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Problem 1. This problem introduces a type of dual for modules and further develops properties of projective
modules. Let R be a ring and M a left R-module. The R-dual of M is defined to be the right R-module
MY := Homg(M, R).

(a)

Note that MYV is then a left R-module again. Give an example of a ring R and a finitely generated
left R-module M such that MYV 2 M.

Solution:

I stumbled upon this example while reading Dummit and Foote’s “Examples” of projective and
non-projective modules on pages 391-392. Take R = 7Z and M = Z/nZ for any n > 2. Since there are
no nonzero Z-module homomorphisms from Z/nZ to Z, then Homy(Z/nZ,Z) = 0. So

(Z/nZ)"Y = Homg(Homgz(Z/nZ,7),Z) = Homz(0,Z) = 0 % Z.

Prove that if P is a finitely generated projective left R-module, then PV is a finitely generated projective
R-module.

Proof. Since P is a finitely generated projective R-modules, we have P © @) = R" for some R-module
Q. This gives
PY® QY =~ (R")Y =Homg(R", R) < Homg(R, R)" = R",

so PV is a finitely generated projective R-module. L3

Prove that a module P is projective if and only if there exist {x;};c; C P and {f;}ie; € PV such that,
for all z € P, the following hold: (i) fi(z) = 0 for all but finitely many ¢ € I, and (ii) z = >, fi(z)z;.

Proof. (=) Let {x;};cr C P be a set of R-module generators for P. So we get a surjective map
7 : @,;c; R — P, mapping e; — x;, where {e;};cs are the standard basis elements of ,.; R. Since P
is projective, there exists an injective map o : P — ,.; R so that 7o = 1p. For x € P, we have a
unique (since o is injective) expression

o(x) = Z ri€;

where {r;}; C R and r; = 0 for all but finitely many ¢ € I. So for each i € I, define f;(z) = r;. Now
f is a well-defined R-module homomorphism since it is defined in terms of te injective homomorphism

0. Then
x=mo(x) = Zrm(ei) = Z fi(x)x;.

(<) If 7 : M — P is any surjective R-module homomorphism, for each i, pick m; € 7~1(x;) and define
0:P— Mbyx— >, fi(x)m;. Then for r € R and z,y € P,

olz+ry)=o (Z filx)x; + er(y)wz> =0 (Z filx + ry)xl> = Z filx + ry)m;
=2 fileymi+rd_ fily)

=o(z) +ro(y),
so o is indeed an R-module homomorphism. Moreover, 7o = 1 p, and so P is projective. ®

These collections are called dual bases, just like for finite dimensional vector spaces.

Optional. For any finitely generated projective left R-module P, construct a natural isomorphism
P — PVYY. What can you say if P is projective but not finitely generated?



Problem 2. Let G be a group, and p a prime dividing |G|, and K a field of characteristic p. The goal
of this problem is to prove that the group ring KG is not semi-simple. This is essentially Rotman Exercise
8.37, which you may consult for additional hints if necessary.

Since {g € G} is a basis of KG, the augmentation map

e: KG— K, € Zagg zz:ag

geG geG

is well-defined. Let I := kere. Recall that K can be regarded as a KG-module by the action g - z = « for
all x € K, called the trivial KG-module.

(a) Prove that € is a morphism of K G-modules, and a ring homomorphism. Conclude that I is a 2-sided
ideal of KG.

Proof. For x = Z xph € KG, we have

heq
€ Zagg—Fbegﬁ = Zagg—kZthbgg = Z a9+2xhbz g
gea tea geG g€EG hi=g geG hé=g
= Z ag + Z xrbe |,
gea hi=g

and on the other hand

e| D agg | +xe (Zbgé) => ag+ > anhd bi=> ag+ Y an» b

geG leG geG heG LeG geG heG  teG

:Z ag—‘rthbg

geG hi=g

We also have
€ Zagg Z bpoh | =€ Z Z aghpk | = Z Z agbp,
geG heG keG gh=Fk keG gh=Fk

and on the other hand
€ Zagg 6<thh>:Zagah=ZZagbh.
geG heG geG heG keG gh=k

Hence € is a ring homomorphism and a morphism of KG-modules, and so [ is a two-sided ideal of
KG. m

(b) Let v = deG g € KG. Prove that the one dimensional subspace Kv C K G is the only submodule of
K @G isomorphic to the trivial module.

Proof. Any KG-submodule of KG isomorphic to the trivial module is one-dimensional and has the
form Kw where w =3 _.a49 € KG. Since Kw is isomorphic to the trivial module, hw = w for each

h € G. Then
Zaghg:hwzwz Zagg,

9eG geG

geG



For go € G there exists g € G so that gy = hg. The coefficient of gg is aj-14, and ag4,, on the LHS and
RHS, respectively. Since the elements of g form a basis for KG, we have ag, = aj-1,4, for all h € G.

Since the left regular action of G is transitive, for each g; € G, there exists h~! € G with g; = h™!go,
SO Gg, = Ap-14, = Gg,. Hence w € Kv, so Kw = Kv, and therefore Kv is the only K G-submodule of

W

K @G isomorphic to the trivial module. *
(¢) Now prove that KG is not a semisimple ring by contradiction.

Proof. If KG is semisimple, then the short exact sequence 0 — I — KG 5 K — 0 splits, i.e., there
is a section o : K — KG of e. Since o is injective, then K = ¢(K), so o(K) is a submodule of KG
isomorphic to K, and hence o(K) = Kv by part (b). So then KG = Kv @ I, but ¢(v) = |G| = 0 since
p divides 1 - |G|, and so Kv NI # @&, which contradicts that KG is a direct sum of Kv and I. ®

Therefore, we conclude (along with Maschke’s theorem) that KG is a semi-simple ring if and only if charK
does not divide |G|.



