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1-3 Prove that a set A = {a0, a1, . . . , ak} of points in Rn is geometrically independent if and only
if the set of vectors {a1 � a0, . . . , ak � a0} is linearly independent.

Proof. We prove the contrapositive statement. Assume the points in the set A are geomet-
rically dependent. This occurs if and only if there exists a (k � 1) hyperplane, say P , that
contains all of the points in A. So, for some k�1 linearly independent vectors v1, v2, . . . , vk�1,

P =

(
a0 +

k�1X

i=1

µivi
���µi 2 R, 1  i  m

)
.

So, given any point aj 2 A, we can write

aj = a0 + µj1v1 + µj2v2 + · · ·+ µj(k�1)
vk�1

aj � a0 = µj1v1 + µj2v2 + · · ·+ µj(k�1)
vk�1

if and only if Span{a1 � a0, a2 � a0, . . . , ak � a0} ✓ Span{v1, v2, . . . , vk�1}. Now,

dim{Span{a1 � a0, a2 � a0, . . . , ak � a0}} = k > k � 1 = dim{Span{v1, v2, . . . , vk�1}},

if and only if {a1 � a0, a2 � a0, . . . , ak � a0} are linearly dependent.

⌅

1-5 A subset B of Rn is convex provided that B contains every line segment having two of its
members as end points.

(a) If a and b are points in Rn, show that the line segment L joining a and b consists of all
points of the form

x = ta+ (1� t)b

where t is a real number with 0  t  1.

Proof. Let{a, b} be a set of geometrically independent points. (Otherwise, we would
have a = b, and we could not begin to consider a line segment L joining a and b). So,
we can define a 1-simplex (a closed line) spanned by {a, b} as the line L where

L = {x 2 Rn|x = ta+ sb, t+ s = 1, and t, s 2 R are non-negative}

Since s = 1� t, then all the points on the 1-simplex can be written as

x = ta+ (1� t)b

Since s = 1� t is non-negative then we must have 0  t  1. ⌅

(b) Prove that every simplex is a convex set.



Proof. Let a and b be any two points in a k-simplex, �k, spanned by the set {a0, a1, . . . , ak}.
Then, a and b can be written as

a = �0a0 + �2a2 + · · ·+ �kak where
kX

i=0

�i = 1 and �i � 0 8i

and

b = µ0a0 + µ2a2 + · · ·+ µkak where
kX

i=0

µi = 1 and µi � 0 8i

From part (a), the line segment joining a and b consists of all points of the form

c = ta+ (1� t)b where 0  t  1

Thus,

c = t(�0a0 + �2a2 + · · ·+ �kak) + (1� t)(µ0a0 + µ2a2 + · · ·+ µkak)

= [t�0 + (1� t)µ0]a0 + [t�1 + (1� t)µ1]a1 + · · ·+ [t�k + (1� t)µk]ak

Now, as t,�i, and µi are all non-negative for all i, then t�i+(1� t)µi is non-negative for
all i. Also, notice that

kX

i=0

[t�i + (1� t)µi] = t
kX

i=0

�i + (1� t)µi = t(1) + (1� t)(1) = 1

and so c 2 �k, and thus �k is a convex set. ⌅

(c) Prove that a simplex � is the smallest convex set which contains all vertices of �.

Proof. Let �n be an n-simplex. We proceed by induction on the dimension of the faces of
�n. Suppose C ✓ Rn is a convex set that contains all the vertices of �n, < a0a1 . . . an >.
For the base case, it is by definition of C that the 0-faces of < a0a1 . . . an >, which are
< a0 >,< a1 > · · · < an >, are all in C. Now, suppose that C contains all of the
(k � 1)-faces, k > 0. Without loss of generality, consider the k-face < a0a1 . . . ak >. If x
is a point in < a0a1 . . . ak >, then we can write

x =
kX

i=0

�iai

where the numbers �0, . . .�k are the barycentric coordinates of x. Then,



x =
kX

i=0

�iai

=

"
�0a0 +

1

2

k�1X

i=1

�iai

#
+

"
1

2

k�1X

i=1

�iai + �kak

#

=

 
�0 +

1

2

k�1X

i=1

�i

!" 
1

�0 +
1
2

Pk�1
i=1 �i

! 
�0a0 +

1

2

k�1X

i=1

�iai

!#

+

 
1

2

k�1X

i=1

�i + �k

!" 
1

1
2

Pk�1
i=1 �i + �k

! 
1

2

k�1X

i=1

�iai + �kak

!#

=

 
�0 +

1

2

k�1X

i=1

�i

!" 
�0a0

�0 +
1
2

Pk�1
i=1 �i

!
+

 
1
2

Pk�1
i=1 �iai

�0 +
1
2

Pk�1
i=1 �i

!#

+

 
1

2

k�1X

i=1

�i + �k

!" 
1
2

Pk�1
i=1 �iai

1
2

Pk�1
i=1 �i + �k

!
+

�kak
1
2

Pk�1
i=1 �i + �k

#

Let

t =

 
�0 +

1

2

k�1X

i=1

�i

!
and s =

 
1

2

k�1X

i=1

�i + �k

!
.

Then, s+ t = 1 and

x = t

" 
�0a0

�0 +
1
2

Pk�1
i=1 �i

!
+

 
1
2

Pk�1
i=1 �iai

�0 +
1
2

Pk�1
i=1 �i

!#

+ s

" 
1
2

Pk�1
i=1 �iai

1
2

Pk�1
i=1 �i + �k

!
+

�kak
1
2

Pk�1
i=1 �i + �k

#
,

which shows that x can be written as a point on a line between two (k � 1)-faces. Since
we assumed the (k�1)-faces are in C, and C is convex, then x 2 C, and so C contains the
k-faces of �. Therefore, by mathematical induction, C contains all of the k-faces of �n

for each k = 1, 2, . . . , n. Thus, �n is always a subset of any convex set C which contains
its vertices, and thus �n is the smallest convex set containing all of its vertices. ⌅
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1-6 How many faces does an n-simplex have?

Solution: Let �n
be an n-simplex. Since �n

has n + 1 vertices, there are
�
n+1
1

�

0-faces of �n
. Likewise, �n

has
�
n+1
2

�
1-faces. In general, we can say that the

number of (k � 1)-faces is
�
n+1
k

�
. So, we have

n+1X

k=1

✓
n+ 1

k

◆

total faces of �n
.

1-8 Triangulation of the Klein Bottle.

a0 a2 a1 a0

a3
a5 a6 a3

a4
a7 a8 a4

a0 a1 a2 a0
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9. Let K denote the closure of a 3-simplex �3
= ha0a1a2a3i with vertices ordered by

a0 < a1 < a2 < a3.

Use this given order to induce an orientation on each simplex of K, and determine all

incidence numbers associated with K.

Solution:

a0

a1

a2a2

a3

Per the given order, we list the positive orientation for each simplex in K:

0-simplices:

+�0
↵ = ha0i, + �0

� = ha1i, +�0
� = ha2i, +�0

� = ha3i,
1-simplices:

+�1
↵ = ha0a1i, + �1

� = ha0a2i, +�1
� = ha0a3i,

+�1
� = ha1a2i, + �1

✏ = ha1a3i, +�1
⇣ = ha2a3i

2-simplices:

+�2
↵ = ha0a1a2i, + �2

� = ha0a2a3i, +�2
� = ha0a1a3i, +�2

� = ha1a2a3i,
3-simplex:

+ �3
= +ha0a1a2a3i,

We compute the incidence number of �3
and all 2-simplices algebraically:

[�3, �2
↵] = �1 since ha3a0a1a2i = �ha0a1a2a3i

[�3, �2
�] = �1 since ha1a0a2a3i = �ha0a1a2a3i

[�3, �2
�] = +1 since ha2a0a1a3i = +ha0a1a2a3i

[�3, �2
� ] = +1 since ha0a1a2a3i = +ha0a1a2a3i
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Now, using the orientations shown by arrows in the figure above, we compute the

incidence numbers associated with K:

[�2
↵, �

1
↵] = +1 [�2

�, �
1
↵] = 0 [�2

�, �
1
↵] = +1 [�2

��
1
↵] = 0

[�2
↵, �

1
�] = �1 [�2

�, �
1
�] = +1 [�2

�, �
1
�] = 0 [�2

��
1
�] = 0

[�2
↵, �

1
�] = 0 [�2

�, �
1
�] = �1 [�2

�, �
1
�] = �1 [�2

��
1
�] = 0

[�2
↵, �

1
� ] = +1 [�2

�, �
1
� ] = 0 [�2

�, �
1
� ] = 0 [�2

��
1
� ] = +1

[�2
↵, �

1
✏ ] = 0 [�2

�, �
1
✏ ] = 0 [�2

�, �
1
✏ ] = +1 [�2

��
1
✏ ] = �1

[�2
↵, �

1
⇣ ] = 0 [�2

�, �
1
⇣ ] = +1 [�2

�, �
1
⇣ ] = 0 [�2

��
1
⇣ ] = +1

[�1
↵, �

0
↵] = �1 [�1

�, �
0
↵] = �1 [�1

�, �
0
↵] = �1 [�1

��
0
↵] = 0 [�1

✏�
0
↵] = 0 [�1

⇣�
0
↵] = 0

[�1
↵, �

0
�] = +1 [�1

�, �
0
�] = 0 [�1

�, �
0
�] = 0 [�1

��
0
�] = �1 [�1

✏�
0
�] = �1 [�1

⇣�
0
�] = 0

[�1
↵, �

0
�] = 0 [�1

�, �
0
�] = +1 [�1

�, �
0
�] = 0 [�1

��
0
�] = +1 [�1

✏�
0
�] = 0 [�1

⇣�
0
�] = �1

[�1
↵, �

0
� ] = 0 [�1

�, �
0
� ] = 0 [�1

�, �
0
� ] = +1 [�1

��
0
� ] = 0 [�1

✏�
0
� ] = +1 [�1

⇣�
0
� ] = +1

11. In the triangulation M of the Möbius strip, let us call a 1-simplex interior if it is a

face of two 2-simplexes. For each interior simplex �i, let �̄i and ¯̄�i denote the two

2-simplexes of which �i is a face. Show that it is not possible to orient M so that

[�i, �i] = �[�i, �i] (1)

for each interior simplex �i.

Proof. We start by proving the following Lemma:

Lemma. Let �2
1 = haiajaki and �2

2 = haiaja`i be any two 2-simplices meeting along
the common 1-simplex �1

= haiaji in a coherently oriented 2-complex. Suppose

+�2
1 = haiajaki

Then, no matter the positive orientation of �1, we must have

+�2
2 = hajaia`i

In other words, in the triangulation of a coherently oriented 2-complex containing two
2-simplices, we must have that the two swirls — which are drawn in the triangulation
to show positive orientation — of each 2-simplex must both be clockwise or counter-
clockwise.

Proof of Lemma. Let �2
1, �

2
2, & �1

be as above. Suppose +�1
= haiaji. Then [�2

1, �
1
] =

+1. Because we are in a coherently oriented complex, we must have [�2
2, �

1
] = �1.

This implies +�2
2 = hajaia`i.

Now suppose +�1
= hajaii. Then [�2

1, �
1
] = �1. Now, because we’re in a coherently

oriented complex, we must have [�2
2, �

1
] = +1. This implies +�2

2 = hajaia`i. ⌅
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To get a contradiction, assume that the Möbius strip is orientable. By the Lemma, we

can draw a counterclockwise swirl in each 2-simplex.

a3 a4 a5 a0

a3a2a1a0

This means +ha0a3a4i = ha0a4a3i and +ha0a2a3i = ha0a2a3i. Without loss of general-

ity, suppose +ha0a3i = ha0a3i.

a3 a4 a5 a0

a3a2a1a0

Then, we have

[ha0a3a4i, ha0a3i] = �1 and [ha0a2a3i, ha0a3i] = �1,

which is a contradiction. Thus, the Möbius strip is nonorientable. ⌅
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2-1 Suppose that K1 and K2 are two triangulations of the same polyhedron. Are the chain

groups Cp(K1) and Cp(K2) isomorphic? Explain.

Solution:

Although K1 and K2 are two triangulations of the same polyhedron, they may not have

the same number of p-simplexes. So, suppose Cp(K1) has ↵p p-simplexes and Cp(K2)

has �p p-simplexes. Then,

Cp(K1)
⇠= Z↵p and Cp(K2)

⇠= Z�p

Then, Cp(K1)
⇠= Cp(K2) if and only if ↵p = �p.

2-2 Suppose that complexes K1 and K2 have the same simplexes but di↵erent orientations.

How are the chain groups Cp(K1) and Cp(K2) related?

Solution:

Cp(K1) and Cp(K2) are isomorphic because K1 and K2 have the same simplexes. How-

ever, since some (if not all) of the simplexes of K1 have di↵erent orientations from that

of K2, the p-chain of a given p-simplex in K1 will be the negative of the p-chain of that

same p-simplex in K2. More precisely, suppose �p
is a p-simplex in K1 and K2 such

that the orientation of �p
in K1 is not the same orientation of �p

in K2. Let cp be the

p-chain for �p
in K1 and dp be the p-chain for �p

in K2. Then, cp = �dp.

2-3 Prove Theorem 2.2.

Theorem 2.2. If K is an oriented complex, then Bp(K) ⇢ Zp(K) for each integer p
such that 0  p  n where n is the dimension of K.

Proof. Let bp 2 Bp(K). Then, there exists cp+1 2 Cp+1(K) such that @(cp+1) = bp. So,

@(bp) = @(@(cp+1)) = @2
(cp+1) = 0

by Theorem 2.1. Thus, bp 2 Zp(K). K
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Ch2-16 Let K be a complex and K
r its r-skeleton. Show that Hp(K) and Hp(Kr) are isomor-

phic for 0  p < r. How are Hr(K) and Hr(Kr) related?

Proof. Since K
r contains all m-simplexes of K for all 0  m  r, then Cm(K) =

Cm(Kr) for all 0  m  r. Since p < r, then p + 1  r and so Cp+1(K) = Cp+1(Kr).
Then,

Bp(K) = @p+1(Cp+1(K)) = @p+1(Cp+1(K
r)) = Bp(K

r)

and since @p : Cp(K) ! Cp�1(K), then

Zp(K) = ker(@p) = Zp(K
r).

So,

Hp(K) = Zp(K)
.
Bp(K) = Zp(K

r)
.
Bp(K

r) = Hp(K
r).

Let n = dim(K) and notice that for any r  n, Br(Kr) = {0} since K
r contains no

r+1-chains and so Hr(Kr) = Zr(Kr). Since K and K
r contain the same r-simplexes,

then we always have Zr(K) = Zr(Kr). Notice

Hr(K) = Zr(K)
.
Br(K)

and

Hr(K
r) = Zr(K

r) = Zr(K).

So Hr(K) is in fact a quotient group of Hr(Kr). K
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1. Homology groups of the Klein Bottle. Let K be the triangulation given on the next
page.

(a) H2(K)
Since K contains no 3-chains, B2(K) = {0}. Label edges in K as follows:
Type I: h06i, h36i, h03i.
Type II: All other 1-simplexes.
Notice that for any Type II edge �

0, we have

[�0, �0] = [�0, �0],

while for Type I edges, we get

[h083i, h03i] = [h043i, h03i] = �1

[h356i, h36i] = [h376i, h36i] = �1

[h062i, h06i] = [h061i, h06i] = 1.

Now let z2 =
P

gijkhijki 2 Z2(K). Since the coe�cients of @(z2) are all 0, then
gijk = g for all i, j, k. So

0 = @(z2) = �2gh03i � 2gh36i+ 2h06i (1)

which implies g = 0 and so z
2 = 0. Thus, Z2(K) = {0}, therefore H2(K) = {0}.

(b) H0(K)
Since all 0-cycles have boundary 0, then Z0(K) = C0(K). For all i 2 {1, 2, 3, 4, 6, 8},
let ci = h0ii. Then let c5 = h06i � h56i and c7 = h01i + h17i. Notice that for all
i 2 {1, 2, 3, 4, 6, 8}, we have hii ⇠ h0i:

hii = h0i+ @(hcii) = h0i+ hii � h0i,

and also:
h5i = h0i+ @(hc5i) = h0i+ h6i � h0i � (h6i � h5i) .

and
h7i = h0i+ @(hc7i) = h0i+ h1i � h0i+ h7i � h1i.

Thus, given z
0 =

P8
i=0 gihii 2 Z0(K) we have

z
0 =

8X

i=0

gihii = g0h0i+
8X

i=1

gi (h0i+ @(ci)) =

 
8X

i=0

gi

!
h0i+ @

 
8X

i=1

gici

!
.

Thus, z0 ⇠ h0i, which means all cycles in Z0(K) fall into the same homology
class. Thus,

H0(K) = {gh0i+B0(K) | g 2 Z} ⇠= Z.
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(c) H1(K)
Let z10 = h01i+ h12i � h02i and z

1
1 = h03i+ h36i � h06i. Notice that z11 has order

2 in homology, since by (1), for any c
2 2 C2(K), we have

@(c2) = 2gh03i � 2gh36i+ 2h06i

Now, notice that z11 , z
1
0 , and z

1
1 � z

1
0 are not boundaries. If, for example, z11 were a

boundary, then since all edges not in z
1
1 have coe�cient 0, the boundary formula

says that if
z
1
1 =

X
gijkhijki

we get gijk = g for all i, j, k.. Thus [z11 ] 6= [z10 ] and both classes are nontrivial.
Now, let

z
1 =

X

hiji2K

gijhiji 2 Z1(K).

We perform “the trick” as indicated in the triangulation below to build a c
2 2

C2(K) such that

z
1 + @(c2) = p01h01i+ p12h12i+ p02h02i

+ q03h03i+ q36h36i+ q06h06i
+ h17h17i+ h47h47i+ h45h45i+ h68h68i.

Observe that h5i is isolated. So, h17 = h47 = h45 = 0. Moreover, h8i is isolated,
which gives h68 = 0. Computing @(z1 + @(c2)) yields

p : = p01 = p12 = �p02

q : = q03 = p36 = �q06.

Therefore, z1 + @(c2) = p(z11) + q(z10), and so

[z1] = p[z10 ] + q[z11 ]

which implies
H1(K) = h[z10 ], [z11 ]i ⇠= Z⇥ Z

�
2Z.
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Ch 2, # 13 Prove that the geometric carriers of the combinatorial components of the complex K and
the components of the polyhedron |K| are identical.

Proof. Let K1, K2, . . . , Kr denote the combinatorial components of K. Let C1, C2, . . . , Cm

denote the path components of |K|. It su�ces to show that r = m, and up to reordering
of indices, |Ki| = Ci, for all i = 1, 2, . . . , r.
Let Ki be a combinatorial component of K. We need to find a path component Cj for
which Cj � |Ki|. Let x, y 2 |Ki|. Then, x and y belong to some simplices �x and �y,
respectively. First suppose �x\�y = ;. Since �x and �y belong to the same combinatorial
component, there is a path of 1-simplices �1

1, �
1
2, . . . , �

1
n which creates a path between �x

and �y. Let
�0
x = �x \ (�1

1 [ �1
n),

or in other words, �0
x is the vertex of �x which is also a vertex of one of the “endpoints” of

the path created by the 1-simplices. Likewise, define �0
y . Recall the simplices are convex.

In particular, there exists a path in �x from x to �0
x. Similarly, there exists a path from y

to �0
y . So, we have a path from x to y, so that |Ki| is contained in some path component

Cj.
Now suppose �x \ �y 6= ;. Since we are in a properly joined complex, there is at least
one vertex �0

xy for which �0
xy 2 �x \ �y. Again since simplices are convex, there exists a

path between x and �0
xy, and also between �0

xy and y. Therefore, there is a path between
x and y. So again, |Ki| is contained in some path component Cj.
***Could not figure out opposite inclusion. (Guess I should have went to o�ce hours).
Alex helped me here:***
Let Cj be a path component of |K|. We claim that Cj is a union of simplices of K.
That is, if � is a simplex which intersects Cj, then � ⇢ Cj. To see this note that the
intersection of � and Cj is nonempty, then they share at least one point in common, say
x. Since simplices are convex, there is a path from every point in � to x. Also, there
exists a path from every point in Cj to x. By transitivity of path connectedness, every
point in � is path connected to Cj, and hence, � ⇢ Cj. Now we claim that any two
simplices in Cj are combinatorially connected. So suppose �1, �2 ⇢ Cj. Let v be a vertex
os �1 and w a vertex of �2. Suppose first that �1 \ �2 = ;. Since Cj is path connected,
there exists a path in Cj from v to w. Since Cj ⇢ |K|, there exist simplices ⌧1, ⌧2, . . . , ⌧n
of K so that the path is connected in

Sn
i=1 ⌧i and ⌧i \ ⌧j 6= ; for all i. So there exists a

simplex ⌧1 (up to reordering) so that x 2 �1 \ ⌧1. Let r1 be the largest integer for which
⌧1\⌧2\ · · ·\⌧r1 6= ;. Let v1 be the shared vertex. Then there exists (by the definition of a
simplex) a 1-simplex �1

1 so that �1
1 contains both v and v1. If r1 = n, we are almost done.

If not, continue in this manner: while 2  `  n, let r` be the largest integer for which
⌧r`�1

\⌧r`�1+1\ · · ·\⌧r` 6= ;. Let v` be the shared vertex. Then there exists a 1-simplex �1
`

so that �1
` contains both v`�1 and v`. Once r` = n for some `, stop the process. Then since

v` and w are vertices of �1
` there exists a 1-simplex �`+1 containing both v` and w. Thus

there exists a sequence of 1-simplices �1
1�

1
2, . . . �

1
`+1 so that v 2 �1 \ �1

1, w 2 �1
`+1 \ �2 and

�1
i \ �1

i+1 6= ; for all 1  i  `. This tells us precisely that �1 and �2 are combinatorially
connected. If however we had �1\�2 6= ;, then they’d still be combinatorially connected.
Therefore, there exists Ki so that Cj ⇢ |Ki|. K
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11. Derive the possibilities for (m,n, F ) referred to in the proof of Theorem 2.7. How do
you rule out the cases m = 1 and m = 2?

Proof. We use the following relations from the theorem:

F (2n�mn+ 2m) = 4m, n � 3,m < 6

If m = 1, then F (n + 2) = 4. Since n � 3, then 4 = F (n + 2) � 5F , which cannot
happen. If m = 2, then 4F = 8 which means F = 2. Then By Euler’s Theorem,
V � E = 0 =) V = E, which cannot happen.

m = 3 =) F (6� n) = 12

=) n = 3, F = 4

or n = 4, F = 6

or n = 5, F = 12

=) (m,n, F ) = (3, 3, 4)

or (m,n, F ) = (3, 4, 6)

or (m,n, F ) = (3, 5, 12)

m = 4 =) F (8� 2n) = 16

=) n = 3, F = 8

=) (m,n, F ) = (4, 3, 8)

m = 5 =) F (10� 3n) = 20

=) n = 3, F = 20

=) (m,n, F ) = (5, 3, 20)

K
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14. Prove that the pth Betti Number of a complex K is the rank of the free part of the
pth homology group Hp(K).

Proof. Suppose Rp(K) = r and Hp(K) ⇠= Zs � T1 � T2 � · · · � Tm where each Ti

is a finite cyclic group. Thus, r is the largest integer for which there exists cycles
{zp1 , . . . , zpr} ✓ Zp(K) which are linearly independent with respect to homology. That
is,

rX

i=1

giz
p
i = @(cp+1)

for some cp+1 2 Cp+1(K) if and only if gi = 0 for all 1  i  r. This is equivalent to

rX

i=1

gi[zi]
p = [0] () gi = 0 8 1  i  r. (⇤)

We claim r = s.

Notice that (x) 2 T1 � · · · � Tm if and only if the first s coordinates of (x) are
zero and there exists a non-negative integer g so that g · (x) = 0 (In particular, g =
maxi{|Ti|}). So, for a fixed homology class [zpi ], if g · [z

p
i ] = 0 then by (⇤), g = 0. Thus,

[zpi ] 62 T1 � · · ·� Tm so that [zpi ] 2 Zs for all 1  i  r. We also have from (⇤) that the
collection {[zi]p} is linearly independent in Zs, so that

r = rank(span{zp1 , . . . , zpr})  rank(Zs) = s.

Let e1, . . . es be the standard basis elements of Zs. That is, for each 1  i  s,
we have ei = (0, . . . , 0, 1, 0, . . . , 0) where the 1 appears in the ith coordinate. Pick
representative xp

i from the equivalence classes corresponding to ei for all 1  i  s.
We claim {xp

1, . . . , x
p
s} are linearly independent with respect to homology. Once this is

verified, then s  r since r is the maximal integer so that there exists cycles which are
linearly independent with respect to homology. Suppose there exists integers g1, . . . gs
and cp+1 2 Cp+1(K) such that

Pr
i=1 gix

p
i = @(cp+1). Then

rX

i=1

gix
p
i = @(cp+1) ()

rX

i=1

gi[x
p
i ] = [0]

()
rX

i=1

giei = 0

() gi = 0 8i since the ei’s are linearly independent.

=) {xp
1, . . . , x

p
s} are linearly independent w.r.t. homology.

K
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Ch2, # 15 Find a minimal triangulation for the torus T

Proof. First note that T is a 2-pseudomanifold. Also, H0(T )
⇠= Z, H1(T )

⇠= Z2
, and

H2(T )
⇠= Z. So �(T ) = 1� 2 + 1 = 0. Therefore by Theorem 2.8, the number of 0, 1,

and 2 simplexes are

a0 �
1

2

⇣
7 +

p
49� 24(0)

⌘
= 7

a1 � 3((7)� (0)) = 21

a2 �
2

3
(21) = 14.

Hence a minimal triangulation of T will have 7 vertices, 21 edges, and 14 faces.

0 01 2

0 01 2

3

4

3

4

5

6

K
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Ch2, # 22 Show that an orientable n-pseudomanifold has exactly two coherent orientations for its n-simplexes.

Proof. Let K be an orientable n-pseudomanifold and �
n
1 ,�

n
k , be any two n-simplexes in K. Since K is

an n-psuedomanifold, there exists a sequence of n-simplexes

�
n
1 ,�

n
2 , . . .�

n
k

so that �
n
i \ �

n
i+1 = �

n�1
i for some n� 1 simplex �

n�1
i for all 1  i  k � 1. Since K is orientable,

[�
n
i ,�

n�1
i ] = �[�

n
i+1,�

n�1
i ] 8 1  i  k � 1.

Therefore, once an orientation on �
n
1 is determined, the orientation on �

n
2 is determined, and thus

the orientation on �
n
3 is determined, and so on. Since �

n
1 has exactly two possible orientations, and �

n
k

was arbitrary, all of the n-simplexes of K have one of two possible coherent orientations. K

Ch2, # 23 If K is an orientable n-pseudomanifold, prove that Hn(K) ⇠= Z.

Proof. Since K is orientable, give it a coherent orientation. Since Bn(K) = {0}, then Hn(K) = Zn(K).

Let

z
n
=

X

i

gi�
n
i 2 Zn(K).

Since @(z
n
) = 0, then

0 = @

 
X

i

gi�
n
i

!
=

X

i

@(gi�
n
i ) =

X

i

0

B@
X

�n�1
j 2K

[�
n
i ,�

n�1
j ]gi · �n

i

1

CA =

X
h`�

n�1
` .

Since K is a n-pseudomanifold and z
n

is a cycle, then each n � 1 simplex lies on exactly two

n simplexes so that the coe�cient on each �
p�1
` is a linear combination of two integers, i.e., h` =

(gr ± gs) where �
n
r and �

n
s are adjacent n simplexes. Moreover, since K is coherently oriented, then

h` = ±(gr � gs) for all `. Since 0 =
P

h`�
n�1
` , then h` = 0 for all `. This show that each pair of

adjacent simplexes have the same coe�cient in z
n
. We now show that in fact all n-simplexes have the

same coe�cient in z
n
so that z

n
=
P

g�
n
i for some integer g, and hence Hn(K) ✓ Z.

Fix two n simplexes �
n
1 and �

n
i , i > 1. Then there exists a sequence of n simplexes

�
n
i = �

n
i0 ,�

n
i1 , . . . ,�

n
im = �

n
i

so that �
n
ip \ �

n
ip+1

= �
n�1
`p

for all 0  p  m� 1. Since 0 = hjp = ±(gjp � gjp+1) for all 0  p  m� 1,

then

g1 = gi0 = gi1 = gi2 = · · · = gim�1 = gim = gi.

Since �
n
i was arbitrary then all n simplexes in z

n
have the same coe�cient.

Conversely, suppose

c
n
=

X
g�

n
i 2 Cp(K)

for some integer g. If the n�1 simplex �
n�1

is a face of �
n
1 and �

n
2 , then since K is coherently oriented

[�
n
1 ,�

n�1
] = �[�

n
2 ,�

n�1
]

which implies

@(c
n
) =

X
(g � g)�

p�1
` = 0

and thus c
n
is a cycle. Therefore, Z ✓ Hn(K).

K

1


