P. 6 - Rational Exponents \& Radicals

Square Rats

- Def: The principal square root of a nonnegative real number a is a neal number b such that
(1) $b^{2}=a$ and (2) $b \geq 0$

The principal square root of a is devoted \sqrt{a}, and we unite $\sqrt{a}=6$.
Ex: $\sqrt{36}=6$, because $06^{2}=36$ and (2) $6 \geqslant 0$

- Even though $(-6)^{2}=36$, we dent here $-6 \geq 0$.
- When we unite \sqrt{a}, a is called the radicand, and $\sqrt{ }$ is the radical sign. Together, the radicand and the radical sign form a radical, \sqrt{a}.
Square Root Property: If $a \geq 0$, and $x^{2}=a$, then

$$
x= \pm \sqrt{a}
$$

Ex: $\quad x^{2}=16, \quad x= \pm \sqrt{16}= \pm 4$.

Note: For any neal number $x, \sqrt{x^{2}}=|x|$, not x.

$$
\text { Ex: (1) } \sqrt{(-3)^{2}}=\sqrt{9}=3 \text {. }
$$

(2) $\sqrt{121}=\sqrt{(11)^{2}}=|11|=11$
(3)

$$
\begin{aligned}
& \sqrt{\frac{4}{25}}=\frac{2}{5} \\
& \sqrt{\frac{4}{25}}=\sqrt{\frac{2^{2}}{5^{2}}}=\sqrt{\left(\frac{2}{5}\right)^{2}}=\left|\frac{2}{5}\right|=\frac{2}{5}
\end{aligned}
$$

(4) $\sqrt{\frac{9}{64}}=\frac{3}{8}$

Simplifying Square Roots
Let a, b be real numbers and let $a \geq 0$ and $b \geq 0$.
Then

$$
\begin{aligned}
& \sqrt{a b}=\sqrt{a} \cdot \sqrt{b} \\
& \sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
\end{aligned}
$$

Ex (1) $\sqrt{50}=\sqrt{25 \cdot 2}=\sqrt{25} \sqrt{2}=5 \sqrt{2}$

$$
\begin{aligned}
& 2^{2}=4 \\
& 3^{2}=9 \\
& 4^{2}=16 \\
& 5^{2}=25 \\
& 6^{2}=36 \\
& 7^{2}=49
\end{aligned}
$$

(2) $\sqrt{6} \cdot \sqrt{12}=\sqrt{6 \cdot 12}=\sqrt{72}=\sqrt{36} \cdot \sqrt{2}=6 \sqrt{2}$.
(3)

$$
\begin{aligned}
\sqrt{48 x^{2}}=\sqrt{16 \cdot 3 \cdot x^{2}} & =\sqrt{16} \cdot \sqrt{3} \cdot \sqrt{x^{2}} \\
& =4 \sqrt{3}|x|
\end{aligned}
$$

(4)

$$
\begin{aligned}
& \sqrt{\frac{25 y^{3}}{9 x^{2}}=\frac{\sqrt{25 y^{3}}}{\sqrt{9 x^{2}}}}=\frac{\sqrt{25} \cdot \sqrt{y^{2} \cdot y}}{\sqrt{9} \cdot \sqrt{x^{2}}} \\
&=\frac{5 \sqrt{y^{2}} \cdot \sqrt{y}}{3 \sqrt{x^{2}}} \\
&=\frac{5|y| \sqrt{y}}{3|x|}
\end{aligned}
$$

* Caution: $\sqrt{a+b} \neq \sqrt{a}+\sqrt{b}$

$$
\sqrt{a-b} \neq \sqrt{a}-\sqrt{b}
$$

Other Roots

- Let n be a positive integer (whale number)

The Principal $n^{\text {th }}$ Root of a Real Number a :
(1) If $a>0, \sqrt[n]{a}=b$ if (1) $b^{n}=a$ and (2) $b>0$.
(2) If $a<0$, and n is odd, then $\sqrt[n]{a}=6$ if $b^{n}=a$.
(3) If $a<0$, and n is even, then $\sqrt[n]{a}$ is not a neal
(4) If $a=0, \sqrt[n]{a}=\sqrt[n]{0}=0$.

Nate: $\sqrt{a}=\sqrt[2]{a}$

- n is called the index

Ex (1) $\sqrt[3]{27}$

- Radicand 27 is positive. So, we find a number b such that $b^{3}=27$ and (4) $b>0$.
$\sqrt[3]{27}=3$
(2) $\sqrt[3]{-64}$
- Radicand -64 is negative, so it only merkes souse if index is odd. Find a number b such that $b^{3}=-64$.
$\sqrt[3]{-64}=-4$, because $(-4)^{3}=(-4)(-4)(-4)=16 \cdot(-4)=-64$.
(3) $-\sqrt[101]{-1}=-(\sqrt[101]{-1})$
- Look for b such that $b^{101}=-1$.

Since $(-1)^{101}=-1$, them $\sqrt[101]{-1}=-1$.
So $-\sqrt[(1)]{-1}=-(-1)=1$.
(4) $\sqrt[6]{-2} \rightarrow$ not a real number.

Radicand is negative, and index is even.
Rules for Radical
(1) If n is odd, then $\sqrt[n]{a^{n}}=a$.
(2) If n is even, then $\sqrt[n]{a^{n}}=|a|$.
(3) Product Rule: $\sqrt[n]{a b}=\sqrt[n]{a} \cdot \sqrt[n]{b}$
(4) Quotient Rule: $\sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}}$
(5) Power Rule: $\sqrt[m]{\sqrt[n]{a}}=\sqrt[m n]{a}$.

Ex: (1) $\sqrt[3]{135}=\sqrt[3]{27 \cdot 5}=\sqrt[3]{27} \cdot \sqrt[3]{5}=3 \sqrt[3]{5}$.

$$
\begin{align*}
& 2^{3}=8 \tag{2}\\
& 3^{3}=27 \\
& 4^{3}=64 \\
& 5^{3}=125 \\
& \vdots \\
& 2^{4}=16 \\
& 3^{4}=81
\end{align*}
$$

(3) $\sqrt[3]{\frac{5}{64}}=\frac{\sqrt[3]{5}}{\sqrt[3]{64}}=\frac{\sqrt[3]{5}}{4}$
(4) $\sqrt[2]{\sqrt[3]{7}}=\sqrt[6]{7}$
(2) $\sqrt[4]{162 a^{4}}=\sqrt[4]{81 \cdot 2 \cdot a^{4}}=\sqrt[4]{81} \cdot \sqrt[4]{2} \cdot \sqrt[4]{a^{4}}$

Adding \& Subtracting Like Radiculs, and radicand

- Radicals with the same index are like radicals.

Ex: $2 x$ \& $10 x$ were "like terms". So $2 x+10 x=12 x$
$2 x^{2}$ \& $10 x$ not "like toms", so $2 x^{2}+10 x$ cant be simplified further.
(1)

$$
\begin{aligned}
\sqrt{45}+7 \sqrt{20} & =\sqrt{9} \cdot \sqrt{5}+7 \sqrt{4} \sqrt{5} \\
& =3 \sqrt{5}+14 \sqrt{5} \\
& =17 \sqrt{5}
\end{aligned}
$$

(2)

$$
\begin{aligned}
5 \sqrt[3]{80 x}-3 \sqrt[3]{270 x} & =5 \sqrt[3]{8} \cdot \sqrt[3]{10} \cdot \sqrt[3]{x}-3 \sqrt[3]{27} \cdot \sqrt[3]{10} \cdot \sqrt[3]{x} \\
& =10 \sqrt[3]{10} \sqrt[3]{x}-9 \sqrt[3]{10} \sqrt{x} \\
& =10 \sqrt[3]{10 x}-9 \sqrt[3]{10 x} \\
& =\sqrt[3]{10 x}
\end{aligned}
$$

(3)

$$
\begin{aligned}
3 \sqrt{12}+7 \sqrt{3} & =3 \sqrt{4} \cdot \sqrt{3}+7 \sqrt{3} \\
& =6 \sqrt{3}+7 \sqrt{3} \\
& =13 \sqrt{3}
\end{aligned}
$$

Rational Exponents

- For any neal number a, and any integer $n \geq 1$,

$$
a^{\frac{1}{n}}=\sqrt[n]{a}
$$

Ex (1) $16^{1 / 2}=\sqrt[2]{16}=4$
(2) $(-27)^{1 / 3}=\sqrt[3]{-27}=-3$
(3) $\left(\frac{1}{16}\right)^{1 / 4}=\sqrt[4]{1 / 16}=\frac{\sqrt[4]{1}}{\sqrt[4]{16}}=\frac{1}{2}$
(4) $(-5)^{1 / 4}=\sqrt[4]{-5} \rightarrow$ not a neal number.

- If m, n are nonzero integers, and $\frac{m}{n}$ is in lowest terms, then

$$
a^{\frac{m}{n}}=(\sqrt[n]{a})^{m} \quad \text { or } \quad a^{\frac{m}{n}}=\sqrt[n]{a^{m}}
$$

* if $\sqrt[n]{a}$ is defined, i.e. if $\sqrt[n]{a}$ makes sense $*$
-We know that $\sqrt{x^{2}}=|x|$.

$$
\sqrt{x^{2}}=\left(x^{2}\right)^{1 / 2}=x^{\frac{2}{2}}=(\sqrt{x})^{2}=x^{\text {if } x>0 .}
$$

if \sqrt{x} makes sense.
If $x<0$, then \sqrt{x} is not a neal number.
Ex (1)

$$
\begin{aligned}
& 8^{2 / 3}=\sqrt[3]{8^{2}}=\sqrt[3]{64}=4 \\
& 8^{2 / 3}=(\sqrt[3]{8})^{2}=(2)^{2}=4
\end{aligned}
$$

(2)

$$
\begin{aligned}
-16^{5 / 2}=-\left(16^{5 / 2}\right) & =-\left((\sqrt{16})^{5}\right) \\
& =-\left(4^{5}\right) \\
& =-(1024) \\
& =-1024
\end{aligned}
$$

(3)

$$
\left.\begin{array}{l}
(-25)^{7 / 2}=(\sqrt[2]{-25})^{7} \\
(-25)^{7 / 2}=\sqrt[2]{(-25)^{7}}
\end{array}\right\} \rightarrow \text { Not a neal number. }
$$

Simplifying Expressions with Ratimal Exponents
Ex (1) $2 x^{1 / 3} \cdot 5 x^{1 / 4}=10 x^{1 / 3+1 / 4}=10 x^{7 / 12}$
(2) $\frac{21 x^{-2 / 3}}{7 x^{1 / 5}}=\frac{21}{7} \cdot \frac{x^{-2 / 3}}{x^{1 / 5}}=3 x^{-2 / 3-1 / 5}=3 x^{-13 / 5}=\frac{3}{x^{13 / 15}}$
(3) $\left(x^{3 / 5}\right)^{-1 / 6}=x^{\frac{3}{5} \cdot\left(-\frac{1}{6}\right)}=x^{\frac{-3}{30}}=x^{-\frac{1}{10}}=\frac{1}{x^{1 / 0}}$
(4) $\sqrt[8]{x^{2}}=\left(x^{2}\right)^{1 / 8}=x^{2 / 8}=x^{1 / 4}=\sqrt[4]{x}$
(5) $\sqrt{\sqrt[3]{x^{12}}}=\sqrt[6]{x^{12}}=\left(x^{12}\right)^{1 / 6}=x^{\frac{12}{6}}=x^{2}$.

