Homework for Introduction to Algebraic Topology

Nicholas Camacho
Department of Mathematics
University of Iowa
Fall 2016

Exercises are from
Basic Concepts of Algebraic Topology by Croom.
Beware: Some solutions may be incorrect!

Nicholas Camacho

1-3 Prove that a set $A=\left\{a_{0}, a_{1}, \ldots, a_{k}\right\}$ of points in \mathbb{R}^{n} is geometrically independent if and only if the set of vectors $\left\{a_{1}-a_{0}, \ldots, a_{k}-a_{0}\right\}$ is linearly independent.

Proof. We prove the contrapositive statement. Assume the points in the set A are geometrically dependent. This occurs if and only if there exists a $(k-1)$ hyperplane, say P, that contains all of the points in A. So, for some $k-1$ linearly independent vectors $v_{1}, v_{2}, \ldots, v_{k-1}$,

$$
P=\left\{a_{0}+\sum_{i=1}^{k-1} \mu_{i} v_{i} \mid \mu_{i} \in \mathbb{R}, 1 \leq i \leq m\right\} .
$$

So, given any point $a_{j} \in A$, we can write

$$
\begin{aligned}
a_{j} & =a_{0}+\mu_{j_{1}} v_{1}+\mu_{j_{2}} v_{2}+\cdots+\mu_{j_{(k-1)}} v_{k-1} \\
a_{j}-a_{0} & =\mu_{j_{1}} v_{1}+\mu_{j_{2}} v_{2}+\cdots+\mu_{j_{(k-1)}} v_{k-1}
\end{aligned}
$$

if and only if $\operatorname{Span}\left\{a_{1}-a_{0}, a_{2}-a_{0}, \ldots, a_{k}-a_{0}\right\} \subseteq \operatorname{Span}\left\{v_{1}, v_{2}, \ldots, v_{k-1}\right\}$. Now,

$$
\operatorname{dim}\left\{\operatorname{Span}\left\{a_{1}-a_{0}, a_{2}-a_{0}, \ldots, a_{k}-a_{0}\right\}\right\}=k>k-1=\operatorname{dim}\left\{\operatorname{Span}\left\{v_{1}, v_{2}, \ldots, v_{k-1}\right\}\right\},
$$

if and only if $\left\{a_{1}-a_{0}, a_{2}-a_{0}, \ldots, a_{k}-a_{0}\right\}$ are linearly dependent.

1-5 A subset B of \mathbb{R}^{n} is convex provided that B contains every line segment having two of its members as end points.
(a) If a and b are points in \mathbb{R}^{n}, show that the line segment L joining a and b consists of all points of the form

$$
x=t a+(1-t) b
$$

where t is a real number with $0 \leq t \leq 1$.
Proof. Let $\{a, b\}$ be a set of geometrically independent points. (Otherwise, we would have $a=b$, and we could not begin to consider a line segment L joining a and b). So, we can define a 1 -simplex (a closed line) spanned by $\{a, b\}$ as the line L where

$$
L=\left\{x \in \mathbb{R}^{n} \mid x=t a+s b, t+s=1, \text { and } t, s \in \mathbb{R} \text { are non-negative }\right\}
$$

Since $s=1-t$, then all the points on the 1 -simplex can be written as

$$
x=t a+(1-t) b
$$

Since $s=1-t$ is non-negative then we must have $0 \leq t \leq 1$.
(b) Prove that every simplex is a convex set.

Proof. Let a and b be any two points in a k-simplex, σ^{k}, spanned by the set $\left\{a_{0}, a_{1}, \ldots, a_{k}\right\}$. Then, a and b can be written as

$$
a=\lambda_{0} a_{0}+\lambda_{2} a_{2}+\cdots+\lambda_{k} a_{k} \text { where } \sum_{i=0}^{k} \lambda_{i}=1 \text { and } \lambda_{i} \geq 0 \forall i
$$

and

$$
b=\mu_{0} a_{0}+\mu_{2} a_{2}+\cdots+\mu_{k} a_{k} \text { where } \sum_{i=0}^{k} \mu_{i}=1 \text { and } \mu_{i} \geq 0 \forall i
$$

From part (a), the line segment joining a and b consists of all points of the form

$$
c=t a+(1-t) b \text { where } 0 \leq t \leq 1
$$

Thus,

$$
\begin{aligned}
c & =t\left(\lambda_{0} a_{0}+\lambda_{2} a_{2}+\cdots+\lambda_{k} a_{k}\right)+(1-t)\left(\mu_{0} a_{0}+\mu_{2} a_{2}+\cdots+\mu_{k} a_{k}\right) \\
& =\left[t \lambda_{0}+(1-t) \mu_{0}\right] a_{0}+\left[t \lambda_{1}+(1-t) \mu_{1}\right] a_{1}+\cdots+\left[t \lambda_{k}+(1-t) \mu_{k}\right] a_{k}
\end{aligned}
$$

Now, as t, λ_{i}, and μ_{i} are all non-negative for all i, then $t \lambda_{i}+(1-t) \mu_{i}$ is non-negative for all i. Also, notice that

$$
\sum_{i=0}^{k}\left[t \lambda_{i}+(1-t) \mu_{i}\right]=t \sum_{i=0}^{k} \lambda_{i}+(1-t) \mu_{i}=t(1)+(1-t)(1)=1
$$

and so $c \in \sigma^{k}$, and thus σ^{k} is a convex set.
(c) Prove that a simplex σ is the smallest convex set which contains all vertices of σ.

Proof. Let σ^{n} be an n-simplex. We proceed by induction on the dimension of the faces of σ^{n}. Suppose $C \subseteq \mathbb{R}^{n}$ is a convex set that contains all the vertices of $\sigma^{n},<a_{0} a_{1} \ldots a_{n}>$. For the base case, it is by definition of C that the 0 -faces of $\left\langle a_{0} a_{1} \ldots a_{n}\right\rangle$, which are $<a_{0}>,<a_{1}>\cdots<a_{n}>$, are all in C. Now, suppose that C contains all of the ($k-1$)-faces, $k>0$. Without loss of generality, consider the k-face $<a_{0} a_{1} \ldots a_{k}>$. If x is a point in $<a_{0} a_{1} \ldots a_{k}>$, then we can write

$$
x=\sum_{i=0}^{k} \lambda_{i} a_{i}
$$

where the numbers $\lambda_{0}, \ldots \lambda_{k}$ are the barycentric coordinates of x. Then,

$$
\begin{aligned}
& x= \sum_{i=0}^{k} \lambda_{i} a_{i} \\
&= {\left[\lambda_{0} a_{0}+\frac{1}{2} \sum_{i=1}^{k-1} \lambda_{i} a_{i}\right]+\left[\frac{1}{2} \sum_{i=1}^{k-1} \lambda_{i} a_{i}+\lambda_{k} a_{k}\right] } \\
&=\left(\lambda_{0}+\frac{1}{2} \sum_{i=1}^{k-1} \lambda_{i}\right)\left[\left(\frac{1}{\lambda_{0}+\frac{1}{2} \sum_{i=1}^{k-1} \lambda_{i}}\right)\left(\lambda_{0} a_{0}+\frac{1}{2} \sum_{i=1}^{k-1} \lambda_{i} a_{i}\right)\right] \\
&+\left(\frac{1}{2} \sum_{i=1}^{k-1} \lambda_{i}+\lambda_{k}\right)\left[\left(\frac{1}{\frac{1}{2} \sum_{i=1}^{k-1} \lambda_{i}+\lambda_{k}}\right)\left(\frac{1}{2} \sum_{i=1}^{k-1} \lambda_{i} a_{i}+\lambda_{k} a_{k}\right)\right] \\
&=\left(\lambda_{0}+\frac{1}{2} \sum_{i=1}^{k-1} \lambda_{i}\right)\left[\left(\frac{\lambda_{0} a_{0}}{\lambda_{0}+\frac{1}{2} \sum_{i=1}^{k-1} \lambda_{i}}\right)+\left(\frac{\frac{1}{2} \sum_{i=1}^{k-1} \lambda_{i} a_{i}}{\lambda_{0}+\frac{1}{2} \sum_{i=1}^{k-1} \lambda_{i}}\right)\right] \\
&+\left(\frac{1}{2} \sum_{i=1}^{k-1} \lambda_{i}+\lambda_{k}\right)\left[\left(\frac{\frac{1}{2} \sum_{i=1}^{k-1} \lambda_{i} a_{i}}{\frac{1}{2} \sum_{i=1}^{k-1} \lambda_{i}+\lambda_{k}}\right)+\frac{\lambda_{k} a_{k}}{\frac{1}{2} \sum_{i=1}^{k-1} \lambda_{i}+\lambda_{k}}\right]
\end{aligned}
$$

Let

$$
t=\left(\lambda_{0}+\frac{1}{2} \sum_{i=1}^{k-1} \lambda_{i}\right) \quad \text { and } \quad s=\left(\frac{1}{2} \sum_{i=1}^{k-1} \lambda_{i}+\lambda_{k}\right) .
$$

Then, $s+t=1$ and

$$
\begin{array}{r}
x=t\left[\left(\frac{\lambda_{0} a_{0}}{\lambda_{0}+\frac{1}{2} \sum_{i=1}^{k-1} \lambda_{i}}\right)+\left(\frac{\frac{1}{2} \sum_{i=1}^{k-1} \lambda_{i} a_{i}}{\lambda_{0}+\frac{1}{2} \sum_{i=1}^{k-1} \lambda_{i}}\right)\right] \\
+s\left[\left(\frac{\frac{1}{2} \sum_{i=1}^{k-1} \lambda_{i} a_{i}}{\frac{1}{2} \sum_{i=1}^{k-1} \lambda_{i}+\lambda_{k}}\right)+\frac{\lambda_{k} a_{k}}{\frac{1}{2} \sum_{i=1}^{k-1} \lambda_{i}+\lambda_{k}}\right],
\end{array}
$$

which shows that x can be written as a point on a line between two $(k-1)$-faces. Since we assumed the $(k-1)$-faces are in C, and C is convex, then $x \in C$, and so C contains the k-faces of σ. Therefore, by mathematical induction, C contains all of the k-faces of σ^{n} for each $k=1,2, \ldots, n$. Thus, σ^{n} is always a subset of any convex set C which contains its vertices, and thus σ^{n} is the smallest convex set containing all of its vertices.

Nicholas Camacho
Topology - Discussion
Homework 2
September 8, 2016
1-6 How many faces does an n-simplex have?
Solution: Let σ^{n} be an n-simplex. Since σ^{n} has $n+1$ vertices, there are $\binom{n+1}{1}$ 0 -faces of σ^{n}. Likewise, σ^{n} has $\binom{n+1}{2}$ 1-faces. In general, we can say that the number of $(k-1)$-faces is $\binom{n+1}{k}$. So, we have

$$
\sum_{k=1}^{n+1}\binom{n+1}{k}
$$

total faces of σ^{n}.
1-8 Triangulation of the Klein Bottle.

9. Let K denote the closure of a 3 -simplex $\sigma^{3}=\left\langle a_{0} a_{1} a_{2} a_{3}\right\rangle$ with vertices ordered by

$$
a_{0}<a_{1}<a_{2}<a_{3} .
$$

Use this given order to induce an orientation on each simplex of K, and determine all incidence numbers associated with K.

Solution:

Per the given order, we list the positive orientation for each simplex in K :
0 -simplices:

$$
+\sigma_{\alpha}^{0}=\left\langle a_{0}\right\rangle,+\sigma_{\beta}^{0}=\left\langle a_{1}\right\rangle,+\sigma_{\gamma}^{0}=\left\langle a_{2}\right\rangle,+\sigma_{\delta}^{0}=\left\langle a_{3}\right\rangle,
$$

1-simplices:

$$
\begin{aligned}
& +\sigma_{\alpha}^{1}=\left\langle a_{0} a_{1}\right\rangle,+\sigma_{\beta}^{1}=\left\langle a_{0} a_{2}\right\rangle,+\sigma_{\gamma}^{1}=\left\langle a_{0} a_{3}\right\rangle, \\
& +\sigma_{\delta}^{1}=\left\langle a_{1} a_{2}\right\rangle,+\sigma_{\epsilon}^{1}=\left\langle a_{1} a_{3}\right\rangle,+\sigma_{\zeta}^{1}=\left\langle a_{2} a_{3}\right\rangle
\end{aligned}
$$

2-simplices:

$$
+\sigma_{\alpha}^{2}=\left\langle a_{0} a_{1} a_{2}\right\rangle,+\sigma_{\beta}^{2}=\left\langle a_{0} a_{2} a_{3}\right\rangle,+\sigma_{\gamma}^{2}=\left\langle a_{0} a_{1} a_{3}\right\rangle,+\sigma_{\delta}^{2}=\left\langle a_{1} a_{2} a_{3}\right\rangle,
$$

3 -simplex:

$$
+\sigma^{3}=+\left\langle a_{0} a_{1} a_{2} a_{3}\right\rangle
$$

We compute the incidence number of σ^{3} and all 2-simplices algebraically:

$$
\begin{aligned}
& {\left[\sigma^{3}, \sigma_{\alpha}^{2}\right]=-1 \text { since }\left\langle a_{3} a_{0} a_{1} a_{2}\right\rangle=-\left\langle a_{0} a_{1} a_{2} a_{3}\right\rangle} \\
& {\left[\sigma^{3}, \sigma_{\beta}^{2}\right]=-1 \text { since }\left\langle a_{1} a_{0} a_{2} a_{3}\right\rangle=-\left\langle a_{0} a_{1} a_{2} a_{3}\right\rangle} \\
& {\left[\sigma^{3}, \sigma_{\gamma}^{2}\right]=+1 \text { since }\left\langle a_{2} a_{0} a_{1} a_{3}\right\rangle=+\left\langle a_{0} a_{1} a_{2} a_{3}\right\rangle} \\
& {\left[\sigma^{3}, \sigma_{\delta}^{2}\right]=+1 \text { since }\left\langle a_{0} a_{1} a_{2} a_{3}\right\rangle=+\left\langle a_{0} a_{1} a_{2} a_{3}\right\rangle}
\end{aligned}
$$

Now, using the orientations shown by arrows in the figure above, we compute the incidence numbers associated with K :

$$
\begin{aligned}
& {\left[\sigma_{\alpha}^{2}, \sigma_{\alpha}^{1}\right]=+1 \quad\left[\sigma_{\beta}^{2}, \sigma_{\alpha}^{1}\right]=0 \quad\left[\sigma_{\gamma}^{2}, \sigma_{\alpha}^{1}\right]=+1 \quad\left[\sigma_{\delta}^{2} \sigma_{\alpha}^{1}\right]=0} \\
& {\left[\sigma_{\alpha}^{2}, \sigma_{\beta}^{1}\right]=-1 \quad\left[\sigma_{\beta}^{2}, \sigma_{\beta}^{1}\right]=+1 \quad\left[\sigma_{\gamma}^{2}, \sigma_{\beta}^{1}\right]=0 \quad\left[\sigma_{\delta}^{2} \sigma_{\beta}^{1}\right]=0} \\
& {\left[\sigma_{\alpha}^{2}, \sigma_{\gamma}^{1}\right]=0 \quad\left[\sigma_{\beta}^{2}, \sigma_{\gamma}^{1}\right]=-1 \quad\left[\sigma_{\gamma}^{2}, \sigma_{\gamma}^{1}\right]=-1 \quad\left[\sigma_{\delta}^{2} \sigma_{\gamma}^{1}\right]=0} \\
& {\left[\sigma_{\alpha}^{2}, \sigma_{\delta}^{1}\right]=+1 \quad\left[\sigma_{\beta}^{2}, \sigma_{\delta}^{1}\right]=0 \quad\left[\sigma_{\gamma}^{2}, \sigma_{\delta}^{1}\right]=0 \quad\left[\sigma_{\delta}^{2} \sigma_{\delta}^{1}\right]=+1} \\
& {\left[\sigma_{\alpha}^{2}, \sigma_{\epsilon}^{1}\right]=0 \quad\left[\sigma_{\beta}^{2}, \sigma_{\epsilon}^{1}\right]=0 \quad\left[\sigma_{\gamma}^{2}, \sigma_{\epsilon}^{1}\right]=+1 \quad\left[\sigma_{\delta}^{2} \sigma_{\epsilon}^{1}\right]=-1} \\
& {\left[\sigma_{\alpha}^{2}, \sigma_{\zeta}^{1}\right]=0 \quad\left[\sigma_{\beta}^{2}, \sigma_{\zeta}^{1}\right]=+1 \quad\left[\sigma_{\gamma}^{2}, \sigma_{\zeta}^{1}\right]=0 \quad\left[\sigma_{\delta}^{2} \sigma_{\zeta}^{1}\right]=+1} \\
& {\left[\sigma_{\alpha}^{1}, \sigma_{\alpha}^{0}\right]=-1 \quad\left[\sigma_{\beta}^{1}, \sigma_{\alpha}^{0}\right]=-1 \quad\left[\sigma_{\gamma}^{1}, \sigma_{\alpha}^{0}\right]=-1 \quad\left[\sigma_{\delta}^{1} \sigma_{\alpha}^{0}\right]=0 \quad\left[\sigma_{\epsilon}^{1} \sigma_{\alpha}^{0}\right]=0 \quad\left[\sigma_{\zeta}^{1} \sigma_{\alpha}^{0}\right]=0} \\
& {\left[\sigma_{\alpha}^{1}, \sigma_{\beta}^{0}\right]=+1 \quad\left[\sigma_{\beta}^{1}, \sigma_{\beta}^{0}\right]=0 \quad\left[\sigma_{\gamma}^{1}, \sigma_{\beta}^{0}\right]=0 \quad\left[\sigma_{\delta}^{1} \sigma_{\beta}^{0}\right]=-1 \quad\left[\sigma_{\epsilon}^{1} \sigma_{\beta}^{0}\right]=-1 \quad\left[\sigma_{\zeta}^{1} \sigma_{\beta}^{0}\right]=0} \\
& {\left[\sigma_{\alpha}^{1}, \sigma_{\gamma}^{0}\right]=0 \quad\left[\sigma_{\beta}^{1}, \sigma_{\gamma}^{0}\right]=+1 \quad\left[\sigma_{\gamma}^{1}, \sigma_{\gamma}^{0}\right]=0 \quad\left[\sigma_{\delta}^{1} \sigma_{\gamma}^{0}\right]=+1 \quad\left[\sigma_{\epsilon}^{1} \sigma_{\gamma}^{0}\right]=0 \quad\left[\sigma_{\zeta}^{1} \sigma_{\gamma}^{0}\right]=-1} \\
& {\left[\sigma_{\alpha}^{1}, \sigma_{\delta}^{0}\right]=0 \quad\left[\sigma_{\beta}^{1}, \sigma_{\delta}^{0}\right]=0 \quad\left[\sigma_{\gamma}^{1}, \sigma_{\delta}^{0}\right]=+1 \quad\left[\sigma_{\delta}^{1} \sigma_{\delta}^{0}\right]=0 \quad\left[\sigma_{\epsilon}^{1} \sigma_{\delta}^{0}\right]=+1 \quad\left[\sigma_{\zeta}^{1} \sigma_{\delta}^{0}\right]=+1}
\end{aligned}
$$

11. In the triangulation M of the Möbius strip, let us call a 1 -simplex interior if it is a face of two 2 -simplexes. For each interior simplex σ_{i}, let $\bar{\sigma}_{i}$ and $\overline{\bar{\sigma}}_{i}$ denote the two 2 -simplexes of which σ_{i} is a face. Show that it is not possible to orient M so that

$$
\begin{equation*}
\left[\overline{\sigma_{i}}, \sigma_{i}\right]=-\left[\overline{\overline{\sigma_{i}}}, \sigma_{i}\right] \tag{1}
\end{equation*}
$$

for each interior simplex σ_{i}.
Proof. We start by proving the following Lemma:
Lemma. Let $\sigma_{1}^{2}=\left\langle a_{i} a_{j} a_{k}\right\rangle$ and $\sigma_{2}^{2}=\left\langle a_{i} a_{j} a_{\ell}\right\rangle$ be any two 2-simplices meeting along the common 1-simplex $\sigma^{1}=\left\langle a_{i} a_{j}\right\rangle$ in a coherently oriented 2-complex. Suppose

$$
+\sigma_{1}^{2}=\left\langle a_{i} a_{j} a_{k}\right\rangle
$$

Then, no matter the positive orientation of σ^{1}, we must have

$$
+\sigma_{2}^{2}=\left\langle a_{j} a_{i} a_{\ell}\right\rangle
$$

In other words, in the triangulation of a coherently oriented 2-complex containing two 2-simplices, we must have that the two swirls - which are drawn in the triangulation to show positive orientation - of each 2-simplex must both be clockwise or counterclockwise.

Proof of Lemma. Let $\sigma_{1}^{2}, \sigma_{2}^{2}, \& \sigma^{1}$ be as above. Suppose $+\sigma^{1}=\left\langle a_{i} a_{j}\right\rangle$. Then $\left[\sigma_{1}^{2}, \sigma^{1}\right]=$ +1 . Because we are in a coherently oriented complex, we must have $\left[\sigma_{2}^{2}, \sigma^{1}\right]=-1$. This implies $+\sigma_{2}^{2}=\left\langle a_{j} a_{i} a_{\ell}\right\rangle$.
Now suppose $+\sigma^{1}=\left\langle a_{j} a_{i}\right\rangle$. Then $\left[\sigma_{1}^{2}, \sigma^{1}\right]=-1$. Now, because we're in a coherently oriented complex, we must have $\left[\sigma_{2}^{2}, \sigma^{1}\right]=+1$. This implies $+\sigma_{2}^{2}=\left\langle a_{j} a_{i} a_{\ell}\right\rangle$.

To get a contradiction, assume that the Möbius strip is orientable. By the Lemma, we can draw a counterclockwise swirl in each 2-simplex.

This means $+\left\langle a_{0} a_{3} a_{4}\right\rangle=\left\langle a_{0} a_{4} a_{3}\right\rangle$ and $+\left\langle a_{0} a_{2} a_{3}\right\rangle=\left\langle a_{0} a_{2} a_{3}\right\rangle$. Without loss of generality, suppose $+\left\langle a_{0} a_{3}\right\rangle=\left\langle a_{0} a_{3}\right\rangle$.

Then, we have

$$
\left[\left\langle a_{0} a_{3} a_{4}\right\rangle,\left\langle a_{0} a_{3}\right\rangle\right]=-1 \quad \text { and } \quad\left[\left\langle a_{0} a_{2} a_{3}\right\rangle,\left\langle a_{0} a_{3}\right\rangle\right]=-1,
$$

which is a contradiction. Thus, the Möbius strip is nonorientable.

2-1 Suppose that K_{1} and K_{2} are two triangulations of the same polyhedron. Are the chain groups $C_{p}\left(K_{1}\right)$ and $C_{p}\left(K_{2}\right)$ isomorphic? Explain.

Solution:

Although K_{1} and K_{2} are two triangulations of the same polyhedron, they may not have the same number of p-simplexes. So, suppose $C_{p}\left(K_{1}\right)$ has $\alpha_{p} p$-simplexes and $C_{p}\left(K_{2}\right)$ has $\beta_{p} p$-simplexes. Then,

$$
C_{p}\left(K_{1}\right) \cong \mathbb{Z}^{\alpha_{p}} \text { and } C_{p}\left(K_{2}\right) \cong \mathbb{Z}^{\beta_{p}}
$$

Then, $C_{p}\left(K_{1}\right) \cong C_{p}\left(K_{2}\right)$ if and only if $\alpha_{p}=\beta_{p}$.
2-2 Suppose that complexes K_{1} and K_{2} have the same simplexes but different orientations. How are the chain groups $C_{p}\left(K_{1}\right)$ and $C_{p}\left(K_{2}\right)$ related?
Solution:
$C_{p}\left(K_{1}\right)$ and $C_{p}\left(K_{2}\right)$ are isomorphic because K_{1} and K_{2} have the same simplexes. However, since some (if not all) of the simplexes of K_{1} have different orientations from that of K_{2}, the p-chain of a given p-simplex in K_{1} will be the negative of the p-chain of that same p-simplex in K_{2}. More precisely, suppose σ^{p} is a p-simplex in K_{1} and K_{2} such that the orientation of σ^{p} in K_{1} is not the same orientation of σ^{p} in K_{2}. Let c_{p} be the p-chain for σ^{p} in K_{1} and d_{p} be the p-chain for σ^{p} in K_{2}. Then, $c_{p}=-d_{p}$.

2-3 Prove Theorem 2.2.
Theorem 2.2. If K is an oriented complex, then $B_{p}(K) \subset Z_{p}(K)$ for each integer p such that $0 \leq p \leq n$ where n is the dimension of K.

Proof. Let $b_{p} \in B_{p}(K)$. Then, there exists $c_{p+1} \in C_{p+1}(K)$ such that $\partial\left(c_{p+1}\right)=b_{p}$. So,

$$
\partial\left(b_{p}\right)=\partial\left(\partial\left(c_{p+1}\right)\right)=\partial^{2}\left(c_{p+1}\right)=0
$$

by Theorem 2.1. Thus, $b_{p} \in Z_{p}(K)$.

Ch2-16 Let K be a complex and K^{r} its r-skeleton. Show that $H_{p}(K)$ and $H_{p}\left(K^{r}\right)$ are isomorphic for $0 \leq p<r$. How are $H_{r}(K)$ and $H_{r}\left(K^{r}\right)$ related?

Proof. Since K^{r} contains all m-simplexes of K for all $0 \leq m \leq r$, then $C_{m}(K)=$ $C_{m}\left(K^{r}\right)$ for all $0 \leq m \leq r$. Since $p<r$, then $p+1 \leq r$ and so $C_{p+1}(K)=C_{p+1}\left(K^{r}\right)$. Then,

$$
B_{p}(K)=\partial_{p+1}\left(C_{p+1}(K)\right)=\partial_{p+1}\left(C_{p+1}\left(K^{r}\right)\right)=B_{p}\left(K^{r}\right)
$$

and since $\partial_{p}: C_{p}(K) \rightarrow C_{p-1}(K)$, then

$$
Z_{p}(K)=\operatorname{ker}\left(\partial_{p}\right)=Z_{p}\left(K^{r}\right)
$$

So,

$$
H_{p}(K)=Z_{p}(K) / B_{p}(K)=Z_{p}\left(K^{r}\right) / B_{p}\left(K^{r}\right)=H_{p}\left(K^{r}\right)
$$

Let $n=\operatorname{dim}(K)$ and notice that for any $r \leq n, B_{r}\left(K^{r}\right)=\{0\}$ since K^{r} contains no $r+1$-chains and so $H_{r}\left(K^{r}\right)=Z_{r}\left(K^{r}\right)$. Since K and K^{r} contain the same r-simplexes, then we always have $Z_{r}(K)=Z_{r}\left(K^{r}\right)$. Notice

$$
\begin{aligned}
& H_{r}(K)=Z_{r}(K) / B_{r}(K) \\
& \quad \text { and } \\
& H_{r}\left(K^{r}\right)=Z_{r}\left(K^{r}\right)=Z_{r}(K)
\end{aligned}
$$

So $H_{r}(K)$ is in fact a quotient group of $H_{r}\left(K^{r}\right)$.

1. Homology groups of the Klein Bottle. Let K be the triangulation given on the next page.
(a) $H_{2}(K)$

Since K contains no 3 -chains, $B_{2}(K)=\{0\}$. Label edges in K as follows:
Type I: $\langle 06\rangle,\langle 36\rangle,\langle 03\rangle$.
Type II: All other 1-simplexes.
Notice that for any Type II edge σ^{\prime}, we have

$$
\left[\overline{\sigma^{\prime}}, \sigma^{\prime}\right]=\left[\overline{\overline{\sigma^{\prime}}}, \sigma^{\prime}\right]
$$

while for Type I edges, we get

$$
\begin{aligned}
& {[\langle 083\rangle,\langle 03\rangle]=[\langle 043\rangle,\langle 03\rangle]=-1} \\
& {[\langle 356\rangle,\langle 36\rangle]=[\langle 376\rangle,\langle 36\rangle]=-1} \\
& {[\langle 062\rangle,\langle 06\rangle]=[\langle 061\rangle,\langle 06\rangle]=1}
\end{aligned}
$$

Now let $z^{2}=\sum g_{i j k}\langle i j k\rangle \in Z_{2}(K)$. Since the coefficients of $\partial\left(z^{2}\right)$ are all 0 , then $g_{i j k}=g$ for all i, j, k. So

$$
\begin{equation*}
0=\partial\left(z^{2}\right)=-2 g\langle 03\rangle-2 g\langle 36\rangle+2\langle 06\rangle \tag{1}
\end{equation*}
$$

which implies $g=0$ and so $z^{2}=0$. Thus, $Z_{2}(K)=\{0\}$, therefore $H_{2}(K)=\{0\}$.
(b) $H_{0}(K)$

Since all 0-cycles have boundary 0 , then $Z_{0}(K)=C_{0}(K)$. For all $i \in\{1,2,3,4,6,8\}$, let $c_{i}=\langle 0 i\rangle$. Then let $c_{5}=\langle 06\rangle-\langle 56\rangle$ and $c_{7}=\langle 01\rangle+\langle 17\rangle$. Notice that for all $i \in\{1,2,3,4,6,8\}$, we have $\langle i\rangle \sim\langle 0\rangle$:

$$
\langle i\rangle=\langle 0\rangle+\partial\left(\left\langle c_{i}\right\rangle\right)=\langle 0\rangle+\langle i\rangle-\langle 0\rangle
$$

and also:

$$
\langle 5\rangle=\langle 0\rangle+\partial\left(\left\langle c_{5}\right\rangle\right)=\langle 0\rangle+\langle 6\rangle-\langle 0\rangle-(\langle 6\rangle-\langle 5\rangle)
$$

and

$$
\langle 7\rangle=\langle 0\rangle+\partial\left(\left\langle c_{7}\right\rangle\right)=\langle 0\rangle+\langle 1\rangle-\langle 0\rangle+\langle 7\rangle-\langle 1\rangle
$$

Thus, given $z^{0}=\sum_{i=0}^{8} g_{i}\langle i\rangle \in Z_{0}(K)$ we have

$$
z^{0}=\sum_{i=0}^{8} g_{i}\langle i\rangle=g_{0}\langle 0\rangle+\sum_{i=1}^{8} g_{i}\left(\langle 0\rangle+\partial\left(c_{i}\right)\right)=\left(\sum_{i=0}^{8} g_{i}\right)\langle 0\rangle+\partial\left(\sum_{i=1}^{8} g_{i} c_{i}\right)
$$

Thus, $z^{0} \sim\langle 0\rangle$, which means all cycles in $Z_{0}(K)$ fall into the same homology class. Thus,

$$
H_{0}(K)=\left\{g\langle 0\rangle+B_{0}(K) \mid g \in \mathbb{Z}\right\} \cong \mathbb{Z}
$$

(c) $H_{1}(K)$

Let $z_{0}^{1}=\langle 01\rangle+\langle 12\rangle-\langle 02\rangle$ and $z_{1}^{1}=\langle 03\rangle+\langle 36\rangle-\langle 06\rangle$. Notice that z_{1}^{1} has order 2 in homology, since by (1), for any $c^{2} \in C_{2}(K)$, we have

$$
\partial\left(c^{2}\right)=2 g\langle 03\rangle-2 g\langle 36\rangle+2\langle 06\rangle
$$

Now, notice that z_{1}^{1}, z_{0}^{1}, and $z_{1}^{1}-z_{0}^{1}$ are not boundaries. If, for example, z_{1}^{1} were a boundary, then since all edges not in z_{1}^{1} have coefficient 0 , the boundary formula says that if

$$
z_{1}^{1}=\sum g_{i j k}\langle i j k\rangle
$$

we get $g_{i j k}=g$ for all i, j, k. Thus $\left[z_{1}^{1}\right] \neq\left[z_{0}^{1}\right]$ and both classes are nontrivial. Now, let

$$
z^{1}=\sum_{\langle i j\rangle \in K} g_{i j}\langle i j\rangle \in Z_{1}(K) .
$$

We perform "the trick" as indicated in the triangulation below to build a $c^{2} \in$ $C_{2}(K)$ such that

$$
\begin{aligned}
z^{1}+\partial\left(c^{2}\right)= & p_{01}\langle 01\rangle+p_{12}\langle 12\rangle+p_{02}\langle 02\rangle \\
& +q_{03}\langle 03\rangle+q_{36}\langle 36\rangle+q_{06}\langle 06\rangle \\
& +h_{17}\langle 17\rangle+h_{47}\langle 47\rangle+h_{45}\langle 45\rangle+h_{68}\langle 68\rangle .
\end{aligned}
$$

Observe that $\langle 5\rangle$ is isolated. So, $h_{17}=h_{47}=h_{45}=0$. Moreover, $\langle 8\rangle$ is isolated, which gives $h_{68}=0$. Computing $\partial\left(z^{1}+\partial\left(c^{2}\right)\right)$ yields

$$
\begin{aligned}
p & :=p_{01}=p_{12}=-p_{02} \\
q: & =q_{03}=p_{36}=-q_{06} .
\end{aligned}
$$

Therefore, $z^{1}+\partial\left(c^{2}\right)=p\left(z_{1}^{1}\right)+q\left(z_{0}^{1}\right)$, and so

$$
\left[z^{1}\right]=p\left[z_{0}^{1}\right]+q\left[z_{1}^{1}\right]
$$

which implies

$$
H_{1}(K)=\left\langle\left[z_{0}^{1}\right],\left[z_{1}^{1}\right]\right\rangle \cong \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}
$$

Ch 2, \# 13 Prove that the geometric carriers of the combinatorial components of the complex K and the components of the polyhedron $|K|$ are identical.

Proof. Let $K_{1}, K_{2}, \ldots, K_{r}$ denote the combinatorial components of K. Let $C_{1}, C_{2}, \ldots, C_{m}$ denote the path components of $|K|$. It suffices to show that $r=m$, and up to reordering of indices, $\left|K_{i}\right|=C_{i}$, for all $i=1,2, \ldots, r$.
Let K_{i} be a combinatorial component of K. We need to find a path component C_{j} for which $C_{j} \supset\left|K_{i}\right|$. Let $x, y \in\left|K_{i}\right|$. Then, x and y belong to some simplices σ_{x} and σ_{y}, respectively. First suppose $\sigma_{x} \cap \sigma_{y}=\emptyset$. Since σ_{x} and σ_{y} belong to the same combinatorial component, there is a path of 1 -simplices $\sigma_{1}^{1}, \sigma_{2}^{1}, \ldots, \sigma_{n}^{1}$ which creates a path between σ_{x} and σ_{y}. Let

$$
\sigma_{x}^{0}=\sigma_{x} \cap\left(\sigma_{1}^{1} \cup \sigma_{n}^{1}\right)
$$

or in other words, σ_{x}^{0} is the vertex of σ_{x} which is also a vertex of one of the "endpoints" of the path created by the 1 -simplices. Likewise, define σ_{y}^{0}. Recall the simplices are convex. In particular, there exists a path in σ_{x} from x to σ_{x}^{0}. Similarly, there exists a path from y to σ_{y}^{0}. So, we have a path from x to y, so that $\left|K_{i}\right|$ is contained in some path component C_{j}.
Now suppose $\sigma_{x} \cap \sigma_{y} \neq \emptyset$. Since we are in a properly joined complex, there is at least one vertex $\sigma_{x y}^{0}$ for which $\sigma_{x y}^{0} \in \sigma_{x} \cap \sigma_{y}$. Again since simplices are convex, there exists a path between x and $\sigma_{x y}^{0}$, and also between $\sigma_{x y}^{0}$ and y. Therefore, there is a path between x and y. So again, $\left|K_{i}\right|$ is contained in some path component C_{j}.
*** Could not figure out opposite inclusion. (Guess I should have went to office hours). Alex helped me here:***
Let C_{j} be a path component of $|K|$. We claim that C_{j} is a union of simplices of K. That is, if σ is a simplex which intersects C_{j}, then $\sigma \subset C_{j}$. To see this note that the intersection of σ and C_{j} is nonempty, then they share at least one point in common, say x. Since simplices are convex, there is a path from every point in σ to x. Also, there exists a path from every point in C_{j} to x. By transitivity of path connectedness, every point in σ is path connected to C_{j}, and hence, $\sigma \subset C_{j}$. Now we claim that any two simplices in C_{j} are combinatorially connected. So suppose $\sigma_{1}, \sigma_{2} \subset C_{j}$. Let v be a vertex os σ_{1} and w a vertex of σ_{2}. Suppose first that $\sigma_{1} \cap \sigma_{2}=\emptyset$. Since C_{j} is path connected, there exists a path in C_{j} from v to w. Since $C_{j} \subset|K|$, there exist simplices $\tau_{1}, \tau_{2}, \ldots, \tau_{n}$ of K so that the path is connected in $\bigcup_{i=1}^{n} \tau_{i}$ and $\tau_{i} \cap \tau_{j} \neq \emptyset$ for all i. So there exists a simplex τ_{1} (up to reordering) so that $x \in \sigma_{1} \cap \tau_{1}$. Let r_{1} be the largest integer for which $\tau_{1} \cap \tau_{2} \cap \cdots \cap \tau_{r_{1}} \neq \emptyset$. Let v_{1} be the shared vertex. Then there exists (by the definition of a simplex) a 1 -simplex σ_{1}^{1} so that σ_{1}^{1} contains both v and v_{1}. If $r_{1}=n$, we are almost done. If not, continue in this manner: while $2 \leq \ell \leq n$, let r_{ℓ} be the largest integer for which $\tau_{r_{\ell-1}} \cap \tau_{r_{\ell-1}+1} \cap \cdots \cap \tau_{r_{\ell}} \neq \emptyset$. Let v_{ℓ} be the shared vertex. Then there exists a 1 -simplex σ_{ℓ}^{1} so that σ_{ℓ}^{1} contains both $v_{\ell-1}$ and v_{ℓ}. Once $r_{\ell}=n$ for some ℓ, stop the process. Then since v_{ℓ} and w are vertices of σ_{ℓ}^{1} there exists a 1 -simplex $\sigma_{\ell+1}$ containing both v_{ℓ} and w. Thus there exists a sequence of 1 -simplices $\sigma_{1}^{1} \sigma_{2}^{1}, \ldots \sigma_{\ell+1}^{1}$ so that $v \in \sigma_{1} \cap \sigma_{1}^{1}, w \in \sigma_{\ell+1}^{1} \cap \sigma_{2}$ and $\sigma_{i}^{1} \cap \sigma_{i+1}^{1} \neq \emptyset$ for all $1 \leq i \leq \ell$. This tells us precisely that σ_{1} and σ_{2} are combinatorially connected. If however we had $\sigma_{1} \cap \sigma_{2} \neq \emptyset$, then they'd still be combinatorially connected. Therefore, there exists K_{i} so that $C_{j} \subset\left|K_{i}\right|$.
11. Derive the possibilities for (m, n, F) referred to in the proof of Theorem 2.7. How do you rule out the cases $m=1$ and $m=2$?

Proof. We use the following relations from the theorem:

$$
F(2 n-m n+2 m)=4 m, \quad n \geq 3, m<6
$$

If $m=1$, then $F(n+2)=4$. Since $n \geq 3$, then $4=F(n+2) \geq 5 F$, which cannot happen. If $m=2$, then $4 F=8$ which means $F=2$. Then By Euler's Theorem, $V-E=0 \Longrightarrow V=E$, which cannot happen.

$$
\begin{aligned}
m=3 & \Longrightarrow F(6-n)=12 \\
& \Longrightarrow n=3, F=4 \\
& \text { or } n=4, F=6 \\
& \text { or } n=5, F=12 \\
& \Longrightarrow(m, n, F)=(3,3,4) \\
& \text { or }(m, n, F)=(3,4,6) \\
& \text { or }(m, n, F)=(3,5,12) \\
m=4 & \Longrightarrow F(8-2 n)=16 \\
& \Longrightarrow n=3, F=8 \\
& \Longrightarrow(m, n, F)=(4,3,8) \\
m=5 & \Longrightarrow F(10-3 n)=20 \\
& \Longrightarrow n=3, F=20 \\
& \Longrightarrow(m, n, F)=(5,3,20)
\end{aligned}
$$

14. Prove that the p th Betti Number of a complex K is the rank of the free part of the p th homology group $H_{p}(K)$.

Proof. Suppose $R_{p}(K)=r$ and $H_{p}(K) \cong \mathbb{Z}^{s} \oplus T_{1} \oplus T_{2} \oplus \cdots \oplus T_{m}$ where each T_{i} is a finite cyclic group. Thus, r is the largest integer for which there exists cycles $\left\{z_{1}^{p}, \ldots, z_{r}^{p}\right\} \subseteq Z_{p}(K)$ which are linearly independent with respect to homology. That is,

$$
\sum_{i=1}^{r} g_{i} z_{i}^{p}=\partial\left(c^{p+1}\right)
$$

for some $c^{p+1} \in C_{p+1}(K)$ if and only if $g_{i}=0$ for all $1 \leq i \leq r$. This is equivalent to

$$
\begin{equation*}
\sum_{i=1}^{r} g_{i}\left[z_{i}\right]^{p}=[0] \Longleftrightarrow g_{i}=0 \quad \forall 1 \leq i \leq r . \tag{*}
\end{equation*}
$$

We claim $r=s$.
Notice that $(x) \in T_{1} \oplus \cdots \oplus T_{m}$ if and only if the first s coordinates of (x) are zero and there exists a non-negative integer g so that $g \cdot(x)=0$ (In particular, $g=$ $\left.\max _{i}\left\{\left|T_{i}\right|\right\}\right)$. So, for a fixed homology class $\left[z_{i}^{p}\right]$, if $g \cdot\left[z_{i}^{p}\right]=0$ then by $(*), g=0$. Thus, $\left[z_{i}^{p}\right] \notin T_{1} \oplus \cdots \oplus T_{m}$ so that $\left[z_{i}^{p}\right] \in \mathbb{Z}^{s}$ for all $1 \leq i \leq r$. We also have from $(*)$ that the collection $\left\{\left[z_{i}\right]^{p}\right\}$ is linearly independent in \mathbb{Z}^{s}, so that

$$
r=\operatorname{rank}\left(\operatorname{span}\left\{z_{1}^{p}, \ldots, z_{r}^{p}\right\}\right) \leq \operatorname{rank}\left(\mathbb{Z}^{s}\right)=s
$$

Let $e_{1}, \ldots e_{s}$ be the standard basis elements of \mathbb{Z}^{s}. That is, for each $1 \leq i \leq s$, we have $e_{i}=(0, \ldots, 0,1,0, \ldots, 0)$ where the 1 appears in the i th coordinate. Pick representative x_{i}^{p} from the equivalence classes corresponding to e_{i} for all $1 \leq i \leq s$. We claim $\left\{x_{1}^{p}, \ldots, x_{s}^{p}\right\}$ are linearly independent with respect to homology. Once this is verified, then $s \leq r$ since r is the maximal integer so that there exists cycles which are linearly independent with respect to homology. Suppose there exists integers $g_{1}, \ldots g_{s}$ and $c^{p+1} \in C_{p+1}(K)$ such that $\sum_{i=1}^{r} g_{i} x_{i}^{p}=\partial\left(c^{p+1}\right)$. Then

$$
\begin{aligned}
\sum_{i=1}^{r} g_{i} x_{i}^{p}=\partial\left(c^{p+1}\right) & \Longleftrightarrow \sum_{i=1}^{r} g_{i}\left[x_{i}^{p}\right]=[0] \\
& \Longleftrightarrow \sum_{i=1}^{r} g_{i} e_{i}=0 \\
& \Longleftrightarrow g_{i}=0 \quad \forall i \text { since the } e_{i}^{\prime} \text { 's are linearly independent. } \\
& \Longleftrightarrow\left\{x_{1}^{p}, \ldots, x_{s}^{p}\right\} \text { are linearly independent w.r.t. homology. }
\end{aligned}
$$

Ch2, \# 15 Find a minimal triangulation for the torus T

Proof. First note that T is a 2-pseudomanifold. Also, $H_{0}(T) \cong \mathbb{Z}, H_{1}(T) \cong \mathbb{Z}^{2}$, and $H_{2}(T) \cong \mathbb{Z}$. So $\chi(T)=1-2+1=0$. Therefore by Theorem 2.8 , the number of 0,1, and 2 simplexes are

$$
\begin{aligned}
& a_{0} \geq \frac{1}{2}(7+\sqrt{49-24(0)})=7 \\
& a_{1} \geq 3((7)-(0))=21 \\
& a_{2} \geq \frac{2}{3}(21)=14
\end{aligned}
$$

Hence a minimal triangulation of T will have 7 vertices, 21 edges, and 14 faces.

Ch2, \# 22 Show that an orientable n-pseudomanifold has exactly two coherent orientations for its n-simplexes.
Proof. Let K be an orientable n-pseudomanifold and $\sigma_{1}^{n}, \sigma_{k}^{n}$, be any two n-simplexes in K. Since K is an n-psuedomanifold, there exists a sequence of n-simplexes

$$
\sigma_{1}^{n}, \sigma_{2}^{n}, \ldots \sigma_{k}^{n}
$$

so that $\sigma_{i}^{n} \cap \sigma_{i+1}^{n}=\sigma_{i}^{n-1}$ for some $n-1$ simplex σ_{i}^{n-1} for all $1 \leq i \leq k-1$. Since K is orientable,

$$
\left[\sigma_{i}^{n}, \sigma_{i}^{n-1}\right]=-\left[\sigma_{i+1}^{n}, \sigma_{i}^{n-1}\right] \quad \forall 1 \leq i \leq k-1
$$

Therefore, once an orientation on σ_{1}^{n} is determined, the orientation on σ_{2}^{n} is determined, and thus the orientation on σ_{3}^{n} is determined, and so on. Since σ_{1}^{n} has exactly two possible orientations, and σ_{k}^{n} was arbitrary, all of the n-simplexes of K have one of two possible coherent orientations.

Ch2, \# 23 If K is an orientable n-pseudomanifold, prove that $H_{n}(K) \cong \mathbb{Z}$.
Proof. Since K is orientable, give it a coherent orientation. Since $B_{n}(K)=\{0\}$, then $H_{n}(K)=Z_{n}(K)$. Let

$$
z^{n}=\sum_{i} g_{i} \sigma_{i}^{n} \in Z_{n}(K)
$$

Since $\partial\left(z^{n}\right)=0$, then

$$
0=\partial\left(\sum_{i} g_{i} \sigma_{i}^{n}\right)=\sum_{i} \partial\left(g_{i} \sigma_{i}^{n}\right)=\sum_{i}\left(\sum_{\sigma_{j}^{n-1} \in K}\left[\sigma_{i}^{n}, \sigma_{j}^{n-1}\right] g_{i} \cdot \sigma_{i}^{n}\right)=\sum h_{\ell} \sigma_{\ell}^{n-1}
$$

Since K is a n-pseudomanifold and z^{n} is a cycle, then each $n-1$ simplex lies on exactly two n simplexes so that the coefficient on each σ_{ℓ}^{p-1} is a linear combination of two integers, i.e., $h_{\ell}=$ $\left(g_{r} \pm g_{s}\right)$ where σ_{r}^{n} and σ_{s}^{n} are adjacent n simplexes. Moreover, since K is coherently oriented, then $h_{\ell}= \pm\left(g_{r}-g_{s}\right)$ for all ℓ. Since $0=\sum h_{\ell} \sigma_{\ell}^{n-1}$, then $h_{\ell}=0$ for all ℓ. This show that each pair of adjacent simplexes have the same coefficient in z^{n}. We now show that in fact all n-simplexes have the same coefficient in z^{n} so that $z^{n}=\sum g \sigma_{i}^{n}$ for some integer g, and hence $H_{n}(K) \subseteq \mathbb{Z}$.

Fix two n simplexes σ_{1}^{n} and $\sigma_{i}^{n}, i>1$. Then there exists a sequence of n simplexes

$$
\sigma_{i}^{n}=\sigma_{i_{0}}^{n}, \sigma_{i_{1}}^{n}, \ldots, \sigma_{i_{m}}^{n}=\sigma_{i}^{n}
$$

so that $\sigma_{i_{p}}^{n} \cap \sigma_{i_{p+1}}^{n}=\sigma_{\ell_{p}}^{n-1}$ for all $0 \leq p \leq m-1$. Since $0=h_{j_{p}}= \pm\left(g_{j_{p}}-g_{j_{p+1}}\right)$ for all $0 \leq p \leq m-1$, then

$$
g_{1}=g_{i_{0}}=g_{i_{1}}=g_{i_{2}}=\cdots=g_{i_{m-1}}=g_{i_{m}}=g_{i} .
$$

Since σ_{i}^{n} was arbitrary then all n simplexes in z^{n} have the same coefficient.
Conversely, suppose

$$
c^{n}=\sum g \sigma_{i}^{n} \in C_{p}(K)
$$

for some integer g. If the $n-1$ simplex σ^{n-1} is a face of σ_{1}^{n} and σ_{2}^{n}, then since K is coherently oriented

$$
\left[\sigma_{1}^{n}, \sigma^{n-1}\right]=-\left[\sigma_{2}^{n}, \sigma^{n-1}\right]
$$

which implies

$$
\partial\left(c^{n}\right)=\sum(g-g) \sigma_{\ell}^{p-1}=0
$$

and thus c^{n} is a cycle. Therefore, $\mathbb{Z} \subseteq H_{n}(K)$.

