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Exercise 1. Find the general solution y(t) to the following second order scalar ODE.

ÿ + ẏ � 6y = 2e2t.

Solution:
The roots of the characteristic polynomial r2 + r � 6 = 0 are r = �3 and r = 2. So our

general solution is yh(t) = c1e�3t + c2e2t.
Since our non-homogeneous term has the form aect, then our particular solution will have

the form yp(t) = tsbect for some s and b. If s = 0 then yp(t) will be linear dependent with
a term in yh(t), and so s = 1. Now to find b, we solve the equation ÿp + ẏp � 6yp � 2e2t = 0
and find that b = 2/5. So we get

y(t) = yh(t) + yp(t) = c1e
�3t + c2e

2t + (2/5)te2t.

Exercise 2. Consider the following scalar initial value problem (IVP).

ẋ = �tx3, x(t0) = x0.

Find the solution x(t, t0, x0) to this IVP explicitly in terms of t0 and x0. From the expression
of x(t, t0, x0) calculate directly Dx0x(t, t0, x0). In particular for t0 = 0 and x0 = 2 give the
solution x(t, 0, 2) and Dx0x(t, 0, 2).

Solution:
By a separation of variables, we get

dx

dt
= �tx3 =)

Z
x�3dx = �

Z
tdt =) x(t) = ±(t2 + c)�1/2.

for some arbitrary constant c. Considering the initial condition x(t0) = x0, we get

x(t) =

(
(t2 + c)�1/2 if x0 > 0

�(t2 + c)�1/2 if x0 < 0.

Notice that x0 6= 0. Solving for c we get that c = �t20 + 1/x2
0. So

x(t, t0, x0) =

(
(t2 � t20 + x�2

0 )�1/2 if x0 > 0

�(t2 � t20 + x�2
0 )�1/2 if x0 < 0.

Then

Dx0x(t, t0, x0) =

(
x�3
0 (t2 � t20 � x�2

0 )�3/2 if x0 > 0

�x�3
0 (t2 � t20 � x�2

0 )�3/2 if x0 < 0,

and
Dx0x(t, 0, 2) = (1/8)(t2 + 1/4)�3/2.
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Exercise 3. We consider systems of linear homogeneous autonomous ODEs ẋ = Ax of
dimension n = 2, i.e., 

ẋ1

ẋ2

�
=


a11 a12
a21 a22

� 
x1

x2

�
,

for the following 2 matrices:

A1 =


1 2
2 1

�
, A2 =


1 2
�2 1

�
.

Find the general solutions to these two systems of ODEs and draw approximately their
phase portrait around the origin x⇤ = (0, 0) 2 R2.

Solution: The matrix A1 has eigenvalues �1 = 3 and �2 = �1 with respective eignevec-
tors v1 := [1 1]T and v2 := [1 � 1]T . So the general solution to the system for A1 is
x(t) = c1e3tv1 + c2e�tv2. Since the eigenvalues are both real and are of opposite signs, the
equilibrium solution is a saddle.

The matrix A2 has eigenvalues �1 = 1+ 2i and �2 = 1� 2i with respective eignevectors
v1 := [1 i]T and v2 := [1 � i]T . So the general solution to the system for A2 is x(t) =
c1w1 + c2w2 where w1 = Re(e(1+2i)tv1) and w1 = Im(e(1+2i)tv1). So,

e(1+2i)tv1 = et(cos(2t) + i sin(2t))


1
i

�

= et

cos(2t) + i sin(2t)
i cos(2t)� sin(2t)

�

=


et cos(2t)
�et sin(2t)

�

| {z }
=w1

+i


et sin(2t)
et cos(2t)

�

| {z }
=w2

.

Since the eigenvalues are complex conjugates with Re(1 ± 2i) = 1 > 0, the equilibrium
solution is an unstable spiral. Choosing a position vector u = [1 0]T and considering Au, we
get that the spiral is clockwise, since the velocity vector Au has negative second coordinate.
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Exercise 4. Give the transition matrix R(t, s) associated to ẋ = Ax for the two matrices
given in exercise 3. Remark: the transition matrix R(t, s) associated to linear homogeneous
autonomous ODEs ẋ = Ax with A 2 Rn⇥n satisfies R(s, t) = R(t � s, 0). Note that this
does not hold in general for linear homogeneous non-autonomous ODEs ẋ = A(t)x.

Solution: For A1, we have the general solution x(t) = c1e3tv1+ c2e�tv2 for the system ẋ =
A1x. So, if e1 and e2 denote the standard basis vectors in R2, then setting x(t0) = e1 gives
c1 = 1/(2e3t0) and c2 = et0/2. Setting x(t0) = e2, we get c1 = 1/(2e3t0) and c2 = �et0/2.
So

x(t, t0, e1) =
1

2
e3(t�t0)


1
1

�
+

1

2
e�t+t0


1
�1

�
=

2

4
1
2e

3(t�t0) + 1
2e

�t+t0

1
2e

3(t�t0) � 1
2e

�t+t0

3

5

and

x(t, t0, e2) =
1

2
e3(t�t0)


1
1

�
� 1

2
e�t+t0


1
�1

�
=

2

4
1
2e

3(t�t0) � 1
2e

�t+t0

1
2e

3(t�t0) + 1
2e

�t+t0

3

5 .

Then R(t, t0) =
⇥
x(t, t0, e1) x(t, t0, e2)

⇤
.

For A2, we have the general solution x(t) = c1w1+c2w2 for the system ẋ = A2x. Setting
x(0) = e1, we get c1 = 1 and c2 = 0; setting x(0) = e2, we get that c1 = 0 and c2 = 1. So,

x(t, 0, e1) = et

cos(2t)
� sin(2t)

�
, x(t, 0, e2) = et


sin(2t)
cos(2t)

�
,

and so

R(t, t0) = R(t� t0) =


et�t0 cos(2(t� t0)) et�t0 sin(2(t� t0))
�et�t0 sin(2(t� t0)) et�t0 cos(2(t� t0))

�
.
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Exercise 1.

(a) Give the transition matrix R(t, t0) for the system of linear homogeneous nonau-
tonomous ODEs ẋ = A(t)x given by


ẋ1

ẋ2

�
=


t 1
0 0

� 
x1

x2

�
.

Solution:

We have 
ẋ1

ẋ2

�
=


tx1 + x2

0

�
,

which gives x2(t) = c for some constant c and ẋ1 = tx1 + c. Using the integrating

factor method to find x1(s), we have integrating factor e
R
�sdt = e�s2/2, and so

ce�s2/2 = e�s2/2(ẋ1 � sx1) =
d

ds
(x1(s) · e�s2/2).

Integrating on both sides,

c

Z t

t0

e�s2/2ds = (x1(s) · e�s2/2)
��s=t

s=t0
= e�t2/2 · x1(t)� e�t20/2 · x1(t0),

which gives

x1(t) = et
2/2x2(t0)

Z t

t0

e�s2/2ds+ et
2/2�t20/2x1(t0).

Finding x(t, t0, e1), we have


1
0

�
= x(t0) =


x1(t0)
x2(t0)

�
.

Hence

x(t, t0, e1) =


x1(t, t0, e1)
x2(t, t0, e1)

�
=


et

2/2�t20/2

0

�
.

Similarly, we find that

x(t, t0, e2) =


x1(t, t0, e2)
x2(t, t0, e2)

�
=


et

2 R t
t0
e�s2/2ds
1

�
,

and then R(t, t0) = [x(t, t0, e1)|x(t, t0, e2)].

(b) For this system, verify that the Abel-Liouville-Jacobi-Ostroggradskii formula

det(R(t, t0)) = e
R t
t0

Tr(A(s))ds

is satisfied.

Solution:

det(R(t, t0)) = et
2/2�t20/2 = e

R t
t0

sds = e
R t
t0

Tr(A(s))ds.

1
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(c) For this system calculate the expression e
R t
t0

A(s)ds using the definition of the exponen-
tial of a matrix and verify that it is not equal to the transition matrix R(t, t0).

Solution: We have
Z t

t0

A(s)ds =

R t
t0
sds

R t
t0
1ds

0 0

�
=


t2/2� t20/2 t� t0

0 0

�
= (t� t0)


t+t0
2 1
0 0

�

| {z }
=:B

.

Notice that

B =


t+t0
2 1
0 0

�
=

2

4
1 1

0 � (t+t0)
2

3

5

| {z }
=:P

2

4
(t+t0)

2 0

0 0

3

5

| {z }
=:J

2

4
1 2

t+t0

0 � 2
t+t0

3

5

| {z }
=P�1

,

and so

e
R t
t0

A(s)ds = e(t�t0)B = e(t�t0)PJP�1

=
X

k�0

(t� t0)k

k!
(PJP�1)k

= P

0

@
X

k�0

(t� t0)k

k!
Jk

1

AP�1

= P

"
e

(t�t0)(t+t0)
2 0
0 0

#
P�1

=

2

4
1 1

0 � (t+t0)
2

3

5

2

4
et

2/2�t20/2 0

0 0

3

5

2

4
1 2

t+t0

0 � 2
t+t0

3

5

=

2

64
et

2/2�t20/2 2et
2/2�t20/2

t+t0

0 0

3

75 ,

which is not equal to R(t, t0).

(d) Give the particular solution satisfying the following the initial conditions x1(2) = �1
and x2(2) = 1.

Solution: 
x1(t, 2,�1)
x2(t, 2, 1)

�
=


et

2/2
R t
2 e�s2/2ds� e(t

2/2)�2

1

�
.
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Exercise 2. Calculate the matrix exponential et�t0A for the following 2 matrices.

A1 =


2 1
1 2

�
, A2 =


2 1
�1 2

�
.

Solution:
We have

A1 =


2 1
1 2

�
=


1 1
�1 1

�

| {z }
=:P


1 0
0 3

�

| {z }
=:J


1/2 �1/2
1/2 1/2

�

| {z }
=P�1

So

e(t�t0)A1 = e(t�t0)PJP�1

= P


et�t0 0
0 e3(t�t0)

�
P�1

=
1

2


1 1
�1 1

� 
et�t0 0
0 e3(t�t0)

� 
1 �1
1 1

�

=
1

2


et�t0 + e3(t�t0) �et�t0 + e3(t�t0)

�et�t0 + e3(t�t0) et�t0 + e3(t�t0)

�
.

For A2, notice that

A2 =


2 1
�1 2

�
= 2


1 0
0 1

�

| {z }
=:I

+


0 1
�1 0

�

| {z }
=:M

.

Then M2` = (�1)`I and M2`+1 = (�1)`M for all ` � 0, and so

e(t�t0)M =
X

k�0

(t� t0)k

k!
Mk =

0

@
X

`�0

(�1)`

(2`)!
(t� t0)

2`

1

A I +

0

@
X

`�0

(�1)`

(2`+ 1)!
(t� t0)

2`+1

1

AM

= I cos(t� t0) +M sin(t� t0)

=


cos(t� t0) sin(t� t0)
� sin(t� t0) cos(t� t0)

�
.

We also have

e(t�t0)2I =
X

k�0

(t� t0)k

k!
(2I)k =


e2(t�t0) 0

0 e2(t�t0)

�
.

Putting it all together, we get

e(t�t0)A2 = e(t�t0)2Ie(t�t0)M =


e2(t�t0) cos(t� t0) e2(t�t0) sin(t� t0)
�e2(t�t0) sin(t� t0) e2(t�t0) cos(t� t0)

�
.
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Exercise 3. Give the general solution to the following system of linear nonhomogeneous
nonautonomous ODEs 

ẋ1

ẋ2

�
=


2 1
1 2

� 
x1

x2

�
+


0

2 sin(t)

�
.

Solution:
First we find a general solution to the homogeneous ODE ẋ = A1x. Letting x1(t0) :=

x1,0, x2(t0) := x2,0, and x0 = [x1,0 x2,0]T , we have the following general solution to homo-
geneous ODE:

R(t, t0)x0 = e(t�t0)A1x0 =
1

2


et�t0 + e3(t�t0) �et�t0 + e3(t�t0)

�et�t0 + e3(t�t0) et�t0 + e3(t�t0)

� 
x1,0

x2,0

�

=
1

2


x1,0(et�t0 + e3(t�t0)) + x2,0(�et�t0 + e3(t�t0))
x1,0(�et�t0 + e3(t�t0)) + x2,0(et�t0 + e3(t�t0))

�
.

A particular solution solution to ẋ = A1x+b(t), where b(t) = [0 2 sin(t)]T is
R t
t0
R(t, s)b(s)ds.

So

R(t, s)b(s)ds =


� sin(s)e(t�s) + sin(s)e3(t�s)

sin(s)e(t�s) + sin(s)e3(t�s)

�
.

and then

Z t

t0

R(t, s)b(s)ds =

2

66664

Z t

t0

⇣
� sin(s)e(t�s) + sin(s)e3(t�s)

⌘
ds

Z t

t0

⇣
sin(s)e(t�s) + sin(s)e3(t�s)

⌘
ds

3

77775

=
1

10

2

4
2 sin t+ 4 cos t� 5et�t0(sin t0 + cos t0) + e3(t�t0)(3 sin t0 + cos t0)

�8 sin t� 6 cos t+ 5et�t0(sin t0 + cos t0) + e3(t�t0)(3 sin t0 + cos t0)

3

5

Then the general solution to the ODE ẋ = A1x+ b(x) is

x(t, t0, x0) = R(t, t0)x0 +

Z t

t0

R(t, s)b(s)ds.

4
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Exercise 4. Consider the following scalar initial value problem

ẋ = �tx3 =: f(t, x), x(0) = 2

with solution found in Exercise 2 of Homework 1. The matrix variational equation associated
to this IVP is

Ṙ = A(t)R

where A(t) := Dxf(t, x(t, 0, 2)) and R(t) 2 R1⇥1. Solve this matrix variational equation
explicitly for R(t) (with R(0) = 1). Do we have Dx0x(t, 0, 2) = R(t) with Dx0x(t, 0, 2) as
found in Exercise 2 of Homework 1?

Solution:
We have Dx(f(t, x)) = �3tx2, and so

A(t) = Dx(f(t, x(t, 0, 2)) = �3t((t2 + 1/4)�1/2)2 = �3t(t2 + 1/4)�1.

So by a separation of variables, we get

dR

dt
=

�3tR

t2 + 1/4
=) R(t) =

c

(t2 + 1/4)3/2
.

With the initial data R(0) = 1, we get R(t) = (1/8)(t2 + 1/4)�3/2, which in fact does equal
Dx0x(t, 0, 2) from Exercise 2 of Homework 1.

5
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1. A system of ODEs of the form


ẋ1

ẋ2

�
=


rx2H(t, x1, x2)

�rx1H(t, x1, x2)

�
(1)

where H : R⇥R2 ! R is a called aHamiltonian system. Assuming the Hamiltonian
functionH(t, x1, x2) to be C2, i.e., twice continuously di↵erentiable, show that the area
of any set Xt0 of initial conditions in phase space R2 at some time t0 is preserved under
the evolution of the Hamiltonian system (1).

Proof. We have Vol(Xt) =
R
Xt0

e

R t
t0

Tr(Dx(f(s,x(s,t0,x0)))ds
dx0. Letting

f(t, x1, x2) =


f1(t, x1, x2)
f2(t, x1, x2),

�
:=

2

6664

@H

@x2
(t, x1, x2)

� @H

@x1
(t, x1, x2)

3

7775
,

we get

Dxf(t, x) =

2

6664

@f1

@x1

@f1

@x2

@f2

@x1

@f2

@x2

3

7775
=

2

66664

@
2
H

@x1x2

@
2
H

@x
2
2

�@
2
H

@x
2
1

� @
2
H

@x2x1

3

77775
.

Since H is C2, mixed partials are the same, and so

Tr(Dxf(t, x)) =
@
2
H

@x2x1
� @

2
H

@x1x2
= 0.

Hence

Vol(Xt) =

Z

Xt0

e
0
dx0 = Vol(Xt0).

1
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2. Consider the planar pendulum equations (q being the angle and p the angular
momentum/velocity) 

q̇

ṗ

�
=


p

� sin(q)

�
. (2)

These di↵erential equations form an example of a Hamiltonian system (1) with Hamil-
tonian H(q, p) = p

2
/2�cos(q). Initial conditions (q0, p0) at t0 are assumed to be given.

For a fixed stepsize h of integration consider the following 4 numerical schemes where
(qn, pn) approximates the exact solution at tn = t0 + nh for n = 0, 1, 2, . . . , N

• the explicit Euler method

qn+1 = qn + hpn, pn+1 = pn + h(� sin(qn));

• the partitioned Euler method I

qn+1 = qn + hpn+1, pn+1 = pn + h(� sin(qn));

• the partitioned Euler method II

qn+1 = qn + hpn, pn+1 = pn + h(� sin(qn+1));

• the implicit Euler method

qn+1 = qn + hpn+1, pn+1 = pn + h(� sin(qn+1)).

(a) Each of these schemes defines a mapping

�h : (qn, pn) 7! (qn+1, pn+1)

depending on h. Which ones of these schemes satisfy

det (D�h(qn, pn))
?
= 1

for all h (and for which the mapping �h is defined)? For schemes satisfying
this equality, the area in phase space R2 of any set Xt0 of initial conditions is
preserved by the numerical flow, analogously to the exact flow of (2). Hint: use
implicit di↵erentiation when needed.

(b) For the planar pendulum equations (2), consider the initial conditions q0 = ⇡/8,
p0 = 0 at t0 = 0. Write a simple code (in Matlab preferably) for the explicit
Euler method and the partitioned Euler method I for n = 0, 1, . . . , N with N =
1000 using a fixed stepsize h = 0.1. For these 2 methods plot the quantities
H(qn, pn) = p

2
n/2� cos(qn) with respect to tn for n = 0, 1, . . . , N . Compare the

2 plots, what do you observe? (We are not asking for an explanation).

2
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Solution:

• the explicit Euler method

det(D�h(qn, pn) =

���������

@qn+1

@qn

@qn+1

@pn

@pn+1

@qn

@pn+1

@pn

���������

=

����
1 h

�h cos qn 1

���� = 1 + h
2 cos qn

• the partitioned Euler method I

det(D�h(qn, pn) =

���������

@qn+1

@qn

@qn+1

@pn

@pn+1

@qn

@pn+1

@pn

���������

=

�������

1 + h
@pn+1

@qn
h
@pn+1

@qn

�h cos qn 1

�������
=

����
1� h

2 cos qn h

�h cos qn 1

���� = 1

• the partitioned Euler method II

det(D�h(qn, pn) =

���������

@qn+1

@qn

@qn+1

@pn

@pn+1

@qn

@pn+1

@pn

���������

=

��������

1 h

�h
@sin(qn + hpn)

@qn
1� h

@sin(qn + hpn)

@pn

��������

=

������

1 h

�h cos(qn + hpn) 1� h
2 cos(qn + hpn)

������

= 1

• the implicit Euler method

We have the equations

@qn+1

@qn
= 1 + h

@pn+1

@qn
=) 1 = �h

@pn+1

@qn
+

@qn+1

@qn

@qn+1

@pn
= h

@pn+1

@pn
=) 0 = �h

@pn+1

@pn

@pn+1

@qn
= �h

@sin qn+1

@qn
= � cos qn+1

@qn+1

@qn
=) 0 = h cos qn+1

@qn+1

@qn
+

@pn+1

@qn

@pn+1

@pn
= 1� h cos qn+1

@qn+1

@pn
=) 1 =

@pn+1

@pn
+ h cos qn+1

@qn+1

@pn

And so we get a linear system
2

66666666664

1 0 �h 0

0 1 0 �h

h cos qn+1 0 1 0

0 h cos qn+1 0 1

3

77777777775

2

666666666664

@qn+1

@qn

@qn+1

@pn

@pn+1

@qn

@pn+1

@pn

3

777777777775

=

2

66666666664

1

0

0

1

3

77777777775

3
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Solving, we get

2

6666666664

@qn+1

@qn
@qn+1

@pn
@pn+1

@qn
@pn+1

@pn

3

7777777775

=
1

1 + h2 cos qn+1

2

66666666664

1

h

�h cos qn+1

1

3

77777777775

,

and so

det(D�h(qn, pn) =

���������

@qn+1

@qn

@qn+1

@pn

@pn+1

@qn

@pn+1

@pn

���������

=

���������

1

1 + h2 cos qn+1

h

1 + h2 cos qn+1

�h cos qn+1

1 + h2 cos qn+1

1

1 + h2 cos qn+1

���������

=
1

1 + h2 cos qn+1

For part (b), I do not understand what exactly I am looking for. In the explicit
Euler case, the graph “starts o↵” as a “parabolic curve” for smaller n, and then
as n gets larger, the graph starts to oscillate at more and more frequency as n

increases. In the partition Euler method I, the graph is highly oscillatory with
the same frequency throughout.

3. We consider systems of linear homogeneous autonomous ODEs ẋ = Ax of dimension
n = 2 for various matrices A

A1 :=


2 4

�4 �2

�
, A2 :=


2 �4

�4 �2

�
, A3 :=


�2 4
�4 �2

�
.

For each matrix A, determine if the solutions to ẋ = Ax are Lyapunov-stable, asymp-
totically Lyapunov-stable, or Lyapunov-unstable.
Solution: We look at the determinant and trace:

�(A1) = 12, ⌧(A1) = 0 =) solutions to ẋ = A1x are Lyapunov-stable

�(A2) = �20, ⌧(A1) = 0 =) solutions to ẋ = A2x are Lyapunov-unstable

�(A3) = 20, ⌧(A1) = �4 =) solutions to ẋ = A3x are asymptotically Lyapunov-stable

4
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4. Consider the system of linear homogeneous nonautonomous ODEs ẋ = A(t)x with
matrix A(t) given by A(t) := T (t)MT (t)T where the matrices T (t) and M are given
respectively by

T (t) :=


cos(3t) sin(3t)

� sin(3t) cos(3t)

�
, M :=


�2 6
0 �2

�
.

(a) Show that the eigenvalues �i(A(t)) (i = 1, 2) of A(t) satisfy Re(�i(A(t))  �2.
Hint: T (t) is an orthogonal matrix, i.e., T (t)TT (t) = I2 = T (t)T (t)T .

Solution:

Similar matrices have the same eigenvalues, and so �i(A(t)) = �i(M). Hence
Re(�i(A(t))) = Re(�i(M)) = Re({�2}) = �2.

(b) Consider the change of coordinates y := T (t)Tx and give the system of di↵erential
equations satisfied by y = (y1, y2).

Solution:

ẏ = (Ṫ (t)TT (t) +M)y =


�2 3
3 �2

�

| {z }
=:B


y1

y2

�

(c) Find the general solution for x(t). In particular give the solution x(t, 0, (1,�1)),
i.e., the one which satisfies the initial conditions x(0) = (1,�1). Is this solution
Lyapunov-stable? Hint: find the general solution for y(t) first.

Solution: The eigenvalues of B are �1 = �5 and �2 = 1, with respective
eigenvectors [�1 1]T and [1 1]T . So a general solution to the system ẏ = By is

y(t) = c1e
�5t


�1
1

�
+ c2e

t


1
1

�
=


�c1e

�5t + c2e
t

c1e
�5t + c2e

t

�

So

x(t) = T (t)y(t) =


cos 3t sin 3t
� sin 3t cos 3t

� 
�c1e

�5t + c2e
t

c1e
�5t + c2e

t

�

=


cos 3t(�c1e

�5t + c2e
t) + sin 3t(c1e�5t + c2e

t)
� sin 3t(�c1e

�5t + c2e
t) + cos 3t(c1e�5t + c2e

t)

�

=


c1e

�5t(sin 3t� cos 3t) + c2e
t(sin 3t+ cos 3t)

c1e
�5t(sin 3t+ cos 3t) + c2e

t(� sin 3t+ cos 3t)

�

Then 
1
�1

�
= x(0) =


�c1 + c2

c1 + c2

�
=) c1 = �1, c2 = 0.

So

x(t) =


�e

�5t(sin 3t� cos 3t)
�e

�5t(sin 3t+ cos 3t)

�

(d) Are the solutions x(t) to the system ẋ = A(t)x Lyapunov-stable or Lyapunov-
unstable? You can use the following result: since x(t) = T (t)y(t) and T (t) is
orthogonal, the Lyapunov-stability of x(t) is the same as the Lyapunov-stability
of y(t).

Solution: Using the hint, we consider the determinant and trace of B:
�(B) = �5, ⌧(B) = �4. This means that the solutions are unstable.

5
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(e) Calculate µ2(A(t)), the logarithmic norm of A(t) corresponding to the Euclidean
norm.

Solution:

We have

1

2
(A(t) +A(t)T ) =

1

2
(TMT

T + (TMT
T )T )

=
1

2
(TMT

T + TM
T
T

T )

=
1

2
(T (M +M

T )TT )

=
1

2

✓
T


�4 6
6 �4

�
T

T

◆

= TBT
T

Since similar matrices have the same eigenvalues, the eigenvalues of (1/2)(A(t)+
A(t)T ) are �5 and 1. So,

µ2(A(t)) = max
i=1,2

�i(T (t)BT (t)T ) = max{�5, 1} = 1.

5. Consider the following system of linear nonhomogeneous nonautonomous ODEs


ẋ1

ẋ2

�
=


�4x1 + 3 cos(2t)x2 + e

7t

t
2
x1 � (t2 + 1)x2 + 2t6

�
.

Are solutions to this system Lyapunov-stable or even asymptotically Lyapunov-stable?
Hint: do not attempt to solve this system of ODEs.

Solution:

Let

A =


�4x1 + 3 cos(2t)x2 + e

7t

t
2
x1 � (t2 + 1)x2 + 2t6

�
.

We have

µ1(A) = max{�4 + 3 cos 2t,�(t2 + 1) + t
2}

= max{�4 + 3 cos 2t,�1}
 �1,

and so the solutions to the system are asymptotically stable.

6
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6. Consider the following system of nonlinear ODEs


ẋ1

ẋ2

�
=


�2x1 � sin(3t)x2 � x

3
1

sin(3t)x1 � 3x2 � 3x5
2

�
.

Are solutions to this system Lyapunov-stable or even asymptotically Lyapunov-stable?
Hint: do not attempt to solve this system of ODEs.

Solution:

Let

f(t, x) =


�2x1 � sin(3t)x2 � x

3
1

sin(3t)x1 � 3x2 � 3x5
2

�
.

Then

Dxf(t, x) =


�2� 3x2

1 �3 sin 3t
sin 3t �3� 15x4

2

�
,

and so
1

2
(Dxf(t, x) +Dxf(t, x)

T ) =


�2� 3x2

1 0
0 �3� 15x4

2

�
,

For any x1, x2, the eigenvalues of Dxf(t, x) remain negative. So

µ2(Dxf(t, x)) < 0

which means the solutions to the system are asymptotically stable.

7
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Exercise 1. Consider the following autonomous nonlinear system of ODEs


ẋ1

ẋ2

�
=

2

64
x2 + x1

⇣
1�

p
x2
1 + x2

2

⌘

�x1 + x2

⇣
1�

p
x2
1 + x2

2

⌘

3

75 . (1)

To find the corresponding flow map '2⇡(x0) with x0 = (x01 , x02) proceed here as follows:

(a) Cartesian coordinates (x1, x2) and polar coordinates (r, ✓) are related by x1 = r cos(✓), x2 =
r sin(✓). When these coordinates vary with t, prove that the following relations are
satisfied

x1ẋ1 + x2ẋ2 = rṙ, x1ẋ2 � ẋ1x2 = r2✓̇ (2)

(of course these relations are totally independent of (1)).

Solution:

x1ẋ1 + x2ẋ2 = x1
dx1

dt
+ x2

dx2

dt

= r cos ✓
d(r cos ✓)

dt
+ r sin ✓

d(r sin ✓)

dt

= r cos ✓

✓
r
dcos ✓

dt
+ cos ✓

dr

dt

◆
+ r sin ✓

✓
r
dsin ✓

dt
+ sin ✓

dr

dt

◆

= r2 cos ✓
dcos ✓

dt
+ r cos2 ✓

dr

dt
+ r2 sin ✓

dsin ✓

dt
+ r sin2 ✓

dr

dt

= r2
✓
cos ✓

✓
� sin ✓

d✓

dt

◆
+ sin ✓

✓
cos ✓

d✓

dt

◆◆
+ r

dr

dt

�
cos2 ✓ + sin2 ✓

�

= r
dr

dt
= rṙ

x1ẋ2 � ẋ1x2 = x1
dx2

d�
dx1

dt
x2

= r cos ✓

✓
r
dsin ✓

dt
+ sin ✓

dr

dt

◆
�
✓
r
dcos ✓

dt
+ cos ✓

dr

dt

◆
r sin ✓

= r cos ✓

✓
r cos ✓

d✓

dt
+ sin ✓

dr

dt

◆
�

✓
�r sin ✓

d✓

dt
+ cos ✓

dr

dt

◆
r sin ✓

= r2 cos2 ✓
d✓

dt
+ r cos ✓ sin ✓

dr

dt
+ r2 sin2 ✓

d✓

dt
� r cos ✓ sin ✓

dr

dt

= r2
d✓

dt
(cos2 ✓ + sin2 ✓)

= r2✓̇

1



Nicholas Camacho Ordinary Di↵erential Equations — Homework 4 September 26, 2017

(b) Convert the system of di↵erential equations (1) given in Cartesian coordinates to polar
coordinates using the relations (2).

Solution:

rṙ = x1ẋ1 + x2ẋ2 = x1x2 + x2
1 � x2

1

q
x2
1 + x2

2 � x1x2 + x2
2 � x2

2

q
x2
1 + x2

2

= r2 cos2 ✓ � r3 cos2 ✓ � r2 sin2 ✓ + r2 sin2 ✓

= r2 � r3

r2✓̇ = x1ẋ2 � ẋ1x2 = �x2
1 + x1x2 � x1x2

q
x2
1 + x2

2 � x2
1 � x1x2 + x1x2

q
x2
1 + x2

2

= �(x2
1 + x2

2)

= �(r2 cos✓ +r2 sin2 ✓)

= �r2

So the converted system is 
ṙ
✓̇

�
=


r � r2

�1

�

(c) Solve the system of di↵erential equations that you have just obtained in polar coor-
dinates with initial conditions r(0) = r0 and ✓(0) = ✓0. Express the solution for any
time t as a flow map �t(r0, ✓0) in polar coordinates.

Solution:

By a separation of variables, we obtain

r(t) =
c1et

c1et + 1
and ✓(t) = �t+ c2

for arbitrary c1 and c2. When r(0) = r0 and ✓(0) = ✓0, we get

r(t, 0, r0) =
r0et

r0et + 1� r0
and ✓(t, 0, ✓0) = �t+ ✓0.

So our flow map is

�t(r0, ✓0) =


r(t, 0, r0)
✓(t, 0, ✓0)

�
.

(d) Convert back the flow map �2⇡(r0, ✓0) in polar coordinates to the corresponding flow
map '2⇡(x01 , x02) in Cartesian coordinates.

Solution:

At 2⇡, we have

�2⇡(r0, ✓0) =

2

664

r0e2⇡

r0e2⇡ + 1� r0

�2⇡ + ✓0

3

775 .

2
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Converting to cartesian coordinates, we use the relations

r0 =
q
x2
01 + x2

02 , x01 = r0 cos(✓0), and x02 = r0 sin(✓0).

So

x1(2⇡, 0, x01) = r(2⇡, 0, r0) cos ✓(2⇡, 0, ✓0) =
r0e2⇡

r0e2⇡ + 1� r0
cos(�2⇡ + ✓0)

=
r0e2⇡

r0e2⇡ + 1� r0
cos(✓0)

=
x01e

2⇡

q
x2
01 + x2

02(e
2⇡ � 1) + 1

,

x2(2⇡, 0, x02) = r(2⇡, 0, r0) sin ✓(2⇡, 0, ✓0) =
r0e2⇡

r0e2⇡ + 1� r0
sin(�2⇡ + ✓0)

=
r0e2⇡

r0e2⇡ + 1� r0
sin(✓0)

=
x02e

2⇡

q
x2
01 + x2

02(e
2⇡ � 1) + 1

.

So '2⇡(x01 , x02) =


x1(2⇡, 0, x01)
x2(2⇡, 0, x02)

�
.

(e) Show that the first component of '2⇡(0, x02) vanishes.

Solution:

x1(2⇡, 0, 0) =
(0)e2⇡q

(0)2 + x2
02(e

2⇡ � 1) + 1
= 0.

Exercise 2. Find the fixed points of the following autonomous nonlinear system of ODEs


ẋ1

ẋ2

�
=


x1x2 � x2

2

x1 � x2
1x2

�
.

For each fixed point determine if they are hyperbolic or nonhyperbolic. If a fixed point is
hyperbolic determine if it is a source, a sink, or a saddle.

Solution:
The fixed points are (0, 0), (1, 1), and (�1,�1). Letting f = (ẋ1, ẋ2), we have

Df =


x2 x1 � 2x2

1� 2x1x2 �x2
1

�
.

So

Df(0, 0) =


0 0
1 0

�
has repeated eigenvalue 0 =) nonhyperbolic

Df(1, 1) =


1 �1
�1 �1

�
has eigenvalues ±

p
2 =) hyperbolic saddle

Df(�1,�1) =


�1 1
�1 �1

�
has eigenvalues � 1± i =) hyperbolic sink

3
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Exercise 3. The origin x⇤ = (0, 0) is a fixed point of the following autonomous nonlinear
system of ODEs 

ẋ1

ẋ2

�
=


�2x3

1 � 6x1x2
2

8x2
1x2 � 2x3

2

�
.

(a) Is the origin x⇤ = (0, 0) a hyperbolic or nonhyperbolic fixed point?

Solution:

Letting f = (ẋ1, ẋ2), we have

Df =

2

664
�6x2

1 � 6x2
2 �12x1x2

16x1x2 8x2
1 � 6x2

2

3

775

So Df(0, 0) =


0 0
0 0

�
has repeated eigenvalue 0 =) nonhyperbolic.

(b) Is the function V (x1, x2) :=
1
2 (x

2
1 + x2

2) a strict Lyapunov function for this system of
ODEs at x⇤ = (0, 0)?

Solution:

The fixed point (0, 0) is a local minimizer for V (x). Also,

(LfV )(x) = Dvf(x) =
⇥
x1 x2

⇤
2

4�2x3
1 � 6x1x2

2

8x2
1x2 � 2x3

2

3

5 = �2(x4
1 + x4

2 � x2
1x

2
2)

Notice that

x4
1 + x4

2 � x2
1x

2
2 = x4

1 � 2x2
1x

2
2 + x4

2 + x2
1x

2
2 = (x2

1 � x2
2)

2 + x2
1x

2
2 > 0,

and hence (LfV )(x) < 0 whenever (x1, x2) 6= (0, 0), giving that V (x) is indeed a strict
Lyapunov function for this system at (0, 0).

(c) Is the origin x⇤ = (0, 0) a sink? (In other words is the constant solution x(t) ⌘ x⇤ ⌘
(0, 0) asymptotically Lyapunov-stable?)

Solution:

Since V (x) is a strict Lyapunov function for this system at (0, 0), the origin is
asymptotially Lyapunov-stable, and hence a sink.

4
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Exercise 4. We consider a scalar function H of n = 2m variables with H 2 C2.

(a) We consider the Hamiltonian system ẋ = JrH(x) with

J =


O Im

�Im O

�

and Hamiltonian H(x). For the same scalar function H we consider the gradient
system ẏ = �rH(y). Show that solutions y(t) of the gradient system ẏ = �rH(y)
are orthogonal to solutions x(t) of the Hamiltonian system ẋ = JrH(x), i.e., show
that ẏ(t)T ẋ(t) = 0 at any intersection point w = x(t) = y(t).

Solution:

ẏ(t)T ẋ(t) = �rH(y)TJrH(x)

=
h
�rx1H(y) · · ·�rxnH(y)

i " 0 Im

�Im 0

#
2

66664

rx1H(x)
...

rxnH(x)

3

77775

=
h
rxm+1H(y)

�� · · ·
��rxnH(y)

����rx1H(y)
�� · · ·

���rxmH(y)
i

2

66664

rx1H(x)
...

rxnH(x)

3

77775

=

n/2X

i=1

rxm+iH(y)rxiH(x)�
n/2X

j=1

rxm+jH(y)rxjH(x).

So if x(t) = y(t), then ẏ(t)T ẋ(t) = 0.

(b) For the case m = 1 (n = 2) show that a hyperbolic fixed point of a Hamiltonian
system ẋ = JrH(x) cannot be a source or a sink, but must be a saddle.

Solution: We have ẋ = JH(x) =


�rx2H(x)
rx1H(x)

�
=: f(x). Let x⇤ be a hyperbolic

fixed point of this system. Then

Df(x⇤) =

2

66664

@2H

@x1@x2
(x⇤)

@2H

@x2
2

(x⇤)

�@2H

@x2
1

(x⇤) � @2H

@x2@x1
(x⇤)

3

77775
.

Since the trace of Df(x⇤) is 0, it has characteristic polynomial of the form �2 + ↵,
↵ 2 R. The solutions of the characteristic polynomial are

�± =

(
±i

p
↵ if ↵ � 0

±
p
�↵ if ↵ < 0

But x⇤ is a hyperbolic fixed point, i.e., Re(�±(Df(x⇤)) 6= 0. Hence �± = ±
p
�↵,

which means the fixed point must be a saddle.

5



Nicholas Camacho Ordinary Di↵erential Equations — Homework 4 September 26, 2017

Exercise 5. Consider the following autonomous nonlinear system of ODEs ẋ = f(x) given
by 

ẋ1

ẋ2

�
=


x2
1

x2

�
.

(a) Show that the origin x⇤ = (0, 0) is the unique fixed point (hence an isolated fixed
point). Is x⇤ = (0, 0) an hyperbolic or a nonhyperbolic fixed point?

Solution:

Setting x2
1 = x2 = 0, we easily see that the only fixed point is (0, 0). Moreover,

letting f = (ẋ1, ẋ2)

Df(0, 0) =


2x1 0
0 1

�����
(0,0)

=


0 0
0 1

�
,

which has an eigenvalue 0, giving that (0, 0) is a nonhyperbolic fixed point.

(b) Draw approximately the phase portrait.

Solution:

(c) Is x⇤ = (0, 0) a Lyapunov-stable, an asymptotically Lyapunov-stable, or a Lyapunov-
unstable solution?

Solution:

Since 1 is an eigenvalue of Df(0, 0) and has positive real part, then (0, 0) is an
Lyapunov-unstable solution.

6
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(d) Give the linearized system
ẏ = Df(x⇤)(y � x⇤)

at x⇤ = (0, 0) and solve it. Show that x⇤ = (0, 0) is not an isolated fixed point of the
linearized system. Draw approximately the phase portrait of the linearized system.

Solution:

ẏ = Df(x⇤)(y � x⇤) =


0
y2

�
.

For any y⇤1 , (y
⇤
1 , 0) will be a fixed point of the system, so (0, 0) is not an isolated fixed

point.

(e) For the linearized system is the constant solution x⇤ = (0, 0) Lyapunov-stable, asymp-
totically Lyapunov-stable, or Lyapunov-unstable?

Solution:

Letting g = (ẏ1, ẏ2), we have Dg(0, 0) =


0 0
0 1

�
, which has 0 as an eigenvalue, and

so (0, 0) is a Lyapunov-unstable solution.

(f) Would you say that the linearized system captures the dynamics of the original non-
linear system of ODEs well? (state your opinion, you will not lose any point on this
question).

Solution: No.

(g) Is the Hartman-Grobman Theorem applicable here?

Solution: No; the fixed point in nonhyperbolic.

7
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Exercise 6. Consider the following autonomous nonlinear system of ODEs ẋ = f(x) given
by 

ẋ1

ẋ2

�
=


�x2 � x1(x2

1 + x2
2)

x1 � x2(x2
1 + x2

2)

�
,

and which has a fixed point at the origin x⇤ = (0, 0).

(a) Is x⇤ = (0, 0) an hyperbolic or a nonhyperbolic fixed point?

Solution:

Letting f = (ẋ1, ẋ2), we have

Df(0, 0) =

2

4
�3x2

1 � x2
2 �1� 2x1x2

1� 2x1x2 �x2
1 � 3x2

2

3

5

������
(0,0)

=


0 �1
1 0

�
,

which has eigenvalues ±i. Hence (0, 0) is a nonhyperbolic fixed point.

(b) Convert the nonlinear system of ODEs given in Cartesian coordinates (x1, x2) to polar
coordinates (r, ✓) (x1 = r cos(✓), x2 = r sin(✓)).

Solution: 
ṙ
✓̇

�
=


�r3

1

�
.

(c) Solve the system of ODEs that you have just obtained in polar coordinates with initial
conditions r(t0) = r0 and ✓(t0) = ✓0.

Solution:

Since the origin is a fixed point of our system, if r0 = 0, then our system requires
that we have the solution r(t, t0, 0) = 0. Suppose now r0 6= 0. With the conditions
r(t0) = r0 and ✓(t0) = 0, we obtain

r(t, t0, r0) =
1q

2t� 2t0 + r�2
0

and ✓(t, t0, ✓0) = t+ ✓0 � t0

8
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(d) Express the solution back to Cartesian coordinates and draw approximately the phase
portrait.

Solution:

x1(t, t0, x01) = r(t, t0, r0) cos ✓(t, t0, ✓0)

=
cos (t+ ✓0 � t0)q
2t� 2t0 + r�2

0

=
cos (t� t0 + arctan(x02/x01))q

2t� 2t0 + (x2
01 + x2

02)
�1

x2(t, t0, x02) = r(t, t0, r0) sin ✓(t, t0, ✓0)

=
sin (t+ ✓0 � t0)q
2t� 2t0 + r�2

0

=
sin (t� t0 + arctan(x02/x01))q

2t� 2t0 + (x2
01 + x2

02)
�1

(e) Is the constant solution x⇤ = (0, 0) Lyapunov-stable, asymptotically Lyapunov-stable,
or Lyapunov-unstable? Is x⇤ = (0, 0) a sink? Hint: for a nonhyperbolic fixed point
try to find a (strict) Lyapunov function, e.g., try V (x) := 1

2 (x
2
1 + x2

2).

Solution:

Using the hint, V (x) is a locally minimized by (0, 0). Moreover, letting f = (ẋ1, ẋ2),
we have

(LfV )(x) = DV (x)f(x) =
⇥
x1 x2

⇤ �x2 � x1(x2
1 + x2

2)
x1 � x2(x2

1 + x2
2)

�
= �(x4

1 + x4
1) < 0

whenever (x1, x2) 6= (0, 0). So V (x) is a strict Lyapunov function for the system at
(0, 0), giving that the constant solution (0, 0) is an asymptotically Lyapunov-stable
solution, hence a sink.

9
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(f) Give the linearized system
ẏ = Df(x⇤)(y � x⇤)

at x⇤ = (0, 0) and solve it. Draw approximately the phase portrait of the linearized
system.

Solution:

ẏ = Df(x⇤)(y � x⇤) =


0 �1
1 0

�

| {z }
=:A


y1
y2

�
=


�y2
y1

�

We have A2` = (�1)`I and A2`+1 = (�1)`A for all ` � 0. So,

e(t�t0)A =
X

k�0

(t� t0)k

k!
Ak =

X

`�0

(t� t0)2`

(2`)!
A2` +

X

`�0

(t� t0)2`+1

(2`+ 1)!
A2`+1

= I cos(t� t0) +A sin(t� t0)

=


cos(t� t0) � sin(t� t0)
sin(t� t0) cos(t� t0)

�

So the solution to the linear system is

y(t, t0, y0) = e(t�t0)Ay0

=


cos(t� t0) � sin(t� t0)
sin(t� t0) cos(t� t0)

� 
y01
y02

�

=


y01 cos(t� t0)� y02 sin(t� t0)
y01 sin(t� t0) + y02 cos(t� t0)

�

10
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(g) For the linearized system is the constant solution x⇤ = (0, 0) Lyapunov-stable, asymp-
totically Lyapunov-stable, or Lyapunov-unstable?

Solution:

Letting V (y) = 1
2 (y

2
1 + y22), we have that the origin is a local minimizer for V and

if g = (ẏ1, ẏ2), then we have

DV (y)g(y) =
⇥
y1 y2

⇤ �y2
y1

�
= �y1y2 + y1y2 = 0,

which means that V is a weak Lyapunov function for this system, giving that (0, 0) is
a Lyapunov-stable solution.

(h) Would you say that the linearized system captures the dynamics of the original non-
linear system of ODEs well? (state your opinion, you will not lose any point on this
question).

Solution: No.

(i) Is the Hartman-Grobman Theorem applicable here?

Solution: No; the fixed point in nonhyperbolic.

11



Nicholas Camacho Ordinary Di↵erential Equations — Homework 5 October 3, 2017

1. Consider the following autonomous nonlinear system of ODEs ẋ = f(x) given by


ẋ1

ẋ2

�
=

2

4
�x1 +

x2

ln(
p

x2
1+x2

2)

�x2 � x1

ln(
p

x2
1+x2

2)

3

5

for x 6= (0, 0). At x⇤ := (0, 0) we define

f(x⇤) := lim
x!x⇤

f(x) =


0
0

�
.

since limr!0+ 1/ln(r) = 0. Thus x⇤ = (0, 0) is a fixed point.

(a) Based on the definition of a Jacobian matrix, show that

Df(x⇤) =


�1 0
0 �1

�
.

Is x⇤ = (0, 0) an hyperbolic or a nonhyperbolic fixed point? If it is hyperbolic
determine if it is a source, a sink, or a saddle.

Solution:

Let f = (ẋ1, ẋ2). Then

Df =

2

664

�1� x1x2

(x2
1+x2

2) ln
p

x2
1+x2

2

1

ln
p

x2
1+x2

2

� x2
2

(x2
1+x2

2) ln
p

x2
1+x2

2

� 1

ln
p

x2
1+x2

2

� x2
1

(x2
1+x2

2) ln
p

x2
1+x2

2

�1� x1x2

(x2
1+x2

2) ln
p

x2
1+x2

2

3

775

Taking limits, we get Df(x⇤) =
⇥�1 0

0 �1

⇤
.

(b) Is the constant solution x⇤ = (0, 0) Lyapunov-stable, asymptotically Lyapunov-
stable, or Lyapunov-unstable?

Solution:

The eigenvalues of DF (x⇤) are both �1, so the constant solution is a hyper-
bolic sink.

(c) Convert the nonlinear system of ODEs given in Cartesian coordinates (x1, x2) to
polar coordinates (r, ✓) (x1 = r cos(✓), x2 = r sin(✓)).

Solution:


ṙ
✓̇

�
=


�r
� 1

ln r

�

(d) Assuming r0 =
q
x2
10 + x2

20 < 1, solve the system of ODEs that you have just

obtained in polar coordinates with initial conditions r(t0) = r0 and ✓(t0) =
✓0. Show that limt!+1 r(t) = 0, ✓̇(t) > 0 for 0 < r0 < 1 and t � t0, and
limt!+1 ✓(t) = +1.

Solution:

r(t, t0, r0) = r0e
t0�t and ✓(t, t0, ✓0) = ln |(ln r0) + t0 � t|+ ✓0 � ln | ln r0|.

1
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Then

lim
t!+1

r(t) = lim
t!+1

r0e
t0�t = 0

✓̇(t) = � 1

ln r
= � 1

ln(r0et0�t)
> 0 if 0 < r0 < 1 and t � t0

lim
t!+1

✓(t) = lim
t!+1

ln |(ln r0) + t0 � t|+ ✓0 � ln | ln r0| = +1

since |(ln r0) + t0 � t| ! 1 as t ! 1.

(e) Express the solution back to Cartesian coordinates and draw approximately the
phase portrait.

Solution:
Why? This is just gross:

x1(t, t0, x10) = r(t, t0, r0) cos (✓(t, t0, ✓0))

= r0e
t0�t cos (ln |(ln r0) + t0 � t|+ ✓0 � ln | ln r0|)

=
q
x2
10 + x2

20e
t0�t cos

⇣
ln
���(ln

q
x2
10 + x2

20) + t0 � t
���

+arctan

✓
x20

x10

◆
� ln

���ln
q

x2
10 + x2

20

���
◆

x2(t, t0, x20) = r(t, t0, r0) sin (✓(t, t0, ✓0))

= r0e
t0�t sin (ln |(ln r0) + t0 � t|+ ✓0 � ln | ln r0|)

=
q
x2
10 + x2

20e
t0�t sin

⇣
ln
���(ln

q
x2
10 + x2

20) + t0 � t
���

+arctan

✓
x20

x10

◆
� ln

���ln
q

x2
10 + x2

20

���
◆

2
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(f) Give the linearized system

ẏ = Df(x⇤)(y � x⇤)

at x⇤ = (0, 0) and solve it. Draw approximately the phase portrait of the lin-
earized system.

Solution:

ẏ = Df(x⇤)(y � x⇤) =


�y1
�y2

�
.

Then
y1(t, t0, y01) = y10e

t0�t and y2(t, t0, y20) = y20e
t0�t.

(g) For the linearized system is the constant solution x⇤ = (0, 0) Lyapunov-stable,
asymptotically Lyapunov-stable, or Lyapunov-unstable?

Solution:

Let g = (ẏ1, ẏ2). Then

Dg(x⇤) =


�1 0
0 �1

�
,

which has a repeated eigenvalue �1, so the constant solution is a hyperbolic sink,
giving that the constant solution is asymptotically Lyapunov-stable.

(h) Would you say that the linearized system captures the dynamics of the original
nonlinear system of ODEs well? What is captured and what is not captured
here? (state your opinion, you will not lose any point on this last question).

Solution: Sorta; the phase portraits are similar a wee bit.

(i) Is the Hartman-Grobman Theorem applicable here?

Solution: Yup! The fixed point is hyperbolic.

3
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2. We consider the autonomous nonlinear system of ODEs


ẋ1

ẋ2

�
=


�2x3

2 + 2x1x2
2 � x2 cos(x1x2)

�6x1x2
2 + 2x2

1x2 � x1 cos(x1x2)

�
.

Is it a gradient system? If yes, find U(x) such that ẋ = �rU(x). Does this system
possess a periodic solution?

Solution:

Yes is it a gradient system since
@f1
@x2

=
@f2
@x1

where (f1, f2) = (ẋ1, ẋ2). Then

U(x) = 2x1x3
2 � x2

1x
2
2 + sin(x1x2) + C is such that ẋ = �rU(x). This system does

not have a periodic solution since it is a gradient system. (Theorem 2.54).

3. The following nonlinear system of ODEs describes two species F and R, F predating
(unrelated to dating!) R, 

Ḟ
Ṙ

�
=


F (R� r)
R(f � F )

�
(1)

with parameters r > 0, f > 0. It is a Lotka-Volterra predator-prey model (a very
simplistic model). For example in a Canadian forest, F may represent a population
of foxes and R a population of rabbits (foxes eat rabbits, but not the opposite!). For
F > 0 and R > 0 show that the quantity

I(F,R) := F � f ln(F ) +R� r ln(R) (2)

is a first integral of the system (1), i.e., it stays constant along solutions. Hence, the
closed curves

{F > 0, R > 0 | I(F,R) = Const}

represent periodic orbits (except when (F,R) = (f, r) which is a fixed point).

Solution:

We have

DI


Ḟ
Ṙ

�
=

⇥
1� f/F 1� r/R

⇤ F (r �R)
R(f � F )

�

= F (R� r)� fF (R� r)

F
+R(f � F )� rR(f � F )

R
= FR� Fr � fR+ fr +Rf �RF � rf + rF

= 0,

and so I is a first integral.

4
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4. Consider the autonomous nonlinear system of ODEs given by


ẋ1

ẋ2

�
=


x1 � x2 � 2x3

1

x1 + x2 � 2x3
2

�
.

(a) Convert this nonlinear system of ODEs given in Cartesian coordinates (x1, x2)
to polar coordinates (r, ✓).

Solution:


ṙ
✓̇

�
=


r � 2r3 + r3 sin2(2✓)

1 + r2 sin(2✓)(cos2 ✓ � sin2 ✓)

�

(b) Determine a circle of radius r1 centered at the origin (0, 0) such that ṙ � 0 for
r  r1. Determine also a circle of radius r2 centered at the origin (0, 0) such that
ṙ  0 for r � r2. Note: 2 sin(✓) cos(✓) = sin(2✓).

Solution:

We use that the 0  sin2(2✓)  1:

r � 2r3  ṙ  r � 2r3 + r3

r(1� 2r2)  ṙ  r(1� r2)

So if r  1p
2
=: r1 then ṙ � 0 and if r � 1 =: r2, then ṙ  0.

(c) Does the above system of ODEs have a periodic orbit?

Solution:

First notice that

K =

⇢
x 2 R2 | r21 =

1

2
 x2

1 + x2
2  1 = r22

�

is a closed annulus and hence compact. Moreover, (0, 0) is the only fixed point of
our system which does not lie in the annulus. Hence by the Poincaré-Bendixon
Theorem, the system has a periodic orbit.

5
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1. For partitioned systems of ODEs of the form q̇ = f(q, p), ṗ = g(q, p), one can
consider the following 2 numerical schemes where (qn, pn) approximates the exact
solution at tn = t0 + nh for n = 0, 1, 2, 3, . . . , N :

• the explicit Euler method

qn+1 = qn + hf(qn, pn), pn+1 = pn + hg(qn, pn);

• the partitioned Euler method II

qn+1 = qn + hf(qn+1, pn), pn+1 = pn + hg(qn+1, pn).

For the Lotka-Volterra predator-prey model


Ḟ
Ṙ

�
=


F (R� 3)
R(2� F )

�

consider the initial conditions F (0) = 1.8, R(0) = 3.4. Write simple codes (in Matlab
preferably) for the explicit Euler method and the partitioned Euler method II for
n = 0, 1, . . . , N with N = 500 using a fixed stepsize h = 0.05. Plot the numerical
solution obtained in phase space (F,R) for each method. For each method plot also
the quantities I(Fn, Rn) for

I(F,R) := F � 2 ln(F ) +R� 3 ln(R)

with respect to tn for n = 0, 1, . . . , N . Compare the plots for the 2 methods, what do
you observe? (We are not asking for a mathematical explanation). The exact solution
is known to be periodic, see exercise 3 of homework 5.

Solution:

The explicit Euler method:

Figure 1: Numerical Solution Figure 2: I(Fn, Rn)

1
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The partitioned Euler method II:

Figure 3: Numerical Solution Figure 4: I(Fn, Rn)

In the explicit Euler method, the numerical solution is not periodic, and the first
integral diverges. In the partitioned Euler method II, the numerical solution is periodic
and the first integral (as a function) is also periodic and doesn’t diverge like in the
first method.

2
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2. Apply Liénard’s Theorem to show that for any µ > 0 the second-order nonlinear ODE

ÿ + µ(y2 � 1)ẏ + tanh(y) = 0

has a periodic orbit which is asymptotically orbitally stable. Note: by definition

tanh(y) :=
ey � e�y

ey + e�y
.

Solution:

Set g(y) = µ(y2 � 1) and h(y) = tanh(y). We need to check a bunch of conditions
on these functions to apply Liénard’s Theorem. If all the conditions are met, then the
theorem says that the system has a periodic orbit which is asymptotically orbitally
stable.

(a) Both g and h are C1

(b) h is odd : tanh(�y) =
e�y � ey

e�y + ey
= �

✓
ey � e�y

ey + e�y

◆
= � tanh(y).

(c) h(y) > 0 if y > 0: ey + e�y is always positive, and since y > 0 and ey is strictly
increasing, y > �y =) ey > e�y =) ey � e�y > 0.

(d) g is even: g(�y) = µ((�y)2 � 1) = µ(y2 � 1) = g(y).

(e) G(y) :=
R y
0 g(u)du = µ

R y
0 (u

2 � 1)du satisfies

i. G(a) = 0 for some a > 0: Let a =
p
3. Then

G(
p
3) = µ

Z p
3

0
(u2 � 1)du = µ

 �p
3
�3

3
�

p
3

!
= 0.

ii. G(y) < 0 for 0 < y <
p
3:

G(y) = µ

✓
y3

3
� y

◆
= µ|{z}

>0

0

BB@
y

3|{z}
>0

(y �
p
3)| {z }

<0

(y +
p
3)| {z }

>0

1

CCA < 0.

iii. G(y) > 0 for
p
3 < y:

G(y) = µ|{z}
>0

0

BB@
y

3|{z}
>0

(y �
p
3)| {z }

>0

(y +
p
3)| {z }

>0

1

CCA > 0.

iv. G0(y) = g(y) � 0 for
p
3 < y: By the Fundamental Theorem of Calculus,

G0(y) = g(y). Moreover, g(y) = µ(y2 � 1) > 2µ > 0.

v. limy!+1 G(y) = +1:

lim
y!+1

µ

✓
y3

3
� y

◆
= µ lim

y!+1

✓
y3

3
� y

◆
= +1.

3
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3. Consider the autonomous nonlinear system of ODEs


ẋ1

ẋ2

�
=


x2

�7x1 � 3x2 + 5x2
1 + 2x2

2

�
.

Does this system have a periodic orbit or not? Hint: Apply Dulac’s criterion with
B(x1, x2) := 3e�4x1 .

Solution:

Let f = (ẋ1, ẋ2).

r · (B(x)f(x)) =


@

@x1

@

@x2

�
·


3x2e�4x1

3x2e�4x1(�7x1 � 3x2 + 5x2
1 + 2x2

2)

�

=
@(3x2e�4x1)

@x1
+

@(3e�4x1(�7x1 � 3x2 + 5x2
1 + 2x2

2))

@x2

= �12x2e
�4x1 + 3e�4x1(�3 + 4x2)

=
�9

e4x1

6= 0

So in fact this system does not have a periodic orbit on all of R2.

4. Consider the autonomous nonlinear system of ODEs


ẋ1

ẋ2

�
=


2x1 � x2 � 2x1(x2

1 + x2
2)

x1 + 2x2 � 2x2(x2
1 + x2

2)

�
.

Show that there exists a periodic orbit which is asymptotically orbitally stable.

Solution:

Converting to polar coordinates, we have


ṙ
✓̇

�
=


2r(1� r2)

1

�
.

So we see that if r < 1, then ṙ > 0 and if r > 1 then ṙ < 0. Hence at r = 1, we have
a periodic solution: 

r
✓

�
=


1

t+ ✓0

�
.

Converting back to cartesian coordinates, this solution is


x1

x2

�
=


cos(t+ ✓0)
sin(t+ ✓0)

�
,

and so we have a period T of 2⇡. Letting f = (r, ✓) from our periodic solution, set

A(t) := Df |r=1 =


2� 6r2 0

0 0

�����
r=1


�4 0
0 0

�
.

4
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We want to find a solution to Ṡ(t) = A(t)S(t). Since A(t) is autonomous and is
diagonal, we get that

S(t) =


e�4t �
0 1

�
.

Since out period is 2⇡, we get

S(2⇡) =


e�8⇡ �
0 1

�
.

So �i(S(2⇡, 0)) = {e�8⇡, 1}. By Lemma 2.67, the eigenvalues of S(2⇡, 0) are the
same as the monodromy matrix R(t) = Dx0(x) where x is our solution in cartesian
coordinates. Now since |e�8⇡| < 1, then Theorem 2.66 says that our periodic solution
is asymptotically orbitally stable.

5
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1. Find y 2 C1([1, 2],R) satisfying y(1) = 0, y(2) = 1 such that the first variation of

A[y] :=

Z 2

1

1

x

q
1 + y02dx.

satisfies �A[y] ⌘ 0, i.e., �A[y][h] = 0 8h 2 C1
0([1, 2],R).

Solution:

Setting L = 1
x

p
1 + y02 and using the Euler equation,

0 =
d

dx
(Ly0)� Ly =

d

dx
(Ly0)� 0,

we get Ly0 ⌘ C for some constant C. So

C = Ly0 =
y0

x
p
1 + y02

=) y0 = ± Cxp
1� C2x2

.

Hence

y(x) = �
p
1� C2x2

C
+ C̃

for some other constant C̃. Using the initial conditions,

0 = y(1) = �
p
1� C2

C
+ C̃ =) C̃ =

p
1� C2

C

1 = y(2) = �
p
1� 4C2

C
+

p
1� C2

C
=) C =

1p
5
.

So
y(x) =

p
5� x2 + 2.

2. Is there y 2 C1([a, b],R) such that y(a) = A, y(b) = B (a, b, A,B are fixed quantities)
minimizing

A1[y] :=

Z b

a
y2dx?

If yes under which conditions on a, b, A,B? Answer the same questions for

A2[y] :=

Z b

a
yy0dx.

Solution:

First let L = y2. Then again using the Euler equation,

0 =
d

dx
(Ly0)� Ly = �2y,

which implies y ⌘ 0. So a and b can be any real numbers and A = B = 0.

Next, let L = yy0. Then

0 =
d

dx
(Ly0)� Ly =

d

dx
y � y0 = y0 � y0 =) y0 = y0,

so any y 2 C1([a, b],R) works.

1
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3. Find y 2 C1([�1, 1],R) satisfying y(�1) = y(1) = A � 1 such that the first variation
of

A[y] :=

Z 1

�1

q
y
�
1 + y02

�
dx

satisfies �A[y] ⌘ 0, i.e., �A[y][h] = 0 8h 2 C1
0([�1, 1],R).

Solution:

We use Beltrami’s identity. Let L =
q
y
�
1 + y02

�
. So

Egen = Ly0 � L = � yp
y(1 + y02)

,

must satisfy
d

dx
(Egen) = �Lx = 0,

so Egen ⌘ C for some constant C. Solving for y0, we get

y0 = ±
p

y � C2

C
.

Solving this di↵erential equation, we get

y(x) = C2 +
x2

4C2
+ C2C̃2 + C̃x,

for some constant C̃. The initial condition y(1) = y(�1) gives C̃ = 0. So y(x) =

C2 + x2

4C2 . Then the initial condition y(1) = A gives

C = ±

s
A±

p
A2 � 1

2
.

2
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4. Consider the brachistochrone problem of finding y 2 C1([0, b],R) satisfying y(0) = 0
and y(b) = B (technically y(0) = " > 0 and we look at the limit " ! 0+) and �A[y] ⌘ 0
where

A[y] :=

Z b

0

s
1 + y02

y
dx

Show that the cycloids given parametrically by

x = X(✓) =
C

2
(✓ � sin(✓)), y = Y (✓) =

C

2
(1� cos(✓))

for ✓ 2]0, 2⇡[ satisfy
y(1 + y02) = C

by showing that

y0(x) =
d
d✓Y (✓)
d
d✓X(✓)

= cot

✓
✓

2

◆
.

Note that for x = X(✓) and y = Y (✓) = y(X(✓)), the chain rule gives

d

d✓
Y (✓) = y0(X(✓))

d

d✓
X(✓) = y0(x)

d

d✓
X(✓).

Solution:

We have

y0(x) =
d
d✓Y (✓)
d
d✓X(✓)

=
C
2 (1� cos ✓)

C
2 (sin ✓)

=
1� cos ✓

sin ✓
= cot

✓

2
,

where the last equality is a trig identity. Now,

cot2
✓

2
=

cos2 ✓
2

sin2 ✓
2

=
1+cos ✓

2
1�cos ✓

2

=
1 + cos ✓

1� cos ✓
,

and so

y(1� y02) =
C

2
(1� cos ✓)

✓
1 + cot2

✓

2

◆

=
C

2

✓
1� cos ✓ + cot2

✓

2
� cos ✓ cot2

✓

2

◆

=
C

2

✓
1� cos ✓ +

1 + cos ✓

1� cos ✓
� cos ✓ + cos2 ✓

1� cos ✓

◆

=
C

2

✓
(1� cos ✓)2 + 1 + cos ✓ � cos ✓ � cos2 ✓

1� cos ✓

◆

=
C

2

✓
1� 2 cos ✓ + cos2 ✓ + 1 + cos ✓ � cos ✓ � cos2 ✓

1� cos ✓

◆

=
C

2

✓
2� 2 cos ✓

1� cos ✓

◆

= C

✓
1� cos ✓

1� cos ✓

◆

= C.

3
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Justify your answers and show your work.

1. Associated to the autonomous system of ODEs ẋ = f(x) we consider the following
rooted tree T

r
��

r
AAr r⇣⇣r⇣⇣

r
�� r
��

r
AArrr

��
rr��r
AArr PP r

In which derivative x(q) does the corresponding elementary di↵erential F (T )(x) ap-
pear? Give F (T )(x) in vector notation and also in componentwise notation.

Solution:

Since T 2 T17, the corresponding elementary di↵erential appears in the 17th deriva-
tive, x(17). In vector notation, we have

F (T )(x) = fxxx
⇣
fx
�
fxxx(fxf, f, f)

�
, fx

�
fxx(fxf, f)

�
, fxx

�
fxx(f, f), f

�⌘
.

In componentwise notation,

rr
��

rq
AArj rg⇣⇣re⇣⇣

rt
�� rp
��

rn
AArirc

rm
��
r̀rs��rk
AArhrb XXX r

a

dX

b=1

dX

c=1

dX

e=1

@3fa
@xb@xc@xe

(x) ·
dX

h=1

@fb
@xn

(x)

·
dX

k=1

dX

`=1

dX

m=1

@3fn
@xk@x`@xm

(x)f`(x)fm(x) ·
dX

s=1

@fk
@xs

(x)fs(x)

·
dX

i=1

@fc
@xi

(x) ·
dX

n=1

dX

p=1

@2fi
@xn@xp

(x)fp(x) ·
dX

t=1

@fn
@xt

(x)ft(x)

·
dX

j=1

dX

g=1

@2fe
@xj@xg

(x)fg(x) ·
dX

q=1

dX

r=1

@2fj
@xq@xr

(x)fq(x)fr(x).

1
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2. We consider the following initial value problem

ẋ = �100x, x(0) = 2.

(a) Find the exact solution to this initial value problem.

Solution:
x(t) = 2e�100t

(b) By hand and thanks to an explicit formula give the result after 20 steps of the
explicit Euler method with a constant stepsize h = 0.05 on the interval [0, 1]
and give the numerical approximation and its error obtained at tend = 1. Is this
numerical approximation satisfactory? Same questions for h = 0.005 by applying
this time 200 steps of the explicit Euler method.

Solution:

We have ẋn+1 = xn + h(�100xn) = xn(1� 100h), and so

x1 = x0(1� 100h)

x2 = x1(1� 100h)

= x0(1� 100h)2

...

xn = xn�1(1� 100h)

= x0(1� 100h)n.

So for n = 20, h = 0.05,

x20 = x0(1� 100h)20 = 2(1� 100(0.05))20 ⇡ 2.199023256⇥ 1012;

and for n = 200, h = 0.005

x200 = x0(1� 100(0.005))200 = 2(1� 100(0.005))200 ⇡ 1.2460306⇥ 10�60.

In our solution from part (a), we have at tend = 1,

x(1) = 2e�100(1) ⇡ 7.44015195⇥ 10�44.

(c) Find also the largest possible constant stepsize h such that the numerical approx-
imations xn obtained by the explicit Euler method satisfy |xn|  |x(0)|.

Solution:

|xn| = |x0(1� 100h)n|  |x(0)|
2|(1� 100h)n|  2

|(1� 100h)|n  1

|(1� 100h)|  1

�1  1� 100h  1

�2  �100h  0

0  h  2

100
,

so h can be at most 0.02.

2
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3. Consider the following nonlinear system of ODEs


ẋ1

ẋ2

�
=


cos(tx2)

cos(x1)x2 � tx1

�
.

Give the value x1 = (x11, x12) after one step with stepsize h = 0.1 of the Taylor series
method of order 3 starting from x0 = [0, 1] at t0 = 0.

Solution:

We have

ẋ1 = cos(tx2)

ẋ2 = cos(x1)x2 � tx1

ẍ1 = �(tẋ2 + x2) sin(tx2)

ẍ2 = �ẋ1 sin(x1)x2 + cos(x1)ẋ2 � tẋ1 � x1

...
x 1 = �

⇣�
tẍ2 + ẋ2 + ẋ2

�
sin(tx2) + (tẋ2 + x2)

2 cos(tx2)
�

...
x 2 = �

⇣
ẋ1 sin(x1)ẋ2 +

�
ẍ1 sin(x1) + ẋ2

1 cos(x1)
�
x2

⌘

+
⇣
� ẋ1ẋ2 sin(x1) + cos(x1)ẍ2

⌘
�
⇣
tẍ1 + ẋ1

⌘
� ẋ1

So,

ẋ1(0) = cos(0) = 1

ẋ2(0) = cos(x1(0))x2(0)� 0 = 1� 0 = 1

ẍ1(0) = �(0 + x2(0)) sin(0) = 0

ẍ2(0) = �ẋ1(0) sin(x1(0))x2(0) + cos(x1(0))ẋ2(0)� 0� x1(0)

= 1

...
x 1(0) = �

⇣�
0 + ẋ2(0) + ẋ2(0)

�
sin(0) + (0 + x2(0))

2 cos(0)
�

= �1
...
x 2(0) = �

⇣
ẋ1(0) sin(x1(0))ẋ2(0) +

�
ẍ1(0) sin(x1(0)) + ẋ1(0)

2 cos(x1(0))
�
x2(0)

⌘

+
⇣
� ẋ1(0)ẋ2(0) sin(x1(0)) + cos(x1(0))ẍ2(0)

⌘
�
⇣
0 + ẋ1(0)

⌘
� ẋ1(0)

= �2.

So,

x(t0 + h) = x(0) +
ẋ(0)

1!
h1 +

ẍ(0)

2!
h2 +

...
x (0)

3!
h3 = x0 + ẋ(0)(.1) +

ẍ(0)

2
(.01) +

...
x (0)

6
(.001)

=


0
1

�
+


.1
.1

�
+


0

.005

�
+


� 1

6 (.001)
� 1

3 (.001)

�

=


0.09983̄
1.1046̄

�
.

3
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4. Give the expression after one step with stepsize h of the Taylor series method of order
p applied to the scalar initial value problem

ẋ = �x, x(t0) = x0

where � is a constant. Express the exact solution and the Taylor series method of
order p at t1 := t0 + h in term of the quantity z := h�.

Solution:

The exact solution is x(t) = x0e�(t�t0). Then

x(t1) = x0e
�(t1�t0) = x0e

�(t0+h�t0) = x0e
z.

For the Taylor series method of order p, we obtain

xn+1 = xn + hnẋn +
h2
n

2!
ẍn +

h3
n

3!
...
xn + · · ·+ hp

n

p!
x(p)
n

= xn + hnẋn +
h2
n

2!
�ẋn +

h3
n

3!
�2ẋn + · · ·+ hp

n

p!
�p�1ẋn

= xn + hn�xn +
h2
n

2!
�2xn +

h3
n

3!
�3xn + · · ·+ hp

n

p!
�pxn

= xn

✓
1 + hn�+

h2
n

2!
�2 +

h3
n

3!
�3 + · · ·+ hp

n

p!
�p

◆

So at t1 = t0 + h, we have n = 0, which gives

x1 = x0

✓
1 + h�+

h2

2!
�2 +

h3

3!
�3 + · · ·+ hp

p!
�p

◆

= x0

✓
1 + z +

z2

2!
+

z3

3!
+ · · ·+ zp

p!

◆

4
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Justify your answers and show your work.

1. We consider the following rooted tree T

r
��

r
AAr r⇣⇣rr⇣⇣

r
�� r
��

r
AArrr

��
rr��r
AArr PP r

For this tree give

(a) the value of ⇢(T );

Solution: ⇢(T ) = 17

(b) the value of �(T );

Solution: Let

T1 = T2 = T3 =

Then �(T ) = ⇢(T )�(T1)�(T2)�(T3) = 17 · 60 · 40 · 15 = 612, 000.

(c) for a Runge-Kutta method the sum expression
P

j bj�j(T ) in terms of Runge-
Kutta coe�cients.

Solution:

rr
��

rq
AArk rf⇣⇣r
e⇣⇣

ru
�� rw
��

rv
AArpri

r
n

��
rmrt��r`

AAr
hrg XXX r

d

sX

j=1

bj�j(T ) =
sX

j=1

bj

sX

g=1

adg

sX

h=1

agh

sX

`=1

ah`

sX

m=1

ahm

sX

n=1

ahn

sX

t=1

a`t

sX

i=1

adi

sX

p=1

aip

sX

v=1

apv

sX

w=1

apw

sX

u=1

avu

sX

e=1

ade

sX

k=1

aek

sX

q=1

akq

sX

r=1

akr

sX

f=1

aef

=
sX

j=1

bj

sX

g=1

adg

sX

h=1

agh

sX

`=1

ah`chchc`

sX

i=1

adi

sX

p=1

aip

sX

v=1

apvcpcv

sX

e=1

ade

sX

k=1

aekckckce

=
sX

j=1

sX

g=1

sX

h=1

sX

`=1

sX

i=1

sX

p=1

sX

v=1

sX

e=1

sX

k=1

bjadgaghah`c
2
hc`adiaipapvcpcvadeaekc

2
kce

=
sX

j,g,h,`,i,p,v,e,k=1

bjadgaghah`c
2
hc`adiaipapvcpcvadeaekc

2
kce

1



Nicholas Camacho Ordinary Di↵erential Equations — Homework 9 October 31, 2017

2. Consider the following 4-stage explicit Runge-Kutta method given by its tableau of
coe�cients

0
1/2 1/2
1/3 1/3 0
2/3 1/3 0 1/3

0 �2 3/2 3/2

Give explicitly one step of this method when applied to ẋ = f(t, x). What is the local
order of this method?

Solution:

The first step is given by x1, where

x1 = x0 + h

✓
0 · f(t0, X1)� 2f(t0 + h/2, X2) +

3

2
f(t0 + h/3, X3) +

3

2
f(t0 + 2h/3, X4)

◆

= x0 + h

✓
�2f(t0 + h/2, X2) +

3

2
f(t0 + h/3, X3) +

3

2
f(t0 + 2h/3, X4)

◆

and

X1 = x0

X2 = x0 + h/2f(t0, X1) = x0 + h/2f(t0, x0)

X3 = x0 + h (1/3f(t0, X1) + 0 · f(t0 + h/2, X2))

= x0 + h/3f(t0, x0)

X4 = x0 + h (1/3f(t0, X1) + 0 · f(t0 + h/2, X2) + 1/3f(t0 + h/3, X3))

= x0 + h/3f(t0, X1) + h/3f(t0 + h/3, X3)

= x0 + h/3f(t0, x0) + h/3f(t0 + h/3, x0 + h/3f(t0, x0)).

Now, since

1X

j=1

a2j = 1/2 = c2,

2X

j=1

a3j = 1/3 + 0 = c3,

3X

j=1

a4j = 1/3 + 0 + 1/3 = 2/3 = c4,

then we can apply the conditions given on page 71 to determine the local order of the
given explicit RK method.

• 1 condition for order p = 1 is satisfied:

4X

j=1

bj = 0� 2 + 3/2 + 3/2 = 1.

• 1 additional condition for order p = 2 is satisfied:

4X

j=1

bjcj = 0 · 0 + (�2)(1/2) + (3/2)(1/3) + (3/2)(2/3) = �1 + 1/2 + 1 = 1/2.

2
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• 2 additional conditions for order p = 3 is satisfied:

4X

j=1

bjc
2
j = 0 · 02 + (�2)(1/2)2 + (3/2)(1/3)2 + (3/2)(2/3)2 = 1/3

4X

j=1

4X

k=1

bjajkck = 3/2 · 0 · 1/2 + 3/2(0 · 1/2 + (1/3)(1/3)) = 1/6

• however, one of the 4 additional conditions for order p = 4 is not satisfied:

4X

j=1

4X

k=1

4X

l=1

bjajkaklcl = (3/2)(1/3)(0)(1/2) = 0 6= 1/24.

Hence the local order of this method is 3.

3
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3. Find all explicit Runge-Kutta methods of local order 3 satisfying
Pi�1

j=1 aij = ci for
i = 1, 2, 3 with coe�cients c1 = 0, c2 = 1/2, c3 = 1, i.e.,

0
1/2 a21

1 a31 a32

b1 b2 b3

Is there any method of local order 4 in this form?

Solution:

First, note that there is no method of local order 4 in this form since it is only a
3-stage method.

Since we are given that
Pi�1

j=1 aij = ci, we can consider the conditions given on
page 71 to derive the unknowns. We see immediately that a21 = 1/2. The conditions

1/2 =
3X

j=1

bjcj = b2/2 + b3 and 1/3 =
3X

j=1

bjc
2
j = b2/4 + b3

imply b2 = 2/3 and b3 = 1/6. Then the condition b1 + b2 + b3 = 1 implies b1 = 1/6.
The condition

1/6
3X

j=1

3X

k=1

bjajkck = (a32/6)(1/2)

implies a32 = 2. Then 1 = c3 = a31 + a32 = a31 + 2 implies a31 = �1. Altogether, we
have the tableau

0
1/2 1/2
1 �1 2

1/6 2/3 1/6

4
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4. Show that the local order p of an s-stage explicit Runge-Kutta method cannot be
greater than the number s of internal stages, i.e., p  s. Hint: Apply the Runge-
Kutta method with stepsize h to ẋ = x, x(0) = 1, and show that the numerical
solution x1(h) is a polynomial of degree s in h.

Solution:

Using the hint, with f(t, x) = x, notice that f(t0, X1) = x(0) = 1. So,

X1 = 1

X2 = 1 + ha21

X3 = 1 + h(a31 + a32(1 + ha21))

X4 = 1 + h

⇣
a41 + a42(1 + ha21) + a43(1 + h(a31 + a32(1 + ha21)))

⌘

...

Xs = 1 + h

⇣
as1 + as2(1 + ha21) + · · ·+ as,s�1(1 + h(as�1,1 + as�1,2 + · · ·+ as�1,s�2Xs�1)

⌘

By induction, we can see that the highest power of h in Xs is s� 1. Since

x1(h) = 1 + h

⇣
b1 + b2X2 + · · ·+ bsXs

⌘
,

then the x1(h) is a polynomial of degree at most s in the variable h. Let x(t) be the
exact solution. Then the definition of “local order p”, (that x(t0+h)�x1 = O(hp+1)),
together with the fact that x1(h) has order at most s, imply that p  s, as desired.

5. What is the (linear) stability function R(z) of an s-stage explicit Runge-Kutta method
of local order p = s? In particular give the (linear) stability function of Runge’s (RK2)
method of local order 2 and of Kutta’s (RK4) method of local order 4. The (linear)
stability domain of explicit Runge-Kutta methods of local order p = s is drawn in the
figure below for s = 1, 2, 3, 4

Solution:

For an s-stage explicit Runge-Kutta method of local order p = s, the (linear)
stability function R(z) is

R(z) = 1 + z +
z
2

2!
+

z
3

3!
+ · · ·+ z

s

s!
.

For RK2 and RK4 we have, respectively, the stability functions

R(z) = 1 + z +
z
2

2!
and R(z) = 1 + z +

z
2

2!
+

z
3

3!
+

z
4

4!
.

5
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Justify your answers and show your work. Throughout, we let f(x, µ) = ẋ.

1. In each of the following two one-dimensional examples, find all the fixed points, determine the Lyapunov
stability of hyperbolic fixed points, sketch a bifurcation diagram, and find the bifurcation values of the
parameter µ 2 R:

(a) ẋ = µ� x2 + 4x4;

Solution:

The system has fixed points x⇤
11|12|21|22 = ±

p
1±

p
1�16µ

2
p
2

, and we have

@f

@x
(x⇤) = ±

p
1±

p
1� 16µ

p
1� 16µp

2
.

So x⇤ is non-hyperbolic if and only if µ = 0 or µ = 1
16 . For any other values of µ, the fixed points

of the system (if it has any) will be hyperbolic.

�1 1

µ

x

ẋ

µ > 1
16

, 0 fixed points

�1 1

µ x

ẋ

0 < µ < 1
16

, 4 fixed points

�1 1

µ x

ẋ

µ = 1
16

, 2 fixed points

When 0 < µ < 1
16 , we have (from left to right):

x⇤
21  sink; x⇤

22  source; x⇤
12  sink; x⇤

11  source.

where sinks are Lyapunov stable and sources are Lyapunov unstable.

�1 1

x

ẋ

µ = 0, 3 fixed points

�1 1
µ

x

ẋ

µ < 0, 2 fixed points

When µ = 0, we have a two hyperbolic fixed points: x⇤ = 1/2 source; x⇤ = �1/2 sink. When
µ < 0, we have two fixed points:x⇤ =

p
�µ/2 source; x⇤ = �

p
�µ/2 sink.

So we get the following bifurcation diagram, with bifurcation values µ = 0 and µ = 1/16.

1
16

µ

x

1
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(b) ẋ = x(µ� x2)(µ� 4x2).

Solution:

The system has fixed points x⇤
1 = 0, x⇤

21|22 = ±p
µ, and x⇤

31|32 = ±
p
µ
2 . Also,

@f

@x
(0) = µ2,

@f

@x
(±p

µ) = 6µ2 @f

@x

✓±p
µ

2

◆
= �39µ2.

So our fixed points are non-hyperbolic if and only if µ = 0.

�1 1

�1

1

x

ẋ

µ < 0, 1 fixed point

�1 1

�1

1

x

ẋ

µ = 0, 1 fixed point

�1 1

�1

1

x

ẋ

µ > 0, 5 fixed points

If µ < 0, then the 1 fixed point x⇤
1 = 0 is a source. If µ > 0, then we have

x⇤
21|22 = ±p

µ sources x⇤
1 = 0 source and x⇤

31|32 = ±
p
µ

2
 sinks.

So we get the following bifurcation diagram with bifurcation value µ = 0.

�1 1

�1

1

µ

x

2
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2. In each of the following one-dimensional examples, show that bifurcations occur at critical values of
the parameter µ 2 R (to be determined), sketch a bifurcation diagram, and classify the bifurcations
as being of the type fold, transcritical, supercritical/subcritical pitchfork, or unknown (if not seen in
class):

(a) ẋ = 1 + µx+ x2;

Solution:

The system has fixed points x⇤
1|2 =

�µ±
p

µ2�4
2 . Then

1

1 x

ẋ

µ < �2, 2 fixed points

1

1 x

ẋ

µ = �2, 1 fixed point

1

1 x

ẋ

�2 < µ < 0, 0 fixed points

1

1 x

ẋ

µ = 0, 0 fixed points

1

1 x

ẋ

0 < µ < 2, 0 fixed points

1

1 x

ẋ

µ = 2, 0 fixed points

1

1 x

ẋ

µ > 2, 2 fixed points

And so we have the following bifurcation diagram, with bifurcation values µ = �2 and µ = 2,
both fold bifurcations. These bifurcation values are precisely those for which our number of fixed
points change, hence

�2 2

1
µ

x

The equations f(x, µ) = 0 and fx(x, µ) = 0 together imply that we have critical values (x, µ) =
(±1,⌥2), which agrees with our bifurcation values for µ.

3
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(b) ẋ = x� µx(1� x);

Solution:

When µ 6= 0, the system has fixed points x⇤
1 = 0 and x⇤

2 = µ�1
µ . When µ = 0, the system has

a single fixed point, x⇤
1 = 0. Then

1

1

x

ẋ

µ < 0, 2 fixed points

1

1

x

ẋ

µ = 0, 1 fixed point

1

1

x

ẋ

0 < µ < 1, 2 fixed points

1

1

x

ẋ

µ = 1, 1 fixed points

1

1

x

ẋ

µ > 1, 2 fixed points

And so we have the following bifurcation diagram, with transcritical bifurcation value at µ = 1.

1

1

µ

x

The equations f(x, µ) = 0 and fx(x, µ) = 0 together imply that we have a critical value
(x, µ) = (0, 1), which agrees with our bifurcation value for µ.

4
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(c) ẋ = µ+ x� ln(1 + x).

Solution:

We have

1

1

x

ẋ

µ < 0, 2 fixed points

1

1

x

ẋ

µ = 0, 1 fixed point

1

1

x

ẋ

µ > 0, 0 fixed points

So when µ < 0 the fixed point for when x < 0 is a sink, and the fixed point for when x > 0 is a
source. Notice that when ẋ = 0, we have µ = �x+ln(1+x). So we have the following bifurcation
diagram, with a fold bifurcation at µ = 0.

�1 1

1

x

µ

Again, The equations f(x, µ) = 0 and fx(x, µ) = 0 together imply that we have a critical value
(x, µ) = (0, 0), which agrees with our bifurcation value for µ.
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Justify your answers and show your work.

1. In the following two 1-dimensional examples, show that bifurcations occur at critical values of the
parameter µ 2 R (to be determined), sketch a bifurcation diagram, and classify the bifurcations as
being of the type fold, transcritical, or supercritical/subcritical pitchfork this time by also checking the
conditions given in Theorems 6.9, 6.10, or 6.12 of the class notes:

(a) ẋ = x� µx
1+x2

Solution:

We have the following bifurcation diagram, with a subcritical pitchfork bifurcation at µ = 1:

�1 1
�1

1
µ

x

The equations f(x, µ) = 0 and fx(x, µ) = 0 together imply that we have a critical value (x⇤, µ⇤) =
(0, 1). which agrees with our bifurcation value for µ. Now,

fµ(x, µ) = � x

x2 + 1
, fxx(x, µ) = �2µx(x2 � 3)

(x2 + 1)3
,

fµx(x, µ) =
x2 � 1

(x2 + 1)2
, fxxx(x, µ) =

6µ(x4 � 6x2 + 1)

(x2 + 1)4
.

Therefore,

fµ(x
⇤, µ⇤) = 0, fxx(x

⇤, µ⇤) = 0

fµx(x
⇤, µ⇤) = �1 6= 0, fxxx(x

⇤, µ⇤) = 6 6= 0.

Moreover,
fµx(x

⇤, µ⇤)fxxx(x
⇤, µ⇤) = �6 < 0 and fxxx(x

⇤, µ⇤) = 6 > 0.

These satisfy the conditions of Theorem 6.12, so we do indeed have a subcritical pitchfork bifur-
cation at µ⇤ = 1, with the “inner middle” fixed point a sink, and the “outer” pair of fixed points
each sources.

(b) ẋ = µ+ x� ln(1 + x)

Solution:

We have the following bifurcation diagram, with a fold bifurcation at µ = 0:

�1

1

x

µ

The equations f(x, µ) = 0 and fx(x, µ) = 0 together imply that we have a critical value (x⇤, µ⇤) =
(0, 0). which agrees with our bifurcation value for µ. Now, fµ(x, µ) = 1 and fxx(x, µ) =

1
(1+x)2 ,

and so

fµ(x
⇤, µ⇤) = 1 6= 0, fxxf(x

⇤, µ⇤) = 1 6= 0,

fµ(x
⇤, µ⇤)fxxf(x

⇤, µ⇤) = 1 > 0, fxx(x
⇤, µ⇤) = 1 > 0.

These satisfy the conditions of Theorem 6.9, so we do indeed have a fold bifurcation at µ⇤ = 0,
with the “upper” fixed point a source, and the “lower” fixed point a sink.

1



Nicholas Camacho Ordinary Di↵erential Equations — Homework 11 November 27, 2017

2. Show that the system of ODEs


ẋ1

ẋ2

�
=


x2

(2µ� 4x2
1)x2 � x1

�

(equivalent to the second order scalar ODE ẍ1 + (4x2
1 � 2µ)ẋ1 + x1 = 0) has a supercritical Hopf

bifurcation at µ⇤ = 0 by checking the conditions of Theorem 6.13 of the class notes.

Solution:

Let f(x, µ) = (f1(x, µ), f2(x, µ)) = (ẋ1, ẋ2) and let x⇤ = [ 00 ]. Then

f(x⇤, µ⇤) =


0
0

�
and Dxf(x

⇤, µ⇤) =


0 1

�8x1x2 � 1 2µ� 4x2
1

�����
([ 00 ],0)

=


0 1
�1 0

�

so the first two conditions of the Theorem are satisfied, with ! = �1. Now,

a = @2
µx1

f1(x
⇤, µ⇤) + @2

µx2
f2(x

⇤, µ⇤)

= 0 + 2 6= 0

b = 0 + 0 + 0� 8 +
1

�1

✓
(0)(0 + 0)� (�8x⇤

1)(�1x⇤
2 + 0)� (0)(�8x⇤

2)� (0)(0)

◆

= �8 6= 0,

and so the last two conditions of the Theorem are satisfied.

2
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3. Consider the Lorenz equations 2

4
ẋ
ẏ
ż

3

5 =

2

4
� · (y � x)
rx� y � xz
�bz + xy

3

5

with parameters � = 10, b = 8/3, r, and initial conditions
2

4
x(0)
y(0)
z(0)

3

5 =

2

4
�8
8

r � 1

3

5 .

Using the numerical integration method given by the method of Kutta RK4 (see pp. 67-68 of the class
notes) with a constant stepsize h = 0.004, plot in di↵erent plots the numerical approximations to the
solution (x(t), y(t), z(t)) in phase space R3 (using for example the Matlab command plot3) for t 2
[0, 120] and the following 8 di↵erent values of the parameter r: r = 1, 14, 24, 24.2, 28, 100, 102, 400.
Solution:

Code:

Plots:

Figure 1: r = 1 Figure 2: r = 14 Figure 3: r = 24 Figure 4: r = 24.2

Figure 5: r = 28 Figure 6: r = 100 Figure 7: r = 102 Figure 8: r = 400
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