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1 Adjudication of adjunctions

1.1 In the beginning

Definition 1. An object a 2 Ob(C) is initial if for each b 2 Ob(C) there is a unique morphism a ! b. An
object z 2 Ob(C) is final if it is initial in Cop.

Since final objects are dual by a di↵erent exercise, we’ll focus on initial objects.

1. Prove that initial objects are uniquely determined up to isomorphism when they exist.

Proof. Let a, a0 2 Ob(C) be initial. Then there exists unique morphisms a
f�! a0 and a0

g�! a. However,

the identity morphism a
1a�! a is the unique morphism from a to itself, and so g � f = 1a. Similarly,

f � g = 1a0 , and so a ⇠= a0.

2. Show that 0 is both initial and final in ModR.

Proof. For any m 2 Ob(ModR) any morphism f 2 HomModR(0,m) is a group homomorphism, and so
the only map we have is f : 0 7! 0. Similarly, 0 7! 0 is the only map in HomModR(m, 0).

3. If C is a category then prove that there is a category C̃ uniquely determined up to equivalence of
categories by the properties:

(a) C̃ contains an initial object

(b) There is a canonical functor C ! C̃ which is an initial object in the category of functors from C
to categories D containing initial objects.

Proof. First, existence of C̃: Define a category C̃ which has the same objects and morphisms as C and
add an object X such that HomC(X,X) = {1C} and for all Y 2 Ob(C̃) di↵erent from X, HomC(X,Y )
is a set with cardinality equal to 1. By construction, C is a category with an initial object X.

Let Catin be the category of (small) categories containing initial objects, where we require that
morphisms send initial objects to initial objects. Let f : C ! C̃ be the inclusion functor. We want to
show that f is an initial object in C # Catin.1.

C D

C̃

8g

f

9!h (up to nat. iso.)

So, let g : C ! D be any object in C # Catin with D 2 Ob(D) initial. Then define h : C̃ ! D by the
rules: h = g for all objects and morphisms in C, h(X) = D, and let h(↵ : X ! (�)) = h(↵) : D ! h(�)
be the unique map in D from D to (�). Then h � f = g by construction.

C D

C̃

8g

f

h

h̃

1
Here, we only require that a morphism from an initial object in C # Catin to another object in C # Catin is unique up to

natural isomorphism.
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If h̃ : C̃ ! D is another morphism in C # Catin so that h̃ � f = g, then h = h̃ on C. Suppose h̃(X) = D̃,
where D̃ is an initial object in D. Let ↵ : D

⇠�! D̃ be an isomorphism in D (since initial objects are
unique up to isomorphism). Then define a natural transformation ⌘ : h =) h̃ whose components
⌘Y : h(Y ) ! h̃(Y ) are the identity for all Y 2 Ob(C). For h(X) = D, let ⌘X = ↵. This makes ⌘ a
natural isomorphism, as the reader can check. Hence h ⇠= h̃.

Now, uniqueness of C̃. Suppose there exists ˜̃
C in Ob(Catin) and a functor f̃ : C ! ˜̃

C which is an

initial object in C # Catin. Since both f : C ! C̃ and f̃ : C ! ˜̃
C are initial in C # Catin, there exists

unique functors (again, up to natural isomorphism) F : C̃ � ˜̃
C : G so that F � f = f̃ and G � f̃ = f .

C
˜̃
C

C̃

f̃

f
G

F

Consider the functor GF : C̃ ! C̃. We have G � F � f = G � f̃ = f . But since f is initial in C # Catin
then 1C̃ is the unique morphism (up to natural isomorphism) for which 1C̃ � f = f . Hence GF ⇠= 1C̃.

C

˜̃
C

˜̃
C C̃ C̃

f̃

f̃ f

f

1 ˜̃
C

G

F

1C̃

Similarly, the functor FG is such that F � G � f̃ = F � f = f̃ , and so FG ⇠= 1 ˜̃
C
. So C̃ and ˜̃

C are
equivalent categories, completing the proof.

1.2 Fermenation above the firmament

Let’s formalize the last part of the last problem a bit more.

Definition 2. If C is a category and x 2 Ob(C) then the overcategory C x whose objects are arrows

Ob(C # x) = {y ! x : y 2 Ob(C)}

Similarly, the undercategory satisfies

Ob(x # C) = {x ! y : y 2 Ob(C)}

In both cases, morphisms are commutative diagrams. If f : C ! D is a functor then there are categories
x # f consisting of objects y ! f(x) and f # x consisting of objects f(x) ! y. In these cases a map is one
of the form f(a : x ! x0).

1. Check that overcategories and undercategories are categories.

Solution: For any object (y ! x) 2 Ob(C # x), the identity morphism (1y : y ! y) give an an
identity morphism in HomC#x(y ! x, y ! x):

y x

y

1y

Similarly, for any object (x ! y) 2 Ob(x # C), the identity morphism (1x : x ! x) gives an an identity
morphism in Homx#C(x ! y, x ! y):

x y

x

1x
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Let ↵ : y ! x,� : w ! x, � : z ! x, � : v ! x 2 Ob(C # x). Given morphisms f : y ! w, g : w ! z, h :
z ! v, we have composition defined by

y x

w

↵

f
�

�
w x

z

�

g
�

=

y x

w

z

↵

f

g

�
=

y x

z

↵

g�f
�

Which is well defined since the commutativity of the left-hand side diagrams and associativity in C
gives � � (g � f) = (� � g) � f = � � f = ↵. We then get associative composition in Ob(C # x):

0

BB@

y x

w

↵

f
�

�
w x

z

�

g
�

1

CCA �
z x

v

�

h
�

=

y x

z

↵

g�f
�

�
z x

v

�

h
�

=

y x

v

↵

h�g�f
�

=

y x

w

↵

f
�

�
w x

v

�

h�g
�

=

y x

w

↵

f
�

�

0

BB@
w x

z

�

g
�

�
z x

v

�

h
�

1

CCA

Showing that composition is associative in x # C is very similar.
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2. Suppose F is left adjoint to G. Prove that this is equivalent to the statement that the unit and counit
maps

1 ! GF and FG ! 1

are non-degenerate, i.e. the compositions

G ! GFG ! G and F ! FGF ! F

are both identity natural transformations.

Proof. ()) Let F : C � D : G be adjoint functors, i.e., there is a natural isomorphism

 x,y : HomD(F (x), y) =) HomC(x,G(y))

for each x 2 Ob(C) and each y 2 Ob(D). Let

⌘ : 1C =) GF and ✏ : FG =) 1D

be the unit and counit maps of the adjunction, i.e.,

⌘x =  x,F (x)(1F (x)) and ✏y =  �1

G(y),y
(1G(y))

for each x 2 Ob(C) and each y 2 Ob(D). Then by whiskering ⌘ with G and also G with ⌘, we get
natural transformations

⌘G : (1C �G) =) (GF �G) and G✏ : (G � FG) =) (G � 1D).

i.e.,
⌘G : G =) GFG and G✏ : GFG =) G.

For y 2 Ob(D), G✏ � ⌘G gives a composition in C:

G(y) GFG(y) G(y)
⌘G(y)

G(✏y)�⌘G(y)

G(✏y)

We want to show G(✏y) � ⌘G(y) = 1G(y). The naturality of  gives a commutative diagram for f : c0 !
c 2 HomCop(c0, c) and g : d ! d0 2 HomD(d, d0):

HomD(F (c), d) HomC(c,G(d))

HomD(F (c0), d0) HomC(c0, G(d0))

 c,d

HomD(F (f),g) HomC(f,G(g))

 c0,d0

where the maps HomD(F (f), g) and HomC(f,G(g)) are respectively defined

(h : F (c) ! d) 7�! g � h � F (f) : F (c0) ! F (c) ! d ! d0

(k : c ! G(d)) 7�! G(g) � k � f : c0 ! c ! G(d) ! G(d0)

So in particular, if we make the substitutions

f = 1G(y) : G(y) �! G(y) and g = ✏y : FG(y) �! y

we get the commuting diagram

HomD(FG(y), FG(y)) HomC(G(y), GFG(y))

HomD(FG(y), y) HomC(G(y), G(y))

 G(y),FG(y)

HomD(F (1G(y)),✏y) HomC(1G(y),G(✏y))

 G(y),y
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So, we have

HomC(1G(y), G(✏y))
�
 G(y),FG(y)(1FG(y))

�
=  G(y),y

�
HomC(F (1G(y)), ✏y)(1FG(y))

�

G(✏y) � G(y),FG(y)(1FG(y)) � 1G(y) =  G(y),y

�
✏y � 1FG(y) � F (1G(y))

�

G(✏y) � ⌘G(y) =  G(y),y(✏y)

=  G(y),y

⇣
 �1

G(y),y
(1G(y))

⌘

= 1G(y),

as desired. Let’s do it all again the other way around. This time, we whisker together F with ⌘ and
also ✏ with F to obtain natural transformations

F⌘ : F =) FGF and ✏F : FGF =) F.

For x 2 Ob(C), ✏F.F⌘ gives a composition in D

F (x) FGF (x) F (x)
F (⌘x)

✏F (x)�F (⌘x)

✏F (x)

We want to show ✏F (x) � F (⌘x) = 1F (x). As before, we make substitutions

f = ⌘x : x ! GF (x) and g = 1F (x) : F (x) ! F (x)

to get a commuting diagram

HomD(FGF (x), F (x)) HomC(GF (x), GF (x))

HomD(F (x), F (x)) HomC(x,GF (x))

 
�1
GF (x),F (x)

HomD(F (⌘x),1F (x)) HomC(⌘x,G(1F (x))

 
�1
x,F (x)

So, we have

HomD(F (⌘x), 1F (x))
⇣
 �1

GF (x),F (x)
(1GF (x))

⌘
=  �1

x,F (x)

�
HomC(⌘x, G(1F (x)))(1GF (x))

�

1F (x) � �1

GF (x),F (x)
(1GF (x)) � F (⌘x) =  

�1

x,F (x)

�
G(1F (x)) � 1GF (x) � ⌘x

�

✏F (x) � F (⌘x) =  
�1

x,F (x)
(⌘x)

=  �1

x,F (x)

�
 x,F (x)(1F (x))

�

= 1F (x)

(() Now we assume we have unit and counit maps and the equations

G(✏y) � ⌘G(y) = 1G(y) and ✏F (x) � F (⌘x) = 1F (x).

Then we define functors

 x,y : HomD(F (x), y) () HomC(x,G(y)) :  �1

x,y

in the obvious ways:

(F (x) y)h  x,y7���! (G(h) � ⌘x),
x GF (x)

G(y)

⌘x

G(h)�⌘x
G(h)
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and

(x G(y))k
 

�1
x,y7���! (✏y � F (k)),

F (x) FG(y)

y

F (k)

✏y�F (k)

✏y

These maps are inverses of each other:

 �1

x,y
( x,y(h)) =  

�1

x,y
(G(h) � ⌘x) = ✏y � F (G(h) � ⌘x) = ✏y � F (G(h)) � F (⌘x)

= h � ✏F (x) � F (⌘x) (⇤)
= h,

 x,y( 
�1

x,y
(k)) =  x,y(✏y � F (k)) = G(✏y � F (k)) � ⌘x = G(✏y) �GF (k) � ⌘x

= G(✏y) � ⌘G(y) � k (⇤⇤)
= k

where (⇤) and (⇤⇤) come from the commutative diagrams

FGF (x) FG(y)

F (x) y

FG(h)

✏F (x) ✏y

h

and

x G(y)

GF (x) GFG(y)

k

⌘x ⌘G(y)

GF (k)

.

We also need to check that  x,y is natural, i.e., for (f : x0 ! x) 2 Cop and (g : y ! y0) 2 D, the
following diagram commutes

HomD(F (x), y) HomC(x,G(y))

HomD(F (x0), y0) HomC(x0, G(y0))

 x,y

HomD(F (f),g) HomC(f,G(g))

 x0,y0

So let h 2 HomD(F (x), y). Then

HomC(f,G(g))( x,y(h)) = HomC(f,G(g))(G(h) � ⌘x)
= G(g) �G(h) � ⌘x � f

and on the other hand

 x0,y0(HomD(F (f), g))(h)) =  x0,y0(g � h � F (f))

= G(g � h � F (f)) � ⌘x0

= G(g) �G(h) �GF (f)) � ⌘x0

= G(g) �G(h) � ⌘x � f,

where the last equality comes from the commutative diagram

x0 x

GF (x0) GF (x)

f

⌘x0 ⌘x

GF (f)

.
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3. Suppose F : C ! D and g : D ! C. Observe that g determines a functor

G⇤ : F # x ! x # F

defined so that G⇤(F (x) ! y) = GF (x) ! G(y), which makes sense because GF (x) 2 Ob(C). The
unit ⌘x : x ! GF (x) is called universal if it is initial. In long form: for each map x ! G(z) there
exists a unique map F (x) ! z so that G⇤(F (x) ! z) commutes. Show that if F is left adjoint to G
then ⌘x : x ! GF (x) is universal. BONUS: prove the converse.

Proof. We first show the existence of a map � : F (x) ! z such that the diagram commutes:

x GF (x)

G(z)

⌘x

↵

G⇤(�)

Applying the functor F to the morphism ↵ : x ! G(z), we get a map F (↵) : F (x) ! FG(z). But we
also have the map ✏z : FG(z) ! z, and so it seems a good choice to define � = ✏z � F (↵).

F (x)

FG(z) z

F (↵)
�

✏z

Then G⇤(�) = G(✏z) � GF (↵). Since ⌘ is a natural transformation between 1C and GF , we get the
commutative diagram

x GF (x)

G(z) GFG(z)

⌘x

↵ GF (↵)

⌘G(z)

Considering G(✏z), we get

x GF (x)

G(z) GFG(z)

⌘x

↵ G
⇤(
�
)

GF (↵)

⌘G(z)

G(✏z)

Since F is left adjoint to G, we saw in the previous problem that G(✏z) � ⌘G(z) = 1G(z). So

G⇤(�) � ⌘x = G(✏z) �GF (↵) � ⌘x = G(✏z) � ⌘G(z) � ↵ = ↵,

as desired. Now, uniqueness: Suppose there were another map �̃ : F (x) ! z making the diagram
commute

x GF (x)

G(z)

⌘x

↵

G⇤(
�)

G⇤(
�̃)

Applying F to the equality G⇤(�) � ⌘x = ↵ = G⇤(�̃) � ⌘x, we get

FG(�) � F (⌘x) = F (↵) = FG(�̃) � F (⌘x),
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making the diagram commute:

F (x) FGF (x)

FG(z)

F (⌘x)

F (↵)

F
G
(�
)

F
G
(�̃

)

Since ✏ is a natural transformation from FG to 1D, we get the commutative diagrams

F (x) FGF (x)

z FG(z)

�

✏F (x)

FG(�)

✏z

F (x) FGF (x)

z FG(z)

�̃

✏F (x)

FG(�̃)

✏z

Putting the last three diagrams together, we have

F (x) FGF (x)

z FG(z)

F (⌘x)

F (↵)
��̃

✏F (x)

FG(�̃)

FG(�)

✏z

Since F is left adjoint to G, we proved in the last problem that ✏F (x) � F (⌘x) = 1F (x). So

� = � � ✏F (x) � F (⌘x) = ✏z � FG(�) � F (⌘x) = ✏z � FG(�̃) � F (⌘x)

= �̃ � ✏F (x) � F (⌘x)

= �̃
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1.3 Adjunctions

1. There is a forgetful functor from R-modules to sets. What are the left and right adjoints of this functor?
Do they always exist? Prove or disprove.

2. If f1 : A ! B and f2 : B ! C have right adjoints g1 : B ! A and g2 : C ! B respectively. Then prove
that f2 � f1 has right adjoint g1 � g2.

Proof. The hypotheses give natural isomorphisms

 x,y : HomB(f1(x), y)
⇠�! HomA(x, g1(y)) 8x 2 ObA, 8y 2 ObB

�w,z : HomC(f2(w), z)
⇠�! HomB(w, g2(z)) 8w 2 ObB, 8z 2 ObC

For x 2 ObA and z 2 ObC, set g2(z) = y in  x,y and f1(x) = w in �w,z. Then

 x,g2(z)
: HomB(f1(x), g2(z))

⇠�! HomA(x, g1g2(z))

�f1(x),z
: HomC(f2f1(x), z)

⇠�! HomB(f1(x), g2(z))

So then the map ⌅x,z :=  x,g2(z)
��f1(x),z

is a bijection. To show that the isomorphism is natural, we
check for ↵ : x0 ! x in Cop and � : z ! z0 in A, the following diagram commutes

HomC(f2f1(x), z) HomA(x, g1g2(z))

HomC(f2f1(x0), z0) HomA(x0, g1g2(z0))

⌅x,z

HomC(f1f2(↵),�) HomA(↵,g1g2(�))

⌅x0,z0

This will essentially follow since ⌅ is defined in terms of other natural isomorphisms:

HomC(f2f1(x), z) HomB(f1(x), g2(z)) HomA(x, g1g2(z))

HomC(f2f1(x0), z0) HomB(f1(x0), g2(z0)) HomA(x0, g1g2(z0))

�f1(x),z

⌅x,z

HomC(f2f1(↵),�)

 x,g2(z)

HomB(f1(↵),g2(�)) HomA(↵,g1g2(�))

�f1(x0),z0

⌅x0,z0

 x0,g2(z0)

Let � 2 HomC(f2f1(x), z). Then

HomA(↵, g1g2(�)) (⌅x,z(�)) = HomA(↵, g1g2(�))
�
 x,g2(z)

(�f1(x),z
(�))

�

=  x0,g2(z0)

�
HomB(f1(↵), g2(�))(�f1(x),z

(�)))
�

=  x0,g2(z0)

�
�f1(x

0),z0(HomC(f1, f2(↵),�)(�))
�

= ⌅x0,z0 (HomC(f1, f2(↵),�)(�)) ,

showing naturality. To show that ⌅�1 = ��1 �  �1 is natural is very similar. So f2 � f1 has right
adjoint g1 � g2.
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3. In the category of, say, sets prove:

Hom(
a

i

Ci, A) ⇠=
Y

i

Hom(Ci, A) and Hom(A,
Y

i

Ci) ⇠=
Y

i

Hom(A,Ci)

Find criteria which allows you to conclude that this holds in a general setting.

Proof. The coproduct
`

i
Ci comes equipped with maps {↵j : Cj !

`
i
Ci}. Define a map x

� : Hom(
a

i

Ci, A) !
Y

i

Hom(Ci, A) by f 7! {fi := f � ↵i}i.

If {gi}i 2
Q

i
Hom(Ci, A), then there exists a unique map g :

`
i
Ci ! A such that gi = g � ↵i for all

i. Define a map

 :
Y

i

Hom(Ci, A) ! Hom(
a

i

Ci, A) by {gi}i 7! g.

Then
 �(f) =  ({f � ↵}) = f̃ ,

where f̃ is the unique map so that fi = f̃ �↵ for all i. Since also fi = f �↵ for all i, then f = f̃ , giving
that  �(f) = f . Conversely,

� ({gi}i) = �(g) = {g̃i = g � ↵i}i.

But g is defined so that gi = g � ↵i, and so g̃i = gi for all i, i.e., � ({gi}i) = {gi}i. Therefore we’ve
shown the first isomorphism. The second isomorphism is very similar, and is left as an exercise for the
reader.

4. Let R be a commutative ring, S ⇢ R a multiplicative set. There is a localization ` : R ! S�1R. Prove
that for M an R-module `⇤(M) = S�1R⌦R M is a S�1R-module find the right adjoint of `⇤.

5. Define the category of abstract simplicial complexes. Characterize pushouts in this category.
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2 In Soviet Russia: if you know Yoneda then

a yes knows you

2.1 The theme

Definition 3. Let C be a category. The category of presheaves on C is the category of contravariant functors
PSh(C) = Fun(Cop, Set) from C to sets.

1. For each object a 2 C prove that there is a functor Ra 2 Ob(PSh(C)) which is determined by the
assignment

Ra(b) = HomC(b, a)

Proof. Let a 2 Ob(C). We’ve defined how the map Ra acts on objects of Cop, so we need to define
how Ra acts on morphisms and show that these definitions make Ra into a functor, i.e., an object in
PSh(C). Given a morphism f : x ! y in C, we want to define a morphism in Set:

Ra(f) : HomC(y, a) ! HomC(x, a).

Define Ra(f) = f⇤
a
, where f⇤

a
is pre-composition with f , i.e. if ↵ 2 HomC(y, a), then f⇤

a
(↵) = ↵ � f .

x y

a

f

f
⇤
(↵)=↵�f

↵

Now, if g : y ! z is another morphism in C, then we have (g � f)⇤
a
: HomC(z, a) ! HomC(x, a), and so

if � 2 HomC(z, a), then

(g � f)⇤
a
(�) = � � g � f = f⇤

a
(� � g) = f⇤

a
(g⇤

a
(�)) = (f⇤

a
� g⇤

a
)(�).

Moreover, if 1x : x ! x is the identity morphism for x 2 Ob(C), then for � 2 HomC(x, a)

(1x)
⇤
a
(�) = � � 1x = � = 1HomC(x,a)(�) = 1(1x)⇤a(�).

Hence Ra is a contravariant functor.

2. Show that this extends to a functor:  : C ! PSh(C)

Proof. Define the map  : C ! PSh(C) by a 7! Ra for a 2 Ob(C). For a morphism h : a ! b in C, we
need to define a morphism in PSh(C),

 h : Ra =) Rb,

i.e., a natural transformation between the functors Ra and Rb. Define  h = h⇤, where h⇤ is post-
composition with h. For y 2 Ob(C), the component of h⇤ at y is the map hy

⇤ : HomC(y, a) ! HomC(y, b)
given by ↵ 7! h � ↵.

y a

b

↵

h
y
⇤(↵)=h�↵

h

To check that this definition makes  h a natural transformation, we need to show that for a morphism
f : x ! y in C, the following diagram in Set commutes:

HomC(y, a) HomC(x, a)

HomC(y, b) HomC(x, b)

Ra(f)=f
⇤
a

 hy=h
y
⇤  hx=h

x
⇤

Rb(f)=f
⇤
b

11



For ↵ 2 HomC(y, a), we have

hx

⇤(f
⇤
a
(↵)) = hx

⇤(↵ � f) = h � ↵ � f = f⇤
b
(h � ↵) = f⇤

b
(hy

⇤(↵)).

Hence  h is indeed a morphism in PSh(C) (i.e., a natural transformation from Ra to Rb). Suppose
now that g : b ! c is another morphism in C. We want to show  (g � h) =  g �  h, i.e. that

(gh)y⇤ : Ra =) Rc and gy⇤ � hy

⇤ : Ra =) Rb =) Rc

are the same natural transformation for all y 2 Ob(C).

HomC(y, a) HomC(y, b) HomC(y, c)
h
y
⇤

(gh)
y
⇤

g
y
⇤

For ↵ : y ! a in HomC(y, a), we have

(gh)y⇤(↵) = g � h � ↵ = gy⇤ (h � ↵) = (gy⇤ � hy

⇤)(↵),

as desired. Finally, if 1a : a ! a is an identity morphism in C, then  1a = (1a)⇤ is the identity natural
transformation on the functor Ra: For y 2 Ob(C) and ↵ 2 HomC(y, a)

(1a)
y

⇤(↵) = 1a � ↵ = ↵ = 1HomC(y,a)(↵) = 1Ra(y)
(↵),

altogether showing that  is a covariant functor.

3. Prove that  is full and faithful. Is  an equivalence?

Proof. Fix a, b 2 Ob(C). We show that the map

 : HomC(a, b) ! HomPSh(C)(Ra, Rb)

is both surjective (full) and injective (faithful). First, injectivity: Let h, g 2 HomC(a, b) and suppose
h⇤ =  h =  g = g⇤. Then in particular, their components at a are the same: ha

⇤ = ga⇤ : HomC(a, a) !
HomC(a, b). So

h = h � 1a = ha

⇤(1a) = ga⇤(1a) = g � 1a = g,

showing that  is faithful.

Now suppose ⌘ 2 HomPSh(C)(Ra, Rb). We want to find h 2 HomC(a, b) so that h⇤ =  h = ⌘.
Since ⌘ has a component at a, ⌘a : HomC(a, a) ! HomC(a, b), a natural (ha!) choice for h seems to
be h := ⌘a(1a). To show ⌘ = h⇤, we show their components are equal, ⌘y = hy

⇤, for any y 2 Ob(C).

HomC(a, a) HomC(y, a)

HomC(a, b) HomC(y, b)

↵
⇤

⌘a h
a
⇤ ⌘y h

y
⇤

↵
⇤

Then
ha

⇤(↵) = h � ↵ = ⌘a(1a) � ↵ = ↵⇤(⌘a(1a)) = ⌘y(↵
⇤(1a)) = ⌘y(1a � ↵) = ⌘y(↵),

and so h⇤ = ⌘, showing that  is full.

12



4. Show that if F is any presheaf on C then

HomPSh(C)(Ra, F ) ⇠= F (a)

Proof. Both HomPSh(C)(Ra, F ) and F (a) are objects in the category Set, where an isomorphism is a
bijection of sets. Define set maps

'F : Hom(Ra, F ) �! F (a)

⌘ 7�! ⌘a(1a),

'�1

F
: F (a) �! Hom(Ra, F )

s 7�! ✏ = {✏x : HomC(x, a) ! F (x), g 7! F (g)(s)}x2C.

We check that ✏ (in our definition of '�1

F
) is indeed a natural transformation. So if f : x ! y is a

morphism in C, we check that the diagram commutes:

F (y) F (x)

HomC(y, a) HomC(x, a)

Ff

f
⇤
a

✏y ✏x

Let g 2 HomC(y, a). Then

Ff(✏y(g)) = Ff(F (g)(s)) = F (g � f)(s)

and on the other hand
✏x(f

⇤
a
(g)) = ✏x(g � f) = F (g � f)(s).

So ⌘ is a natural transformation. Now,

'�1

F
'F (⌘) = '�1

F
(⌘a(1a)) =: �.

Then if h : x ! a is a morphism in C, we have the commutative diagram

F (a) F (x)

HomC(a, a) HomC(x, a)

Fh

h
⇤
a

⌘a ⌘x

So,
�x(h) = F (h)(⌘a(1a)) = ⌘x(h

⇤
a
(1a)) = ⌘x(1a � h) = ⌘x(h),

which means '�1

F
'F (⌘) = ⌘. Moreover,

'F'
�1

F
(s) = 'F (✏) = ✏a(1a) = F (1a)(s) = 1F (a)(s) = s,

so 'F is a bijection.

13



5. What does it mean for the isomorphism in the last problem to be natural?

Solution:

It means that the bijection 'F : HomPSh(C)(Ra, F )
⇠�! F (a) extends to a natural isomorphism

' : HomPSh(C)(Ra,�) =) (�)(a), where the functor (�) : PSh(C) ! Set maps a presheaf F 7! F (a),
and if ⌘ : F =) G is a morphism in PSh(C), then (⌘)(a) : F (a) ! G(a) is the map ⌘a. So in other
words, for all morphisms ⌘ : F =) G in PSh(C), we have a commutative diagram,

F (a) F (b)

Hom(Ra, F ) Hom(Ra, G)

⌘(a)=⌘a

Hom(Ra,⌘)

'F 'G

where Hom(Ra, ⌘) is the map ⌘⇤, i.e., ✏ 7! ⌘⇤(✏) = ⌘✏ := {✏̃b : Hom(b, a) ! G(b),↵ 7! ⌘b✏b(↵)}b2C.

6. Check that this isomorphism is natural.

Solution:

Let ✏ 2 Hom(Ra, F ). Then
⌘a('F (✏)) = ⌘a(✏a(1a)),

and on the other hand,

'G (Hom(Ra, ⌘)(✏)) = 'G(⌘✏) = (⌘✏)a(1a) = ⌘a(✏a(1a)).

7. Prove that:
Hom(Ra, Rb) ⇠= Hom(a, b)

Proof. We did all the work previously. Setting Rb = F in problem 4 of this section, we get

Hom(Ra, Rb) ⇠= Rb(a) = Hom(a, b).

If we think of Hom(X,A) as the set of ways in which A is related to X in C then to understand A up to
isomorphism it su�ces to understand the sets Hom(X,A) for all X 2 Ob(C).

14



2.2 Variations on the theme, i.e. perversions

Suppose A is a finite dimensional k-algebra. Decompose 1A 2 A as a sum:

1A =
X

x2S
1x

where
1x1x = �x,y1x

The elements 1x are called mutually orthogonal idempotents.

1. Show that this data is equivalent to a direct sum decomposition of A:

A ⇠=
M

x,y

1xA1y

2. Define a category A with objects S and morphisms:

HomA(x, y) = 1yA1x

Prove that this is a category.

3. Show that there is a canonical correspondence between right A-modules and presheaves on A. (Here,
a presheaf on A is a contravariant functor F : A ! Abelian Groups, not F : A ! Set. )

4. Give an example of a presheaf which is not of the form Ra.

5. (BONUS) Under this correspondence projective modules correspond to direct sums of functors Ra.

15



3 Exercises in naturality are important not punny

3.1 When duality is spun from a natural web

Denote the category of finite dimensional vector spaces over a field k by V ectk.

1. Is k an initial or final object in V ectk?

Proof. Neither. There are n ways to include k into k�n , and n ways to project k�n onto k. We also
proved previously that the 0 vector space is both initial and final in k�Mod = V ectk, and that initial
and final objects are unique up to isomorphism, but k 6⇠= 0.

2. (BONUS) Prove that k is uniquely determined up to isomorphism by the property of being the unit
with respect to the tensor product

⌦k : V ectk ⇥ V ectk ! V ectk.

3. Prove that for any two vector spaces V and W

HomV ectk(V,W ) 2 V ectk

Proof. The set of linear transformations from V toW is an additive abelian group. For f 2 HomV ectk(V,W )
and � 2 k, we can define a vector space structure on HomV ectk(V,W ) by � · f := (�f : v 7! �f(v)).
That this gives a well-defined k-vector space structure on HomV ectk(V,W ) is left as an exercise for the
reader.

4. Prove that the (contravariant) Yoneda functor: Lk : V ectk ! V ectk determined by

Lk(V ) = HomV ectk(V, k)

is naturally isomorphic to its own inverse:

Lk � Lk

⇠�! 1V ectk

Proof. On a morphism f , the Yondeda functor is given by Lk(f) = f⇤.

V Hom(V, k) Hom(Hom(V, k), k)

W Hom(W,k) Hom(Hom(W,k), k)

f f
⇤⇤

f
⇤Lk Lk

Then LkLk(f) = f⇤⇤, where

f⇤⇤(↵ : Hom(V, k) ! k) 7�! (↵f⇤ : Hom(W,k) ! k, g 7! ↵(g � f))

Define a natural transformation ⌘ : 1V ectk =) LkLk with components

⌘V : V ! LkLk(V ), v 7! (evalv : Hom(V, k) ! k, g 7! g(v))

Each component is injective: If evalv ⌘ 0, then in particular g(v) = 0 for all g 2 Hom(V, k) and so
v = 0. Since V and Hom(Hom(V, k)) have the same dimension and ⌘V is injective, then ⌘V is an
isomorphism. Now, naturality.

V W

Hom(Hom(V, k), k) Hom(Hom(W,k), k)

f

⌘V ⌘W

f
⇤⇤

16



Let v 2 V . Then

⌘W (f(v)) = evalf(v) and f⇤⇤(⌘V (v)) = f⇤⇤(evalv) = evalvf
⇤.

Now if g 2 Hom(W,k), then

evalf(v)(g) = g(f(v)) and (evalvf
⇤)(g) = evalv(g � f) = g(f(v)).

Hence evalf(v) = (evalvf⇤) and so ⌘ is natural.

5. Prove that for every finite dimensional vector space V

HomV ectk(V, k) ⇠= V

Proof. Let {v1, . . . , vn} be a basis for V and {v⇤
1
, . . . , v⇤

n
} its dual basis. The map ' : V ! Hom(V, k), vi 7!

v⇤
i
is an isomorphism.

6. Prove that Lk is not naturally isomorphic to identity.

Proof. The identity functor is covariant and Lk is contravariant, hence these functors cannot be iso-
morphic.

3.2 The opposite of my opposite is your friend

1. Show that C 7! Cop determines a covariant functor from the category of small categories to itself.

Proof. Let F : Cat ! Cat be the map given by C 7! Cop. For a (covariant) functor f : C ! D in
Cat, let F (f) : Cop ! Dop be the functor given by x 7! f(x) for objects x 2 C. If ↵ is a morphism
in C, write ↵op for its corresponding morphism in Cop; similarly for morphisms in D. Then define
Ff(↵op) = (f(↵))op. For cleaner notation, we write f(↵)op in place of (f(↵))op.

Let g : D ! E be another (covariant) functor in Cat. Then

F (g � f)(↵op) = (g � f)(↵)op.

On the other hand,

(Fg � Ff)(↵op) = Fg(f(↵)op) = g(f(↵))op = (g � f)(↵)op

Moreover, if 1C : C ! C is an identity functor and ↵ is a morphism in C, then

F1C(↵
op) = 1C(↵)

op = ↵op = 1Cop(↵op) = 1F (C)(↵
op),

and so F is a covariant functor.

2. Show that (Cop)op ⇠= C

Proof. If ↵ is a morphism in C, then write ↵op for its corresponding morphism in Cop.

Let F : C ! (Cop)op be the functor which is the identity on objects, and ↵ 7! (↵op)op on morphisms.
Let G : (Cop)op ! C be the functor which is the identity on objects, and (↵op)op 7! ↵. This last
definition makes sense since if � is a morphism in (Cop)op, then there exists a morphism � in Cop so
that �op = �. Similarly, there exists a morphism ↵ in C so that ↵op = �. So � = �op = (↵op)op.

Then FG and GF are equal to the identity functors. On objects, this is clear. On morphisms,
FG((↵op)op) = F (↵) = (↵op)op and GF (↵) = G((↵op)op) = ↵. Hence (Cop)op ⇠= C.
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Algebraic Topology

Homework 2

Name: 16977

1 You may recall the homotopy category

Fix a ring R. Recall that a chain complex C⇤ = {dC
k

: Ck ! Ck�1}k2Z is a collection of maps between
R-modules Ck which satisfy dC

k
dC
k+1 = 0 for all k 2 Z. A map f : C⇤ ! D⇤ between chain complexes of

degree |f | = n is a collection of R-module maps f = {fk : Ck ! Dn+k}k2Z. Denote the collection of maps
by Hom(C⇤, D⇤).

1. Show that this determines a category, dgCH.

Proof. The objects of this category dgCH are chain complexes and morphisms are maps between chain
complexes with degree as defined above. If f = {fk : Ck ! Dn+k}k2Z and g = {gk : Dk ! Em+k}k2Z
define composition in dgCH by the rule

g � f = {gn+k � fk : Ck ! Em+n+k}k2Z.

We need to check that for all C⇤ 2 Ob(dgCH), there exists 1C⇤ 2 Hom(C⇤, C⇤) so that f �1C⇤ = f and
1C⇤ � f = f (whenever the composition makes sense, of course), and that composition is associative.

Define 1 2 Hom(C⇤, C⇤) by 1C⇤ = {1Ck : Ck ! Ck}k2Z, where each 1Ck is the identity R-module
morphism. Then f � 1C⇤ = {1Ck � fk : Ck ! D0+n+k}k2Z = {fk : Ck ! Dnk}k2Z = f, and similarly,
1C⇤ � f = f (when f 2 Hom(D⇤, C⇤)).

Now let h = {hk : Ek ! F`+k}k2Z. Then

h � (g � f) = h � {gn+k � fk : Ck ! Em+n+k}k2Z
= {hm+n+k � gn+k � fk : Ck ! F`+m+n+k}k2Z
= {hm+k � gk : Dk ! F`+m+k}k2Z � f
= (h � g) � f.

2. Show that for all C⇤, D⇤ the abelian group Hom(C⇤, D⇤) is a chain complex in such a way that a map
f : C⇤ ! D⇤ in dgCh is a chain map if an only if it is a degree zero cycle.

Proof. For degree n maps in Hom(C⇤, D⇤), write Hom(C⇤, D⇤+n). Let f 2 Hom(C⇤, D⇤+n).

· · · Ck+1 Ck Ck�1 · · ·

· · · Dk+1+n Dk+n Dk�1+n · · ·

d
C
k+1

fk+1

d
C
k

fk fk�1

d
D
k+1+n d

D
k+n

For all n, define maps �n : Hom(C⇤, D⇤+n) ! Hom(C⇤, D⇤+n�1) by

�n : f 7�! {dD
k+n

fk + (�1)n+1fk�1d
C

k
}k2Z.

Now let |f | = 0. Then f is a chain map if and only if dD
k
fk = fk�1dCk for all k, if and only if

0 = {dD
k
fk � fk�1d

C

k
}k2Z = �0(f).

The last statement is what it means for f to be a cycle.
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3. Prove that cycles form a subcategory Z(dgCh).

Proof. Let Z(dgCh) have the same objects as dgCh, and for chain complexes C⇤, D⇤, let HomZ(dgCh)(C⇤, D⇤)
contain only cycles. We need to show that the composition of cycles is still a cycle:

Suppose f : C⇤ ! D⇤ and g : D⇤ ! E⇤ are cycles. Then1

0 = �f = dDf + (�1)|f |+1fdC =) �dDf = (�1)|f |+1fdC

0 = �g = dEg + (�1)|g|+1gdD =) dEg = (�1)|g|gdD

So

�(g � f) = dE(g � f) + (�1)|f |+|g|+1(g � f)dC

= (�1)|g|gdDf � (�1)|g|gdDf

= 0.

So the composition of cycles is a cycle.

Associativity of morphisms in Z(dgCh) is the same as that in dgCh, which we showed previously.
Since

�(1C⇤) = {dk � 1Ck � 1Ck�1dk}k2Z = {dk � dk}k2Z = 0,

then all identity morphisms are cycles and hence 1C⇤ 2 HomZ(dgCh)(C⇤, C⇤) for all C⇤. Moreover,
f � 1C⇤ = f and 1C⇤ � g = g in Z(dgCh) since we showed this in dgCh. Therefore, Z(dgCh) forms a
subcategory of dgCh.

4. Prove that homotopy of chain maps is the same as two cycles di↵ering by a boundary.

Proof. Suppose f, g 2 Hom(C⇤, D⇤+0) are chain maps and that H 2 Hom(C⇤, D⇤+1) is a homotopy
between f and g, i.e. f � g = dDH +HdC .

· · · Ck+1 Ck Ck�1 · · ·

· · · Dk+1 Dk Dk�1 · · ·

d
C
k+1

fk+1 gk+1

d
C
k

fk gk

Hk

fk�1 gk�1

Hk�1

d
D
k+1 d

D
k

Since
�(H) = dDH + (�1)1+1HdC = dDH +HdC = f � g,

then f and g di↵er by a boundary. Conversely, if f � g = �(H̃) for some H̃ 2 Hom(C⇤, D⇤+1), then
f � g = dDH̃ + H̃dC , so H̃ is a homotopy between f and g.

5. Prove that homotopy equivalence is an equivalence relation.

Proof. Reflexivity: If f 2 Hom(C⇤, D⇤), then 0 is a homotopy between f and itself since

dD0 + (�1)n+10dC = 0 = f � f.

Symmetry: If f ' g by H (so f � g = dDH +HdC), then �H is a homotopy between g and f , since

dD(�H) + (�H)dC = �dDH �HdC = �(f � g) = g � f.

Transitivity: If f ' g by H and g ' h by J , then

f � k = f � g + g � k = dDH +HdC + dDJ + JdC = dD(H + J) + (H + J)dC ,

so H + J is a homotopy between f and k.
1From now on, we drop the subscripts on � and on morphisms, since the computations hold for all indices.

2



6. Prove that homotopy classes of chain maps H0(dgCh) is a category. This is called the homotopy
category of chain complexes.

Proof. As before, the objects of H0(dgCh) are chain complexes, but now the morphisms are equivalence
classes of chain maps. Define [g] � [f ] = [g � f ]. If we can show this is well-defined, then associativity of
morphisms in this category follows from our previous work. Also, since 1C⇤ is a chain map, then [1C⇤ ]
is in H0(dgCh).

Before we show that our composition is well-defined, we need show that � is an antiderivation of
degree 1; that is, �(g � f) = (�g)f + (�1)|g|g(�f). For f : C⇤ ! D⇤ and g : D⇤ ! E⇤, we have

�f = dDf + (�1)|f |+1fdC =) �f � dDf = (�1)|f |+1fdC

�g = dEg + (�1)|g|+1gdD =) dEg = �g + (�1)|g|gdD

So

�(g � f) = dE(g � f) + (�1)|f |+|g|+1(g � f)dC

= (�g + (�1)|g|gdD)f + (�1)|g|g(�f � dDf)

= (�g)f + (�1)|g|gdDf + (�1)|g|g(�f)� (�1)|g|gdDf

= (�g)f + (�1)|g|g(�f),

as desired. Moreover, � is linear: Suppose h1, h2 : C⇤ ! D⇤ have the same degree. Then |h1 + h2| =
|h1| = |h2|, and we have

�(h1 + h2) = dD(h1 + h2) + (�1)|h1+h2|+1(h1 + h2)d
C

= dDh1 + dDh2 + (�1)|h1+h2|+1h1d
C + (�1)|h1+h2|+1h2d

C

=
⇣
dDh1 + (�1)|h1|+1h1d

C

⌘
+
⇣
dDh2 + (�1)|h2|+1h2d

C

⌘

= �(h1) + �(h2).

Now, suppose f1 'H f2 and g1 'J g2. We want to show that g1 � f1 ' g2 � f2. We now use the result
from problem 4, that a homotopy of chain maps is the same as two cycles di↵ering by a boundary, and
in particular, they di↵er by the boundary of their homotopy. In other words, we will use that

�H = f1 � f2 and �J = g1 � g2.

We claim that g1H + Jf2 is a homotopy between g2f1 and g2f2. Notice that �g1 = �f2 = 0 since g1
and f2 are chain maps. So

�(g1H + Jf2) = �(g1H) + �(Jf2)

= (�g1)H + (�1)|g1|g1(�H) + (�J)f2 + (�1)|J|J(�f2)

= g1(�H) + (�J)f2 (Since |g1| = 0)

= g1(f1 � f2) + (g1 � g2)f2

= g1f1 � g2f2.

So g1f1 ' g2f2 and so [g1] � [f1] = [g1 � f1] = [g2 � f2] = [g2] � [f2].
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2 You don’t flush after a Gaussian Elimination

1. Define the notion of subcomplex of a chain complex. Justify your answer in some way.

Solution:

A chain complex C⇤ is a subcomplex of another chain complex D⇤ if there exists an injective map
of chains ◆ : C⇤ ! D⇤. This definition makes sense since we can identify the image of C⇤ in D⇤ with
C⇤, and consider C⇤ as sitting inside of D⇤, hence C⇤ is a “subcomplex” of D⇤.

2. Prove the following useful lemma: Let K⇤ be a chain complex of R-modules containing a subcomplex
isomorphic to the top row below. If ' : B ! D is an isomorphism there is a homotopy equivalence
from K⇤ to a smaller complex containing the bottom row below.

A
B
�
C

D
�
E

F

A C E F

0

@ ·
↵

1

A

0

@' �

µ ⌘

1

A ⇣
· ✏

⌘

↵ ⌘�µ'
�1

� ✏

Proof. We want to show that the top row is homotopy equivalent to the bottom row. So we need to
define maps f1 : B � C � C : g1 and f2 : D � E � E : g2 such that

g1f1 ' 1B�C , g2f2 ' 1D�E and f1g1 ' 1C , f2g2 ' 1E .

Define f1 to be projection and g2 to be inclusion, and

f2 : D � E �! E, (d, e) 7�! �µ'�1(d) + e,

g1 : C �! B � C, c 7�! (�'�1�(c), c),

Now, f1g1 = 1C and f2g2 = 1E so certainly f1g1 ' 1C and f2g2 ' 1E . To show g1f1 ' 1B�C and
g2f2 ' 1D�E , we need to define a homotopy H = {H1, H2, H3}. Let � : B � C ! D �D be the map
associated to the matrix

�
' �

µ ⌘

�
, so �(b, c) = ('(b) + �(c), µ(b) + ⌘(c)).

A
B
�
C

D
�
E

F

A B � C D � E F

g1f1

�

H1 H2

g2f2

H3

Define H1 = H3 = 0, and H2 : (d, e) 7! (�'�1(d), 0). Then

(g1f1 � 1B�C)(b, c) = (�'�1�(c)� b, 0) = H2�(b, c).

and
(g2f2 � 1D�E)(d, e) = (�d,�µ'�1(d)) = �H2(d, e),

so g1f1 ' 1B�C and g2f2 ' 1D�E .

3. Use your words to explain the meaning of the lemma that you just proved. More precisely, what is the
relationship between the most important operation in linear algebra (Gaussian elimination) and the
homotopy theory of chain complexes?

Solution: In the same way that we can row reduce a matrix if we have an invertible element in
the (1, 1)-entry, and essentially “forget” about the first column, we just showed that in a similar way, if
we have an isomorphism in the (1, 1)-entry, then we can essentially “forget” about the information in
the first column, up to homotopy. We basically “forgot” about the modules B and D in the homotopy,
since we had an isomorphism between them.
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3 You don’t need chain-ge when you’ve got supergroups

1. Show that there is a category of comodules over a coalgebra.

2. Show that the ring of functions on a group is a bialgebra.

3. The ring of functions on the space of automorphisms Aut(A0|1) of the 1-dimensional super line is given
by the algebra A = k[a, b, b�1]/(a2) with coproduct

�(b) = b⌦ b and �(a) = a⌦ 1 + b⌦ a

Show that the category of A-comodules is cochain complexes.

4. NB. If X is a space then Hom(A0|1, X) inherits a canonical coaction of A. This mapping space is the
de Rham complex ⌦⇤(X) of X.

5. Research problem: find supergeometric interpretation of Gaussian elimination.

4 Ya don’t whine about the Dold-Kan core despondence

1. Recall the category � of finite ordered sets and non-decreasing set maps. Prove that � is equivalent
to the full subcategory with objects [n] = {0 < 1 < · · · < n} for n 2 Z�0.

Proof. Let �̃ be the full subcategory. Define a functor F : � ! �̃ be N 7! [n], where |N | = n. Let
Nj denote the jth element in the ordered set N , and let 'N : N ! [n] be the map Nj 7! j, and
'�1 : j 7! Nj .

If f : N ! M is in �, then define Ff := 'Mf'�1
N

. So if N
f�! M

g�! P is in �, then

F (g � f) = 'P gf'
�1
N

= 'P g'
�1M'Mf'�1

N
= Fg � Ff.

If 1N : N ! N is an identity morphism in �, then

F1N = 'N1N'�1 = 1[n] = 1F (N),

and so F is a functor. Now let G : �̃ ! � be the inclusion functor. We have F �G = 1�̃, and so we
only need to show G � F ⇠= 1�. Define a natural transformation ⌘ : GF =) 1� with components
⌘N := '�1. Then

f⌘N = f'�1 = '�1
M

'Mf'�1
N

= ⌘MFf,

so ⌘ is natural, and is an isomorphism since its components are bijections. Hence G � F ⇠= 1�, and
therefore � and �̃ are equivalent categories.

GF (N) N

GF (M) M

⌘N

GFf=Ff f

⌘N

2. If R is a ring then a simplicial R-module is a functor F : �op ! R�mod. Given such an F construct
a chain complex k[a, b, b�1]/(a2)(F ) 2 Ch+(R�mod) such that

C(F )n = F ([n])

Proof. We want to define a chain complex

· · · F [n+ 1] F [n] F [n� 1] · · ·dn+1 dn

Since we have the canonical inclusions ◆n : [n� 1] ! [n], define dn := F (◆n). Then

dndn+1 = F (◆n) � F (◆n+1) = F (◆n+1◆n).
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3. If we were able to construct a simplicial R-module D(c) for a chain complex c 2 Ch+(R � mod)
then by Yoneda D(c)([n]) = Hom(�[n], D(c)) where �[n] is the representable functor �[n](S) =
R hHom�(S, [n])i the R-span of non-decreasing maps from S to [n] = {0 < 1 < · · · < n}. Assuming D
is right adjoint to C we get

D(c)([n]) = Hom(�[n], D(c)) = HomCh+(C(�[n]), c)

Prove that D(c) is a simplicial R-module.

Proof. Write D(c) = Dc. We need to show that Dc is a functor. The above definition gives us how the
map Dc acts on objects, and so we need to define it on morphisms and show this definition makes the
map Dc a functor. Notice that

C(�[n])k = �[n]([k]) = R hHom�([k], [n])i =
M

↵

R↵.

where the direct sum ranges over all maps ↵ : [k] ! [n].

Now, for f : [n] ! [m] in �, define

Dc(f) : HomCh+(C(�[m]), c) �! HomCh+(C(�[n]), c)

g =

8
<

:gk :
M

�

R� �! ck

9
=

; 7�! h =

(
gk
⇣M

�f(�)
⌘
:
M

↵

R↵ �! ck

)
,

where
L

�f(�) is the map
`M

i=1

ri↵i 7�!
`M

i=1

rif(↵i).

If [n]
f�! [m]

g�! [p] is in �, then Dc(g � f) : {jk} 7�! {jk (
L

�(g � f)(�))}, and on the other hand

Dc(f)�Dc(g) : {jk} 7�!
n
jk
⇣M

�g(�)
⌘o

7�!
n
jk
⇣M

�g(�)
⌘⇣M

�f(�)
⌘o

=
n
jk
⇣M

�(g � f)(�)
⌘o

,

where the last equality follows from the computation

jk
⇣M

�g(�)
⌘⇣M

�f(�)
⌘ `M

i=1

ri↵i

!
= jk

⇣M
�g(�)

⌘ `M

i=1

rif(↵i)

!
= jk

 
`M

i=1

rig(f(↵i))

!
.

So D(g � f) = D(f) �D(g). Moreover, if 1[n] : [n] ! [n] is an identity morphism in �, then

Dc(1[n]) : {gk} 7�!
n
gk
⇣M

�1[n](�)
⌘o

= {gk},

and so Dc(1[n]) = 1Dc([n]). Therefore, Dc : � ! R � mod is a contravariant functor, i.e. Dc is a
simplicial R-module.

4. This sets up an equivalence between simplicial R-modules and (connected , Ck = 0 for k < 0) chain
complexes called the Dold-Kan correspondence. You don’t have to prove it. One can consider simplicial
objects in any category.

5. Prove that there map F 7! |F | from simplicial sets F : �op ! Sets to topological spaces which
associates to F ([n]) a collection of n-simplices.

Proof. Send the simplicial R-module F to the simiplicial n simplex

F 7!
G

n�0

F ([n])⇥ �n/ ⇠

where �n is the standard n simplex.
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5 You-need-a Baer sum times

Suppose that A and B are R-modules and set of short exact sequences of R-modules:

Ext1(B,A) = {0 ! A ! M ! B ! 0}/ ⇠

where two short exact sequences are related by ⇠ when there is an isomorphism f : M ! M 0 making the
appropriate diagram commute.

1. Make ⇠ a definition and show that it is an equivalence relation.

Proof. Reflexivity: If E : 0 ! A
g�! M

f�! B ! 0 is short exact, then 1M : M ! M is an isomorphism
making the diagram commute:

E : 0 A M B 0

E : 0 A M B 0

g f

1M

g f

Symmetry: Let E : 0 ! A
g�! M

f�! B ! 0 and E 0 : 0 ! A
g
0

�! M 0 f
0

�! B ! 0 be short exact sequences,
and suppose E ⇠ E 0 with isomorphism ↵ : M ! M 0 making the diagram commute:

E : 0 A M B 0

E 0 : 0 A M 0 B 0

g f

↵

g
0

f
0

Then ↵�1 is an isomorphism making the diagram commute, so E 0 ⇠ E :

E 0 : 0 A M 0 B 0

E : 0 A M B 0

g
0

f
0

↵
�1

g f

Transitivity: Let E : 0 ! A
g�! M

f�! B ! 0, E 0 : 0 ! A
g
0

�! M 0 f
0

�! B ! 0, and

E 00 : 0 ! A
g
00

�! M 00 f
00

��! B ! 0 be short exact sequences, and suppose E ⇠ E 0 and E 0 ⇠ E 00, with
respective isomorphisms ↵ : M ! M 0 and � : M 0 ! M 00 making the diagrams commute:

E : 0 A M B 0

E 0 : 0 A M 0 B 0

g f

↵

g
0

f
0

E 0 : 0 A M 0 B 0

E 00 : 0 A M 00 B 0

g
0

f
0

�

g
00

f
00

Then � � ↵ is an isomorphism making the diagram commute, so E ⇠ E 00:

E : 0 A M B 0

E 00 : 0 A M 00 B 0

g f

�↵

g
00

f
00
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2. The operation of Baer sum: given two short exact sequences:

0 ! A ! M
f�! B ! 0 and 0 ! A ! M 0 f

0

�! B ! 0

Prove that there is short exact sequence:

0 ! A ! r⇤�
⇤(M �M 0) ! B ! 0

Proof. We use the definition of Baer sum given in Weibel’s Introduction to Homological Algebra: First,
the pullpack of f and f 0 is

�⇤(M �M 0) = {(m,m0) 2 M �M 0 : f(m) = f(m0)}.

Next, the pushout of the pullback is the quotient

r⇤�
⇤(M �M 0) = �⇤(M �M 0)

.
{(g(a),�g0(a)) : a 2 A}.

We will use the bar notation to denote the quotient. Define maps 2

G : A ! r⇤�
⇤(M �M 0), a 7! (g(a), 0)

F : r⇤�
⇤(M �M 0) ! B, (m,m0) 7! f(m) = f 0(m0).

Now we show that F is well-defined. If (m1,m0
1) = (m2,m0

2), then there exists a 2 A so that g(a) =
m1 �m2 and g0(a) = m0

1 �m0
2. Now,

0 = fg(a) = f(m1)� f(m2) =) f(m1) = f(m2),

and likewise f 0(m0
1) = f 0(m0

2). So F is well defined.

Now if G(a) = (0, 0), then g(a) = 0 and so a = 0 since g is injective, thus G is injective. The
surjectivity of F follows from the surjectivity of f . Moreover,

FG(a) = F (0, 0) = f(0) = 0,

so imG ✓ kerF .

If F (m,m0) = 0, then f(m) = f 0(m) = 0, and so m 2 ker f = im g and m0 2 ker f 0 = im g0. Hence
there exists a, a0 2 A such that g(a) = m and g0(a0) = m0. Define ã = a+ a0. Since

(m� g(ã),m0) = (g(a� ã),m0) = (g(�a0), g0(a0)) 2 {(g(c),�g0(c)) : c 2 A},

then G(ã) = (g(ã), 0) = (m,m0), so kerF ✓ imG, and thus we have kerF = imG. Hence the sequence

0 ! A
G�! r⇤�

⇤(M �M 0)
F�! B ! 0

is exact.

2These are the maps that we will use for the next problem as well.
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3. Prove that Ext1(B,A) is an abelian group under Baer sum.

Proof. For this proof, in certain cases, we will write fm in place of f(m), and fga in place of f(g(a))
for cleaner notation.

• Identity:

Let E : 0 ! A
g�! M

f�! B ! 0 be short exact, and let 0 : 0 ! A ! A � B ! B ! 0 be the
trivial sequence. Then

E + 0 : 0 ! A
G�! r⇤�

⇤(M �A�B)
F�! B ! 0.

Notice that�⇤(M�A�B) = {(m, (a, b)) 2 M�A�B : fm = b}, so all elements of�⇤(M�A�B)
have the form (m, (a, fm)). Define a map ↵ : M ! r⇤�⇤(M �A�B) by m 7! (m, (0, fm)).

E : 0 A M B 0

E + 0 : 0 A r⇤�⇤(M �A�B) B 0

g f

↵

G F

Let m1,m2 2 M and r 2 R. Then

↵(m1+rm2) = (m1 + rm2, (0, f(m1 + rm2))) = (m1, (0, fm1)) + r(m2, (0, fm2)) = ↵(m1)+r↵(m2),

so ↵ is indeed and R-module homomorphism. Since

↵g(a) = (ga, (0, fga)) = (ga, (0, 0)) = G(a)

and
F↵(m) = F (m, (0, fm)) = fm,

then ↵ makes the diagram commute, and so ↵ is an isomorphism by the Short 5 Lemma. Thus
E + 0 ⇠ E . Similarly, we have 0+ E ⇠ E , and so 0 is the identity in Ext1(B,A).

• Inverses:

Let E be as before, and define its inverse �E : 0 ! A
�g��! M

f�! B ! 0. Then

E + (�E) : 0 ! A
G�! r⇤�

⇤(M �M)
F�! B ! 0.

To show that E + (�E) ⇠ 0, we will show that E + (�E) is split. Since

�⇤(M �M) = {(m,m0) 2 M �M : fm = fm0},

then for each (m,m0) in �⇤(M � M), we have m � m0 2 ker f = im g, so there exists a unique
(since g is injective) a 2 A so that ga = m�m0. Define a map

⇡ : r⇤�⇤(M �M) ! A, (m,m0) 7! a.

We show that this map is well-defined. First notice that

r⇤�
⇤(M �M) = �⇤(M �M)

.
{(ga, ga) : a 2 A}.

So if (m1,m0
1) = (m2,m0

2), then there exists a 2 A so that ga = m1 � m2 = m0
1 � m0

2. So
m1 �m0

1 = m2 �m0
2, which means there exists a unique ã 2 A so that gã = m1 �m0

1 = m2 �m0
2.

Therefore,
⇡(m1,m0

1) = ã = ⇡(m2,m0
2),

and so ⇡ is well-defined. Moreover,

⇡G(a) = ⇡(ga, 0) = a,

or in other words, ⇡g = 1A, and so E + (�E) is split, showing that E + (�E) ⇠ 0. Similarly, we
have �E + E ⇠ 0.
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• Associativity:

Let

E : 0 ! A
g�! M

f�! B ! 0

E 0 : 0 ! A
g
0

�! M 0 f
0

�! B ! 0

E 00 : 0 ! A
g
00

�! M 00 f
00

��! B ! 0

be short exact sequences. Then

E + E 0 : 0 ! A
eG�! r⇤�

⇤(M �M 0)
eF�! B ! 0

E 0 + E 00 : 0 ! A
bG�! r⇤�

⇤(M 0 �M 00)
bF�! B ! 0

and so we have

(E + E 0) + E 00 : 0 ! A
eeG�! r⇤�

⇤(r⇤�
⇤(M �M 0)�M 00)

eeF�! B ! 0

E + (E 0 + E 00) : 0 ! A
bbG�! r⇤�

⇤(M �r⇤�
⇤(M 0 �M 00))

bbF�! B ! 0

We’re going to use a “double bar” notation, since we are passing to a quotient of a quotient. The
context will make clear where we are taking the quotient at a given time.

Based on our definition of the Baer sum in the second problem of this section, the maps in these
sums are defined as follows:

eeG : a 7�! ( eGa, 0) = ((ga, 0), 0)

eeF : ((m,m0),m00) 7�! eF (m,m0) = fm

bbG : a 7�! (ga, (0, 0))

bbF : (m, (m0,m00)) 7�! fm.

Our goal is to give a well-defined morphism ↵ that makes the following diagram commute, at
which point we can apply the Short 5 Lemma to conclude that (E + E 0) + E 00 ⇠ E + (E 0 + E 00).

(E + E 0) + E 00 : 0 A r⇤�⇤(r⇤�⇤(M �M 0)�M 00) B 0

E + (E 0 + E 00) : 0 A r⇤�⇤(M �r⇤�⇤(M 0 �M 00)) B 0

eeG eeF

↵

bbG bbF

Define ↵ by the rule ((m,m0),m00) 7�! (m, (m0,m00)). Suppose that

((m1,m0
1),m

00
1) = ((m2,m0

2),m
00
2).

We want to find c 2 A so that

g(c) = m1 �m2 and (�g0(c), 0) = � bG(c) = (m0
1 �m0

2,m
00
1 �m00

2),

because then (m1, (m0
1,m

00
1)) = (m2, (m0

2,m
00
2)), which will give that ↵ is well-defined.

There exists a 2 A such that

eG(a) = (m1 �m2,m0
1 �m0

2) and � g00(a) = m00
1 �m00

2 .
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So (0, g0a) = (ga, 0) = eG(a) = (m1 �m2,m0
1 �m0

2), and so there exists ã 2 A such that

g(ã) = �(m1 �m2) and � g0(ã) = g0(a)� (m0
1 �m0

2).

Consider c := �ã. Then the above equations give

g(c) = �g(ã) = m1 �m2 and (�g0(c), 0) = (m0
1 �m0

2,m
00
1 �m00

2),

where the last equality follows from the fact that

(�g0(c)� (m0
1 �m0

2),�(m00
1 �m00

2)) = (g0(�a),�g00(�a)) 2 {(g0(d),�g00(d)) : d 2 A}.
Now let r 2 R. Then

↵ ((m1 + rm2,m0
1 + rm0

2),m
00
1 + rm00

2) = (m1 + rm2, (m0
1 + rm0

2,m
00
1 + rm00

2))

= (m1, (m0
1 +m00

1)) + (rm2, (rm0
2 + rm00

2))

= (m1, (m0
1 +m00

1)) + r(m2, (m0
2 +m00

2))

= ↵ ((m1,m0
1),m

00
1) + r ↵ ((m2,m0

2),m
00
2),

and so ↵ is indeed and R-module homomorphism. Finally,

↵
eeG(a) = ↵ ((ga, 0), 0) = (ga, (0, 0)) =

bbG
and

bbF↵ ((m,m0),m00) =
bbF (m, (m0,m00)) = fm =

eeF ((m,m0),m00),

and so ↵ makes the diagram commute and we are done. Whew!

• Commutativity:

Let E : 0 ! A
g�! M

f�! B ! 0 and E 0 : 0 ! A
g
0

�! M 0 f
0

�! B ! 0 be short exact sequences. Then

E + E 0 : 0 ! A
eG�! r⇤�

⇤(M �M 0)
eF�! B ! 0

E 0 + E : 0 ! A
bG�! r⇤�

⇤(M 0 �M 00)
bF�! B ! 0

Again we seek to give a well-defined morphism ↵ which makes the following diagram commute,
so that we can apply the Short 5 Lemma to conclude that (E + E 0) ⇠ (E 0 + E).

E + E 0 : 0 A r⇤�⇤(M �M 0) B 0

E 0 + E : 0 A r⇤�⇤(M 0 �M) B 0

eG eF

↵

bG bF

Define ↵ to be the map (m,m0) 7! m0,m. Suppose (m1,m0
1) = (m2,m0

2). Then there exists a 2 A
so that

g(a) = m1 �m2 and � g0(a) = m0
1 �m0

2.

So
(m0

1 �m0
2,m1 �m2) = (g0(�a),�g(�a)) 2 {(g0(c),�g(c)) : c 2 C}

and hence (m0
1,m1) = (m0

2,m2), i.e. ↵ is well-defined. If r 2 R, then

↵ (m1 + rm2,m0
1 + rm0

2) = (m0
1 + rm0

2,m1 + rm2) = (m0
1,m1) + r m0

2,m2 = ↵ (m1,m0
1) + r↵ (m2,m0

2)

so ↵ is an R-module homomorphism. Finally,

↵G̃(a) = ↵ (g(a), 0) = (0, g(a)) = g0(a), 0 = eG(a),

and
eF↵ (m,m0) = bF (m0,m) = f 0(m0) = f(m) = eF (m,m0),

and so ↵ makes the diagram commute.
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4. Compute Ext1(Z/2,Z/2).

Solution:

Suppose 0 ! Z/2 ! M ! Z/2 ! 0 is short exact. Then M

Z/2
⇠= Z/2, and so |M | = 4. Since there

are only 2 groups of order 4, then we get the two following short exact sequences:

0 ! Z/2 ! (Z/2� Z/2) ! Z/2 ! 0

0 ! Z/2 ! Z/4 ! Z/2 ! 0.

Since (Z/2� Z/2) 6⇠= Z/4, then these are the only classes of sequences in Ext1(Z/2,Z/2).
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Algebraic Topology
Homework 3
Name: 16977

1 Compactly supported generalized Mayer-Vietoris

Suppose that U = {U↵}↵2⇤ is an open cover of a manifold M . Set

U↵0···↵k =
k\

i=0

U↵i and Ci(U,⌦
⇤
c) =

Y

↵0<···<↵i

⌦⇤
c(U↵0···↵i)

1. Construct a chain complex � : Ci(U,⌦⇤
c)! Ci�1(U,⌦⇤

c).

Solution:

The product should actually be a direct sum, i.e.

Ci(U,⌦
⇤
c) =

M

↵0<···<↵i

⌦⇤
c(U↵0···↵i)

so that ! 2 Ci(U,⌦⇤
c) has only a finite number of nonzero components. This is needed to ensure that

in our definition of � below, the components of �! have compact support. Define � by the formula

(�!)↵0···↵i�1 =
X

↵

!↵↵0···↵i�1 ,

where on the right hand side, we’ve extended !↵0···↵i�1 by zero to the form !↵↵0···↵i�1 on U↵0···↵i�1 .
This definition yields a chain complex, since �

2 = 0:

(�2!)↵0···↵i�2 =
X

↵

(�!)↵↵0···↵i�2 =
X

↵

X

�

!�↵↵0···↵i�2 .

Then !�↵··· = !↵�··· together with the fact that ↵ and � run over the same indices, gives that
(�2!)↵0···↵i�2 = 0.

2. Prove that there is a long exact sequence

⌦⇤
c(M)

r C0(U,⌦
⇤
c)

� C1(U,⌦
⇤
c) · · ·

Proof. First, note that we need the cover U to be locally finite. Define r to be the summing map, i.e.
for ! 2 C0(U,⌦⇤

c), r! =
P

↵0
!↵0 . If {⇢↵}↵2⇤ is a partition of unity subordinate to U, and ! 2 ⌦⇤

c(M),
then let ⌧↵ = ⇢↵!. So r⌧ =

P
↵ ⇢↵! = !, and so r is onto.

Since we’ve shown that �
2 = 0, then im � ✓ ker �. Going the other way, suppose �! = 0 for

! 2 Ci(U,⌦⇤
c). Then define

⌧↵0···↵i+1 =
i+1X

k=0

(�1)k⇢↵k!↵0···↵̂k···↵i+1 .

Note that ⌧↵0···↵i+1 has compact support since ! does. Moreover, since !↵0···↵i 6= 0 for finitely many
indices ↵0 · · ·↵i and since each U↵0···↵i ⇢ U↵0 intersects finitely many U↵k ,

1, then ⇢↵k!↵0···↵i 6= 0

1Since U is locally finite

1



for finitely many indices ↵k↵0 · · ·↵i. So ⌧ has finitely many nonzero components and indeed we have
⌧ 2

L
⌦⇤

c(U↵0···↵i+1). Then

(�⌧) =
X

↵

⌧↵↵0···↵i

=
X

↵

 
⇢↵!↵0···↵i +

X

k

(�1)k+1
⇢↵k!↵↵0···↵̂i···↵i

!

= !↵0···↵i +
X

k

(�1)k+1
⇢↵k(�!)↵0···↵̂k···↵i

= !↵0···↵i
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2 A spectral sequence of sorts

Suppose that F ! E
⇡�! B is a fiber bundle of smooth manifolds and U is a good cover of B.

1. Prove that ⇡�1U is a (not necessarily good) cover of E.

Proof. Since ⇡ is surjective and U covers B, then E ✓ ⇡
�1U.

2. Show that the total homology of the bicomplex C
⇤(⇡�1U,⌦⇤) is isomorphic to the de Rham cohomology

of E via the map r discussed in class.

Proof. Suppose U = {U, V }, and E ✓ ⇡
�1U = {⇡�1

U,⇡
�1

V }. Recall that we have a di↵erential
D : C⇤(U,⌦⇤)! C

⇤(U,⌦⇤) given by D = � + (�1)pd. We have a map

r : ⌦⇤(E)! ⌦⇤(⇡�1
U)� ⌦⇤(⇡�1

V )

given by the restriction of forms. First notice that r is a chain map, i.e. the following diagram is
commutative:

⌦⇤(E) C
⇤(⇡�1U,⌦⇤)

⌦⇤(E) C
⇤(⇡�1U,⌦⇤)

r

d

r

D

This is because
Dr = (� + (�1)pd)r = �r + dr = rd

since p = 0 and �r = 0. So we get a map on cohomology

r
⇤ : H⇤

DR(E)! HD{C⇤(⇡�1U,⌦⇤)}

Recall that a q-cochain ↵ in the double complex C ⇤ (U,⌦⇤) has two components

↵ = ↵0 + ↵1, ↵0 2 C
0(⇡�1U,⌦q), ↵1 2 C

1(⇡�1U,⌦q�1).

By the exactness of the Mayer-Vietoris sequence, there exists � so that �� = ↵1. So

↵�D� = ↵0 + ↵1 � �� � d� = ↵0 � d�,

and so ↵ isD-cohomologous to a cochain with only the “top” component, i.e., a cochain in C
0(⇡�1U,⌦q).

To show that r⇤ is surjective, we use this fact, and so we may assume that a given cohomology class
in HD{C⇤(⇡�1U,⌦⇤)} is represented by a cocycle 2

� = �1 + �2 with only the top component. Since
� is a cocycle, D� = 0, and so

0 = D� = �(�1 + �2) + d(�1 + �2) =) �(�1 + �2) = �d(�1 + �2).

From the definition of �, we have �(�1 + �2) = �2|⇡�1U � �1|⇡�1V . Now, �2|⇡�1U � �1|⇡�1V is a form
in the intersection ⇡

�1
U \ ⇡�1

V , but �d(�U +�V ) is a form in ⌦q+1(⇡�1
U)�⌦q+1(⇡�1

V ). So, these
must be zero, i.e.

�(�U + �V ) = �d(�U + �V ) = 0,

which implies �2|⇡�1U = �1|⇡�1V . This says that the first component of � restricted to ⇡
�1

V is the
same as the second component of � restricted to ⇡

�1
U . Hence � is a global form on ⇡

�1U, and so
r� = �|⇡�1U + �|⇡�1V = �1 + �2 = �.

To show that r⇤ is injective, suppose r! = D� for some cochain � in C
⇤(⇡�1U,⌦⇤). By the remark

above, we may write � = �
0 +D�

00, where �
0 has only the top component. Then

r! = D� = D�
0 +DD�

00 = d�
0
, ��

0 = 0.

So ! is the exterior derivative of a global form on E.
2we can write � this way since � 2 ⌦q(⇡�1U)� ⌦q(⇡�1V )
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3. Show that if U is good then the vertical cohomology can be computed by the cochain complex
C

⇤(U, H⇤(F )) where H⇤(F ) is a locally constant sheaf on B (non-canonically) isomorphic to the co-
homology of the fiber F .

Proof. For each intersection U↵0···↵k , we have ⇡
�1(U↵0···↵k) ⇠= U↵0···↵k ⇥ F since ⇡ is a bundle map.

Then since the cover U is good, we get that U↵0···↵k ' R
n ' {pt} and so in fact H⇤(⇡�1(U)) ' H

⇤(F ).
So C

⇤(U, H⇤(F )) ⇠= H
⇤(F ).

3 Topologists like tori

Let Tn be the n-torus.

1. Compute H
⇤(Tn).

Proof. We prove by induction on n that H
k(Tn) = R(

n
k). For n = 0, this is obvious, and for n = 1,

T
1 = S

1, and we know

H
⇤(S1) =

(
R if ⇤ = 0, 1

0 if ⇤ > 1
.

Suppose the result is true for Tn�1. Notice that Tn = T
n�1 ⇥ S

1. By the Kunneth formula,

H
k(Tn�1 ⇥ S

1) =
M

k=p+q

H
p(Tn�1)⌦R H

q(S1).

So,

H
k(Tn) =

M

k=p+q

H
p(Tn�1)⌦H

q(S1)

=
⇣
H

k(Tn�1)⌦H
0(S1)

⌘
�
⇣
H

k�1(Tn�1)⌦H
1(S1)

⌘
�
⇣
H

k�2(Tn�1)⌦H
2(S1)

⌘
� · · ·

=
⇣
H

k(Tn�1)⌦H
0(S1)

⌘
�
⇣
H

k�1(Tn�1)⌦H
1(S1)

⌘

=
⇣
H

k(Tn�1)⌦ R
⌘
�
⇣
H

k�1(Tn�1)⌦ R
⌘

= H
k(Tn�1)�H

k�1(Tn�1)

= R(
n�1
k ) � R(

n�1
k�1)

= R(
n�1
k )+(n�1

k�1)

= R(
n
k).

2. Determine Poincare duals ⌘S 2 H
k(Tn) of the 2n standard subtori S ⇢ T

n, i.e. classes which satisfy

Z

S
i
⇤
S(!) =

Z

M
! ^ ⌘S

4



4 Oh, the nerve of that cover!

1. To each category C there is a set Nn(C) consisting of n-fold sequences of composable morphisms in C.
Show that the assignment [n] 7! Nn(C) determines a simplicial set �op ! Set. This is called the nerve
of the category C.

Proof. Let F : �op ! Set be given by the assignment [n] 7! Nn(C). If di : [n� 1]! [n] is the ith face
map, define Fdi : Nn(C)! Nn�1(C) by

(C0
f0�! C1

f1�! · · · fn�1���! Cn) 7�! (C0
f0�! C1

f1�! · · ·! Ci�1
fifi�1����! Ci+1

fi+1���! · · · fn�1���! Cn)

whenever 0 < i < n, and we remove the ith component of the sequence when i = 0 or k. If si :
[n+ 1]! [n] is the ith degeneracy map, define Fsi : Nn(C)! Nn+1(C) by

(C0
f0�! C1

f1�! · · · fn�1���! Cn) 7�! (C0
f0�! C1

f1�! · · · fi�1���! Ci
1Ci��! Ci

fi�! · · · fn�1���! Cn)

Since every morphism in C is a composition of face and degeneracy maps, this makes F functor.

2. Suppose that M is a smooth manifold and U is a cover. Show that there is a category C(U) with
objects given by open sets U 2 U and morphisms V ,! U given by inclusions among open sets in the
cover.

Proof. If V ,! U and U ,! W are two morphisms in C(U), then define their composition to be the
inclusion V ,! W . For any U 2 U, since U ✓ U , then there is an identity morphism 1U 2 Hom(U,U)
which has the desired properties:

(U
1U
,! U) � (U ,!W ) = U ,!W and (V ,! U) � (U 1U

,! U) = V ,! U

Composition is associative:

(V ,! U) �
�
(U ,!W ) � (W ,! Y )

�
= (V ,! U) � (U ,! Y )

= V ,! Y

= (V ,!W ) � (W ,! Y )

=
�
(V ,! U) � (U ,!W )

�
� (W ,! Y ).

3. Suppose that M is a smooth compact manifold and U is a good cover which is closed under intersection
(U, V 2 U and U \ V 6= ; implies U \ V 2 U). Then it is true that |N⇤(C(U))| 'M . Draw an example
in the case of the torus.

Solution:
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4. One can use abstract simplicial complexes too. If U is a cover then show that the set of non-empty
n-fold (for some n) intersections is a simplicial complex. How is this related to the Cech construction
appearing in Bott and Tu?

Solution:

Bott and Tu give a way to correspond n-fold nonempty intersections of a good cover to a simplicial
complex, exactly the way that was done in the previous exercise. Each open set corresponds to a
vertex, each 2-fold intersection corresponds to an edge between two vertices, each 3-fold intersection
corresponds to a “filled in” standard 2-simplex, etc.
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