
& \text { page 241, } \underset{\text { example }}{ } \\
& g(-x)=\frac{(-x)^{4}-(-x)^{2}}{(-x)^{6}} \\
& =\frac{x^{4}-x^{2}}{x^{6}}
\end{aligned}
$$

11. Draw the graphs of the following functions without using and $x y$-table. Also determine geometrically if the functions are even, odd, or neither.
(a) $f(x)=\sqrt[3]{x}$

(b) $g(x)=\sqrt{x}$

12. Graph the piecewise function: $f(x)=\left\{\begin{array}{ll}x^{3} & \text { if } x<2 \\ \sqrt{x} & \text { if } x \geq 2\end{array}\right.$.
y

13. The function f given by the rule $f(x)=\sqrt{2 x+2}-1$ is a transformation of a "standard function" Indicate what this standard function is, and the transformations needed to obtain $f(x)$.
14. Write an equation for a function whose graph fits the given description: The graph of $g(x)=|x|$ is shifted right 2 units, reflected across the y-axis, and compressed horizontally by a factor of 5 .

$$
\begin{aligned}
& \text { Transformation worksheet } \\
& \qquad y=|-5 x-2|
\end{aligned}
$$

15. Graph the function obtained by shifting the graph of $f(x)=x^{2}$ by 2 units to the right, reflected across the x-axis, and shifted up 1 unit.

16. Let $f(x)=\frac{x+1}{x-1}$ and let $g(x)=\frac{1}{x}$. Find the composite function $(g \circ f)(x)$ and determine the domain of $(g \circ f)(x)$.

$$
\begin{aligned}
& \text { Pg 285, Examples 3\&4 } \\
& \text { Pg 286-287, Examples 6\&7 }(g \circ f)(x)= \frac{1}{\frac{x+1}{x-1}} \\
&= \frac{x-1}{x+1} \\
&\text { Domain: (domain of } f(x)) \cap \\
&\left(\text { domain of } \frac{x-1}{x+1}\right) \\
&=(-\infty,-1) \cup(-1,1) \cup(1, \infty)
\end{aligned}
$$

17. The function $h(x)=\sqrt{x+1}-5$ is a composition of functions. Determine the two functions f, g such that $h(x)=(f \circ g)(x)$

$$
\begin{aligned}
& g(x)=x+1 \\
& f(x)=\sqrt{x}-5
\end{aligned}
$$

Page 288 Example 8

