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Problem 1. Suppose that G is a finite group and acts doubly transitively on a set with n elements. Prove
that n(n− 1) divides |G|. Can you generalize this? (Just give the statement of a generalization.)

Solution:
We state and prove the general case:

Definition 1. Let G be a group and suppose G acts on a set X. We say that the action of G on X is
k-transitive if for every

(x1, . . . , xk), (y1, . . . , yk) ∈ X⊕k \∆,

there exists g ∈ G so that
(g · x1, . . . , g · xk) = (y1, . . . , yk),

where
∆ = {(x1, . . . , xk) ∈ X⊕k | xi 6= xj ∀ i 6= j}.

Lemma 1 (General Orbit-Stabilizer Lemma). Let G be a group that acts on a set X, let (x1, . . . , xk) be in
X⊕k, let Ox1,··· ,xk

denote the orbit of (x1, . . . , xk) ∈ X⊕k, and let Gx1,...,xk
denote the stabilizer subgroup of

(x1, . . . , xk). Then
|Ox1,...,xk

| = [G : Gx1,...,xk
].

Proof. First, we show Gx1,...,xk
≤ G: Certainly 1G ∈ Gx1,...,xk

, and if g, h ∈ Gx1,...,xk
, then so is gh−1:

(gh−1x1, . . . , gh
−1xk) = (gh−1(hx1), . . . , gh−1(hxk)) = (gx1, . . . , gxk) = (x1, . . . , xk).

Let C = {gGx1,...,xk
: g ∈ G} be the set of left cosets of Gx1,...,xk

in G, and define a map

C −→ Ox1,··· ,xk

gGx1,...,xk
7−→ (gx1, . . . , gxk).

This map is well-defined and injective:

gGx1,...,xk
= hGx1,...,xk

⇐⇒ h−1g ∈ Gx1,...,xk
⇐⇒ (h−1gx1, . . . , h

−1gxk) = (x1, . . . , xk)

⇐⇒ (gx1, . . . , gxk) = (hx1, . . . , hxk).

The map is clearly surjective. Hence [G : Gx1,...,xk
] = |C| = |Ox1,...,xn |. K

Proposition 1 (Generalization of Problem 1). Let G be a finite group that acts k-transitively on a set X,
|X| = n <∞, (so k ≤ n). Then n(n− 1)(n− 2) · · · (n− k + 1) divides the order of G.

Proof. Take (x1, · · · , xk) ∈ X⊕k \∆ in the lemma. Since G acts k-transitively on X, then it follows directly
from the definition of k-transitive that Ox1,...,xn

= X⊕k \∆, and so

|Ox1,...,xn
| = |X⊕k \∆| = n(n− 1) · · · (n− k + 1).

Hence by the lemma,

|G| = |Ox1,...,xn
| · |Gx1,...,xk

| = n(n− 1) · · · (n− k + 1) · |Gx1,...,xk
|.

K
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Problem 2. Recall that a maximal subgroup of a group G is a proper subgroup which is not contained
in any proper subgroup but itself. Let Φ(G) be the intersection of all maximal subgroups of G, if it has any,
and Φ(G) = G otherwise.

(a) Compute Φ(G) for each of G = S3, A4, S4, A5, S5. In each case, your answer should be a description
of the subgroup Φ(G) and a brief argument, not solely a list of computations.

Solution:

• S3: Any nontrivial proper subgroup of S3 is maximal, by an order argument. So we intersect at
least two subgroups of relatively prime order, giving Φ(S3) = {()}.

• A4: First notice that A4 does not contain a subgroup of order 6: The only groups of order 6
are Z6 and S3, but no element of A4 has order 6, and A4 does not contain the odd permutations
(which do lie in S3). Hence the only proper nontrivial subgroups of A4 are of orders 3 and 4,
which must all be maximal by an order argument. So again, we intersect at least two subgroups
of relatively prime order, giving Φ(A4) = {()}.

• S4: Since 12 is the only multiple of 12 that is a proper divisor of |S4| = 24, then A4 is maximal.
Similarly, since 8 is the only multiple of 8 that is a proper divisor of 24, any subgroup of S4 of
order 8 is maximal. We saw in Homework 1 that S4 has 3 Sylow 2-subgroups,:

H = 〈(1234), (24)〉 = {(), (1234), (24), (13)(24), (1432), (12)(34), (13), (14)(23)},
K = 〈(1342), (14)〉 = {(), (1342), (14), (14)(23), (1243), (12)(34), (23), (13)(24)},
L = 〈(1423), (12)〉 = {(), (1423), (12), (12)(34), (1324), (13)(24), (34), (14)(23)}.

Any subgroup of S4 of order 2 or 4 lies in one of these. Also, S3 ≤ S4 (viewed as all permutations
that fix 4). Now S3 is maximal since it has order 6 and hence could only possible lie in a subgroup
of S4 of order 12, which does not happen since A4 ≤ S4 is the only subgroup of order 12, and A4

does not contain S3. So
Φ(S4) ≤ A4 ∩H ∩K ∩ L ∩ S3 = {()}.

Lemma 2. Φ(G) is characteristic in G.

Proof. Let M � G be maximal and α ∈ Aut(G). If α(M) ≤ N � G, then

(M ≤ α−1(N) � G) =⇒ M = α−1(N) =⇒ α(M) = N.

So α(M) is maximal. Let {Mi}i∈I be the collection of maximal subgroups of G. The injectivity
of α gives α(Mi) 6= α(Mj) for all i 6= j and so {Mi}i∈I = {α(Mi)}i∈I . Therefore

α (Φ(G)) = α

(⋂
i∈I

Mi

)
=
⋂
i∈I

α(Mi) =
⋂
i∈I

Mi = Φ(G).

K

• A5: First notice that since [A5 : A4] = 5 is prime, then A4 is maximal in A5. So Φ(A5) � A5.
Since A5 is simple and Φ(A5) is characteristic in A5, then Φ(A5) = {()}.

• S5: Since Φ(S5) is characteristic in S5 and {()}, A5 are the only proper normal subgroups of S5,
then Φ(S5) ∈ {{()}, A5}. Since [S5 : S4] = 5 is prime, then S4 is maximal in S5. But A5 6≤ S4, so
we must have Φ(S5) = {()}.
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(b) Say an element x ∈ G is a nongenerator of G if for every proper subgroup H ≤ G, also 〈x,H〉 is
a proper subgroup of G. (Equivalently, x can be removed from any set of generators of G and the
remaining set will still generate G.) Prove that if |G| > 1, then Φ(G) is exactly the set of nongenerators
of G.

Proof. Let X be the set of nongenerators of G. If x ∈ X and M � G is maximal, then M ≤ 〈x,M〉 � G
implies M = 〈x,M〉 and so x ∈M . Hence x ∈ Φ(G), and so X ⊆ Φ(G).

Conversely, let x ∈ Φ(G) and H � G be a proper subgroup. If x ∈ H, then 〈x,H〉 = H � G implies
x ∈ X, and we are done. If x 6∈ H, then in particular H is not maximal. So there exists a proper
subgroup K � G which properly contains H, i.e., H � K � G. If x ∈ K, then

〈x,H〉 ≤ 〈x,K〉 = K � G,

which implies x ∈ X, and we are done. If x 6∈ K, then the set

S = {L � G | H � L and x 6∈ K}

is nonempty. S has a partial ordering by set inclusion. If C is a chain in S, then

U :=
⋃
K∈C

L

is a subgroup of G, an upper bound for C, and does not contain x (otherwise x ∈ L for some L ∈ C, a
contradiction). To see that U ∈ S, suppose for contradiction U = G. Then x ∈ U , which means x ∈ L
for some L ∈ C, a contradiction. So U ∈ S, and so by Zorn’s Lemma, S contains a maximal element
M .

Now, if M is a maximal subgroup of G, then x ∈ M , a contradiction since M ∈ S. So M is not a
maximal subgroup of G, which means there exists L so that M � L � G. If x 6∈ L, then we have a
contradiction to the maximality of M as an element of S. So x ∈ L. Therefore,

H � 〈x,H〉 ≤ 〈x,M〉 ≤ 〈x, L〉 = L � G,

and so x ∈ X, giving X = Φ(G). K
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Problem 3. In this problem, you learn how to view some properties of module categories without
referring to modules or elements. Use the category of modules over an arbitrary ring as intuition. Let C

be a category. Given a collection of objects A1, . . . , An ∈ C, the biproduct of this collection is an object
A1 ⊕ · · · ⊕An along with morphisms:

• pk : A1 ⊕ · · · ⊕An → Ak in C called projections, and

• ik : Ak → A1 ⊕ · · · ⊕An in C called embeddings,

such that A1 ⊕ · · · ⊕An along with the set {pk}nk=1 is a product in C, and A1 ⊕ · · · ⊕An along with the set
{ik}nk=1 is a coproduct in C. As usual, biproducts need not exist in an arbitrary category. Note that we are
defining our use of the ⊕ symbol by objects with universal properties in a category, not as list of elements,
since we don’t have a way of taking elements from objects in C.

1. Unpacking the definitions, find a simple category theoretic description of the biproduct of an empty
collection, if it exists. If such an object does exist, it’s called a zero object of C. Use this to define a
“zero morphism” 0: A→ B between any two objects of C.

Solution:

Since we cannot have maps from or to an empty collection, the zero object 0 of C must satisfy that
for any A ∈ Ob(C), there exist unique morphisms 0→ A and A→ 0. Hence the zero object of C, if it
exists, is both an initial and terminal object in C.

Given any two objects A and B in C, we have unique maps A
f−→ 0 and 0

g−→ B. So define a zero
morphism 0 in C between A and B by 0 = g ◦ f : A→ 0→ B.

2. Suppose that C is a category in which the biproduct of any finite set of objects exists. Use this to define
an “addition” operation which takes f, g ∈ HomC(A,B) and returns a morphism f + g ∈ HomC(A,B).
Hint: try to create a sequence of morphisms of the form A→ A⊕A→ B ⊕B → B.

Solution:

From the definition of the product A ⊕ A, π1, π2 : A ⊕ A → A, there exists a unique morphism α
such that 1A = π1 ◦ α and 1A = π2 ◦ α. (We choose 1A ∈ Hom(A,A) since it is the only morphism we
know is in Hom(A,A)).

Similarly, from the definition of the coproduct B ⊕ B, i1, i2 : B → B ⊕ B, there exists a unique
morphism β : B ⊕B → B such that 1B = β ◦ i1 and 1B = β ◦ i2.

Again, from the definition of the product B⊕B, π̃1, π̃2 : B⊕B → B, there exists a unique morphism
γ : A⊕A→ B ⊕B such that f ◦ π1 = π̃1 ◦ γ and g ◦ π2 = π̃2 ◦ γ. So we define f + g := β ◦ γ ◦ α.

A B

A A⊕A B ⊕B B

A B

f

i1
1B1A

1A

∃!α

π1

π2

f◦π1

g◦π2

∃!γ ∃!β

π̃1

π̃2

g

i2
1B

3. Optional: Show that for any two objects A,B, the addition law from (b) satisfies:

• f + g = g + f for all f, g ∈ HomC(A,B),

• f + 0 = f for all f ∈ HomC(A,B),

• the addition law is associative.

That is, HomC(A,B) is an abelian monoid
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