Chapter P-Basic Concepts of Algebra
P.1 - The Real Numbers \& Their Properties.

Def:A variable is a letter used to represent an arbitrary or unknown number.

- A constant is a specific number.
- All positive \& negative decimals (and 0) make up the real numbers.
$-232,4,0$. Integers: positive \& negative whole $17,-400$ numbers, and 0 .
$\frac{2}{3},-14, \frac{5}{11}$. Rational/ Numbers: numbers that can be written as a ratio for fraction). $\pi=3.1415 \ldots$. - Irrational Numbers : numbers that cannot $e=2.7 \ldots, \sqrt{2}$ be written as a fraction.

$$
\begin{aligned}
& \begin{array}{l|l}
\text { Union \& Intersection } & \begin{array}{l}
\text { Starting week of } \\
\text { Hard: } 1 / 21
\end{array} \text { Math Lab } 2: 30-430
\end{array} \\
& \text { - Given any two sets } A, B \\
& \text { of real numbers, the } \\
& \text { ar: M 2:30-430 } \\
& w: 3: 30-430 \\
& \text { Thursday 1/17-2:30-4:30 } \\
& \text { union of } A \text { and } B \text { is the } \\
& \text { set of all numbers in } A \text { or } B \text {, or both, denoted } A \cup B \text {. } \\
& \text { Ex } A=\{-1,0,1,7,14\} \\
& B=\{-2,-1,0,3,9\} \quad A \cup B=\{-2,-1,0,1,3,7,9, \\
& 14\}
\end{aligned}
$$

- Given two sets A, B of real numbers, the intersection of A and B is the set of all numbers in both A and B, denoted $A \cap B$. Ex: $A \cap B=\{-1,0\}$

Intervals

- Suppose a, b are numbers with $a<b$. The open interval between a and b is the set of all real numbers between a and b, not inclu. ding a and b, denoted (a, b).

Ex: $a=2, b=5$. The open internal between $2 \& 5,(2,5)$, is the set of all numbers between $2 \& 5$, not including $2 \& 5$.

- The closed interval between $a \& b$ is the same as the open internal (a, b), except we now include a \& b, denoted $[a, b]$.
- The open interval (a, ∞) denotes all real numbers greater than a, not including a. Similarly, $(-\infty, a)$ is defined.
- Possible intervals: $(a, b),[a, b],(a, b],[a, b)$ $(a, \infty),[a, \infty),(-\infty, b),(-\infty, b],(-\infty, \infty)$.

Ex: (1) $(-3,4) \quad \&[2,6]$

$$
\begin{aligned}
& (-3,4) \cup[2,6]=(-3,6] \\
& (-3,4) \cap[2,6]=[2,4)
\end{aligned}
$$

(2) $[-1,2) \&(6,10]$

$$
[-1,2) \cup(6,10]
$$

$$
[-1,2) \cap(6,10]=\varnothing=\text { "empty set" }
$$

(3)

Absolute Value

- Given a number a, the absolute value of a is its distance from 0 , denoted $|a|$
Ex:

$$
\begin{aligned}
& x:|-5|=5 \\
& |1.978364|=1.978364 \\
& |-14 . \overline{24}|=14 . \overline{24}
\end{aligned}
$$

$$
\begin{aligned}
& (1, \infty) \&(-5,7] \\
& (1, \infty) \cup(-5,7]=(-5, \infty) \\
& (1, \infty) \cap(-5,7]=(1,7]
\end{aligned}
$$

Order of Operation
(1) Parenthesis
(2) Exponents
(3) $\left[\begin{array}{l}M \\ D\end{array}\right.$

Ex:

$$
\begin{aligned}
3 \cdot 2^{5}+4 & =3 \cdot 32+4 \\
& =96+4 \\
& =100
\end{aligned}
$$

(4) $\left[\begin{array}{l}A \\ S\end{array}\right.$

$$
\begin{aligned}
5-(3-1)^{2} & =5-(2)^{2} \\
& =5-4 \\
& =1
\end{aligned}
$$

Fractions:

Multiplication: multiply across the top \& bottom
Ex:

$$
\begin{aligned}
& \frac{2}{3} \cdot \frac{4}{5}=\frac{8}{15} \\
& 5 \cdot \frac{10}{11}=\frac{5}{1} \cdot \frac{10}{11}=\frac{50}{11}
\end{aligned}
$$

Division: multiply the top by the reciprocal of the bottom.
EX:

$$
\begin{aligned}
& \frac{\frac{2}{3}}{\frac{7}{9}}=\frac{2}{3} \cdot \frac{9}{7}=\frac{18}{21}=\frac{6}{7} \\
& \frac{\frac{4}{5}}{10}=\frac{4}{5} \cdot \frac{1}{10}=\frac{4}{50}=\frac{2}{25}
\end{aligned}
$$

Addition \& Subtruetion
Ex: ©

$$
\begin{aligned}
\frac{2}{3}+\frac{7}{4} & =\frac{4}{4} \cdot \frac{2}{3}+\frac{3}{3} \cdot \frac{7}{4} \\
& =\frac{8}{12}+\frac{21}{12} \\
& =\frac{29}{12}
\end{aligned}
$$

(2)

$$
\begin{aligned}
\frac{4}{3}-\frac{7}{6} & =\frac{2}{2} \cdot \frac{4}{3}-\frac{7}{6} \\
& =\frac{8}{6}-\frac{7}{6} \\
& =\frac{1}{6}
\end{aligned}
$$

or

$$
\begin{aligned}
\frac{4}{3}-\frac{7}{6} & =\frac{6}{6} \cdot \frac{4}{3}-\frac{3}{3} \cdot \frac{7}{6} \\
& =\frac{24}{18}-\frac{21}{18} \\
& =\frac{3}{18} \\
& =\frac{1}{6}
\end{aligned}
$$

(3) $5+\frac{5}{2}=\frac{5}{1}+\frac{5}{2}$

$$
\begin{aligned}
& =\frac{5}{2} \cdot \frac{3}{1}+\frac{5}{2} \cdot \frac{1}{1} \\
& =\frac{10}{2}+\frac{5}{2} \\
& =\frac{15}{2} .
\end{aligned}
$$

