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1.1.2 Verify the following:

(i) For each real number a 6= 0, a2 > 0. In particular, 1 > 0 since 1 6= 0 and
1 = 12.

Proof. Let a 2 R, a 6= 0. Notice that a · 0 = 0 because

a0 = a(0 + 0)

a0 = a0 + a0

a0 + (�a0) = a0 + a0 + (�a0)

0 = a0

If a > 0, then a2 = aa > 0 by the positivity axioms. If a < 0, then (�a) > 0
and so (�a)2 = (�a)(�a) > 0. Then,

(�a)2 = (�a)(�a)

= (�a)(�a) + 0

= (�a)(�a) + (a)0

= (�a)(�a) + (a)(�a+ a)

= (�a)(�a) + (a)(�a) + (a)(a)

= (�a)(�a+ a) + (a)(a)

= (�a)0 + (a)(a)

= 0 + (a)(a)

= (a)(a) = (a)2

and so 0 < (�a)2 = a2. ⌅

(ii) For each positive number a, its multiplicative inverse, a�1 is also positive.

Proof. Let a > 0. Then, its multiplicative inverse, a�1 6= 0. If a�1 < 0,
then �a�1 > 0 and so

aa�1 = 1

(�1)aa�1 = (�1)1

a(�1)a�1 = �1

a(�a�1) = �1

and thus, the product of two positive real numbers is not positive, a con-
tradiction to the positivity axioms. Thus, a�1 > 0. ⌅
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(iii) If a > b, then

ac > bc if c > 0 and ac < bc if c < 0

Proof. Let a > b, i.e., a� b > 0 and so a� b is positive, and suppose c > 0.
Then

ac� bc = (a� b)c > 0

by the positivity axioms, and thus ac > bc. Similarly, suppose now that
c < 0. Then, �c > 0 and so

bc� ac = (�b+ a)(�c) = (a+ (�b))(�c) = (a� b)(�c) > 0

by the positivity axioms, and thus ac < bc. ⌅

1.2.8 Use an induction argument to show that for each natural number n, the interval
(n, n+ 1) fails to contain any natural number.

Proof. We will first show by induction that for any natural number, n, we must
have n � 1 is a natural number for n 6= 1. First notice that the set I = {1} [
{2} [ {x 2 R|x > 2} is an inductive set. Since I contains no numbers between
1 and 2, then neither do the natural numbers. Additionally, since all inductive
sets contain 1, and 1 + 1 = 2, then 2 is also in every inductive set and so 2 is
a natural number. Thus, 2 is the next natural number after 1. So for the base
case, n = 2, we have 2� 1 = 1 is a natural number. Now, suppose that for some
natural number k � 2, k � 1 is a natural number. Then, (k + 1) � 1 = k is a
natural number by our inductive hypothesis. Thus, n�1 is a natural number for
all n � 2.
Now, we prove by induction that for each natural number n, the interval (n, n+1)
does not contain a natural number. For the base case, n = 1 we consider the
interval (1, 2). Suppose there were a natural number a so that 1 < a < 2. This
implies that 0 < a � 1 < 1, i.e., there exists a natural number less than 1, a
contradiction. Now, suppose that the claim holds for some k, a natural number
greater than 1. That is, suppose the interval (k, k + 1) fails to contain a natural
number. Now, consider the interval (k+1, k+2) and suppose there were a natural
number b so that k+1 < b < k+2. This implies k < b�1 < k+1, i.e., a natural
number lies in (k, k + 1), a contradiction to our induction hypothesis. Thus, our
claim holds for all natural numbers n. ⌅

1.3.25 Show that any two nondegenerate intervals of real numbers are equipotent.

Proof. Let ⇠ be the equivalence relation that two sets are equipotent (equipo-
tency is certainly reflexive, symmetric, and transitive). We claim that all non-
degenerate intervals of real numbers create an equivalence class under ⇠. We will
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first show that for a, b 2 R, a < b:

(1) :

(a, b) ⇠ (0, 1) (a)

(a, b] ⇠ (0, 1] (b)

[a, b) ⇠ [0, 1) (c)

[a, b] ⇠ [0, 1] (d)

(2) :

(0, 1] ⇠ (0, 1) (a)

[0, 1) ⇠ (0, 1) (b)

[0, 1] ⇠ (0, 1) (c)

and then show

(3) :

(b,1) ⇠ (0, 1) (a)

[b,1) ⇠ (0, 1) (b)

(�1, b) ⇠ (0, 1) (c)

(�1, b] ⇠ (0, 1) (d)

(�1,1) ⇠ (0, 1) (e)

(1) (a) Define a function g1 : (a, b) ! (0, 1) by g1(x) = (x � a)/(b � a). If
(x1 � a)/(b� a) = (x2 � a)/(b� a), then simple cancellation shows x1 = x2,
and thus g1 is injective. For any c 2 (0, 1), let x = c(b � a) + a and then
g1(x) = c, and thus g1 is surjective. Thus, (0, 1) ⇠ (a, b).

(b) Define a function g2 : [a, b) ! [0, 1) by g2(x) = (x � a)/(b � a). If
(x1 � a)/(b� a) = (x2 � a)/(b� a), then simple cancellation shows x1 = x2,
and thus g2 is injective. For any c 2 [0, 1), let x = c(b � a) + a and then
g2(x) = c, and thus g2 is surjective. Thus, [0, 1) ⇠ [a, b).

(c) Define a function g3 : [a, b] ! [0, 1] by g3(x) = (x � a)/(b � a). If
(x1 � a)/(b� a) = (x2 � a)/(b� a), then simple cancellation shows x1 = x2,
and thus g3 is injective. For any c 2 [0, 1], let x = c(b � a) + a and then
g3(x) = c, and thus g3 is surjective. Thus, [0, 1] ⇠ [a, b].

(d) Define a function g4 : (a, b] ! (0, 1] by g4(x) = (x � a)/(b � a). If
(x1 � a)/(b� a) = (x2 � a)/(b� a), then simple cancellation shows x1 = x2,
and thus g4 is injective. For any c 2 (0, 1], let x = c(b � a) + a and then
g4(x) = c, and thus g4 is surjective. Thus, (0, 1] ⇠ (a, b].
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(2) (a) Let A = {an}1n=1 where an = 1
n+1 . Define f1 : [0, 1) ! (0, 1) by

f1(x) =

8
>>>>>>>>><

>>>>>>>>>:

x if x 62 A or x 6= 0

a1 if x = 0

a2 if x = a1
...

an+1 if x = an
...

Then, f1 is injective since each point in [0, 1) is mapped to it’s own unique
point in (0, 1), and surjective because every point in (0, 1) has been accounted
for: If y 2 (0, 1)\A, then f1(y) = y. If y = a1, then f(0) = a1. If y 2 A\{a1},
then f(an�1) = y.

(b) For the case (0, 1] ⇠ (0, 1), we let f2 : (0, 1] ! (0, 1) be defined by

f2(x) =

8
>>>>>>>>><

>>>>>>>>>:

x if x 62 A or x 6= 1

a1 if x = 1

a2 if x = a1
...

an+1 if x = an
...

Then, f2 is injective since each point in (0, 1] is mapped to it’s own unique
point in (0, 1), and surjective because every point in (0, 1) has been accounted
for: If y 2 (0, 1)\A, then f2(y) = y. If y = a1, then f(1) = a1. If y 2 A\{a1},
then f(an�1) = y.

(c) And finally, for the case [0, 1] ⇠ (0, 1), the construction of the function
f3 : [0, 1] ! (0, 1) is similar:

f3(x) =

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

x if x 62 A, x 6= 0, or x 6= 1

a1 if x = 0

a2 if x = 1

a3 if x = a1
...

an+2 if x = an
...
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Then, f3 is injective since each point in [0, 1] is mapped to it’s own unique
point in (0, 1), and surjective because every point in (0, 1) has been accounted
for: If y 2 (0, 1) \ A, then f3(y) = y. If y = a1, then f(0) = a1. If y = a2,
then f(1) = a2. If y 2 (A \ ({a1} [ {a2})), then f(an�2) = y.

(3) (a) We now show that for b > 0, (b,1) ⇠ (0, 1). Define a function h1 :
(0, 1) ! (b,1) by h1(x) = b/x. If b/x1 = b/x2 this implies x1 = x2 and so
h1 is injective. For any y 2 (b,1), let x = b/y. Then h1(x) = h1(b/y) =
b/(b/y) = y, and thus h1 is surjective. Thus, (b,1) ⇠ (0, 1).

Suppose now that b 2 R. By the Archimedean Property, there exists n 2 N
so that n > b. So,

(b,1) = [(b, n] [ (n,1)] ⇠ [(0, 1) [ (0, 1)] = (0, 1)

and so (b,1) ⇠ (0, 1) for all b 2 R.

(b) We now show that [b,1) ⇠ (0, 1) for all b 2 R. Similar to the previous
case, we have

[b,1) = [[b, n] [ (n,1)] ⇠ [(0, 1) [ (0, 1)] = (0, 1)

and so [b,1) ⇠ (0, 1) for all b 2 R.

(c) Assume that b 2 R and consider the function h2 : (1, b) ! (b,1) defined
by h2(x) = �x. If y1 = y2, then �y2 = �y2 and so h2 is injective. Clearly, if
y 2 (b,1), let x = �y and then h2(x) = h2(�y) = y and so h2 is surjective.
Thus, (�1, b) ⇠ (b,1). Then, by part 3(a), (�1, b) ⇠ (0, 1).

(d) Assume that b 2 R and consider the function h3 : (1, b] ! [b,1) defined
by h3(x) = �x. If y1 = y2, then �y2 = �y2 and so h3 is injective. Clearly, if
y 2 [b,1), let x = �y and then h3(x) = h3(�y) = y and so h3 is surjective.
Thus, (�1, b] ⇠ [b,1). Then, by part 3(b), (�1, b] ⇠ (0, 1).

(e) Notice that

(�1,1) = [(1, 0) [ [0,1]] ⇠ (0, 1) [ (0, 1) = (0, 1)

and so (�1,1) ⇠ (0, 1)

⌅

Problem 1 — Let X be a non-empty set and denote P (X) = {Y |Y is a subset of X} its
power set. Show that there are not bijections between X and P (X).
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Proof. To get a contradiction, assume such a bijection exists, say f : X ! P (X).
Now consider the set

A = {x 2 X|x 62 f(x)}

Notice that A 6= ; because, since f is surjective and ; 2 P (X), then there is a
a 2 X so that f(a) = ;. Certainly a 62 ;, and so a 2 A. Also notice that A ⇢ X.
As f is surjective, there exists x 2 X so that f(x) = A. Now, either x 2 A or
x 62 A. If x 2 A, then by definition of A, we have x 62 f(x) = A, a contradiction.
On the other hand, if x 62 A, then x 2 f(x) = A, a contradiction. So, no such
bijection f exists. ⌅

Problem 2 — Find all functions f : N ! N so that f(2) = 2, f is strictly increasing, and
f(nm) = f(n)f(m) for all n,m such that gcd(n,m) = 1.

Proof. First note that for odd k, 2 and k are relatively prime, and so

f(2k) = f(2)f(k) = 2f(k)

We now proceed by induction on n to show that f(n) = n is the only function
with such properties. We consider n = 1, n = 2, and n = 3 for the base case.
By the Pigeonhole Principle, f(1) = 1, and f(2) = 2 by definition. To see
that f(3) = 3, assume for contradiction that f(3) > 3. Then, since f is stricly
increasing, f(21) < f(22), and so

f(14) = 2f(7)

< 3f(7)

< f(3)f(7)

= f(21)

< f(22)

= 2f(11)

< f(11)

a contradiction. So, f(3) = 3. Now, assume that f(k) = k for k < n. If n+ 1 is
even, then n is odd, then

f(2n) = 2f(n) = 2n.

This means that there are exactly 2n � n = n natural numbers to assign to
the n points f(n + 1), f(n + 2) . . . , f(2n). Since f is strictly increasing, then
f(x) = x for all x 2 {n + 1, n + 2, . . . , 2n} by the Pigeonhole Principle. Thus,
f(n + 1) = n + 1. This completes the case when n + 1 is even. If n + 1 is odd,
then n� 1 is odd, which means

f(2(n� 1)) = 2f(n� 1) = 2(n� 1) = 2n� 2
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This means that there are exactly (2n � 2) � (n � 1) = n � 1 natural numbers
to assign to the n � 1 points f(n), f(n + 1), . . . f(2n � 2). Since f is strictly
increasing, then f(x) = x for all x 2 {n, n + 1 . . . , 2n � 1} by the Pigeonhole
Principle. Thus, f(n + 1) = n + 1. This completes the case when n + 1 is odd.
Therefore, by mathematical induction f(n) = n for all n 2 N. ⌅
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1.4.30 A point x is called an accumulation point of a set E provided it is a point of closure
of E ⇠ {x}.

(i) Show that the set E 0 of the set of accumulation points of E is a closed set.

Proof. Let x 2 E 0. Then, any open interval containing x also contains a point
in E 0. Pick an open interval O containing x. Then, there exists x0

2 E 0 in O.
Choose ✏ > 0 small enough so that (x0

� ✏, x0 + ✏) ✓ O and x 62 (x0
� ✏, x0 + ✏).

Since x0
2 E 0, there exists a point e 2 E ⇠ {x0

} that is also in (x0
� ✏, x0 + ✏).

Thus, e 2 E ⇠ {x}, which implies x 2 E 0. Thus, E 0 is closed. ⌅

(ii) Show that E = E [ E 0.

Proof. Let x 2 E. Suppose O is an open interval containing x. Since x 2 E,
then O contains a point e 2 E. If e = x, then x 2 E. If e 6= x, then x 2 E 0

since there exists an e 2 E so that e 2 E ⇠ {x}. Thus, E ✓ E [ E 0. Now,
suppose x 2 E [ E 0. If x 2 E, then x 2 E trivially. If x 2 E 0, then any open
interval containing x also contains a point in E \ {x}, which certainly implies
that any open interval containing x also contains a point in E. Thus, x 2 E. So,
E [ E 0

✓ E, and we conclude E = E [ E 0. ⌅

1.4.32 A point x is called and interior point of a set E if there is an r > 0 such that the open
interval (x � r, x + r) is contained in E. The set of interior points of E is called the
interior of E denoted by intE. Show that

(i) E is open if and only if E = intE.

Proof. Suppose E is open and let x 2 E. Since E is open, there exists r > 0 so
that (x � r, x + r) ✓ E. In other words, x is an interior point of E. Thus, x 2

intE. Now, suppose x 2 intE. So, there exists an r > 0 so that (x�r, x+r) ✓ E,
i.e., x 2 E and thus E = intE.
Now, suppose E = intE and let x 2 E. Since E = intE, then x 2 intE. So, there
exists an r > 0 so that (x� r, x+ r) ✓ E. Thus, E is open. ⌅

(ii) E is dense if and only if int(R ⇠ E) = ;.

Proof. Assume E is dense in R. To get a contradiction, suppose int(R ⇠ E) 6=
;. So, there exists x 2 int(R ⇠ E) which means there exists r > 0 so that
(x� r, x+ r) ✓ (R ⇠ E) Since E is dense in R, we should find a point e 2 E so
that e 2 (x� r, x+ r), a contradiction. Thus, int(R ⇠ E) = ;.
Assume that int(R ⇠ E) = ;. To get a contradiction, assume E is not dense in
R. So, there exists two points in x, y 2 R, x < y, so that there does not exist a
point in E between them. So, (x, y) ✓ (R ⇠ E), i.e., (y � x)/2 2 int(R ⇠ E), a
contradiction. Thus, E is dense in R. ⌅
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1.4.35 Show that the collection of Borel sets is the smallest �-algebra that contains the closed
sets.

Proof. Since, by definition, the collection of Borel sets is the smallest �-algebra that
contains all of the open sets of R, and all closed sets are in this �-algebra by closure
under complements (i.e., all closed sets are Borel), then the collection of Borel sets is
the smallest �-algebra that contains all closed sets. To see this more clearly, suppose
A is a �-algebra that contains all closed sets. Then, A necessarily contains all open
sets by closure under complements. Since the collection B of Borel sets is the smallest
�-algebra containing all open sets, then B ✓ A, and thus B is the smallest �-algebra
containing closed sets. ⌅

1.5.40 Show that a sequence (an) is convergent to an extended real number if and only if
there is exactly one extended real number that is a cluster point of the sequence.

Proof. ()) Suppose {an} ! a 2 R [±1. By Proposition 19 part (iv),

lim inf{an} = lim sup{an} = a

By Exercise 38, lim inf{an} is the smallest cluster point of {an} and lim sup{an} is
the largest cluster point of {an}. So, a is the largest and smallest cluster point of the
sequence so that a is the unique cluster point of {an}.
(() Suppose there is exactly one cluster point of {an}, say a. So, a is the largest and
smallest cluster point of {an}. This means a = lim inf{an} = lim sup{an} by Exercise
38. Then, by Proposition 19 part (iv), {an} converges to a. ⌅

1.5.42 Prove that if, for all n, an � 0 and bn � 0, then

lim sup[an · bn]  (lim sup an) · (lim sup bn)

provided the product on the right is not of the form 0 ·1.

Proof. First note that if either (an) or (bn) is unbounded, then the inequality holds
trivially. So, suppose both sequences are bounded above and let n � 1 and k � n.
Then,

0  ak  sup{a` | ` � n} and 0  bk  sup{b` | ` � n}

In other words, any term, ak, will be less than or equal to the supremum of any
(countably) infinite collection of terms of the sequence (an). Likewise for the sequence
(bn). Combining these inequalities, we have that for all k � n,

akbk  sup{a` | ` � n} · sup{b` | ` � n}.

So, we have found an upper bound for the sequence (akbk). So,

sup
k�n

{akbk}  sup{a` | ` � n} · sup{b` | ` � n}
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Taking limits as n ! 1, we obtain the desired result:

lim sup[an · bn]  (lim sup an) · (lim sup bn)

⌅

1.6.48 Define the real-valued function f on R by setting

f(x) =

(
x if x 2 R \Q
p sin 1

q if x = p
q in lowest terms.

At what points is f continuous?

Proof. f is continuous at 0 and all irrational points. Note that |f(x)|  |x| for all
x 2 R.
f is continuous at 0:
Let ✏ > 0 and x = 0. Then, for � = ✏, we have

|f(x)� f(0)| = |f(x)|  |x| < ✏

when |x� 0| = |x| < � = ✏.

f is continuous at all irrationals:
Let x be irrational. First we show that for any M , there exists � > 0 such that q � M
for any rational p/q 2 (x � �, x + �). Otherwise, there exists M such that for any n,
there exists a rational pn/qn 2 (x� 1/n, x+ 1/n) with qn < M . Then

|pn|  qn ·max{|x� 1|, |x+ 1|} < M ·max{|x� 1|, |x+ 1|}

for all N . Thus there are only finitely many choices of pn and qn for each n. This
implies that there exists a rational p/q in (x � 1/n, x + 1/n) for infinitely many n, a
contradiction.
Given ✏ > 0, choose M such that

M2 >
2 ·max{|x+ 1|, |x� 1|}

6✏
.

This implies
max{|x+ 1|, |x� 1|}

6M2
<

✏

2
.

Then choose � > 0 such that � < min{1, ✏/2} and q � M for any rational p/q 2

(x� �, x+ �). Suppose |x� y| < �. If y is irrational, then

|f(y)� f(x)| = |x� y| < � < ✏.
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Note that |x� sin x| < x3/6 for all x 6= 0 by Taylor’s Theorem. If y = p/q is rational.
Then,

|f(y)� f(x)|  |f(y)� y|+ |y � x|

= |p| · |1/q � sin(1/q)|+ |y � x|

<
|p|

6q3
+ �

<
max(|x+ 1|, |x� 1|)

6q2
+ �


max(|x+ 1|, |x� 1|)

6M2
+ �

<
✏

2
+

✏

2
= ✏

f does not converge at any nonzero rational:
Let q be a nonzero rational. Let ✏ = |f(q)� q| > 0. If q > 0, given any � > 0, pick an
irrational x 2 (q, q + �). Then,

|f(x)� f(q)| = x� f(q) > q � f(q) = ✏

If q < 0, given any � > 0 pick any irrational x 2 (q � �, q). Then

|f(x)� f(q)| = f(q)� x > f(q)� q = ✏

⌅

1.6.56 Let f be a real-valued function defined on R. Show that the set of points at which f
is continuous is a G� set.

Proof. Let C be the set of all continuous points of f . For each n 2 N and x 2 C, let
�x,n be such that |f(x)� f(y)| < 1/n for all y 2 B(x, �x,n). Then let

On =
[

x2C

B(x, �x,n).

Note that On is open for all n, each being the union of open intervals. Then G :=
\n2NOn is a G� set and C ✓ G. Let x0 2 G and ✏ > 0. Since x0 2 On for all n,
there exists n0 2 N and x 2 C such that 1/n0 < ✏/2 and x0 2 B(x, �x,n0). Hence,
|f(x) � f(x0)| < 1/n0 < ✏/2. Let � > 0 be such that B(x0, �) ✓ B(x, �x,n0). Then for
any y 2 B(x0, �),

|f(x0)� f(y)|  |f(x0)� f(x)|+ |f(x)� f(y)| < ✏/2 + 1/n0 < ✏/2 + ✏/2 = ✏.

Hence x0 2 C and so C = G.

⌅
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2.2.9 Prove that if m⇤(A) = 0, then m⇤(A [ B) = m⇤(B).

Proof. Since B ✓ A[B, then m⇤(B)  m⇤(A[B) by monotonicity of outer measure.
Since outer measure in subadditive, then m⇤(A [B)  m⇤(A) +m⇤(B) = m⇤(B). ⌅

Problem 1 Let X be a set and A ⇢ P (X) be a countable �-algebra. Show that A is finite.

Proof. Suppose A = {Ai}
1
i is a countable �-algebra. For each x 2 X, define

Bx :=
\

x2Ai

Ai

Note that Bx 2 A since this is a countable intersection. For x, y 2 X, we claim that if
Bx \ By 6= ;, then Bx = By. Let z 2 Bx \ By. Then Bz ✓ Bx \ By. If x 62 Bz, then
Bx \ Bz is a set in A containing x and is strictly contained in Bx, which contradicts
the definition of Bx. Hence, Bz = Bx and similarly, Bz = By, and thus Bx = By. Now
consider {Bx}x2X . If there is a finite set of the form Bx then A is a union of a finite
number of disjoint sets and hence, A is finite. ⌅

Problem 2 Let x1 2 (0, ⇡) and for every n 2 N let xn+1 = sin(xn). Compute

lim
n!1

xn

p
n.

Justify your answer!

Proof. Let yn = n for all n in the sequence (yn)1n=1. We claim that

lim
n!1

1

x2
n+1

�
1

x2
n

yn+1 � yn
=

1

3
.

If we can show this, then by the Stolz–Cesàro theorem,

lim
n!1

1

x2
nn

=
1

3

which implies
lim
n!1

xn

p
n = lim

n!1

p
x2
nn =

p
3

To prove the claim, first notice that since sin(x) < x for all x > 0 then

0 < xn+1 = sin xn < xn

for all n and so (xn) is strictly decreasing. Thus,

lim
n!1

xn = lim
x!0

sin(x) = 0
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Then,

lim
n!1

1

x2
n+1

�
1

x2
n

= lim
x!0

1

sin2 x
�

1

x2
= lim

x!0

x2
� sin2 x

x2 sin2 x
= lim

x!0

x2

sin2 x
� 1

x2

Notice that all terms in the ratio of the rightmost limit above are di↵erentiable, so we
can compute:

✓
x2

sin2 x
� 1

◆0

= 2x(csc2 x)(1� x cot x) and
�
x2
�0
= 2x

Notice that
2x(csc2 x)(1� x cot x)

2x
=

�(x cos x� sin x)

sin3 x
.

Since each term in the above ratio is di↵erentiable, we can compute

�(x cos x� sin x)0 = x sin x and (sin3 x)0 = 3 cos x sin x

Notice that

lim
x!0

x sin x

3 cosx sin x
= lim

x!0

x

sin x
· lim
x!0

1

3 cosx
=

1

3

because
lim
x!0

x

sin x
= 1.

So, by L’Hôpital’s Rule,

lim
x!0

x sin x

3 cosx sin x
=

1

3
=) lim

x!0

x2

sin2 x
� 1

x2
=

1

3

Finally, notice that yn+1 � yn = 1 and so

1

3
= lim

x!0

x2

sin2 x
� 1

x2
= lim

n!1

1

x2
n+1

�
1

x2
n

= lim
n!1

1
x2
n+1

�
1
x2
n

yn+1 � yn

which proves the claim. ⌅
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Problem 3 Let f : [0,1) ! R be a continuous function. Assume that for every x � 0 we have
limn!1 f(nx) = 0. Show that limx!1 f(x) exists and compute it.

Proof. We first state and prove the following lemma:

Lemma. Let X be a nonempty complete metric space. If

X =
1[

n=1

An (1)

where each An is closed, then at least one An contains a non-empty open subset.

Proof. Assume none of the sets An contain a nonempty open subset. So, A1 does not
contain a nonempty open subset, and therefore its open complement Ac

1 must. In other
words, there must exists x1 2 X and 0 < ✏1 < 1 such that

Bx1(✏1) ⇢ Ac
1

Similarly, A2 does not contain a non-empty set, and therefore there must be a point
x2 in the open set Ac

2 \ (Bx1(✏1). hence we can find ✏2 <
1
2 such that

Bx2(✏2) ⇢ (Ac
2 \Bx1(✏1))

Continuing this iterative process, we can construct a sequence of points (xn)1n=1 and
positive reals (✏n)1n=1 such that

Bxn+1(✏n+1) ⇢ (Ac
n \Bxn(✏n))

and ✏n < 1
2n . Notice by our construction

Bx1(✏1) � Bx2(✏2) � · · · � Bxn(✏n) � Bxn+1(✏n+1) � . . .

Here we have a sequence of nested balls (open intervals in R). The sequence (xn)
is Cauchy since n,m � N implies that xn, xm 2 BxN (✏N) and ✏N < 1

2N . Since X
is a complete space, there exists a point x 2 X such that xn ! x. In particular,
x 2 Bxn(✏n) and therefore x 62 An for all n 2 N, a contradiction to our statement in
(1). ⌅

Let ✏ > 0. Define En := {x 2 [0,1) | |f(kx)|  ✏ 8k � n}. We claim

[0,1) =
[

n2N

En.

If x 2
S

n2N En, then x 2 [0,1) by the definition of En. If x 2 [0,1), then
lim
n!1

f(nx) = 0. This implies that there exists an N 2 N so that |f(nx)| < ✏ whenever

n � N . Thus, x 2 EN so that x 2
S

n2N En.
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Also, notice that each En is closed. By the Lemma, there exists n0 2 N so that
int(En0) 6= ;. Let x0 2 int(En0). Then there exists r > 0 so that (x0� r, x+ r0) ✓ En0 .
Let t0 := n1x0 where n1 2 N and n1 � n0 and x0

n1
< r (we can choose such an n1 by

the Archimedean Property). Now, let x 2 (0,1) so that x � t0. This means

x � n1x0 > x0

Then, x � nxx0 for some nx � n1. Then, x = nxx0+↵ where 0  ↵  x0. Now, notice

|f(x)| = |f(nxx0 + ↵)| =

����f
✓
nx

✓
x0 +

↵

nx

◆◆����  ✏

because nx � n1 and ����
↵

nx

���� 
����
x0

nx

���� 
����
x0

n1

���� < r.

Hence, lim
n!1

f(x) = 0. ⌅
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2.3.15 Show that if E has finite measure and ✏ > 0, then E is the disjoint union of a finite number

of measurable sets, each of which has measure at most ✏.

Proof. Let ✏ > 0 and define Bn := [�n, n]\E. Notice that [n2NBn = E and that {Bn}
1
n=1 is

an ascending collection of measurable sets. By the continuity of measure,

lim
n!1

m(Bn) = m

 1[

n=1

Bn

!
.

So, there exists N 2 N so that

✏ > m

 1[

n=1

Bn

!
�m(BN) = m(E)�m(BN) = m(E \BN)

by the excision property. Let I0 = E \ BN and so m(I0) < ✏. Then, notice that BN =

[�N,N ] \ E is bounded and contained in E. Let

x1 = �N < x2 < · · · < xk = N

so that |xi+1 � xi| = ✏/2 for each 0  i  k � 1. Now, let Ii = [xi, xi+1) for all i. Then,

`(Ii) < ✏ for all i and

E =

kG

i=0

Ii.

K

2.4.18 Let E have finite outer measure. Show that there is a G� set G for which E ✓ G and

m(G) = m⇤
(E). Show that E is measurable if and only if there is an F� set F for which

F ✓ E and m(F ) = m⇤
(E).

Proof. Since m⇤
(E) = inf

nP1
k=1 `(Ik)

���E ✓
S1

k=1 Ik
o
, then for each n 2 N we can find a

collection of open sets {Ik,n}1k=1 which covers E so that

1X

k=1

`(Ik,n)  m⇤
(E) +

1

n
.

Notice that each
P1

k=1 `(Ik,n) is open since each is a countable union of open sets. Define

G =

1\

n=1

 1[

k=1

Ik,n

!
.

Since G is a countable intersection of open sets, then G is a G� set. Since E ✓
P1

k=1 `(Ik,n)
for each n, then E ✓ G. So, m⇤

(E)  m⇤
(G).

Since G ✓
S1

k=1 Ik,n for each n, then

m⇤
(G)  m⇤

 1[

k=1

Ik,n

!
 m⇤

(E) +
1

n
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for all n, which means m⇤
(G)  m⇤

(E), and so m⇤
(G) = m⇤

(E).

By Theorem 11 part (iv)
1
, E is measurable if and only if there exists an F� set F so that

F ✓ E and

m⇤
(E \ F ) = 0.

By excision property of outer measure,

0 = m⇤
(E \ F ) = m⇤

(E)�m⇤
(F ) =) m⇤

(E) = m⇤
(F ) .

K

2.4.20 (Lebesgue) Let E have finite outer measure. Show that E is measureable if and only if for

each open, bounded interval (a, b),

b� a = m⇤
((a, b) \ E) +m⇤

((a, b) \ E) . (1)

Proof. ()) The forward direction is clear: If (a, b) is any open, bounded interval, then

E measurable =) b� a = m⇤
((a, b)) = m⇤

((a, b) \ E) +m⇤
((a, b \ Ec

))

(() Let A be a set and suppose (1) holds. If m⇤
(A) = 1, then m⇤

(A) � m⇤
(A \ E) +

m⇤
(A \ Ec

) and thus E is measurable. Suppose m⇤
(A) < 1. Let ✏ > 0 and {Ik}1k=1 be a

collection of open sets so that

1[

k=1

Ik ◆ A and m⇤
(A) + ✏ �

1X

k=1

`(Ik).

Since each Ik is an open set, then each Ik is a countable union of disjoint open intervals. Thus,

let {On}
1
n=1 be a collection of open intervals so that

1[

k=1

Ik =
1[

n=1

On.

Then
1[

n=1

On ◆ A and m⇤
(A) + ✏ �

1X

n=1

`(On).

Notice that since each On is an interval, then `(On) = m⇤
(On) for each On. So,

m⇤
(A) + ✏ �

1X

n=1

`(On)

=

1X

n=1

m⇤
(On)

=

1X

n=1

[m⇤
(On \ E) +m⇤

(On \ Ec
)] (by (1))

1Part (iv) is easily proven using part (ii) of the same theorem: Since E is measurable, then so is Ec. By part (ii),
there is a G� set G containing Ec for with 0 = m⇤ (G \ Ec) = m⇤ (G \ E). By DeMorgan’s Laws, Gc = F for some
F� set F , and since G contains Ec, then F is contained in E. Notice: G \E = (Gc)c \E = E \Gc = E \ F , and so
m⇤ (E \ F ) = 0.
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=

1X

n=1

[m⇤
(On \ E)] +

1X

n=1

[m⇤
(On \ Ec

)]

� m⇤

 1[

n=1

(On \ E)

!
+m⇤

 1[

n=1

(On \ Ec
)

!
(subadditivity of m⇤

)

= m⇤

 1[

n=1

On \

1[

n=1

E

!
+m⇤

 1[

n=1

On \

1[

n=1

Ec

!

= m⇤

 1[

n=1

On \ E

!
+m⇤

 1[

n=1

On \ Ec

!

� m⇤
(A \ E) +m⇤

(A \ Ec
) (monotonicity of m⇤

)

This inequality holds for all ✏ > 0 and so E is measurable. K

2.5.28 Show that continuity of measure together with finite additivity of measure implies countable

additivity of measure.

Proof. Let {Ek}
1
k=1 be a set of disjoint, measurable sets. By finite additivity,

m

 
n[

k=1

Ek

!
=

nX

k=1

m(Ek) for each n.

Let Fn =
Sn

k=1 Ek for each n 2 N. Then, {Fn}
1
n=1 is an ascending collection of measurable

sets. Notice that
1[

k=1

Ek =

1[

n=1

Fn.

By continuity of measure,

m

 1[

k=1

Ek

!
= m

 1[

n=1

Fn

!
= lim

n!1
m(Fn)

= lim
n!1

m

 
n[

k=1

Ek

!
= lim

n!1

 
nX

k=1

m(Ek)

!
=

1X

k=1

m(Ek)

K

2.6.30 Show that any choice set for the rational equivalence relation on a set of positive outer measure

must be uncountable infinite.

Proof. Let E be a set with positive outer measure. By way of contradiction, suppose there

exists a countable choice set CE for the rational equivalence relation on E. Since each equiva-

lence class is a translate of Q, then each equivalence class is countable. Thus, E is the union of

a countable collection of countable sets, which is countable and so m(E) = 0, a contradiction.

Thus, any choice set for the rational equivalence relation on E must be uncountable. K



Nicholas Camacho Intro to Analysis I - Homework 4 October 7, 2016

2.7.39 Let F be the subset of [0, 1] constructed in the same manner as the Cantor set except that
each of the intervals removed at the nth deletion stage has length ↵3�n with 0 < ↵ < 1.
Show that F is a closed set, [0, 1] \ F is dense in [0, 1], and m(F ) = 1� ↵. Such a set F is
called a generalized Cantor set.

Proof. Let 0 < ↵ < 1. Consider the interval [0, 1]. To construct F , we begin by removing
the open interval

O1 =

✓
3� ↵

6
,
3 + ↵

6

◆

from [0, 1] to obtain the set

F1 = [0, 1] \ O1 =


0,

3� ↵

6

�
[


3 + ↵

6
, 1

�
.

Notice that F1 is the disjoint union of 21 closed intervals, each of length (3 � ↵)/(2 · 31).
Continuing in a manner similar to the construction of the Cantor set C, we construct
the collection {Fk}

1
k=1 of descending closed sets, where Fk+1 is obtained by removing open

intervals of length ↵/3k+1 from the middle of each of the 2k closed intervals of Fk. Then, let

F =
1\

k=1

Fk.

Since each Fk is the disjoint union of 2k closed intervals, then each Fk is closed. Then F is
a closed set, as it is the intersection of closed sets. Let F c = [0, 1] \ F .
Let {Ok}

1
k=1 be the ascending collection of open intervals where O1 is defined as above and

Ok+1 = [0, 1] \ Fk+1. Then,

O =
1[

k=1

Ok = F c.

Since we removed 2n�1 intervals of length ↵/3n at the n-th stage, then by countable additivity
of Lebesgue measure,

m (O) =
1X

k=1

↵ ·
2k�1

3
=

↵

2

1X

k=1

✓
2

3

◆k

=
↵

2
·

2/3

1� 2/3
=

↵

2
· 2 = ↵.

Then by the excision property of measurable sets,

m(F ) = m([0, 1])�m(O) = 1� ↵.

Finally, to see that O is dense in [0, 1] we show that int(F ) is empty. To get a contradiction,
suppose a 2 int(F ). Then, there exists ✏ > 0 so that I = (a� ✏, a + ✏) ✓ F . Then, I ✓ Fk

for all k. Let fk be the length of one of the closed intervals of Fk. Since Fk is a collection of
disjoint intervals, I must be contained in one of the 2k closed intervals. In other words,

`(I) = 2✏ < fk 8k. (1)

We claim that fk < 1/2k for all k. We proceed by induction. Clearly, we have

f1 =
`([0, 1])� `(O1)

2
=

1� ↵
31

2
<

1

21
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and

f2 =
f1 �

↵
32

2
<

1/2

2
<

1

22
.

If fn�1 < 1/2n�1, then

fn =
fn�1 �

↵
3n

2
<

1/2n�1

2
=

1

2n
.

Thus by induction, fk  1/2k for all k. Now, we can choose N 2 N large enough so that

1

2N
< 2✏.

Thus,

fN =
1

2N
< 2✏ = `(I)

which is a contradiction of (1). Thus, a 62 int(F ) and so int(F ) is empty. K

2.7.40 Show that there is an open set of real numbers that, contrary to intuition, has a boundary
of positive measure. (Hint: Consider the complement of the generalized Cantor set of the
preceding problem.)

Proof. Note that for any set of real numbers @(A) = A \int(A). Consider the open set O

from the previous exercise. Since O is open, then int(O) = O. Also, as O is dense in [0, 1],
then O = [0, 1]. So,

@(O) = O \ int(O) = [0, 1] \O = F .

By the previous exercise, m(F ) = 1� ↵ and so,

m(@(O)) = m(F ) = 1� ↵,

which is positive. K

2.7.45 Show that a strictly increasing function that is defined on an interval has a continuous
inverse.

Proof. Let f be a strictly increasing function defined on some interval I. Since f is increasing,
it is injective. So, the inverse function f�1 : f(I) ! I is well defined. To get a contradiction,
suppose f�1 is not continuous at the point y 2 f(I). There exists a sequence {yn} ⇢ f(I)
that converges to y but the corresponding image sequence {f�1(yn)} does not converge to
f�1(y). Let f�1(yn) = xn for all n and f�1(y) = x. Thus, we can find ✏0 > 0 so that for all
N 2 N, there exists n0 > N so that

xn0 < x� ✏0 < x or x < x+ ✏0 < xn0 .

Since f is increasing, then

f(xn0) = yn0 < y = f(x) or f(x) = y < yn0 = f(xn0).

So, there exists �0 > 0 so that

yn0 < y � �0 < y or y < y + �0 < yn0 .
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This implies that for all N 2 N, there exists n0 > N such that

|y � yn0 | > �0

or in other words, {yn} does not converge to y, which is a contradiction. So, f�1 is continuous.
K

2.7.46 Let f be a continuous function and B be a Borel set. Show that f�1(B) is a borel set. (Hint:
The collection of sets E for which f�1(E) is Borel is a �-algebra containing the open sets).

Proof. Let A be the collection of sets E for which f�1(E) is Borel. Since f is continuous,
f�1(O) is open for any open set O. Thus, A contains the open sets. Since preimages of a
continuous function preserve complements, unions ,and intersections, then A is a �-algebra
containing the open sets. Since the collection B of Borel sets is the smallest �-algebra
containing the open sets, then B ✓ A. So, B is the smallest collection of sets B for which
f�1(B) is Borel. Thus, f�1(B) is Borel for any Borel set B. K

2.7.47 Use the preceding two problems to show that a continuous strictly increasing function that
is defined on an interval maps Borel sets to Borel sets.

Proof. Let f be a continuous strictly increasing function that is defined on an interval. By
Exercise 45, f�1 is continuous. Let B be any Borel set. By Exercise 46, (f�1)�1(B) = f(B)
is Borel. Thus, f maps Borel sets to Borel sets. K

3.1.9 Let {fn} be a sequence of measurable functions defined on a measurable set E. Define E0

to be the set of points x 2 E at which {fn} converges. Is the set E0 measurable?

Proof. Notice that

E0 = {x 2 E | {fn(x)} converges}

= {x 2 E | {fn(x)} is Cauchy}

= {x 2 E | 8 ✏ > 0, 9N 2 N such that 8 n,m � N, |fn(x)� fm(x)| < ✏}.

By the Archimedian Property, for all ✏ > 0, there exists k 2 N so that 1/k < ✏, and so

E0 = {x 2 E | 8 k 2 N, 9N 2 N such that 8 n,m � N, |fn(x)� fm(x)| < 1/k}

=
\

k2N

{x 2 E | 9N 2 N such that 8 n,m � N, |fn(x)� fm(x)| < 1/k}

=
\

k2N

[

N2N

{x 2 E | 8 n,m � N, |fn(x)� fm(x)| < 1/k}

=
\

k2N

[

N2N

\

n,m�N

{x 2 E | |fn(x)� fm(x)| < 1/k}.

Let h be the absolute value function and define gmn := h � (fn � fm). Since fn and fm are
measurable, then fn � fm is measurable. Since h is continuous and fn � fm is measurable,
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then gmn is measurable by Proposition 7 (§3.1, Royden). So,

E0 =
\

k2N

[

N2N

\

n,m�N

{x 2 E | |fn(x)� fm(x)| < 1/k}

=
\

k2N

[

N2N

\

n,m�N

{x 2 E | gmn < 1/k}

=
\

k2N

[

N2N

\

n,m�N

{x 2 E | x 2 g�1
mn([0, 1/k))}

=
\

k2N

[

N2N

\

n,m�N

g�1
mn([0, 1/k)).

Since gmn is a measurable function, and [0, 1/k) is a measurable set, then g�1
mn([0, 1/k)) is

a measurable set for all k. Since the countable intersection of the countable union of the
countable intersection of measurable sets is a measurable set, then E0 is measurable. K

3.2.22 (Dini’s Theorem) Let {fn} be an increasing sequence of continuous functions which converges
pointwise on [a, b] to the continuous function f on [a, b]. Show that the convergence is uniform
on [a, b].

Proof. Let ✏ > 0. Using the hint, we define En = {x 2 [a, b] | f(x) � fn(x) < ✏} for each
n 2 N. We show that [nEn is an open cover of [a, b]. First, define gn := f � fn for all n.
Then, as f and fn are continuous, then so is gn. Thus, g�1

n ((�1, ✏)) = En is open.
Since {fn} converges pointwise to f , then if x 2 [a, b], there exists N 2 N so that f(x) �
fN(x) < ✏, which means x 2 EN . So, {En} is an open cover for [a, b], i.e.,

[a, b] ✓
[

n2N

En.

Since [a, b] is closed and bounded, it is compact, and so there exists a finite subcover
{En1 , . . . , Enm} of [a, b] by the Heine-Borel Theorem.
Let N0 = max1im{ni}. Since {fn} is increasing, then fN0  fni  f for all ni � N0, which
means f � fni  f � fN0 for all ni � N0. So, Eni ✓ EN0 for all 1  i  m. Thus

m[

i=1

Eni = EN0

which implies [a, b] ◆ EN0 , and by definition of EN0 , we have EN0 ◆ [a, b]. Hence, EN0 =
[a, b]. Therefore, for ✏ > 0 and x 2 [a, b], we have N0 2 N0 so that m � N implies
f(x)� fm(x) < ✏. Thus, {fn} converges to f uniformly. K
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3.3.25 Suppose f is a function that is continuous on a closed set G of real numbers. Show that f
has a continuous extension to all of R.

Proof. Since F is closed, R ⇠ F is open, and thus we can write R ⇠ F as a countable
collection of disjoint intervals;

R ⇠ F =
1[

i=1

(ai, bi).

The closure of each bounded interval (ak, bk) is [ak, bk]. For all such intervals, ak, bk 2 F and
so f(ak) and f(bk) are already defined. So, for all x 2 [ak, bk] we define

f(x) =
f(bk)� f(ak)

bk � ak
· (x� ak) + f(ak).

Notice that this definition of f on all the bounded intervals [ak, bk] agrees with the definition
of f at the points ak, bk. Thus, f is continuous on these intervals since it is linear. Now,
suppose (ak, bk) is bounded from below and unbounded above so that (ak, bk) = (ak,1).
The closure of this unbounded interval is [ak,1). As before, ak 2 F and so f(ak) is
defined. Then, for all x 2 [ak,1) define f(x) = f(ak), which is clearly continuous since it is
constant. Similarly, for intervals which are unbounded below, (�1, bk) define f(x) = f(bk)
for all x 2 (�1, bk]. In the stupid case where F = Ø, then R � F = (�1,1) and so we
just define f(x) = 1 for all x 2 R. Thus, f is defined and continuous on all of R. K

3.3.31 Let {fn} be a sequence of measurable functions on E that converge pointwise to f on E.
Show that E =

S1
k=1 Ek where for each index k, Ek is measurable and {fn} converges

uniformly to f on each Ek if k > 1 and m(E1) = 0.

Proof. First suppose that m(E) < 1. By Egoro↵’s Theorem, for all k > 2, k 2 N there
exists closed subsets Ek ✓ E so that

{fn} ! f uniformly on Ek and m(E ⇠ Ek) <
1

k
.

Then {Ek}1k=2 is an ascending collection of measurable sets. Let E1 = E �
S1

k=2 Ek, and so
by DeMorgan’s identities,

E1 =
1\

k=2

[E ⇠ Ek].

Then {E ⇠ Ek}1k=2 is a descending collection of measurable sets and since m(E � E2) <
1/2 < 1, then by the continuity of measure

m(E1) = lim
k!1

[E ⇠ Ek] = lim
k!1

1

k
= 0.

Then E =
S1

k=1 Ek and each Ek is measurable. This completes the case when E has finite
measure.
Now suppose m(E) = 1. For all i 2 Z, define Gi = [i, i + 1) \ E. Since m([i, i + 1)) = 1
then m(Gi)  1 < 1. By the previous case

Gi =
1[

k=1

Ai,k where m(Ai,1) = 0 8 i 2 Z
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and {fn} ! f uniformly on Ai,k for all k > 1. Let E1 =
S

i2Z Ai,1. Relabel {Ai, 1}i2Z
as {A`,1}`2N. Since {A`, 1}`2N is a collection of pairwise disjoint measurable sets, then by
countable additivity of measure we get

m(E1) = m

 
[

`2N

A`,1

!
=
X

`2N

m(A`,1) = 0.

Relabel {Ai,k | i 2 Z, k 2 N \ {1}} as {Ej | j 2 N \ {1}}. So, {fn} ! f uniformly on Ej for
all j > 1 and

E =
[

i2Z

Gi =
[

i2Z

 1[

k=1

Ai,k

!
=
[

i2Z

 
Ai,1 [

1[

k=2

Ai,k

!
=

 
[

i2Z

Ai,1

!
[
 
[

i2Z

1[

k=2

Ai,k

!

=

 1[

`=1

A`,1

!
[
 1[

j=2

Ej

!

= E1 [
1[

j=2

Ej

=
1[

j=1

Ej

K

4.2.16 Let f be a nonnegative bounded measurable function on a set of finite measure E. AssumeR
E f = 0 . Show that f = 0 almost everywhere on E.

Proof. For all n 2 N define

Fn := {x 2 E | f(x) � 1/n}.

Then, let

F =
1[

n=1

Fn = {x 2 E | 9n 2 N s.t. f(x) � 1/n} = {x 2 E | f(x) > 0}.

Notice that for each fixed n 2 N, we have

f � �Fn · f on E and f � 1

n
on Fn.

So, by monotonicity of the integral

0 =

Z

E

f �
Z

E

�Fn · f =

Z

Fn

f �
Z

Fn

1

n
=

1

n
·m(Fn).

Therefore for each n 2 N we have 0 � m(Fn)/n which means m(Fn) = 0. Then by countable
subadditivity of measure, we get

m(F ) = m

 1[

n=1

Fn

!


1X

n=1

m(Fn) = 0.

and so the collection points of E at which f exceeds 0 has measure zero, which means f = 0
almost everywhere on E. K
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4.3.22 Let {fn} be a sequence of nonnegative measurable functions on R that converges point-
wise on R to f and f be integrable over R. Show that

if

Z

R
f = lim

n!1

Z

R
fn, then

Z

E

f = lim
n!1

Z

E

fn for any measurable set E.

Proof. Let E be any measurable set. Since {fn} ! f pointwise on R, then {fn} ! f
pointwise on E and R ⇠ E. By Fatou’s Lemma,

Z

E

f  lim inf

Z

E

fn. (1)

Again by Fatou’s Lemma,
Z

R⇠E

f  lim inf

Z

R⇠E

fn.

By Additivity over Domains, we get
Z

R⇠E

fn =

Z

R
fn �

Z

E

fn =

Z

R
fn +

Z

E

�fn

for each n. So, we get

lim inf

Z

R⇠E

fn = lim inf

✓Z

R
fn +

Z

E

�fn

◆

=

Z

R
f + lim inf

Z

E

�fn

=

Z

R
f � lim sup

Z

E

fn

Therefore,
Z

R⇠E

f 
Z

R
f � lim sup

Z

E

fn

lim sup

Z

E

fn 
Z

R
f �

Z

R⇠E

f

lim sup

Z

E

fn 
Z

E

f. (2)

Then by (1) and (2), the desired result follows. K
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4.3.27 Prove the following generalization of Fatou’s Lemma: If {fn} is a sequence of nonneg-
ative measurable functions on E, then

Z

E

lim inf fn  lim inf

Z

E

fn.

Proof. Define gn := inf{fk | k � n}. Then {gn} is an increasing sequence and

lim
n!1

gn = lim
n!1

[inf
k
{fk | k � n}] = lim inf fn.

Then by the Monotone Convergence Theorem,

lim
n!1

Z

E

gn =

Z

E

lim inf fn.

Since gn  fn for all n, then my monotonicity of the integral
Z

E

gn 
Z

E

fn

for all n. Then by the Order Limit Theorem,
Z

E

lim inf fn = lim
n!1

Z

E

gn  lim
n!1

Z

E

fn. (3)

Since it is always the case that

lim
n!1

Z

E

fn  lim inf

Z

E

fn, (4)

then we conclude Z

E

lim inf fn  lim
n!1

Z

E

fn  lim inf

Z

E

fn.

by (3) and (4) K

4.4.32 Prove the General Lebesgue Dominated Convergence Theorem by following the proof
of the Lebesgue Dominated Convergence Theorem, but replacing the sequences {g�fn}
and {g + fn}, respectively, by {gn � fn} and {gn + fn}.

Proof. Since |fn|  gn on E and {gn} ! g pointwise, then |gn| < g on E. Also,
since |f | < g almost everywhere on E and g is integrable over E, then by the Integral
Comparison Test, f and each fn also are integrable over E. We infer from Proposition
15 that, by possibly excising from E a countable collection of sets of measure zero and
using the countable additivity of Lebesgue measure, we may assume that f and each
fn is finite almost everywhere on E. The function g � f and for each n, the function
gn � fn, are properly defined, nonnegative, and measurable. Moreover, the sequence
{gn�fn} converges pointwise almost everywhere to g�f . Fatou’s Lemma tells us that

Z

E

(g � f)  lim inf

Z

E

(gn � fn).
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Thus by Linearity of integration for integrable functions,

Z

E

g �
Z

E

f  lim inf

✓Z

E

(gn +

Z

E

�fn)

◆

= lim inf

Z

E

gn + lim inf

Z

E

�fn

=

Z

E

g � lim sup

Z

E

fn

and so

lim sup

Z

E

fn  f.

Similarly, considering the sequence {gn + fn}, we obtain

Z

E

f  lim inf

Z

E

fn.

K

4.4.33 let {fn} be a sequence of integrable functions on E for which fn ! f almost everywhere
on E and f is integrable over E. Show that

Z

E

|f � fn| ! 0 if and only if lim
n!1

Z

E

|fn| =
Z

E

|f |

Proof. “ ) ” In order to show that lim
n!1

Z

E

|fn| =
Z

E

|f |, we need to show that

����
Z

E

|fn|�
Z

E

|f |
���� ! 0. (5)

Observe that by the Triangle Inequality

��|fn|� |f |
�� =

��|fn|� f + f + fn � fn � |f |
��

 |f � fn|+
��|fn|� f

��+
��fn � |f |

��
 |f � fn|.

Then by Linearity of the Integral, the Integral Comparison Test, and Monotonicity of
the Integral, we get

0 
����
Z

E

|fn|�
Z

E

|f |
���� =

����
Z

E

|fn|� |f |
����


Z

E

��|fn|� |f |
��


Z

E

|f � fn| .
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for each n. Since
R
E |f � fn| ! 0, then (5) holds.

“ ( ” Since fn ! f then {|fn � f |} ! 0. Define gn := |fn|+ |f | and g := 2|f |. Notice
that for each n

|fn � f |  |fn|+ |f | = gn.

Since

lim
n!1

Z

E

|fn| =
Z

E

|f |, then lim
n!1

Z

E

|fn|+ |f | =
Z

E

2|f |.

Since f is integrable over E, then
R
E 2|f | is integrable as well. So,

{|fn � f |} ! 0, {gn} ! g, |fn � f |  gn 8n, and lim
n!1

Z

E

gn =

Z

E

g < 1.

Therefore by the General Lebesgue Dominated Convergence Theorem,

lim
n!1

Z

E

|fn � f | =
Z

E

0 = 0.

K

4.4.34 Let f be a nonnegative measurable function on R. Show that

lim
n!1

Z n

�n

f =

Z

R
f

Proof. Define En := [�n, n]. Notice that

Z n

�n

f =

Z

R
f · �En .

By Linearity of the Integral and the Integral Comparison Test,
����
Z

R
f · �En �

Z

R
f

���� =
����
Z

R
f · �En � f

���� 
Z

R
|f · �En � f | .

For each fixed n, |f · �En � f | = 0. So,

Z

R
|f · �En � f | ! 0.

Therefore, by the previous exercise, we get

lim
n!1

Z

R
|f · �En | =

Z

R
|f |

K
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4.5.37 Let f be an integrable function on E. Show that for each ✏ > 0 there exists a natural

number N for which if n � N , then

���
R
En

f
��� < ✏ where En = {x 2 E | |x| � n}.

Proof. Notice that

1\

n=1

En =

1\

n=1

{x 2 E | |x| � n} = {x 2 E | |x| � n 8n 2 N} = ;

because there is no real number which exceeds every natural number by the Archimedean

property. Therefore, µ (
T

1

n=1 En) = 0. Since {En}
1

n=1 is a descending countable collec-

tion of measurable sets, then by the Continuity of Integration

lim
n!1

Z

En

f =

Z

T1
n=1 En

f = 0.

K

4.6.44 Let f be integrable over R and ✏ > 0. Establish the following three approximation

properties.

(i) There is a simple function ⌘ on R which has finite support and
R
R |f � ⌘| < ✏.

Proof. Suppose that f is nonnegative. Then by definition of the integral of f over

R, there exists a bounded, measurable function h of finite support and 0  h  f
on R for which

Z

R
f � h <

✏

4
and since f � h = |f � h|,

Z

R
|f � h| <

✏

4

Since h is integrable, then by definition of the integral for bounded functions,

there exists a simple function ' for which '  h on R and

Z

R
h� ' <

✏

4
and since h� ' = |h� '|,

Z

R
|h� '| <

✏

4
.

Since '  h on R and h has finite support on R, then so does '. Therefore
Z

R
|f � '| =

Z

R
|f � h|+

Z

R
|h� '| <

✏

2
.

Now, if f is any measurable function, we can apply the preceding argument to

f+
and f�

to obtain simple functions ' and  of finite support on R for which

Z

R
|f+

� '| <
✏

2
and

Z

R
|f�

�  | <
✏

2
.

Then ⌘ = '�  is a simple function of finite support on R and

Z

R
|f � ⌘| =

Z

R
|f+

� '|+

Z

R
| � f�

| <
✏

2
+
✏

2
= ✏.

K
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(ii) There is a step function s on R which vanishes outside a closed, bounded interval

and
R
R |f � s| < ✏.

Proof. By part (i), there exists a simple function ⌘ for which
R
R |f�⌘| < ✏/2. Let

E be a closed and bounded interval and O an open set containing E for which

µ(O ⇠ E) < ✏/2. Let O =
F

1

k=1 Ik for open intervals Ik. Then there exists N so

that µ
�S

1

k=N+1 Ik
�
< ✏/2. Define the step function

s =
NX

k=1

�Ik .

Suppose
P

k=1 K

(iii) There is a continuous function g on R which vanishes outside a bounded set andR
R |f � g| < ✏.

Proof. K

4.6.46 (Riemann-Lebesgue) Let f be integrable over (�1,1). Show that

lim
n!1

Z
1

�1

f(x) cos(nx)dx = 0

Proof. By Exercise 44 (ii), since f is integrable, then there is a step function ' which

vanishes outside of a closed bounded interval, say [a, b], and

Z

R
|f = '| <

✏

2
.

We first show that

lim
n!1

Z
1

�1

'(x) cos(nx)dx = 0.

To that end, suppose a = x0 < x1 < · · · < xm�1 < xm = b is a partition of [a, b], and
for each 0  i  m � 1, let ai = '(x) for all x 2 (xi, xi+1). Then for each natural

number n,
Z

R
'(x) cos(nx)dx =

Z

[a,b]

'(x) cos(nx)dx

=

mX

i=1

ai

Z

[xi,xi+1]

cos(nx)dx

=

mX

i=1

ai
sin(nx)

n

����
xi+1

xi

=

mX

i=1

ai
(sin(nxi+1)� sin(nxi))

n
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Notice that for each i, we have |(sin(nxi+1)� sin(nxi))|  2. Thus,

lim
n!1

(sin(nxi+1)� sin(nxi))

n
 lim

n!1

2

n
= 0.

Therefore,

lim
n!1

Z

R
'(x) cos(nx)dx = lim

n!1

mX

i=1

ai
(sin(nxi+1)� sin(nxi))

n

=

mX

i=1

ai lim
n!1

(sin(nxi+1)� sin(nxi))

n
= 0

Let ✏ > 0. Then there exists N 2 N so that for all n � N we have
��R

R '(x) cos(nx)
�� <

✏/2. Therefore, for all n � N , we get

����
Z

R
f(x) cos(nx)dx

���� =
����
Z

R
(f(x)� '(x)) cos(nx)

����+
����
Z

R
'(x) cos(nx)

����



Z

R
|(f(x)� '(x)) · 1|+

����
Z

R
'(x) cos(nx)

����


✏

2
+
✏

2
= ✏

K

4.6.49 Let f be integrable over R. Show that the following four assertions are equivalent:

(i) f = 0 a.e. on R.
(ii)

R
R fg = 0 for every bounded measurable function g on R.

(iii)
R
A f = 0 for every measurable set A.

(iv)
R
O
f = 0 for every open set O.

Proof. (i) =) (ii) We first show that in fact fg is integrable. Since f is integrable,

then
R
R |f | < 1. Since g is bounded on R, there exists M > 0 such that |g|  M on

R. So, Z

R
|fg| 

Z

R
|f ·M | = M

Z

R
|f | < 1.

Let E0 = {x 2 R | f(x) 6= 0}. Then m(E0) = 0 since f = 0 a.e. on R. Then fg = 0

on R ⇠ E0. So, Z

R
fg =

Z

R⇠E0

fg +

Z

E0

fg = 0.

(ii) =) (iii) Define g = �A. Then g is measurable and bounded so that

0 =

Z

R
fg =

Z

R
f�A =

Z

A

f
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(iii) =) (iv) Since every open set is measurable, then by (iii) we have
R
O
f = 0.

(iv) =) (i) We show that f+, f�
⌘ 0 a.e. on R, so that f+

� f�
= f ⌘ 0 a.e. on R.

To do this, we show that

Z

R
f+

= 0 and

Z

R
f�

= 0

and then apply Proposition 9 of Chapter 4. Notice that since f is measurable, then

the sets

E+
= {x 2 R | f(x) � 0} and E�

= {x 2 R | f(x)  0}

are measurable. Moreover,

Z

R
f+

=

Z

E+

f+
and

Z

R
f�

=

Z

E�
f�

Since E+
is measurable there exist a G� set G+

=
T

1

k=1 Uk for which

E+
✓ G+

and m(G+
⇠ E+

) = 0.

Define On =
Tn

k=1 Uk. Then G+
=
T

1

n=1 On and {On}
1

n=1 is a descending collection of

open sets. Then by additivity over domains and continuity of integration

Z

E+

f+
=

Z

G+

f �

Z

G+⇠E+

f =

Z

G+

f =

Z

T1
n=1 On

f = lim
n!1

Z

On

f = 0.

Similarly, we can approximate the set E�
by a G� set G�

and use a similar argument

to show that
R
E� f = 0. K

5.2.7 Let E have finite, {fn} ! f in measure on E and g be a measurable function on

E that is finite a.e. on E. Prove that {fn · g} ! f · g in measure, and use this to

show that {f 2
n} ! f 2

in measure. Infer from this that if {gn} ! g in measure, then

{fn · gn} ! f · g in measure.

Proof. Suppose, for contradiction, that {fn · g} 6! f · g in measure. So, there exists an

⌘ > 0, ✏⌘ > 0 and an N 2 N such that for all n � N

m({x 2 E | |fng(x)� fg(x)| > ⌘}) � ✏⌘.

Choose a strictly increasing sequence (nk) ⇢ N such that nk � N for all k. Since

{fn} ! f in measure, then fnk
! f in measure. By Riesz’s Theorem, there exists a

subsequence {fnk`
} which converges pointwise a.e. to f on E. So, {fnk`

g} converges

pointwise a.e. to fg on E. This implies (by Proposition 3) that {fnk`
g} ! fg in

measure, a contradiction.

K

5.3.17 Let f be a function on [0, 1] that is continuous on (0, 1]. Show that it is possible for

the sequence {
R
[1/n,1] f} to converge and yet f is not Lebesgue integrable over [0, 1].

Can this happen if f is nonnegative?
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Proof. K

6.2.9 Show that a set E of real numbers has measure zero if and only if there is a countable

collection of open intervals Ik
1

k=1 for which each point in E belongs to infinitely many

of the Ik’s and
P

1

k=1 `(Ik) < 1.

Proof. ()) By definition of outer measure, for each natural number n, there exists a

collection {Ij,n}1j=1 of open intervals for which E ✓
S

1

j=1 Ij,n and

1X

j=1

`(Ij,n)  µ(E) +
1

n2
=

1

n2
.

Then,

E ✓

1[

n=1

 
1[

j=1

Ij,n

!
and

1X

k=1

 
1X

j=1

`(Ij,n)

!


1X

k=1

1

n2
< 1.

Let {Ik}1k=1 be the countable collection of all the open intervals Ij,n for all j and all n.
Fix x 2 E. Since E ✓

S
1

j=1 Ij,n for each n, then there exists Ijx,n 2 {Ij,n}1j=1 containing

x for each n. Thus, x belongs to infinitely many Ik’s.
(() Since

P
1

k=1 `(Ik) < 1, then by the Borel-Cantelli Lemma, almost all x 2 R belong

to at most finitely many of the Ik’s. Thus, if we define E to be the set consisting of all

x 2 R which belong to infinitely many of the Ik’s, then µ(E) = 0. K

6.2.10 (Riesz-Nagy) Let E be a set of measure zero contained in the open interval (a, b).
According to the proceeding problem, there is a countable collection of open intervals

contained in (a, b), {(ck, dk)}1k=1, for which each point in E belongs to infinitely many

intervals in the collection and
P

1

k=1(dk � ck) < 1. Define

f(x) =
1X

k=1

`((ck, dk) \ (�1, x)) for all x 2 (a, b).

Show that f is increasing and fails to be di↵erentiable at each point in E.

Proof. Suppose x1  x2 for some x1, x2 2 (a, b). Then for each k,

(ck, dk) \ (�1, x1) ✓ (ck, dk) \ (�1, x2)

which implies

`((ck, dk) \ (�1, x1))  `((ck, dk) \ (�1, x2)).

Since this is true for each k, f(x1)  f(x2), i.e., f is increasing. We now show that f
is not di↵erentiable for all x 2 E. Pick x 2 E and since x belongs to infinitely many

of the open intervals (ck, dk), we can choose finitely many which x belongs to, say

{(ck1 , dk1), . . . , (ckn , dkn)}. For each i 2 {1, . . . , n}, let ti be such that x+ ti 2 (cki , dki),
and t = mini{ti}. Then for each i, we have

`((cki , dki) \ (�1, x+ t))� `((cki , dki) \ (�1, x)) = `((x, x+ t)) = t.

Since f is increasing, then f(x + t) � f(x) � nt, which implies Df(x) � n for each

natural number n, i.e., Df(x) = 1. Thus f is not di↵erentiable at any point in E. K
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6.2.18 Show that if f is defined on (a, b) and c 2 (a, b) is a local minimizer for f , then

Df(c)  0  Df(c).

Proof. Since c is a local minimum, there exists a � > 0 such that f(c)  f(x) for all
x 2 (c� �, c+ �). Let h 2 (0, �). If 0 < t < h, then

0 
f(c+ t)� f(c)

t
,

which gives

0  sup
0<t<h

f(c+ t)� f(c)

t
 sup

0<|t|<h

f(c+ t)� f(c)

t
.

Similarly, if �h < t < 0, then

f(c+ t)� f(c)

t
 0.

and so

inf
0<|t|<h

f(c+ t)� f(c)

t
 inf

�h<t<0

f(c+ t)� f(c)

t
 0.

Therefore,

Df(c) = lim
h!0


inf

0<|t|<h

f(c+ t)� f(c)

t

�
 0  lim

h!0

"
sup

0<|t|<h

f(c+ t)� f(c)

t

#
= Df(c)

K

6.2.19 Let f be continuous on [a, b] with Df � 0 on (a, b). Show that f is increasing on [a, b].
(Hint: First show this for a function g for which Dg � ✏ > 0 on (a, b). Apply this to

the function g(x) = f(x) + ✏x.)

Proof. Using the hint, if Dg(x) > 0 on (a, b), then there exists a � > 0 so that for all
1

|h� 0| < �,

inf
0<|t|h

g(x+ t)� g(x)

t
> 0.

Fix x 2 (a, b). Then for all 0 < |t| < h < �, we get

g(x+ t)� g(x)

t
> 0.

So if 0 < t < h, then the above implies g(x + t) � g(x) > 0 i.e., g(x + t) > g(x).
Similarly if �h < t < 0, then g(x+ t)� g(x) < 0, i.e., g(x+ t) < g(x). Therefore,

g(x� t) < g(x) < g(x+ t) for all 0 < t < h < �. (⇤)

1(i.e., �� < h < �, but since h is positive when we take the infimum, we have 0 < h < �)
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Fix c < d in (a, b). We apply the above argument to each x 2 [c, d] to obtain a

collection {(x � �x, x + �x)}x2[c,d]. Notice that is collection is an open cover of [c, d].
Since [c, d] is compact, there exists x1, . . . , xn�1 in [c, d] so that {(xi � �xi , x+ �xi)}

n�1
i=1

covers [c, d]. Add the intervals (c� �c, c+ �c) and (d� �d, d+ �d) to this finite subcover,

where c = x0 and d = xn. Each consecutive pair of intervals must have nonempty

intersection, or else a point in [c, d] will not be contained in an element of the finite

subcover. Therefore, there exists y1, . . . , yn so that

c = x0 < y1 < x1 < y2 < x2 < · · · < xn�1 < yn < xn = d

and yi is in the delta neighborhood of both xi�1 and xi for all 1  i  n. Therefore,

by (⇤)

g(c) = g(x0) < g(y1) < g(x1) < g(y2) · · · < g(xn�1) < g(yn) < g(xn) = g(d).

Therefore, g is increasing on [c, d]. It remains to show that g is increasing on [a, b].
Define an = a + 1/n for all n. Then {an} is a decreasing sequence converging to a.
Since g is continuous, the sequence {g(an)} converges to g(a). For su�ciently large

N , g(an+1) < g(an) < g(c) for all n > N . Therefore, g(a)  g(c). So, g is increasing

on [a, c]. By a similar argument applied to b, we get that g(d)  g(b), so that g is

increasing on all of [a, b].
Let g(x) = f(x) = ✏x. Then Df(x) � ✏ > 0 on (a, b). Therefore by the above

argument, f(x) + ✏x is increasing on [a, b]. Let x < y be in [a, b]. Then f(x) + ✏x 

g(x)+✏y. Suppose for contradiction that f(x) > f(y). Then 0 < f(x)�f(y)  ✏(y�x).
If ✏ = (f(x)� f(y))/(2(y � x)), then f(x)� f(y)  (f(x)� f(y))/2, a contradiction.

Thus, f is increasing on [a, b].

K
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6.3.33 Let {fn} be a sequence of real-valued functions on [a, b] that converges pointwise on

[a, b] to the real-valued function f . Show that

TV (f)  lim inf TV (fn).

Proof. Let P = {x0, x1, . . . , xk} be a partition of [a, b] and let n be a natural number.

Then V (fn, P )  TV (fn), which implies

lim inf V (fn, P )  lim inf TV (fn)

Notice that since {fn} ! f pointwise, then

lim inf V (fn, P ) = lim inf

kX

i=1

|fn(xi)� fn(xi�1)|

= lim

kX

i=1

|fn(xi)� fn(xi�1)|

=

kX

i=1

|f(xi)� f(xi�1)|

= V (f, P ).

Therefore,

V (f, P ) = lim inf V (fn, P )  lim inf TV (fn).

Since this is true for all partitions P , we get

TV (f) = sup{V (f, P )}  lim inf TV (fn).

K

6.3.35 For ↵ and � positive numbers, define the function f on [0, 1] by

f(x) =

(
x↵

sin(1/x�
) for 0 < x  1

0 for x = 0.

Show that if ↵ > �, then f is of bounded variation on [0, 1]. Then show that if ↵  �,
then f is not of bounded variation on [0, 1].

We first prove the following Lemma:

Lemma. Let {xn} be a strictly decreasing sequence contained in [0, 1] converging to 0

and define fn := f�[xn,1] for all n. Then lim
n!1

TV (fn) = TV (f).
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Proof. Notice that {fn} ! f pointwise on [0, 1] and so by the previous exercise,

TV (f)  lim inf TV (fn). Hence it su�ces to show that lim supTV (fn)  TV (f).
Fix n 2 N. Let Pn = {xn = a0, a1, . . . , ak = 1} be a partition of [xn, 1]. Then,

V (fn, Pn) = V (f�[xn,1], Pn)  V (f�[xn,1], Pn [ {0})
 V (f, Pn [ {0})
 TV (f).

Hence TV (fn)  TV (f). Since this is true for all n, then

lim supTV (fn)  TV (f).

K

Proof. Define a decreasing sequence (xn)
1
n=1 by

xn =

✓
1

⇡/2 + ⇡n

◆1/�

8 n.

Then for any points xi and xi�1, notice that

|f(xi)� f(xi�1)| =
��(xi)

↵
sin(1/(xi)

�
)� (xi�1)

↵
sin(1/(xi�1)

�
)
��

= |(xi)
↵ · (±1)� (xi�1)

↵ · (±1)|
= x↵

i + x↵
i�1.

Fix n 2 N and let Pn = {1 = x0, x1, x2, . . . , xn} be a partition of [xn, 1]. Then

V (f, Pn) =

nX

i=1

|f(xi)� f(xi�1)|

=

nX

i=1

(xi)
↵
+ (xi�1)

↵

=

nX

i=1

✓
1

⇡/2 + ⇡i

◆↵/�

+

nX

i=1

✓
1

⇡/2 + ⇡(i� 1)

◆↵/�

.

Define fn := f�[xn,1]. Notice that for each pair of consecutive terms xi, xi+1 in {xn},
the variation of f on the interval [xi, xi+1] is maximal because f is monotone on each

of these intervals. Therefore, the total variation of f on the interval [xn, 1] is equal to
the variation of f with respect to the partition Pn. In other words,

V (f, Pn) = TV (f�[xn,1]) = TV (fn).

Note that {fn} ! f so by the lemma, limTV (fn) = TV (f). So,

TV (f) = lim
n!1

TV (fn) = lim
n!1

V (f, Pn)

= lim
n!1

nX

i=1

✓
1

⇡/2 + ⇡i

◆↵/�

+ lim
n!1

nX

i=1

✓
1

⇡/2 + ⇡(i� 1)

◆↵/�

=

1X

i=1

✓
1

⇡/2 + ⇡i

◆↵/�

+ lim
n!1

1X

i=1

✓
1

⇡/2 + ⇡(i� 1)

◆↵/�

.
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Hence the total variation of f is equal to a sum of two p-series. If ↵ > � then ↵/� > 1

which means the p-series converges and thus TV (f) is bounded, i.e., f has bounded

variation. If ↵  �, then ↵/�  1, which means the series diverges, i.e. f does not

have bounded variation. K

6.4.38 Show that f is absolutely continuous on [a, b] if and only if for each ✏ > 0, there is a

� > 0 such that for every countable disjoint collection {(ak, bk)}1k=1 of open intervals

in (a, b),
1X

k=1

|f(bk)� f(ak)| < ✏ if
1X

k=1

(bk � ak) < �.

Proof. ()) Let ✏ > 0. Since f is absolutely continuous on [a, b] then there exists a

� > 0 such that for every finite disjoint collection of intervals {(ak, bk)}nk=1 contained

in (a, b) for which
Pn

k=1(bk � ak) < �, we have
Pn

k=1 |f(bk)� f(ak)| < ✏/2.

Let {(ck, dk)}1k=1 be a countable collection of disjoint intervals contained in (a, b) for

which
P1

k=1(dk � ck) < �. Hence, for each n, we have

nX

k=1

(dk � ck) < � =)
nX

k=1

|f(dk)� f(ck)| <
✏

2
.

Since this holds for each n,

lim
n!1

nX

k=1

|f(dk)� f(ck)| =
1X

k=1

|f(dk)� f(ck)| 
✏

2
.

K

6.4.39 Use the preceding problem to show that if f is continuous and increasing on [a, b], then
f is absolutely continuous on [a, b] if and only if for each ✏ > 0, there is a � > 0 such

that for a measurable subset E of [a, b],

m⇤
(f(E)) < ✏ if m(E) < �.

Proof. ()) Suppose f is absolutely continuous. Let ✏ > 0 and � > 0 be such that

for every countable disjoint collection of intervals {(ak, bk)}1k=1 contained in (a, b) for
which

P1
k=1(bk � ak) < �, we have

P1
k=1 |f(bk) � f(ak)| < ✏. Let E be a measurable

subset of [a, b] with m(E) < �. Then by definition of outer measure, there exists a

disjoint collection of open intervals {(ck, dk)}1k=1 which cover E and for which

1X

k=1

(dk � ck) < m(E) + �/2 < �.

We can assume these intervals are disjoint because if not, their union is an open set,

which can be written as the disjoint union of open intervals. Also, we can assume these

disjoint intervals are contained in [a, b] because if not, we can intersect each of them
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with (a, b) to get a collection of disjoint intervals which cover E and are contained in

(a, b). Then

m(f(E))  m

 1[

k=1

f((ck, dk))

!
=

1X

k=1

m(f(ck, dk)) 
1X

k=1

f(dk)� f(ck) < ✏.

K

6.4.40 Use the preceding problem to show that an increasing absolutely continuous function

f on [a, b] maps sets of measure zero onto sets of measure zero.

Proof. Let ✏ > 0. If E ⇢ [a, b] has measure 0, then in fact for all � > 0, we have

m(E) = 0 < �, which implies by the previous problem that m(f(E)) < ✏. Since this is
true for every ✏ > 0, m(f(E)) = 0. K

6.4.41 Let f be an increasing absolutely continuous function on [a, b]. Use (i) and (ii) below

to conclude that f maps measurable sets to measurable sets.

(i) Infer from the continuity of f and the compactness of [a, b] that f maps closed

sets to closed sets and therefore maps F� sets to F� sets.

(ii) The preceding problem tells us that f maps sets of measure zero to sets of measure

zero.

Proof. Let E be a closed set in [a, b]. Since [a, b] is compact, and closed subsets of

compact sets are compact, then E is compact. Since f is continuous, and the continuous

image of a compact set is compact, then f(E) is compact. Since R is Hausdor↵, and

compact subsets of Hausdor↵ spaces are closed, then f(E) is closed. Thus, f maps

closed sets to closed sets. In particular, if F =
S1

k=1 E is an F� set, then

f

 1[

k=1

E

!
=

1[

k=1

f(E),

and since the RHS is a countable union of closed sets, then f sends F� sets to F� sets.

Now, let E be any measurable set in [a, b]. Then we can approximate E by an F� set

F in the sense that F ✓ E and m(E ⇠ F ) = 0. Then

f(E) = f((E ⇠ F ) [ F ) = f(E ⇠ F ) [ f(F )

and since f sends measure zero sets to measure zero sets, m(f(E ⇠ F )) = 0. Moreover,

f(F ) is an F� set so that f(E) is measurable, since it is the union of two measurable

sets. K

6.4.45 Let f be absolutely continuous on R and g be continuous and strictly monotone on

[a, b]. Show that the composition f � g is absolutely continuous on [a, b].
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Proof. Let ✏ > 0. Since f is absolutely continuous on R then there exists a �1 > 0 such

that for every finite disjoint collection of intervals {(ck, dk)}nk=1 in R,

if

nX

k=1

(dk � ck) < �1 then

nX

k=1

|f(dk)� f(ck)| < ✏. (⇤)

Without loss of generality, suppose g is increasing. Since g is absolutely continuous on

[a, b], then there exists �2 > 0 such that for every finite disjoint collection of intervals

{(ak, bk)}nk=1 contained in [a, b],

if

nX

k=1

(bk � ak) < �2 then

nX

k=1

g(bk)� g(ak) < �1.

Notice that since g is strictly increasing and {(ak, bk)}nk=1 is a disjoint collection, then

{(g(ak), g(bk))}nk=1 is a disjoint collection of open intervals. In particular, {(g(ak), g(bk))}nk=1

is a collection of disjoint open intervals in R which satisfy the hypothesis in (⇤). There-
fore, for every finite disjoint collection of intervals {(ak, bk)}nk=1 contained in [a, b]

if

nX

k=1

(bk � ak) < �2 then

nX

k=1

|f(g(ak)� f(g(bk))| < ✏.

Therefore, f � g is absolutely continuous on [a, b]. K

6.5.55 Let f be of bounded variation on [a, b], and define v(x) = TV (f[a,x]) for all x 2 [a, b].

(i) Show that |f 0|  v0 a.e. on [a, b], and infer from this that

Z b

a

|f 0|  TV (f).

Proof. Let c 2 [a, b) and fix t > 0 so that c + t 2 [a, b] let P = {c, c + t} be a

partition of [c, c+ t]. Then

|f(c+ t)� f(c)| = V (f[c,c+t], P )  TV (f[c,c+t]) = TV (f[a,c+t])� TV (f[a,c]).

Since TV (f[c,c+t]) is the di↵erence of two increasing functions, then it is of bounded

variation. Since f is of bounded variation, then both f and TV (f[c,c+t]) are

di↵erentiable a.e. on (a, b) by Corollary 6, Chapter 6. So, the following limits

exist a.e. on (a, b)

|f 0
(c)| = lim

t!0

|f(c+ t)� f(c)|
t

 lim
t!0

TV (f[a,c+t])� TV (f[a,c])

t
= v0(c).

Since c was arbitrary, we conclude that |f 0|  v0 a.e. on [a, b]. By the same

corollary, f 0
and v0 are integrable, so by the monotonicity of integration, we have

Z b

a

|f 0| 
Z b

a

v0.



Nicholas Camacho Intro to Analysis I - Homework 8 November 18, 2016

Since v is increasing, then
R b

a v
0  v(b)� v(a), which gives

Z b

a

|f 0| 
Z b

a

v0  v(b)� v(a) = TV (f[a,b])� TV (f[a,a]) = TV (f[a,b]) = TV (f).

K

(ii) Show that the above is an equality if and only if f is absolutely continuous on

[a, b].

Proof. ()) Suppose
R b

a |f
0| = TV (f). Hence
Z b

a

|f 0| = TV (f) = v(b)� v(a).

Let ✏ > 0. Since v is the di↵erence of two increasing functions then v is of bounded
variation on [a, b]. Thus, there exists � > 0 so that for every disjoint collection

of open intervals {(ak, bk)}nk=1 contained in [a, b] for which
Pn

k=1(bk � ak) < �, we
have

nX

k=1

|TV (f[a,bk])� TV (f[a,ak])| =
nX

k=1

|v(bk)� v(ak)| < ✏.

Notice that

|f(bk)� f(ak)|  |TV (f[ak,bk])| = |TV (f[a,bk])� TV (f[a,ak])|
for all k and so

nX

k=1

|f(bk)� f(ak)| 
nX

k=1

|TV (f[ak,bk])| < ✏.

(() Suppose f is absolutely continuous on [a, b]. Then by Theorem 10, Chapter

6, for any open interval (c, d) in [a, b], we have

Z d

c

f 0
= f(d)� f(c).

Let P = {x0, x1, . . . , xn} be a partition of [a, b]. Then

V (f, P ) =

nX

k=1

|f(xk)� f(xk�1)| =
nX

k=1

�����

Z xk

xk�1

f 0

����� 
nX

k=1

Z xk

xk�1

|f 0| =
Z b

a

|f 0|.

Hence,

TV (f) 
Z b

a

|f 0|

and together with (i) we have TV (f) =
R b

a |f
0|. K

(iii) Compare parts (i) and (ii) with Corollaries 4 and 12, respectively.

Solution:

Since TV (f) = f(b)�f(a) for an increasing function f , then Corollary 4 is equiv-

alent to (i) for increasing functions. If f is increasing and of bounded variation,

then Corollary 12 is equivalent to (ii).
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9.1.5 The Nikodym Metric. Let E be a Lebesgue measurable set of real numbers of finite measure, X the
set of Lebesgue measurable subsets of E, and m Lebesgue measure. For A,B 2 X, define ⇢(A,B) =
m(A4B), where A4B = [A ⇠ B] [ [B ⇠ A], the symmetric di↵erence of A and B.

(i) Show that this is a pseudometric on X.

Proof. The fact that ⇢(A,B) � 0 follows from the fact that Lebesgue measure is nonnegative.
Symmetry follows from the fact that

⇢(A,B) = m(A ⇠ B) +m(B ⇠ A) = m(B ⇠ A) +m(A ⇠ B) = ⇢(B,A).

To show that the triangle inequality holds for this metric, we first show that

A4B ✓ (A4C)4(C4B). (1)

To that end, suppose x 2 A4B where x 2 A but x 62 B. If x 2 C, then x 2 A \ C so that
x 62 A4C. But since x 2 C ⇠ B, then x 2 C4B. Therefore, x 2 (A4C)4(C4B). If x 62 C, then
x 62 C4B and x 2 A ⇠ C. Then x 2 A4C but x 62 C4B, which means x 2 (A4C)4(C4B).

Similarly, if x 62 A but x 2 B, then x 2 (A4C)4(C4B). Therefore, (1) holds. Notice that

(A4C)4(C4B) ✓ (A4C) [ (C4B). (2)

Therefore by (1), (2), and monotonicity of measure,

m(A4B)  m((A4C)4(C4B))  m((A4C) [ (C4B))  m(A4C) +m(C4B),

that is, ⇢(A,B)  ⇢(A,C) + ⇢(C,B).

Although A = B =) ⇢(A,B) = 0, the converse may not be true. For if A,B 2 X are disjoint
countable sets, then ⇢(A,B) = 0 but A 6= B. Therefore, ⇢ cannot be a metric on X, but instead
a pseudometric on X. K

(ii) Define two measurable sets to be equivalent provided their symmetric di↵erence has measure zero.
Show that ⇢ induces a metric on the collection of equivalence classes.

Proof. We need to show that ⇢̃([A], [B]) = ⇢(A,B) defines a metric on X/ ⇠=. Based on the work
done in part (i), it remains to show that ⇢̃([A], [B]) = 0 implies [A] = [B]. But this is clear, since

0 = ⇢̃([A], [B]) = ⇢(A,B) =) A ⇠= B =) [A] = [B].

K

(iii) Finally, show that for A,B 2 X,

⇢(A,B) =

Z

E
|�A � �B |,

where �A and �B are the characteristic functions of A and B, respectively.

Proof. Since Z

E
�A4B = m(A4B) = ⇢(A,B),

it su�ces to show that �A4B = |�A � �B | on E. Let x 2 E.

If x 2 A \B, then �A4B(x) = 0 and XA(x) = 1 = �B(x) so that

�A4B(x) = 0 = |�A(x)� �B(x)|.

If x 2 A ⇠ B, then �A4B(x) = 1,�A(x) = 0, and �B(x) = 0 so that

�A4B(x) = 1 = |�A(x)� �B(x)|.

1



Nicholas Camacho Intro to Analysis — Homework 10 December 2, 2016

If x 2 B ⇠ A, then �A4B(x) = 1,�A(x) = 1, and �B(x) = 1 so that

�A4B(x) = 1 = |�A(x)� �B(x)|.

If x 62 A [B, then �A4B(x) = 0, �A(x) = 0, and �B(x) = 0 so that

�A4B(x) = 0 = |�A(x)� �B(x)|.

K

9.1.11 Let (X, ⇢) be a metric space and A any set for which there is a one-to-one mapping f of A onto the
set X. Show that there is a unique metric on A for which f is an isometry of metric spaces. (This is
the sense in which an isometry amounts merely to a relabeling of the points in a space.)

Proof. Let a1, a2 2 A and define a metric � on A by �(a1, a2) = ⇢(f(a1), f(a2)). Then the nonnega-
tivity, symmetry, and triangle inequality of � follow from that of ⇢. Since fA ! X is injective then if
f(a1) = f(a2), then a1 = a2 so that �(a1, a2) = 0 () a1 = a2. Thus � is indeed a metric on A.

If ⌧ is another metric on A for which ⌧(a1, a2) = ⇢(f(a1), f(a2)), then ⌧(a1, a2) = �(a1, a2) so that
� is unique. K

9.2.15 Let X be a metric space, x belong to X and r > 0.

(i) Show that B(x, r) is closed and contains B(x, r).

Proof. Let y 2 X ⇠ B(x, r) and define r0 = ⇢(x, y) � r. Then B(y, r0) is a neighborhood of y
disjoint from B(x, r). Otherwise, if z 2 B(y, r0) \B(x, r), then

⇢(x, z)  r and ⇢(z, y) < r0 = ⇢(x, y)� r.

But by the triangle inequality, this would imply

⇢(x, y)  ⇢(x, z) + ⇢(z, y) < r + r0 = ⇢(x, y),

which is a contradiction.

To see that B(x, r) contains B(x, r), notice that if y 2 B(x, r), then ⇢(x, y) < r and hence
y 2 B(x, r). K

(ii) Show that in a normed linear space X, the closed ball B(x, r) is the closure of the open ball
B(x, r), but this is not so in a general metric space.

Proof. Since B(x, r) is closed and contains B(x, r), and B(x, y) is the smallest closed set containing
B(x, r), then B(x, r) ✓ B(x, r). Conversely, let y 2 B(x, r) with ⇢(x, y) = r (if ⇢(x, y) < r then
y 2 B(x, r) and so y 2 B(x, r) and we are done). Then if we define yn := y(1 � 1/n) for all n,
then {yn} ! y which means y 2 B(x, r). Thus B(x, r) = B(x, r). Notice that our definition of
yn is only valid in a normed linear space.

This is not true in a general metric space because if we consider any space with the discrete
metric, the open unit ball of radius 1 around any point is just the singleton set. Its closure is also
a singleton set. However, the closed unit ball of radius 1 is everything. K

9.2.22 For a subset E of a metric space X, a point x 2 X is called a boundary point of E provided every
open ball centered at x contains points in E and points in X ⇠ E: the collection of boundary points
of E is called the boundary of E and denoted by bd E. Show

(i) Show that bd E is always closed.

Proof. Let x 2 X ⇠ bdE. Then there exists r > 0 so that B(x, r) \ E = ; or B(x, r) \ (X ⇠

E) = ;. If the former is true, then B(x, r) is a neighborhood of x disjoint from bdE since every
open ball of a point in bdE must intersect E. Similarly, if the latter is true then B(x, y) is a
neighborhood of x disjoint from bdE since every open ball of a point in bdE must intersect
X ⇠ E. Therefore, bdE is closed. K
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(ii) Show that E is open if and only if E \ bdE = ;.

Proof. ()) If x 2 E then there exists r > 0 so that B(x, r) ✓ E. Since B(x, r) is an open
ball about X contained in E, then B(x, r) \ (X ⇠ E) = ;, and hence x 62 bdE. Therefore,
E \ bdE = ;.

(() If x 2 E then x 62 bdE. Then there exists r > 0 so that B(x, r)\E = ; or B(x, r)\(X ⇠

E) = ;. However, the former cannot be true since x 2 E. So

; = B(x, r) \ (X ⇠ E) = B(x, r) \ (X \ Ec) = B(x, r) \ Ec =) B(x, r) ✓ E.

K

(iii) Show that E is closed if and only if bdE ✓ E.

Proof. ()) If x 2 bdE, then for every neighborhood O of x, O \ E 6= ;. Hence x 2 E = E.

(() If x 2 X ⇠ E, then x 62 bdE since bdE ✓ E. So there exists r > 0 so that B(x, r)\E = ;

or B(x, r) \ (X ⇠ E) = ;. But since x 2 X ⇠ E, the former must be true. Then B(x, r) is a
neighborhood of x disjoint from E, and hence E is closed. K

9.3.32 For a nonempty subset E of the metric space (X, ⇢) and a point x 2 X, define the distance from x to
E, dist(x,E), as follows:

dist(x,E) = inf{⇢(x, y) | y 2 E}.

(i) Show that the distance function f : X ! R defined by f(x) = dist(x,E), for x 2 X, is continuous.

Proof. Let ✏ > 0 and x 2 X. Choose any point y 2 X for which ⇢(x, y) < ✏ (in the ✏� � criterion
for continuity, we are choosing � = ✏). We claim

| dist(x,E)� dist(y, E)|  ⇢(x, y) < ✏ (3)

Notice that by the triangle inequality

dist(x,E)  ⇢(x, e)  ⇢(x, y) + ⇢(y, e) for all e 2 E,

from which we get
dist(x,E)� ⇢(x, y)  ⇢(y, e) for all e 2 E.

Then
dist(x,E)� ⇢(x, y)  inf{⇢(y, e) | e 2 E} = dist(y, E),

which implies
dist(x,E)� dist(y, E)  ⇢(x, y).

Switching the roles of x and y shows dist(y, E)�dist(x,E)  ⇢(x, y) as well so that (3) holds. K

(ii) Show that {x 2 X | dist(x,E) = 0} = E.

Proof. If dist(x,E) = 0 then there exists y 2 E so that ⇢(x, y) = 0, i.e., x = y. Thus x 2 E ✓ E.
If x 2 E then for each n 2 N, B(x, 1/n) \ E 6= ;. So there exists xn 2 B(x, 1/n) \ E for each n.
Thus

inf{⇢(x, xn) | xn 2 E} ! 0 =) dist(x,E) = 0.

K

9.3.34 Show that a subset E of a metric space X is closed if and only if there is a continuous real-valued
function f on X for which E = f�1(0).

Proof. ()) Consider the function given in Exercise 32. Then

f�1(0) = {x 2 X | dist(x,E) = 0} = E = E.

(() Since R ⇠ {0} = (�1, 0) [ (0,1) is open, then {0} is closed. Since f is continuous then
f�1(0) = E is closed. K
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9.4.42 Prove that the product of two complete metric spaces is complete.

Proof. Let (X, ⇢1) and (Y, ⇢2) be two complete metric spaces and {(xn, yn)} be a Cauchy sequence in
the product space (X ⇥ Y, ⌧). Let ✏ > 0. Since {(xn, yn)} is a Cauchy sequence there exists N 2 N so
that for all n,m � N

⌧((xn, yn), (xm, ym)) = {(⇢1(xn, xm))2 + (⇢2(yn, ym))2}1/2 <
p
✏.

So for all n,m � N
⇢1(xn, xm), ⇢2(yn, ym) <

p
✏ < ✏.

Therefore, {xn} and {yn} are Cauchy sequences in X and Y , respectively, and since X and Y are
complete metric spaces, {xn} ! x 2 X and {yn} ! y 2 Y . It follows that {(xn, yn)} ! (x, y) 2 X⇥Y
and so X ⇥ Y is complete. K

9.4.49 For a metric space (X, ⇢), complete the following outline of a proof of Theorem 13:

(i) If {xn} and {yn} are Cauchy sequences in X, show that {⇢(xn, yn)} is a Cauchy sequence of real
numbers and therefore converges.

Proof. Let ✏ > 0. Since {xn} and {yn} are Cauchy in X, let N 2 N be large enough so that for
all n,m � N ,

⇢(xn, xm) < ✏/2 and ⇢(yn, ym) < ✏/2 (4)

By the reverse triangle inequality, it follows that

|⇢(xn, yn)� ⇢(xm, yn)|  ⇢(xn, xm) and |⇢(xm, yn)� ⇢(xm, ym)|  ⇢(yn, ym). (5)

Then (4) and (5) give

|⇢(xn, yn)� ⇢(xm, ym)|  |⇢(xn, yn)� ⇢(xm, yn)|+ |⇢(xm, yn)� ⇢(xm, ym)|

 ⇢(xn, xm) + ⇢(yn, ym)

< ✏/2 + ✏/2 = ✏,

and so {⇢(xn, yn)} is a Cauchy sequence of real numbers and therefore converges. K

(ii) Define X 0 to be the set of Cauchy sequences in X. For two Cauchy sequences in X, {xn} and
{yn}, define ⇢0({xn}, {yn}) = lim ⇢(xn, yn). Show that this defines a pseudometric ⇢0 on X 0.

Proof. Since ⇢ is a metric, it is nonnegative. Therefore, lim ⇢(xn, yn) will be nonnegative, i.e. ⇢0

is nonnegative. Symmetry of ⇢0 follows from symmetry of ⇢. We have the triangle inequality for
⇢0 since if ⇢(xn, yn)  ⇢(xn, zn) + ⇢(zn, yn) then

⇢0({xn}, {yn}) = lim ⇢(xn, yn)  lim[⇢(xn, zn) + ⇢(zn, yn)] = lim ⇢(xn, zn) + lim ⇢(zn, yn)

= ⇢0({xn}, {zn}) + ⇢0({zn}, {yn}).

Although {xn} = {yn} =) {⇢(xn, yn)} ! 0, it may not be the case that lim ⇢(xn, yn) = 0 gives
{xn} = {yn}. Indeed, if {xn} = (x1, x2, x3, . . . ) and {yn} = (y1, x2, x3, . . . ) for some y1 6= x1,
then lim ⇢(xn, yn) = 0 but {xn} 6= {yn}. Therefore, ⇢0 is a pseudometric on X 0. K

(iii) Define two members of X 0, that is, two Cauchy sequences {xn} and {yn} in X, to be equivalent
provided ⇢0({xn}, {yn}) = 0. Show that this is an equivalence relation in X 0 and denote by bX
the set of equivalence classes. Define the distance b⇢ between two equivalence classes to be the ⇢0

distance between representatives of the classes. Show that b⇢ is properly defined and is a metric
on bX.
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Proof. Reflexivity of this relation follows from the fact that lim ⇢(xn, xn) = 0. Symmetry follows
from symmetry of ⇢. Finally, this relation is transitive since if 0 = lim ⇢(xn, yn) = lim(yn, zn),
then by the triangle inequality of ⇢0

lim ⇢(xn, zn)  lim ⇢(xn, yn) + lim ⇢(yn, zn) = 0,

and since ⇢0 is nonnegative, we have {xn} ⇠ {zn}.

To show that ⇢̂ is well-defined, we must show that for any two representatives {xn} and {x0
n}

of the equivalence class [{xn}] and a fixed representative {yn} of [{yn}],

⇢0({xn}, {yn}) = ⇢0({x0
n}, {yn}).

This follows from the following two inequalities:

lim ⇢(xn, yn)  lim ⇢(xn, x
0
n) + lim ⇢(x0

n, yn) = lim ⇢(x0
n, yn),

lim ⇢(x0
n, yn)  lim ⇢(x0

n, xn) + lim ⇢(xn, yn) = lim ⇢(xn, yn).

Similarly, we get that if {xn} is a fixed representative of [{xn}] and if {yn} and {y0n} are two
representatives of [{yn}], then

⇢0({xn}, {yn}) = ⇢0({xn}, {y
0
n}).

Since ⇢̂ is properly defined in terms of ⇢0 and ⇢0 is a pseudometric, then nonnegativity, sym-
metry, and the triangle inequality all hold for ⇢̂. Thus it remains to show that

⇢̂([{xn}], [{yn}]) = 0 () [{xn}] = [{yn}]. (6)

Since ⇢̂ is well defined, we can work with any representatives. So

0 = ⇢̂([{xn}], [{yn}]) () lim ⇢(xn, yn) = 0 () {xn} ⇠ {yn} () [{xn}] = [{yn}].

K

(iv) Show that the metric space ( bX, bp) is complete. (Hint: If {xn} is a Cauchy sequence from X, we
may assume [by taking subsequences] that ⇢(xn, xn+1) < 2�n for all n. If {{xn,m}

1
n=1}

1
m=1 is a

sequence of such Cauchy sequences that represents a Cauchy sequence in bX, then the sequence
{xn,n}

1
n=1 is a Cauchy sequence from X that represents the limit of the Cauchy sequences from

bX.)

Proof. We have [{xn}] 2 X̂ and {[{xi}j ]}, a sequence in X̂. Choose representative for each class,

and we get {xi,j}, a sequence in X̂, which is Cauchy.

xi,1 = {x11, x21, x31 . . . , }

xi,2 = {x12, x22, x32 . . . , }

xi,3 = {x13, x23, x33 . . . , }

...

xi,n = {x1n, x2n, x3n . . . , }

...

Let z = {x11, x22, x33, · · · }. Want to show z is a Cauchy sequence. let ✏ > 0. We claim

⇢(xnn, xmm)  ⇢(xnn, xjn) + ⇢(xjn, xjm) + ⇢(xjm, xmm) < ✏. (7)

Notice that there exists N1, N2 2 N so that ⇢(xnn, xjn) < ✏/3 if n, j � N1 and ⇢(xjm, xmm) <
✏/3 if m, j � N2.

5
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Moreover, there exists N3 such that for all k, ` � N3,

⇢̂({xik}, {xi`}) < ✏/3

i.e.,
lim ⇢(xik, xi`}) = 0.

So there exists N4 such that if i � N4,

⇢(xik, xi`) < ✏/3.

So, we choose N = max{n1, N2, N3, N4} and choose n, j,m � N so that (7) holds.

We now must show that z is the limit of {[{xi}j ]}. To that end,

lim
n!1

⇢̂({xi}n, z) = lim
n!1

⇣
lim
i!1

⇢(xin, xii)
⌘

(we know this converges!, so we go to subsequence...)

= lim
n!1

lim
i!1

(xii, xii) = 0

K

(v) Define the mapping h from X to bX by defining, for x 2 X, h(x) to be the equivalence class
of the constant sequence all of whose terms are x. Show that h(X) is dense in bX and that
b⇢(h(u), h(v)) = ⇢(u, v) for all u, v 2 X.

Proof. Want to show that for any open ball around ŷ = {y1, . . . , yn, . . . } 2 X̂ there exists
{x, x, . . . , x, . . . } that is also in the ball. The ball of radius r around ŷ is

Br(ŷ) = {{xn} | lim
n!1

⇢(xn, yn) < r}.

Pick x = yk for su�ciently large k. Then, it follows that

lim
n!1

⇢(xk, yn) < r

To show b⇢(h(u), h(v)) = ⇢(u, v), note that h(u) = [{u}] = [{u, u, u, . . . }] and h(v) = [{v}] =
[{v, v, v, . . . }]. Then

b⇢(h(u), h(v)) = ⇢0({u}, {v}) = lim ⇢(u, v) = ⇢(u, v),

where the last equality holds because lim ⇢(u, v) is a limit of the constant ⇢(u, v). K

(vi) Define the set X̃ to be the disjoint union of X and bX ⇠ h(X). For u, v 2 X̃, define ⇢̃(u, v) as
follows: ⇢̃(u, v) = ⇢(u, v) if u, v 2 X; ⇢̃(u, v) = du, v for u, v 2 X̂ ⇠ h(X); and ⇢̃(u, v) = ⇢̂(h(u), v)
for u 2 X, v 2 X̂ ⇠ h(X). From the preceding two parts conclude that the metric space (X̃, ⇢̃) is
a complete metrics space containing (X, ⇢) as a dense subspace.

Proof. K

Problem 1 Show that any two norms on a finite dimensional vector space are equivalent.

Proof. **Proof obtained from the following source:**

https://math.berkeley.edu/~sarason/Class_Webpages/solutions\_202B_assign10.pdf

Since every finite dimensional vector space is equivalent to Rn, we show that any norm on Rn is
equivalent to the Euclidean norm || · ||2 on Rn.

To show this, let {e1, . . . , en} be the standard basis of Rn and || · || be any norm on Rn. Then for
x = x1e2 + . . . xnen, we have by the Cauchy-Schwarz inequality

||x||  |x1| ||e1||+ · · ·+ |xn| ||en||  ||x||2
p
||e1||2 + . . . ||en||2.

6
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Therefore, for C =
p
||e1||2 + . . . ||en||2, we have ||x||  C||x||2.

To get the other inequality, we observe that since | ||x||� ||y|| |  ||x� y|| < C||x� y||2, then || · ||

is a continuous function with respect to the usual topology. Therefore, since Sn�1 = {x | ||x||2 = 1} is
compact, ||x|| achieves a minimum values c > 0 on Sn�1. Thus if x 6= 0, we have x

||x||2 2 Sn�1, and

||x|| = ||x||2

����

����
x

||x||2

����

���� � c||x||2.

K
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