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Exercise 1. In this problem, we define a homomorphism from a finite groupG to an abelian

subgroup A  G, and give an application to finding normal subgroups.

Let G be a finite group, A  G an abelian subgroup, and x1, . . . , xn any set of left coset

representatives:

G = x1A [ · · · [ xnA.

We obtain a homomorphism G ! Sn by the action of G on the coset space G/A: for each

g 2 G, the corresponding permutation ⇡ is defined by

gxiA = x⇡(i)A.

So for each g 2 G, there exist unique elements a1, . . . , an such that gxi = x⇡(i)ai. Define a

map � : G ! A by �(g) = a1 · · · an.

(a) Prove that � is a group homomorphism.

Proof. First note that � is well defined since for each g 2 G, we have unique elements

a1, . . . , an in the above definition. Let g, h 2 G and write

gxi = x⇡g(i)ai and hxi = x⇡h(i)bi for all 1  i  n.

Then for each i,

ghxi = gx⇡h(i)bi = x⇡g(⇡h(i))a⇡h(i)bi.

So,

�(gh) =

nY

i=1

a⇡h(i)bi =

nY

i=1

ai

nY

i=1

bi = �(g)�(h).

(b) Prove that � is independent of the choice of coset representatives x1, . . . , xn.

Proof. Choose another set of coset representatives {y1, . . . , yn} so that xiA = yiA for all

1  i  n. Let g 2 G, and write gyi = y⇡̃(i)bi for all 1  i  n. Then define a map

�̃ : G ! A by �̃(g) = b1 · · · bn. We show that �(g) = �̃(g). Notice that for all 1  i  n,

y⇡̃(i)A = gyiA = gxiA = x⇡(i)A,

and so in fact ⇡(i) = ⇡̃(i) for all 1  i  n. Also we have

y⇡(i)biy
�1
i = g = x⇡(i)aix

�1
i ,

which gives

bi = y
�1
⇡(i)x⇡(i)aix

�1
i yi.

Notice that y
�1
⇡(i)x⇡(i), x

�1
i yi 2 A for all 1  i  n, and since A is abelian, we get

�̃(g) =

nY

i=1

bi =

nY

i=1

y
�1
⇡(i)x⇡(i)aix

�1
i yi =

nY

i=1

ai = �(g).
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Exercise 2. In this problem, we investigate Sylow subgroups of small symmetric groups.

(a) Let H  S4 be a Sylow 2-subgroup of the symmetric group. Give an explicit isomor-

phism between H and a commonly known group. Note: theory will only take you so
far in this problem– you will probably have to get out some scratch paper and exper-
iment with computations. Once you have a good guess at the answer, write down an
explicit isomorphism.

Solution: Since Sylow 2-subgroups are conjugate to one another, it su�ces to

find the isomorphism type of a particular Sylow 2-subgroup of S4. Consider the Sylow

2-subgroup

H = h(1234), (24)i = {(), (1234), (24), (13)(24), (1432), (12)(34), (13), (14)(23)}.

Since |(1234)| = 4 and |(24)| = 2 and

(1234)(24) = (12)(34) = (24)(1234),

then it seems that H ⇠= D8, the dihedral group of order 8. If we write

D8 =
⌦
r, s | 1 = r

4
= s

2
, rs = sr

�1
↵
= {1, r, s, rs, r2, r3, sr2, sr3},

then define a map H ! D8 by (1234) 7! r and (24) 7! s.

(b) Determine the number of Sylow 2-subgroups of S4.

Solution:

We have |S4| = 4! = 24 = 2
3 · 3. By Sylow’s Theorems, if np(S4) denotes the

number of Sylow p-subgroups of S4, we get that n2(S4) 2 {1, 3}. Since we have the

Sylow 2-subgroup

K = h(1342), (14)i = {(), (1342), (14), (14)(23), (1243), (12)(34), (23), (13)(24)},

which is not equal to H from part (a) since (23) 2 K�H, then n2 > 1, and so n2 = 3.

For completeness, the last Sylow 2-subgroup of S4 is

L = h(1423), (12)i = {(), (1423), (12), (12)(34), (1324), (13)(24), (34), (14)(23)},

which is distinct from H and K since (12) 2 L� (H [K).

(c) Find the isomorphism type and number of Sylow 2-subgroups of S5.

Hint: the isomorphism type follows easily from your previous work. It is then useful
in computing the number.

Solution:

Since S4  S5 (viewing S4 inside S5 as all the elements of S5 which fix 5), then the

isomorphism type of Sylow 2-subgroups of S5 is D8, since S4 contains at least some of

the Sylow 2-subgroups of S5. By Sylow’s theorems, we get that n2(S5) 2 {1, 3, 5, 15}
and n2(S5) � 3, thus n2(S5) 2 {3, 5, 15}. But we have the Sylow 2-subgroups

H
0
= h(1235), (25)i = {(), (1235), (25), (13)(25), (1532), (12)(35), (13), (15)(23)},

K
0
= h(1352), (15)i = {(), (1352), (15), (15)(23), (1253), (12)(35), (23), (13)(25)},

L
0
= h(1523), (12)i = {(), (1523), (12), (12)(35), (1325), (13)(25), (35), (15)(23)},
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which are distinct from H,K, and L from (a) and (b), and so n2(S5) = 15.

Thinking about this in a di↵erent way: We chose to view S4 inside of S5 as all

those permutations which fix the number 5. However, we could have just as easily

identified S4 inside of S5 as all those elements that fixed, say, j 2 {1, . . . , 5}. If, for

example j = 2, then we would relabel all the elements in S4 by the rule 1 7! 1, 2 7!
3, 3 7! 4, 4 7! 5, to get another “copy” of S4 inside of S5. So, we get 5 distinct “copies”

of S4 inside S5, and hence 5 distinct “copies” of the subgroups H,K,L  S4 inside

S5, giving a total of 15 Sylow 2-subgroups.

Exercise 3. In this problem, we investigate composition series of abelian groups.

(a) Let G be an abelian group, not assumed to be finite. Prove that if G is simple, then

G is actually finite, and furthermore |G| is prime.

Proof. We prove the contrapositive statement. If G is infinite and cyclic, then G ⇠= Z,
which is not simple. If G is infinite and not cyclic, pick x 2 G � {1}. Since G is

abelian, hxi E G, and since G is not cyclic, hxi must be a proper normal subgroup,

i.e., G is not simple.

Now, write |G| = p1 · · · pn for primes {pi}ni=1. If there exists distinct i, j 2
{1, . . . , n} so that pi 6= pj , then hpii is a proper normal subgroup of G, because

then hpiiCG and | hpii | < |G|. Hence |G| = p
↵
for a prime p and ↵ 2 Z+

. By Cauchy,

we find x 2 G with o(x) = p. If ↵ > 1, then hxi is a proper normal subgroup of G,

and so we must have |G| = p, as desired.

(b) Let G be an infinite abelian group. Prove that G does not have any composition series.

Proof. By contradiction. Write 1 = G0 EG1 E · · ·EGn = G where Gi/Gi�1 is simple

for all 1  i  n. Then for all 1  i  n, Gi/Gi�1 is simple abelian, and so by part

(a), we find {pi}ni=1 so that |Gi/Gi�1| = pi. Since cosets partition a group, we get

|G| = pn|Gn�1| = pnpn�1|Gn�2| = · · · = pn · · · p1|G0| = pn · · · p1 < 1,

a contradiction.

Optional challenge problem, not for credit. Suppose that |G| = pn, where p is the

smallest prime dividing |G|, and p - n. Prove that G has a normal subgroup N of order

n (in particular, G is not simple). Hint: there is an obvious choice of abelian subgroup of
order p, which you should use as A in the transfer homomorphism from Problem 1. Then
it would be enough to show the transfer homomorphism is surjective, and use N = ker�.
To do this, you can show that �(a) = a

n for each a 2 A. This requires some cleverness
involving a study of the permutation ⇡ from the definition of the transfer.
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Exercise 1. Let F be a field and fix n 2 Z>0. Let B  GLn(F ) be the subgroup of

invertible upper-triangular matrices.

(a) Prove that B ⇠= U oD where U is the subgroup of upper-triangular matrices with 1s

down the diagonal, and D is the subgroup of invertible diagonal matrices.

Proof. First notice that no element of B has a diagonal entry 0, for otherwise such a

matrix b would have 0 as an eigenvalue, giving that det(b) = 0, contradicting that b is
invertible. Next, notice that if g = (gij), h = (hij) 2 B, then the (i, i)-entry of gh is

(gh)ii =
nX

k=1

gikhki = giihii, (¡)

where the last equality follows from the fact that gik = 0 when k < i and hki = 0

when k > i. Notice also that (¡) gives that the (i, i)-entry of g�1
is g�1

ii .

We use the theorem for recognizing semi-direct products. Let I denote the identity

element in GLn(F ). That U \D = I, I 2 U , and I 2 D is clear. Also (¡) immediately

gives that D  B since for g, h 2 D, gh�1
is diagonal. Similarly, if g, h 2 U then gh�1

has 1s on its diagonal, and so U  B.

To show that U E B, let b 2 B and g 2 U . It follows from (¡) that the diagonal

entries of bg are precisely the diagonal entries of b, and moreover that bgb�1
has

diagonal entries 1.

Finally, we show that B = UD, from which it follows from the recognition theorem

for semi-direct products that B = UD ⇠= U oD.

Since U EB, then UD  B. Let b = (bij) 2 B. Define matrices g = (gij) 2 U, h =

(hij) 2 D in the following way: Let h have the same diagonal as b. Let g have 1s on

its diagonal and for i < j, define gij = bijb
�1
jj (here, we know that bjj 6= 0 by the first

remark of the proof). Then by the computation in (¡), we have that the diagonal of

gh is precisely the diagonal of b. Also, the (i, j)-entry of gh for 1  i < j < n, (i.e.,
an entry of the upper triangle) is

(gh)ij =
nX

k=1

gikhkj = gijhjj = bijb
�1
jj bjj = bij ,

where the second equality follows from the fact that hkj = 0 if k 6= j. Hence gh = b
and so UD = B. K

(b) Fix n = 2. Clearly we can identify D ⇠= F⇥ ⇥ F⇥
(you don’t need to write it out).

Show that U ⇠= F , the additive group of the field.

Proof. Consider the map f : U ! F ,


1 a
0 1

�
7! a. That f is a bijection is clear. Also

f

✓
1 a
0 1

� 
1 b
0 1

�◆
= f

✓
1 a+ b
0 1

�◆
= a+ b = f

✓
1 a
0 1

�◆
+ f

✓
1 b
0 1

�◆
,

and so f is a group homomorphism, giving U ⇠= F . K

1
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(c) Still with n = 2, describe the homomorphism ' : D ! Aut(U) explicitly in terms of

these identifications.

Solution:

For any d 2 D,u 2 U , we make the identifications db=(1, d) and ub=(u, 1). Under

these identifications, the map ' must satisfy '(d)(u) = dud�1
. So if a 2 F and

b, c 2 F⇥
, then 

b 0

0 c

�

| {z }
=:d


1 a
0 1

�

| {z }
=:u


b 0

0 c

��1

=


1 bac�1

0 1

�
.

So under the identifications D ⇠= F⇥ ⇥ F⇥
and U ⇠= F , we get that the map ' must

be given by (b, c) 7! (a 7! bac�1
).

Exercise 2. Let F be a finite field with q elements.

(a) Compute the order of GL2(F ).

Solution:

For any element


a b
c d

�
2 GL2(F ), we can make any choice from F for a and d.

We need ad 6= bc. So if a = 0 or d = 0, then we can pick any nonzero elements for b
and c, giving |F⇥| = q � 1 choices for each b and c. If both a 6= 0 and d 6= 0, then

ad 6= bc becomes 0 6= d�1a�1bc, giving that neither b nor c can be zero; again we get

q � 1 choices for each b and c. Hence the order of GLn(F ) is q2(q � 1)
2
.

(b) Find the center ofGL2(F ) and use this information to compute the order of PGL2(F ) =

GL2(F )/Z(GL2(F )).

Solution:

Let


a b
c d

�
2 Z(GL2(F )) and


e f
g h

�
2 GL2(F ). Then


ae+ bg af + bh
ce+ dg cf + dh

�
=


ea+ fc eb+ fd
ga+ hc gb+ hd

�
, (˝)

This must hold for all e, f, g, h 2 F , (provided of course eh�fg 6= 0), so let’s pick these

wisely in order to determine what values we can have for a, b, c, d. First let h = e = 0

and let f = g = 1. Then (˝) becomes


b a
d c

�
=


c d
a b

�
,

and so a = d and b = c. So, if we use this fact along with letting e = f = h = 1 and

g = 0, then (˝) becomes


a a+ b
b b+ a

�
=


a+ b b+ a
b a

�
.

This gives b = 0. So Z(GL2(F )) is contained in the set of matrices which are multiples

of the identity matrix. Conversely, for e, f, g, h 2 F so that eh � fg 6= 0, and a 2 F ,

we have 
a 0

0 a

� 
e f
g h

�
=


ae af
ag ah

�
=


e f
g h

� 
a 0

0 a

�
.

2
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Hence

Z(GL2(F )) =

⇢
a 0

0 a

�
: a 2 F, a2 6= 0

�
=

⇢
a 0

0 a

�
: a 2 F⇥

�
.

So |Z(GL2(F ))| = q�1, which gives |PGL2(F )| = |GL2(F )|/|Z(GL2(G)| = q2(q�1).

(c) Find the orders of SL2(F ) and PSL2(F ).

(Hint: use your previous work and the most important homomorphism for matrix

groups.)

Solution:

Consider the determinant homomorphism det : GL2(F ) ! F⇥
. If a 2 F⇥

, then

the diagonal matrix with diagonal entries a and 1F has determinant a. Hence det is

a surjective group homomorphism from GL2(F ) to F⇥
with Ker(det) = SL2(F ), and

so GL2(F )/SL2(F ) ⇠= F⇥
. Therefore we have

|SL2(F )| = |GL2(F )|
|F⇥| = q2(q � 1).

When we found the center of GL2(F ), we only relied on the fact that matrices in

GL2(F ) have nonzero determinant. Hence the same argument applies if we restrict

our attention to SL2(F ). So

Z(SL2(F )) =

⇢
a 0

0 a

�
: a 2 F⇥, a2 = 1

�
=

⇢
1F 0

0 1F

�
,


�1F 0

0 �1F

��
.

Therefore, |PSL2(F )| = |SL2(F )|/|Z(SL2(F ))| = q2(q � 1)/2.

(d) Optional. If F is a finite field with q elements, compute the orders of GLn(F ) and

PGLn(F ). You can get explicit formulas. What about SLn(F ) and PSLn(F )?

3
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Exercise 1. Let B  GLn(F ) be the subgroup of invertible upper-triangular matrices (F
is an arbitrary field).

Taking n = 3, prove that B is a solvable group, but not nilpotent. For more of a challenge,

prove the same for arbitrary n.

Proof. If F = F2, then B = U and so B is in fact nilpotent by Exercise 3 below. Suppose

F 6= F2. We saw in the last homework that for a = (aij), b = (bij) 2 B, the (i, i)-
entry of the matrix ab is aiibii. Since (aij)(aij)�1

= I, then the (i, i)-entry of a�1
is a�1

ii .

So if we consider the commutator of a and b, we get that the (i, i)-entry of aba�1b�1
is

aiibiia
�1
ii b�1

ii = 1. Hence B(1)
= [B,B]  U , where U is the subgroup of B consisting of all

matrices with 1s on their diagonal. Then, the computation

2

4
1 a b
0 1 c
0 0 1

3

5

2

4
1 d e
0 1 f
0 0 1

3

5

2

4
1 a b
0 1 c
0 0 1

3

5
�1 2

4
1 d e
0 1 f
0 0 1

3

5
�1

=

2

4
1 0 af � cd
0 1 0

0 0 1

3

5

shows that U (1)
= [U,U ]  A, where

A =

8
<

:

2

4
1 0 a
0 1 0

0 0 1

3

5 : a 2 F

9
=

; .

So B(2)
 U (1)

 A. Then, the computation

2

4
1 0 a
0 1 0

0 0 1

3

5

2

4
1 0 b
0 1 0

0 0 1

3

5

2

4
1 0 a
0 1 0

0 0 1

3

5
�1 2

4
1 0 b
0 1 0

0 0 1

3

5
�1

=

2

4
1 0 0

0 1 0

0 0 1

3

5

shows that A(1)
= [A,A] = I. So B(3)

 U (2)
 A(1)

= I, and so the derived series of B
terminates. Hence B is solvable.

It is not hard to see that the Z0(B) = Z(B) is the set of scalar matrices, S. Now suppose

aS 2 Z(B/S) and bS 2 B/S. Then

abS = baS () aba�1b�1
2 S \ U = I () ab = ba () a 2 Z(B) = S () aS = S.

So, Z1 = ⇡�1
(Z(B/S)) = S, and then Z2 = ⇡�1

(Z(B/S)) = S, and so on. So we get

ascending central series

Z0 = Z1 = Z2 = Z3 = Z4 = · · ·

which never reaches B. Hence B is not nilpotent. (Really not nilpotent).

1
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Exercise 2. These miscellaneous exercises concern p-groups and nilpotent groups.

(a) Let p be a prime and V an n-dimensional vector space over the finite field Fp. Suppose

' 2 GL(V ) has order a power of p. Show that ' has a nonzero fixed point in V (i.e.,

there exists 0 6= v 2 V such that '(v) = v).

Proof. Suppose ' has order p↵ for some ↵ 2 Z>0. Then the minimal polynomial for

' divides xp↵

� 1 = (x � 1)
p↵

. But then 1 is an eigenvalue for ', and so ' fixes a

nonzero vector.

Alternatively, notice that V has pn elements. If we let the group h'i act on V (by

evaluation, 'j .v = 'j
(v)) we partition the set V into orbits, say, Ow1 , . . . ,Owk , and

so pn = |V | =
Pk

i=1 |Owi |. So p divides the order of each orbit. In particular, we can

write

pn = |V | = mN1 + `1Np + `2Np2 + · · ·+ `↵Np↵ ,

for some integers m, `1, . . . , `p↵ , where N1 is the number of orbits of size 1 and Npj is

the number of orbits of size pj . Now, N1 � 1, since the orbit of 0V has size 1. But

p|N1 and so there are at least p orbits of size 1, giving that ' fixes a nonzero element

of V – in particular, it fixes at least p� 1 nonzero vectors.

(b) Use (a) to prove that there exists a chain of subspaces

V0 = 0 ⇢ V1 ⇢ V2 ⇢ · · · ⇢ Vn = V, dimF Vi = i,

with '(Vi) = Vi for all i. (Such a chain is called a complete flag in V ; the set of all

complete flags in V is an algebraic variety over any field F , generalizing projective

space P(V ) (and a compact manifold if F = R or F = C).

Proof. By induction. For n = 1, let V1 = span{w1} where w1 is a vector fixed by '.
So V0 ⇢ V1 is a chain of subspaces with dimF Vi = i and '(Vi) = Vi, i = 1, 2.

Suppose the claim is true for 1  k < n. We need to find a subspace Vk+1 � Vk

for which '(Vk+1) = Vk+1. First consider the space V/Vk. Since '(Vk) = Vk, then '
induces a well-defined transformation

'̃ : V/Vk ! V/Vk, a+ Vk 7! '(a) + Vk.

Since also '�1
(Vk) = Vk, then '̃ has a well-defined inverse, b + Vk 7! '�1

(b) + Vk.

So '̃ 2 GL(V/Vk), and so we can apply part (a) to find wk+1 + Vk 2 V/Vk fixed

by '̃, where wk+1 + Vk 6= 0V + Vk. Then W̃ := span{wk+1 + Vk} is a subspace of

V/Vk, and so by the correspondence theorem, there is a subspace Vk+1 � Vk for which

Vk+1/Vk = W̃ and dimF Vk+1 = k + 1.

Now, the coset representative wk+1 is an element of Vk+1 ⇠ Vk and also spans

Vk+1 ⇠ Vk. So if {v1, . . . , vk} is a basis for Vk, then {v1, . . . , vk, wk+1} is a basis for

Vk+1. Now, '(vi) 2 Vk for all 1  i  n, and

'(wk+1) + Vk = '̃(wk+1 + Vk) = wk+1 + Vk 2 Vk+1/Vk,

which means '(wk+1) 2 Vk+1. Hence '(Vk+1) = Vk+1, completing the induction.

2
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Exercise 3. Let U  SLn(F ) be subgroup of upper-triangular matrices with 1s on the

diagonal (F is an arbitrary field). Taking n = 3, prove that U is a nilpotent group. How

does U relate to Problems 1 and 2(b)? For more of a challenge, prove the same for arbitrary

n.

Proof. We saw in Exercise 1 that U (1)
 A. Then the computation

2

4
1 a b
0 1 c
0 0 1

3

5

2

4
1 0 d
0 1 0

0 0 1

3

5

2

4
1 a b
0 1 c
0 0 1

3

5
�1 2

4
1 0 d
0 1 0

0 0 1

3

5
�1

=

2

4
1 0 0

0 1 0

0 0 1

3

5

shows that [U,U (1)
]  [U,A] = I. Hence we have the descending central series

U . U (1) . [U, [U (1)
]] = I,

and so U is nilpotent.

3
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Problem 1. Skills developed: working with properties of maps rather than choosing
elements. This can simplify certain kinds of proofs by not introducing extra symbols too
keep track of. It is particularly useful when you have several interacting maps.
Let f : A ! B be a morphism in an arbitrary category C (so the proofs should not make
reference to “elements”). Prove each of the following:

(a) If f is a retraction, then f is an epimorphism.

Proof. There exists g : B ! A such that fg = 1B . So if g1f = g2f , then g1fg =
g2fg =) g11B = g21B =) g1 = g2.

(b) If f is a section, then f is a monomorphism.

Proof. There exists g : B ! A such that gf = 1A. So if fg1 = fg2, then gfg1 =
gfg2 =) 1Ag1 = 1Ag2 =) g1 = g2.

(c) The morphism f is an isomorphism if and only if f is a monomorphism and a retrac-
tion. (This is if and only if f is an epimorphism and a section; the proof is similar so
don’t turn it in.)

Proof. ()) There exists g : B ! A such that fg = 1B and gf = 1A. The former is
the definition of a f begin a retraction. If fg1 = fg2, then gfg1 = gfg2 =) 1Ag1 =
1Ag2 =) g1 = g2, and so f is a monomorphism.

(() Since f is a retraction, there exists g : B ! A such that fg = 1B . Since
f is a monomorphism, fgf = 1Bf = f = f1A implies gf = 1A. Hence f is an
isomorphism.

1
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Problem 2. Skills developed: practice applying definition of “functor” in a more famil-
iar setting. Creating examples to understand abstract properties.
Let Groups be the category of groups, and Rings be the category of rings with 1 (mor-
phisms are ring homomorphisms sending 1 to 1).

(a) Given a group G, let Ab(G) be the largest quotient of G which is abelian. Show that
Ab is a functor from Groups to itself.

Proof. The largest abelian quotient of a group is that obtained by quotienting by
its commutator subgroup. Let f : G ! H be a group homomorphism and let H

0

denote the commutator subgroup of H. The composition ⇡H � f : G ! H/H
0 is a

map from G to an abelian group; so ⇡H � f must factor through G/G
0. In particular,

the map  : G/G
0 ! H/H

0 given by xG
0 7! (f � ⇡H)(x) is the unique, well-defined

homomorphism and makes the diagram commute:

G H H/H
0

G/G
0

f

⇡G

⇡H

 

So we define Ab(f) =  . Let g : H ! K be a group homomorphism, and consider the
diagram

G H K K/K
0

H/H
0

G/G
0

f

⇡G

g

⇡H

⇡K

Ab(g)

A
b(f

)
A
b(g

f)

We have Ab(gf) � ⇡G = ⇡K � g � f . On the other hand,

Ab(g) �Ab(f) � ⇡G = Ab(g) � ⇡H � f = ⇡K � g � f,

and so Ab(gf) = Ab(g) � Ab(f). Now, if 1G : G ! G is the identity homomorphism
on G, then Ab(1G) � ⇡G = ⇡G � 1G = ⇡G, which means Ab(1G) = 1G/G0 . Hence Ab is
a covariant functor.
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(b) Show that the map from Rings to Groups, defined on objects by sending a ring R to
its group of units R⇥, extends to a functor between these categories. Show by example
that it is neither faithful nor full.

Solution:

Let F : Rings ! Groups be the map R 7! R
⇥. For f : R ! S, a ring homomor-

phism, define F (f) : R⇥ ! S
⇥ by F (f)(r) 7! f(r). Since f is a group homomorphism,

it must send units to units, so F (f) is well-defined. If we have two ring homomor-
phisms f : R ! S, g : S ! A, then

F (gf)(r) = g(f(r)) = g(F (f)(r)) = F (g)(F (f)(r)) = (F (g) � F (f))(r).

Also, F (1R)(r) = 1R(r) = r implies F (1R) = 1R⇥ = 1F (R), and so F is a covariant
functor.

Consider the group homomorphism f : Z⇥ ! Z⇥ given by 1 7! �1. This map is in
HomGroups(Z⇥

,Z⇥). However, since HomRings(Z,Z) = {1Z}, and F (1Z) = 1Z⇥ 6= f ,
then F is not full.

Now let x be transcendental over an integral domain R, and consider the evaluation
ring homomorphism evala : R[x] ! R, f(x) 7! f(a), for a 2 R. Now, (R[x])⇥ = R

⇥,
and so for r 2 R

⇥, evala(r) = r. Therefore if we pick distinct a, b 2 R, we get that
F (evala) = F (evalb), yet evala 6= evalb, showing that F is not faithful.

Problem 3. Skills developed: more practice with functors and getting used to passing
back and forth between equivalent definitions (abstract vs. concrete).
Recall that a group G determines a category with one object G. Let K be a field, and
VecK the category of K-vector spaces. A representation of a group G on a K-vector space
V is a group homomorphism ⇢ : G ! GL(V ). Given a representation ⇢, define a functor
F⇢ : G ! VecK . Conversely, given a functor F : G ! VecK , define a representation of G
on a vector space.
Think about why these two processes are “inverse” to one another, so the concept of a
representation is equivalent to this particular kind of functor. In general, a functor from
any category C to VecK can be interpreted (or defined) as a representation of C.

Solution:
First, suppose we have representation ⇢ : G ! GL(V ) for a vector space V over K.

Define a map F⇢ : G ! VecK by F⇢(G) = V , and for any morphism g 2 HomG(G,G),

F⇢(g) = ⇢(g) 2 HomVecK
(V, V ).

If 1G is the identity in HomG(G,G), then F⇢(1G) = ⇢(1G) = 1GL(V ) = 1V since ⇢ is a group
homomorpism. If g, h 2 HomG(G,G), then F⇢(gh) = ⇢(gh) = ⇢(g)⇢(h) = F⇢(g)F⇢(h), and
so F⇢ is a covariant functor.

Now, suppose we have a (covariant) functor F : G ! VecK . Let V be the vector space
F (G). Then define a representation of G on V , ⇢ : G ! GL(V ) by ⇢(g)(v) = F (g)(v) for
all g 2 G = HomG(G,G) and for all v 2 V . Then for g, h 2 G

⇢(gh) = F (gh) = F (g)F (h) = ⇢(g)⇢(h),

and so ⇢ is a group homomorphism. Now, we check that ⇢(g) is actually an element of
GL(V ):

⇢(g)⇢(g�1) = F (g)F (g�1) = F (gg�1) = F (1G) = 1F (G) = 1V ,

and similarly, ⇢(g)�1
⇢(g) = 1V .
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Problem 1. Skills developed: Interpreting and testing an abstract definition in familiar

settings.

In each category below, decide whether there exists a free object on an arbitrary set X. If
so, prove it by constructing the free object and demonstrating the definition holds. If not,
choose a specific set X and prove that no free object on X can exist.
Each category below is a familiar concrete category. Just treat the objects as having under-

lying sets as you usually would, without writing U for the “underlying set” functor.

(a) The category Sets of all sets.

(b) The category Fields of fields.

(c) The category Finite-Groups of finite groups.

(d) The category Top of topological spaces and continuous functions.

Solution: Fix an object X in Sets.

(a) If X is any set, the object X in Sets together with the identity map 1X : X ! X
is free on X: For any map f : X ! B, there is a unique map g : X ! B such that
g � 1x = f ; namely, g = f .

(b) Let X be any set. Let i : X ! F and f : X ! K be set maps, where F and K are
fields with char(K) 6= char(F ). But Hom(F,K) = ?. So no free object on X exists.

(c) Let X = {¡} be the one element set. Let G and H be finite groups of relatively prime
order. Let i : X ! G and g : X ! H be set maps where i(¡) = 1G and g(¡) 6= 1H .
The only element in Hom(G,H) is the trivial map f : G 7! {1H}. But this map does
not satisfy f � i = g since f(i(¡)) = 1H but g(¡) 6= 1H . So no free object on X exists.

(d) Let X be any set, and D(X) be the object in Top which has the underlying set X
and is given the discrete topology. Then D(X) together with the identity set map,
i : X ! D(X), is free on X: Given any set map f : X ! T for an object T in Top,
there exists a unique map g : X ! T such that g � i = f ; namely, f = g since i is
the identity set map. Although f is a set map, it can be considered as a continuous
function f : D(X) ! T , since any map out of D(X) is continuous.

1
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Problem 2. Skills developed: Construction of a categorical equivalence.

Let K be a field, and K-Mod the category of K-modules (i.e., vector spaces). Let R =
Mat2⇥2(K) be the ring of 2⇥2 matrices over K, and R-Mod the category of left R-modules.
We will show that K-Mod and R-Mod are equivalent categories, despite that fact that K
and R are clearly not isomorphic rings.

(a) Define a map on objects F : K-Mod ! R-Mod by sending a vector space V to the R-
module V �V , where R acts on (v1, v2) 2 V �V by the standard matrix multiplication
formula. 

a b
c d

� 
v1
v2

�
=


av1 + bv2
cv1 + dv2

�

Show how to make F a functor in the most natural way.

Solution: For a linear map ↵ : V ! W of K-modules, define F (↵) : V � V !
W �W by (v1, v2) 7! (↵(v1),↵(v2)). If we have another linear map � : W ! L, then

F (� � ↵)(v1, v2) = (� � ↵(v1),� � ↵(v2)) = F (�)(↵(v1),↵(v2)) = F (�)F (↵)(v1, v2).

In addition, F (1V )(v1, v2) = (v1, v2) = 1V�V (v1, v2) = 1F (V ) where 1V is the identity
linear map in V . Hence F is a covariant functor.

(b) Let e be primitive idempotent in R, for concreteness let’s take e = [ 1 0
0 0 ]. Check (but

don’t turn in) that the ring eRe is isomorphic to the field K, where a 2 K is identified
with the matrix [ a 0

0 0 ]. Also check that eM is a left eRe-module, and thus can be
considered as a K-vector space. Therefore, we can define a map on objects G : R-
mod ! K-mod by sending an R-module M to eM . Show how to make G a functor
in the most natural way.

Solution: For a morphism f : M ! N in R-mod, define G(f) : eM ! eN by
em 7! ef(m). If g : N ! L is another R-mod hom, then

G(g � f)(em) = e(g � f)(m) = eg(f(m)) = G(g)(ef(m)) = G(g)G(f)(em).

Moreover, if 1M : M ! M is the identity on M , then G(1M )(em) = em = 1eM (em) =
1G(M)(eM). So G is a covariant functor.

(c) It is easy to see that GF is exactly the identity functor on K-mod. (Check this
but don’t turn it in.) On the other hand, FG is not exactly the identity functor,
but FG(M) ' M for all M 2 R-mod. Show that the functor FG is isomorphic to
the identity functor on R-mod. This shows that R-mod and K-mod are equivalent
categories.

Solution: For an R-module M , we have FG(M) = F (eM) = eM�eM . We want
a natural isomorphism ⌘ : 1R-Mod =) FG, i.e., a natural transformation ⌘ so that
for any morphism ↵ : M ! N in R-mod, the diagram commutes:

M N

eM � eM eN � eN

⌘M

↵

⌘N

FG(↵)

2
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Define the components of ⌘ by ⌘M : m 7! (em, e0m) where e0 = [ 0 1
0 0 ]. Let r =

⇥
a b

c d

⇤
2

R and m 2 M . Then

⌘M (rm) = (erm, e0rm) = ([ a b

0 0 ]m, [ c d

0 0 ]m) .

On the other hand,

r⌘M (m) = r(em, e0m) =
⇥
a b

c d

⇤
[ em

e
0
m
] =

h
aem+be

0
m

cem+de
0
m

i

=


a [ 1 0

0 0 ]m+ b [ 1 0
0 0 ]m

c [ 0 1
0 0 ]m+ d [ 0 1

0 0 ]m

�

=


[ a b

0 0 ]m
[ c d

0 0 ]m

�
.

So ⌘M (rm) = r⌘M . It’s easy to see that ⌘M is additive. So the components of M are
indeed R-module homomorphisms.

This generalizes to n ⇥ n matrices over arbitrary rings with essentially the same proof.

In general, two rings S1, S2 such that the categories S1-mod and S2-mod are equivalent are

said to be “Morita equivalent” rings.

Optional challenge problem, not for credit. Skills developed: Introduction to ad-

joint functors.

Let C be a (concrete) category, and Forget : C ! Sets the forgetful functor. If the free ob-
ject on a set X exists in C (call it Free(X)), the relation between free objects and forgetful
functors can be summarized by the fact that for any A 2 Ob(C), there is a bijection of sets:

HomC(Free(X), A) ⇠= HomSets(X,Forget(A))

which is functorial in both X and A.
This generalizes to the concept of adjoint functors: Let F : C ! D and and G : D ! C

be functors such that, for all A 2 C and B 2 D, there is a bijection of sets

HomD(F (A), B) ⇠= HomC(A,G(B))

which itself is functorial in both A and B. Then F is said to be a left adjoint to G, which
is right adjoint to F , and (F,G) is a pair of adjoint functors.

LetDom be the category of integral domains with injective morphisms, andG : Fields !
Dom be the inclusion functor. Construct a left adjoint functor F to G. (There is an essen-
tially unique way to do this– you may have even seen it in a previous algebra course without
the language of adjoint functors.) Hint: figure out what F (Z) is, then use this idea to get

F (R) for a general domain R.

3
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Problem 1. Fix a homomorphism of groups f : A ! B. Let C be the category whose
objects are pairs (X,') such that ' : X ! A is a group homomorphism satisfying f' = 0.
A morphism (X,') ! (Y, ) in C is given by a group homomorphism g : X ! Y satisfying
' =  g. Prove that C has a terminal object by explicitly describing it.

Proof. Consider the object (ker f, ◆) where ◆ : ker f ,! A is inclusion. If (X,') is any
other object, then by assumption f' = 0, i.e. im' ✓ ker f . So g = ' is a morphism
g : (X,') ! (ker f, ◆) such that ' = ◆g since ◆g(x) = ◆'(x) = '(x). This definition is g is
obviously unique since if ' = ◆g̃, then g = ' = ◆g̃ = g̃.

A B

X ker f

f

8'

9!g

◆

K

Problem 2. Let R be ring, and M 2 R-Mod. Define

Tor(M) = {m 2 M | rm = 0 for some nonzero r 2 R}.

(a) Prove that if R is an integral domain (a commutative ring with no zero divisors), then
Tor(M) is a submodule of M , called the torsion submodule.

Proof. First Tor(M) 6= ? since r ·0M = 0M for any r 2 R�{0R}. Let m,n 2 Tor(M)
with r, s 2 R nonzero such that r · m = 0M and s · n = 0M . Since R is an integral
domain, rs 6= 0R and so if t 2 R,

rs · (m+ tn) = rs ·m+ rs · tn = s · 0M + rt · 0M = 0M .

So m+ tn 2 Tor(M) and hence Tor(M) is a submodule of M . K

(b) Prove that Tor : R-Mod ! R-Mod is a functor when R is an integral domain.

Proof. Since R is an integral domain and M is an R-module, then Tor(M) is a
submodule of M by (a). If f : M ! N is an R-Mod morphism, define Tor(f) :
Tor(M) ! Tor(N) by m 7! f(m). Since f is a morphism in R-Mod, we have
f(Tor(M)) = Tor(N); indeed, ifm 2 Tor(M) with r 2 R nonzero such that r·m = 0M ,
then r ·f(m) = f(r ·m) = f(0M ) = 0N . With this definition, Tor is clearly a covariant
functor. K

(c) Let R be the ring of 2⇥ 2 matrices over a field. Show that Tor(R) is not a submodule
of R.
Hint: you don’t even have to specify the field because you will only need the elements

0 and 1.

Proof. Let r = [ 1 0
0 0 ] and s = [ 0 0

0 1 ]. Then


0 0
0 1

� 
1 0
0 0

�
=


0 0
0 0

�
and


0 0
1 0

� 
0 0
0 1

�
=


0 0
0 0

�
.

1
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So r, s 2 Tor(R). However, Tor(R) is not even an additive group since r+s 62 Tor(M).
If so, then there exists a nonzero

⇥
a b
c d

⇤
2 R such that


a b
c d

� 
1 0
0 1

�
=


0 0
0 0

�
,

contradicting that
⇥
a b
c d

⇤
6= 0R. K

Problem 3. Fix a ring homomorphism � : R ! S, and let M be a left S-module.
Recall from class that M can also be considered a left R-module by restriction of scalars:
r · m = �(r)m for r 2 R, m 2 M . The notations SM and RM can be used to clarify
whether M is being considered as an S- or R-module at any given point, but it is always
the same set (this is OK since � is fixed, otherwise � needs to be in the notation if several
ring homomorphisms R ! S are relevant). Prove that � induces a functor �⇤ : S-Mod !
R-Mod.
Hint: �⇤ doesn’t do anything to the elements of a module, it just sends SM to RM , and it

doesn’t do anything to morphisms, they are the same maps of sets. The only thing to check

is that if f : M ! N is an S-module homomorphism, then �⇤(f) is actually an R-module

homomorphism.

Proof. Define �⇤(SM) = RM , and for a morphism f : SM ! SN of S-modules, define
�⇤(f) : RM ! RN by m 7! f(m). If m,m0 2 RM and r 2 R, then

�⇤(f)(m+ r ·m0) = f(m+ r ·m0) = f(m+ �(r)m0) = f(m) + f(�(r)m)

= f(m) + �(r)f(m)

= f(m) + r · f(m),

and so �⇤(f) is indeed and R-module morphism. It’s clear the �⇤ is a covariant functor:

�⇤(g � f)(m) = (g � f)(m) = g(f(m)) = �⇤(g)(f(m)) = �⇤(g)�⇤(f)(m)

�⇤(1SM )(m) = 1M (m) = m = 1RM (m) = 1�⇤(SM)(m).

K

2
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Problem 1. Prove that the following are equivalent for a ring R: (i) every left R-module

is projective, (ii) every left R-module is injective.

Proof. We show that each of these statements is equivalent to the statement: (iii) Every

short exact sequence in R-mod splits.

(i) () (iii) If 0 ! A ,! B ⇣ C ! 0 is an s.e.s., then (i) implies that B ⇣ C has a

retraction, i.e., the s.e.s. splits. Conversely, if C is any R-module and ⇡ : B ⇣ C is any

surjective map, then we get an s.e.s. 0 ! ker⇡ ,! B ⇣ C ! 0, which splits by assumption.

So there exists a retraction of ⇡, showing that C is projective.

(ii) () (iii) If 0 ! A ,! B ⇣ C ! 0 is an s.e.s., then (ii) implies that A ,! B has a

section, i.e., the s.e.s. splits. Conversely, if A is any R-module and i : A ,! B is any injective

map, then we get an s.e.s. 0 ! A ,! B ⇣ B/ im(i) ! 0, which splits by assumption. So

there exists a section of i, showing that A is injective. K

1
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Problem 2. This exercise introduces the concept of pushout to prove an equivalent

condition for a module to be injective that was stated but not proved in class. Given

homomorphisms of R-modules g1 : M ! N1 and g2 : M ! N2, the pushout of g1, g2 is the

R-module

N1 �M N2 := N1 �N2/{(g1(m),�g2(m)) | m 2 M}.
The pushout fits into a commutative diagram

M N1

N2 N1 �M N2

g1

g2 f1

f2

where each fi is inclusion of the summand followed by the quotient.

(a) Prove that if g1 is injective, then f2 is injective.

Proof. Let L := {(g1(m),�g2(m)) | m 2 M} and suppose f2(n) = (0N1 , 0N2) + L.

From the definition of the map f2, we find m 2 M so that(g1(m),�g2(m)) = (0N1 , n).

Since g1 is injective m = 0M , which gives n = �g2(m) = 0N2 . K

(b) Let Q be an R-module such that every injective map h : Q ! M splits. Prove that Q

is injective. Hint: use an appropriate pushout and part (a).

Proof. Given a diagram

L M

Q

g1

g2

we can consider the pushout of g1, g2:

L M

Q M �L Q

g1

g2 f1

f2

By hypothesis, we have a retraction of g1, say ⇡ : M ! L. Define f := g2 � ⇡. Then

f � g1 = g2 � ⇡ � g1 = g2 � 1L = g2, i.e., f lifts g2 along g1, showing that Q is injective.

L M

Q M �L Q

g1

g2 f1
f

f2

K

Remark: There is a “dual” notion of pullback that can be used to prove directly the analogous

characterization of projective modules, without going through the characterization that a

projective module is a direct summand of a free module.

2
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Problem 3. We proved in class that every Z-module embeds in an injective Z-module.

In this exercise, we show that this is true for any ring S. The first optional problem below,

on coextension of scalars, may be helpful. You may quote any of those results without

proving them.

(a) If Q is an injective Z-module, prove that HomZ(S,Q) (coextension of scalars from Z
to S) is an injective S-module.

Proof. Suppose we have a diagram

L M

HomZ(S,Q)

 

h

Using the map p from the first optional problem below, we can extend this diagram

and, using the injectivity of Q, we find a Z-module homomorphism g such that p�h =

g �  .
L M

HomZ(S,Q)

Q

 

h

g

p

In the first optional problem below, we prove that there exists a unique map f from

M to HomZ(S,Q) such that p � f = g, defined by f : m 7! (fm : s 7! g(s.m)). So,

p � h = p � f �  . Now let ` 2 L, s 2 S and put h(`) = h`. Then

f (`)(s) = sf (`)(1S) = sp(f (`)) = sp(h`) = sh`(1s) = h`(s),

showing that f lifts h along  , and so HomZ(S,Q) is injective.

L M

HomZ(S,Q)

Q

 

h

g

f

p

K

(b) Let M be an arbitrary S-module, and Q be an injective Z-module containing M . Find

an injective map i : M ! HomZ(S,Q).

Solution:

Define a map f : M ! HomZ(S,M) by m 7! (fm : s 7! s.m). If s1, s2 2 S and

n 2 Z, then fm(s1 + ns2) = s1.m + ns2.m = fm(s1) + nfm(s2), so fm is a Z-module

homomorphism. If fm(s) = fm0(s) for all s 2 S, then s.m = s.m
0
implies m = m

0
,

so f is injective. Now, since M ✓ Q then HomZ(S,M) ✓ HomZ(S,Q), and so we can

define

i : M
f
,! HomZ(S,M) ,! HomZ(S,Q).

3
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Optional problem, not for credit.

(a) Let ' : R ! S be a ring homomorphism. Show how '⇤M := HomR-mod(S,M) is a

functor from the category of left R-modules to the category of left S-modules. Start

by giving the specific left S-module action on '⇤M . Note: we did not prove this

completely in class, only discussed the idea. Part of the problem is to show that '⇤M
is actually a left S-module.

Solution:

For ↵ 2 HomR(S,N) and s 2 S, define s.↵ := (s↵ : t 7! ↵(ts)). Let s1, s2 2 S,

r 2 R. Notice that (r.s2)s = ('(r)s2)s = '(r)(s2s) = r.s2s. So

s↵(s1 + r.s2) = ↵(s1s+ (r.s2)s) = ↵(s1s+ r.(s2s)) = s↵(s1) + r.s↵(s2),

and so s↵ 2 HomR(S,N). Moreover

s1.(s2.↵) = s1(s2↵ : t 7! ↵(ts2)) = (s1s2↵ : t 7! s2↵(ts1) = ↵(ts1s2)) = s1s2.↵,

and 1S .↵ = (1S↵ : t 7! ↵(t1S) = ↵(t)) = ↵,

shows that this rule gives an S-module structure on HomR(S,N).

For f in R-Mod, define '⇤f = f⇤. If M
f�! N

g�! L is in R-Mod, and ↵ is in

HomR(S,M), then

('⇤(g � f))(↵) = (g � f)⇤(↵) = g � f � ↵ = (g⇤ � f⇤)(↵) = ('⇤(g) � '⇤(f))(↵),

and '⇤(1M )(↵) = (1M )⇤(↵) = 1M � ↵ = ↵ = 1HomR(S,M)(↵) = 1'⇤M (↵).

Hence '⇤ : R-Mod ! S-Mod is a covariant functor.

(b) For any RN , there is a canonical homomorphism of left R-modules

p : '⇤N = HomR(S,N) ! N h 7! h(1).

Check, but don’t write up, that this is actually a homomorphism of left R-modules.

Then prove that for any left S-module M , and given homomorphism of left R-modules

g : M ! N , there is a unique homomorphism of left S-modules f : M ! '⇤N such

that g = p � f .

Proof. Define f : M ! HomR(S,N) by the rule m 7! (fm : s 7! g(s.m)).

M

HomR(S,Q)

Q

g

f

p

If m1,m2 2 M, and s, t 2 S then

(fm1 + s.fm2)(t) = fm1(t) + s.fm2(t) = fm1(t) + fm2(ts) = g(t.m1) + g(ts.m2),

4
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and on the other hand

(f(m1 + s.m2))(t) = fm1+s.m2(t) = g(t.m1 + t.(s.m2)) = g(t.m1) + g(ts.m2),

which shows that f is an S-module homomorphism. Moreover,

p(f(m)) = fm(1S) = g(1S .m) = g(m).

K

(c) Let ' : C[x] ! C be the quotient ring homomorphism with kernel generated by x.

Give a general description of '⇤M for any C[x]-module M . It may help to compute

some examples such as '⇤

⇣
C[x]
(xn)

⌘
, '⇤

⇣
C[x]

((x�1)n)

⌘
, '⇤C[x].

Optional challenge problem, not for credit. Find the universal property that the

pushout satisfies. Create a category for which the pushout is a coproduct.

5
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Problem 1. In this problem we generalize some familiar facts about dimensions of

vector spaces to length of modules.

(a) Prove that “length is additive on short exact sequences”: let 0 ! A ! B ! C ! 0

be a short exact sequence of left R-modules, and suppose that B is of finite length.

Prove that `(B) = `(A) + `(C).

Proof. Let

0 = A0 ⇢ A1 ⇢ · · · ⇢ A`(A) = A ✓ B

be a composition series for A inside B. Extend this to get a composition series in B:

0 = A0 ⇢ A1 ⇢ · · · ⇢ A`(A) = A ⇢ B1 ⇢ B2 · · · ⇢ Bn = B.

So `(B) = `(A)+n, and A ⇢ B1 ⇢ B2 · · · ⇢ Bn = B consists of all the submodules of

B containing A. Then by the correspondence isomorphism theorem, we have a chain

in B = B/A
0 = A ⇢ B1 ⇢ B2 ⇢ · · · ⇢ Bn = B.

By the cancellation isomorphism theorem,

B1/A ⇠= B1/A and Bi+1/Bi
⇠= Bi+1/Bi for all 2  i  n� 1.

so the chain in B has all simple factors, giving a composition series for B. So

B = n = `(B)� `(A).

Since B/A ⇠= C, then `(C) = `(B)� `(A). K

(b) Use (a) to prove the “sum-intersection formula” for modules of finite length: if K,N ✓
M are submodules and have finite length, then

`(K +N) + `(K \N) = `(K) + `(N).

The point of the exercise is use (a) to prove this– don’t try to do it by explicitly

considering chains in all these spaces.

Proof. We have the exact sequences

0 �! N �! K+N �! K +N

N
�! 0 and 0 �! K \N �! K �! K

K \N
�! 0,

so by part (a),

`(K +N) = `(N) + `

✓
K +N

N

◆
and `

✓
K

K \N

◆
= `(K)� `(K \N).

By the lattice isomorphism theorem, we get `
�
K+N
N

�
= `

�
K

K\N

�
, and so

`(K +N) + `(K \N) = `(N) + `(K).

K

1
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Problem 2. This problem generalizes the fact that a linear operator on a finite dimen-

sional vector space is injective if and only if it is surjective if and only if it is an isomorphism.

Prove (a) carefully. For (b), just briefly indicate the main ideas of a proof (a few sentences).

(a) Let M be a Noetherian left R-module, and f : M ! M a surjective homomorphism.

Show that f must be an isomorphism.

Proof. We have a chain

ker f ✓ ker f2 ✓ ker f3 ✓ · · · ✓ M,

and since M is Noetherian, there exists an n so that ker fn
= ker fk

for all k � n. We

claim that ker fn
= {0M}, which will give ker f = 0.

Notice that ker fn
= kerfn \ M = ker fn \ im fn

since f is surjective. Suppose

m 2 ker fn
. Then there exists m0 2 M so that fn

(m0
) = m. Then

0 = fn
(m) = fn

(fn
(m0

) = f2n
(m0

) =) m0 2 ker f2n
= ker fn,

so 0 = fn
(m0

) = m. K

(b) Let N be an Artinian left R-module, and g : N ! N an injective homomorphism.

Show that g must be an isomorphism.

Proof. Consider the descending chain M ◆ im f ◆ im f2 ◆ im f3 ◆ . . . , which stabi-

lizes since N is Artinian; say im fn
= im fn+1

. If x 2 N , then fn
(x) 2 im fn+1

, so

there exists x0 2 N so that fn
(f(x0

)) = fn
(x). Since fn

is injective, f(x0
) = x. K

Problem 3. Let R be a commutative ring, not necessarily Noetherian, and M a Noethe-

rian R-module. Let I = annR(M). Prove that R/I is a Noetherian ring.

Question for thought, not graded: if “Noetherian” is replaced by “Artinian” in this problem,

would the statement be true?

Proof.

***After spending way too much time on this problem, I looked online. I was close, but

just couldn’t finish the argument. I’m pretty disappointed.***

Since M is Noetherian, it is finitely generated and so we can write M =
Pn

i=1 Rmi for

mi 2 M . Define an R-module homomorphism

' : R ! M � · · ·�M, r 7! (rm1, . . . , rmn).

Then ker' = {r 2 R : rmi = 0 8i} = I, so we get a well-defined and injective map

R/I ! M � · · · � M . So R/I is isomorphic to a submodule of the Noetherian module

M � · · ·�M , and hence R/I is Noetherian. K

2
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Problem 4. Let R = M2(K[[t]]) be the ring of 2⇥ 2 matrices with entries in K[[t]], the
ring of formal power series over a field K (defined in class and on the last homework). Let

m = (t) be the unique maximal ideal of K[[t]], consisting of power series with 0 constant

term. Let S ✓ R be the subring of matrices of the form


K[[t]] K[[t]]
m K[[t]]

�
.

These are matrices that are “upper-triangular modulo t”. Prove that the Jacobson radical

of S is

J(S) =


m K[[t]]
m m

�
.

Hint: you can show J(S) is contained in the right hand side by finding two simple S-modules

(both 1-dimensional over K) and showing that the intersection of their annihilators is the

right hand side. These may take some work to find, they are not exactly the same as modules

appearing in other examples in class. Then you can show the right hand side is contained

in the left imitating techniques demonstrated in class for upper triangular matrices.

Proof. Let
⇥
m K[[t]]
m m

⇤
= U . Let x 2 U and r, s 2 S with ri, xi, si 2 K[[t]] for all 1  i  4.

Then

1 0

0 1

�
+


r1 r2
tr3 r4

�

| {z }
=r


tx1 x2

tx3 tx4

�

| {z }
=x


s1 s2
ts3 s4

�

| {z }
=s

=


1 0

0 1

�
+


r1tx1 + r2tx3 r1x2 + r2tx4

tr3tx1 + r4tx3 tr3x2 + r4tx4

� 
s1 s2
ts3 s4

�

=


1 + (r1tx1 + r2tx3)s1 + (r1x2 + r2tx4)ts3 (r1tx1 + r2tx3)s2 + (r1x2 + r2tx4)s4
(tr3tx1 + r4tx3)s1 + (tr3x2 + r4tx4)ts3 1 + (tr3tx1 + r4tx3)s2 + (tr3x2 + r4tx4)s4

�

Since the product of the anti-diagonal elements of 1 + rxs is in m and the product of

the diagonal elements has constant term 1, then det(1 + rxs) has constant term 1, hence

det(1 + rxs) 62 m. Since m contains precisely the non-units of K[[t]], then det(1 + rxs) is

invertible, and hence 1 + rxs is invertible, so U ✓ J(S).
Conversely, by restriction of scalars via the map ' : S ! S, t 7! 0, the left S-module

M1 :=


K
0

�
=

⇢
x
0

�
: x 2 K

�

becomes a left S-module. Viewing K inside S as scalar multiples of the identity, M1 is

1-dimensional over K, and hence simple. So M1 is simple as an S-module. The annihilator

of M1 in S is

annS(M1) =


m K[[t]]
m K[[t]]

�
.

Viewing K2
as 2-vectors with entries in K, we have that K2

is a left S-module. We have a

chain of submodules 0 ⇢ M1 ⇢ K2
, and since M2 = K2/M1 has dimension 1 over K, it’s a

simple K module, and so M2 is a simple S-module, and therefore a simple S module. Now

M2 =

⇢
x
y

�
+


K
0

��
=

⇢
0

y

�
+


K
0

��
.

And we have annS(M2) =
⇥
K[[t]] K[[t]]
m m

⇤
. So we get J(S) ⇢ annS(M1) \ annS(M2) = U . K
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