Math 6000, Fall 2017 (Prof. Kinser), Final Nicholas Camacho

December 11, 2017
Problem 1. This problem introduces a type of dual for modules and further develops properties of projective modules. Let R be a ring and M a left R-module. The R-dual of M is defined to be the right R-module $M^{\vee}:=\operatorname{Hom}_{R}(M, R)$.
(a) Note that $M^{\vee \vee}$ is then a left R-module again. Give an example of a ring R and a finitely generated left R-module M such that $M^{\vee \vee} \nsim M$.

Solution:

I stumbled upon this example while reading Dummit and Foote's "Examples" of projective and non-projective modules on pages 391-392. Take $R=\mathbb{Z}$ and $M=\mathbb{Z} / n \mathbb{Z}$ for any $n \geq 2$. Since there are no nonzero \mathbb{Z}-module homomorphisms from $\mathbb{Z} / n \mathbb{Z}$ to \mathbb{Z}, then $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z} / n \mathbb{Z}, \mathbb{Z})=0$. So

$$
(\mathbb{Z} / n \mathbb{Z})^{\vee \vee}=\operatorname{Hom}_{\mathbb{Z}}\left(\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z} / n \mathbb{Z}, \mathbb{Z}), \mathbb{Z}\right)=\operatorname{Hom}_{\mathbb{Z}}(0, \mathbb{Z})=0 \not \approx \mathbb{Z}
$$

(b) Prove that if P is a finitely generated projective left R-module, then P^{\vee} is a finitely generated projective R-module.

Proof. Since P is a finitely generated projective R-modules, we have $P \oplus Q \cong R^{n}$ for some R-module Q. This gives

$$
P^{\vee} \oplus Q^{\vee} \cong\left(R^{n}\right)^{\vee}=\operatorname{Hom}_{R}\left(R^{n}, R\right) \cong \operatorname{Hom}_{R}(R, R)^{n} \cong R^{n}
$$

so P^{\vee} is a finitely generated projective R-module.
(c) Prove that a module P is projective if and only if there exist $\left\{x_{i}\right\}_{i \in I} \subseteq P$ and $\left\{f_{i}\right\}_{i \in I} \subseteq P^{\vee}$ such that, for all $x \in P$, the following hold: (i) $f_{i}(x)=0$ for all but finitely many $i \in I$, and (ii) $x=\sum_{i} f_{i}(x) x_{i}$.

Proof. (\Rightarrow) Let $\left\{x_{i}\right\}_{i \in I} \subseteq P$ be a set of R-module generators for P. So we get a surjective map $\pi: \bigoplus_{i \in I} R \rightarrow P$, mapping $e_{i} \mapsto x_{i}$, where $\left\{e_{i}\right\}_{i \in I}$ are the standard basis elements of $\bigoplus_{i \in I} R$. Since P is projective, there exists an injective map $\sigma: P \hookrightarrow \bigoplus_{i \in I} R$ so that $\pi \sigma=\mathbb{1}_{P}$. For $x \in P$, we have a unique (since σ is injective) expression

$$
\sigma(x)=\sum_{i} r_{i} e_{i}
$$

where $\left\{r_{i}\right\}_{i} \subset R$ and $r_{i}=0$ for all but finitely many $i \in I$. So for each $i \in I$, define $f_{i}(x)=r_{i}$. Now f is a well-defined R-module homomorphism since it is defined in terms of te injective homomorphism σ. Then

$$
x=\pi \sigma(x)=\sum_{i} r_{i} \pi\left(e_{i}\right)=\sum_{i} f_{i}(x) x_{i}
$$

(\Leftarrow) If $\pi: M \rightarrow P$ is any surjective R-module homomorphism, for each i, pick $m_{i} \in \pi^{-1}\left(x_{i}\right)$ and define $\sigma: P \rightarrow M$ by $x \mapsto \sum_{i} f_{i}(x) m_{i}$. Then for $r \in R$ and $x, y \in P$,

$$
\begin{aligned}
\sigma(x+r y)=\sigma\left(\sum_{i} f_{i}(x) x_{i}+r \sum_{i} f(y) x_{i}\right)=\sigma\left(\sum_{i} f_{i}(x+r y) x_{i}\right) & =\sum_{i} f_{i}(x+r y) m_{i} \\
& =\sum_{i} f_{i}(x) m_{i}+r \sum_{i} f_{i}(y) \\
& =\sigma(x)+r \sigma(y)
\end{aligned}
$$

so σ is indeed an R-module homomorphism. Moreover, $\pi \sigma=\mathbb{1}_{P}$, and so P is projective.
These collections are called dual bases, just like for finite dimensional vector spaces.
(d) Optional. For any finitely generated projective left R-module P, construct a natural isomorphism $P \rightarrow P^{\vee \vee}$. What can you say if P is projective but not finitely generated?

Problem 2. Let G be a group, and p a prime dividing $|G|$, and K a field of characteristic p. The goal of this problem is to prove that the group ring $K G$ is not semi-simple. This is essentially Rotman Exercise 8.37, which you may consult for additional hints if necessary.

Since $\{g \in G\}$ is a basis of $K G$, the augmentation map

$$
\varepsilon: K G \rightarrow K, \quad \varepsilon\left(\sum_{g \in G} a_{g} g\right)=\sum_{g \in G} a_{g}
$$

is well-defined. Let $I:=\operatorname{ker} \varepsilon$. Recall that K can be regarded as a $K G$-module by the action $g \cdot x=x$ for all $x \in K$, called the trivial $K G$-module.
(a) Prove that ε is a morphism of $K G$-modules, and a ring homomorphism. Conclude that I is a 2 -sided ideal of $K G$.

Proof. For $x=\sum_{h \in G} x_{h} h \in K G$, we have

$$
\begin{aligned}
\epsilon\left(\sum_{g \in G} a_{g} g+x \sum_{\ell \in G} b_{\ell} \ell\right)=\epsilon\left(\sum_{g \in G} a_{g} g+\sum_{g \in G} \sum_{h \ell=g} x_{h} b_{\ell} g\right) & =\epsilon\left(\sum_{g \in G}\left(a_{g}+\sum_{h \ell=g} x_{h} b_{\ell}\right) g\right) \\
& =\sum_{g \in G}\left(a_{g}+\sum_{h \ell=g} x_{h} b_{\ell}\right)
\end{aligned}
$$

and on the other hand

$$
\begin{aligned}
\epsilon\left(\sum_{g \in G} a_{g} g\right)+x \epsilon\left(\sum_{\ell \in G} b_{\ell} \ell\right)=\sum_{g \in G} a_{g}+\sum_{h \in G} x_{h} h \sum_{\ell \in G} b_{\ell} & =\sum_{g \in G} a_{g}+\sum_{h \in G} x_{h} \sum_{\ell \in G} b_{\ell} \\
& =\sum_{g \in G}\left(a_{g}+\sum_{h \ell=g} x_{h} b_{\ell}\right)
\end{aligned}
$$

We also have

$$
\epsilon\left(\sum_{g \in G} a_{g} g \sum_{h \in G} b_{h} h\right)=\epsilon\left(\sum_{k \in G} \sum_{g h=k} a_{g} b_{h} k\right)=\sum_{k \in G} \sum_{g h=k} a_{g} b_{h}
$$

and on the other hand

$$
\epsilon\left(\sum_{g \in G} a_{g} g\right) \epsilon\left(\sum_{h \in G} b_{h} h\right)=\sum_{g \in G} a_{g} \sum_{h \in G} b_{h}=\sum_{k \in G} \sum_{g h=k} a_{g} b_{h}
$$

Hence ϵ is a ring homomorphism and a morphism of $K G$-modules, and so I is a two-sided ideal of $K G$.
(b) Let $v=\sum_{g \in G} g \in K G$. Prove that the one dimensional subspace $K v \subseteq K G$ is the only submodule of $K G$ isomorphic to the trivial module.

Proof. Any $K G$-submodule of $K G$ isomorphic to the trivial module is one-dimensional and has the form $K w$ where $w=\sum_{g \in G} a_{g} g \in K G$. Since $K w$ is isomorphic to the trivial module, $h w=w$ for each $h \in G$. Then

$$
\sum_{g \in G} a_{g} h g=h w=w=\sum_{g \in G} a_{g} g
$$

For $g_{0} \in G$ there exists $g \in G$ so that $g_{0}=h g$. The coefficient of g_{0} is $a_{h^{-1} g_{0}}$ and $a_{g_{0}}$, on the LHS and RHS, respectively. Since the elements of g form a basis for $K G$, we have $a_{g_{0}}=a_{h^{-1} g_{0}}$ for all $h \in G$.

Since the left regular action of G is transitive, for each $g_{1} \in G$, there exists $h^{-1} \in G$ with $g_{1}=h^{-1} g_{0}$, so $a_{g_{1}}=a_{h^{-1} g_{0}}=a_{g_{0}}$. Hence $w \in K v$, so $K w=K v$, and therefore $K v$ is the only $K G$-submodule of $K G$ isomorphic to the trivial module.
(c) Now prove that $K G$ is not a semisimple ring by contradiction.

Proof. If $K G$ is semisimple, then the short exact sequence $0 \rightarrow I \rightarrow K G \xrightarrow{\epsilon} K \rightarrow 0$ splits, i.e., there is a section $\sigma: K \rightarrow K G$ of ϵ. Since σ is injective, then $K \cong \sigma(K)$, so $\sigma(K)$ is a submodule of $K G$ isomorphic to K, and hence $\sigma(K)=K v$ by part (b). So then $K G=K v \oplus I$, but $\epsilon(v)=|G|=0$ since p divides $1 \cdot|G|$, and so $K v \cap I \neq \varnothing$, which contradicts that $K G$ is a direct sum of $K v$ and I.

Therefore, we conclude (along with Maschke's theorem) that $K G$ is a semi-simple ring if and only if char K does not divide $|G|$.

