Homework for Introduction to Abstract Algebra I

Nicholas Camacho Department of Mathematics University of Iowa Fall 2016

Most exercises are from Abstract Algebra (3rd Edition) by Dummit & Foote. For example, "4.2.8" means exercise 8 from section 4.2 in Dummit & Foote. Beware: Some solutions may be incorrect! 0.3.13 Let $n \in \mathbb{Z}$, n > 1, and let $a \in \mathbb{Z}$ with $1 \le a \le n$. Prove that if a and n are relatively prime, then there is an integer c such that $ac \equiv \pmod{n}$.

Proof. Let $n \in \mathbb{Z}$, n > 1, and let $a \in \mathbb{Z}$ with $1 \le a \le n$. Assume a and n are relatively prime. In other words, there exists integers b and c so that nb + ac = 1. Then, 1 - ac = nb and so n divides (1 - ac). Thus, $ac \equiv 1 \pmod{n}$.

1.1.8 Let $G = \{z \in \mathbb{C} | z^n = 1 \text{ for some } n \in \mathbb{Z}^+ \}.$

(a) Prove that G is a group under multiplication.

Proof. First, notice that $1 \in G$ as $1^1 = 1$. Since 1 is the identity element of \mathbb{C} and $G \subset \mathbb{C}$, then 1 is the identity element of G. Similarly, since \mathbb{C} is associative, and $G \subset \mathbb{C}$, then G is also associative.

To show closure, first assume $x, y \in G$. Then, there exists $n, m \in G$ so that $x^n = 1$ and $y^m = 1$. Notice that $x^{nm} = (x^n)^m = 1^m = 1$ and similarly $y^{nm} = y^{mn} = (y^m)^n = 1^n = 1$. Since $x, y \in \mathbb{C}$ and \mathbb{C} is an abelian group we can compute

$$(xy)^{nm} = x^{nm}y^{nm} = 1 \cdot 1 = 1$$

Thus, $xy \in G$ and hence G is closed under multiplication.

Next, by properties of complex numbers, we know that $xx^{-1} = 1$, i.e., x^{-1} is the inverse of x. To see that $x^{-1} \in G$, simply observe that $(x^{-1})^n = x^{-n} = (x^n)^{-1} = 1^{-1} = 1$. Thus, G contains inverses.

(b) Prove that G is not a group under addition.

Proof. G is not a group under addition because there is no identity element. To show this, we assume that G is a group with identity element e. Let $x \in G$ and notice that by a group axiom, e + x = x. Applying the inverse of x to both sides on the right gives e = 0. But, $0^n = 0$ for all $n \in \mathbb{Z}^+$ so $e \notin G$. $\Rightarrow \Leftarrow$

1.1.19 Let $x \in G$ and let $a, b \in \mathbb{Z}^+$

(a) Prove that $x^{a+b} = x^a x^b$ and $(x^a)^b = x^{ab}$

Proof.
$$x^{a+b} = \underbrace{x \cdot x \cdots x}_{a+b \text{ times}} = \underbrace{(x \cdot x \cdots x)}_{a \text{ times}} \cdot \underbrace{(x \cdot x \cdots x)}_{b \text{ times}} = x^a x^b$$

 $(x^a)^b = \underbrace{x^a \cdot x^a \cdots x^a}_{b \text{ times}} = \underbrace{(x \cdot x \cdots x)}_{a \text{ times}} \cdot \underbrace{(x \cdot x \cdots x)}_{a \text{ times}} \cdots \underbrace{(x \cdot x \cdots x)}_{a \text{ times}} = x^{ab}$
 $b \text{ times}$

(b) Prove that $(x^a)^{-1} = x^{-a}$.

Proof. Since $x \in G$, then $x^a \in G$ by closure in groups. Thus, $(x^a)^{-1} \in G$ and

$$x^a \cdot (x^a)^{-1} = 1 \tag{1}$$

Then, multiplying both sides of (1) by x^{-1} exactly *a*-times on the left,

$$\underbrace{(x^{-1}\cdot x^{-1}\cdots x^{-1})}_{a \text{ times}}(x^a\cdot (x^a)^{-1}) = \underbrace{(x^{-1}\cdot x^{-1}\cdots x^{-1})}_{a \text{ times}}\cdot 1.$$

Then, after we re-associate and write x^a as $x \cdot x \cdots x$ (exactly *a* times), we have

$$(\underbrace{x^{-1} \cdot x^{-1} \cdots x^{-1}}_{a \text{ times}} \cdot \underbrace{x \cdot x \cdots x}_{a \text{ times}})(x^a)^{-1} = \underbrace{(x^{-1} \cdot x^{-1} \cdots x^{-1})}_{a \text{ times}}.$$

Thus,

$$(x^a)^{-1} = x^{-a}.$$

(c) Establish part (a) for arbitrary integers a and b.

Proof.

$$\begin{array}{l} Case \ 1 & -a, b \in \mathbb{Z}^{+} \text{ completed in part (a).} \\ Case \ 2 & -a, b \in \mathbb{Z}^{-} \\ (i) \ x^{a+b} \ = \ (x^{-a-b})^{-1} \ = \ (x^{-b-a})^{-1} \stackrel{\text{by Case 1}}{=} \ (x^{-b}x^{-a})^{-1} \ = \ (x^{-a})^{-1}(x^{-b})^{-1} \ = \\ (ii) \ (x^{a})^{b} \ = \ ((x^{a})^{-b})^{-1} \ = \ (\underbrace{x^{a} \cdot x^{a} \cdots x^{a}}_{-b \text{ times}})^{-1} \\ & = \left(\underbrace{(x \cdot x \cdots x)}_{a \text{ times}} \cdot \underbrace{(x \cdot x \cdots x)}_{a \text{ times}} \cdots \underbrace{(x \cdot x \cdots x)}_{a \text{ times}} \right)^{-1} \ = \ (x^{-ab})^{-1} \ = x^{ab} \\ Case \ 3 \ -a \in \mathbb{Z}^{+}, b \in \mathbb{Z}^{-}. \end{array}$$

(i) • If |b| < a, then a + b > 0. First, notice that

$$(x^{a+b})(x^{-b}x^{-a}) = x^{a+b-b}x^{-a} = x^a x^{-a} = 1$$

Thus, $(x^{a+b})^{-1} = (x^{-b}x^{-a}) = (x^ax^b)^{-1}$. Then, since inverses are unique, $x^{a+b} = x^ax^b$

• If |b| > a, then a + b < 0 which implies -b - a > 0. Using the previous subcase,

$$x^{a+b} = (x^{-b-a})^{-1} = (x^{(-b)+(-a)})^{-1} = (x^{-b}x^{-a})^{-1} = (x^{-a})^{-1}(x^{-b})^{-1} = x^a x^b$$

• If |b| = a, then a + b = 0. Notice that this implies $x^a = x^{-b}$. Then,

$$x^{a+b} = x^0 = 1 = x^a x^{-a} = x^a x^b$$

(ii)

$$(x^{a})^{b} = ((x^{a})^{-b})^{-1} \stackrel{\text{by Case 1}}{=} (x^{-ab})^{-1} = x^{ab}$$

$$Case \ 4 \ --a = 0, b \in \mathbb{Z}.$$
(i) $x^{a+b} = x^{0+b} = x^{b} = 1 \cdot x^{b} = x^{0}x^{b} = x^{a}x^{b}$
(ii) $(x^{a})^{b} = (x^{0})^{b} = 1^{b} = 1 = x^{0} = x^{0\cdot b} = x^{ab}$

1.1.25 Prove that if $x^2 = 1$ for all $x \in G$ then G is abelian.

Proof. Let $x^2 = 1$ for all x in a group G. Let $x, y \in G$. By closure in groups, $(xy) \in G$ and so (xy)(xy) = 1. Then,

$$(xy)(xy) = 1$$

$$(yx)(xy)(xy) = (yx)1$$

$$y(xx)yxy = yx$$

$$y(1)yxy = yx$$

$$(yy)xy = yx$$

$$xy = yx$$

and so G is abelian.

1.2.4 If n = 2k is even and $n \ge 4$, show that $z = r^k$ is an element of order 2 which commutes with all elements of D_{2n} . Show that z is the only nonidentity element in D_{2n} which commutes with all elements in D_{2n} .

Proof. Let n = 2k be even with $n \ge 4$. Consider the element $z = r^k \in D_{2n}$. Clearly, $z^2 = r^{2k} = r^n = 1$ and so the order of z is 2. Now, we prove that z commutes with all elements of D_{2n} . First, we note that z commutes trivially with the identity. Next, we see that z commutes with all rotations because, for an arbitrary rotation r^m with $1 \le m \le n-1$, we have

$$r^k r^m = r^{k+m} = r^{m+k} = r^m r^k$$

Finally, we claim that

$$r^k s = sr^{-k} \tag{(*)}$$

Using the relation $rs = sr^{-1}$, we prove (*) by showing that

$$r^{k}s = \underbrace{rr\cdots r}_{k-1 \text{ times}}(rs) = \underbrace{rr\cdots r}_{k-1 \text{ times}}(sr^{-1}) = \underbrace{rr\cdots r}_{k-2 \text{ times}}(rs)r^{-1} = \underbrace{rr\cdots r}_{k-2 \text{ times}}(sr^{-1})r^{-1} = \cdots = sr^{-k}.$$

Now, notice that since $r^n = 1$ then $r^{2k} = 1$, which implies $r^k = r^{-k}$. Then, by (*),

$$r^k s = sr^{-k} \implies r^k s = sr^k,$$

and so r^k commutes with the reflection s.

Now, to show that z is the only nonidentity element which commutes with all elements in D_{2n} , first let r^t be an any rotation, $t \neq k$. Now, we want to show that $r^t \neq r^{-t}$. So, assume that in fact $r^t = r^{-t}$. This would imply $r^{2t} = 1 = r^n$. In other words, 2t = n, and thus t = k, a contradiction. By (*) we know that $r^t s = sr^{-t}$. Since $r^t \neq r^{-t}$, then $r^t s \neq sr^t$. So, r^t does not commute with all elements in D_{2n} . We've also show that, the only other nonidentity element in D_{2n} , s, does not commute with all elements in D_{2n} .

1.3.2

$$\begin{split} \sigma &= (1\ 13\ 5\ 10)(3\ 15\ 8)(4\ 14\ 11\ 7\ 12\ 9)\\ \tau &= (1\ 14)(2\ 9\ 15\ 13\ 4)(3\ 10)(5\ 12\ 7)(8\ 11)\\ \sigma^2 &= (1\ 5)(3\ 8\ 15)(4\ 11\ 12)(7\ 9\ 14)(10\ 13)\\ \sigma\tau &= (1\ 11\ 3)(2\ 4)(5\ 9\ 8\ 7\ 10\ 15)(13\ 14)\\ \tau\sigma &= (1\ 4)(2\ 9)(3\ 13\ 12\ 15\ 11\ 5)(8\ 10\ 14)\\ \tau^2\sigma &= (1\ 2\ 15\ 8\ 3\ 4\ 14\ 11\ 12\ 13\ 7\ 5\ 10) \end{split}$$

1.1.22 If x and g are elements of the group G, prove that $|x| = |g^{-1}xg|$. Deduce that |ab| = |ba| for all $a, b \in G$.

Proof. Let $x, g \in G$ and $|g^{-1}xg| = n < \infty$. Then,

$$(g^{-1}xg)^{n} = 1$$
(*)

$$\underbrace{(g^{-1}xg)(g^{-1}xg) \cdots (g^{-1}xg)}_{n \text{ factors}} = 1$$

$$g^{-1}x(gg^{-1})x(gg^{-1})x \cdots x(gg^{-1})xg = 1$$

$$g^{-1}x(1)x(1)x(1)x \cdots x(1)x(1)xg = 1$$

$$g^{-1}\underbrace{(xx \cdots x)}_{n \text{ factors}} g = 1$$

$$(**)$$

$$(g)g^{-1}x^{n}g(g^{-1}) = (g)1(g^{-1})$$

$$x^{n} = gg^{-1}$$

$$x^{n} = 1$$

Hence, $|g^{-1}xg| = n$ implies |x| = n. Following the equations in the opposite direction shows $|x| = n \iff |g^{-1}xg| = n$, i.e., $|x| = |g^{-1}xg|$. Notice that $(*) \implies (**)$, which then implies

$$(g^{-1}xg)^n = g^{-1}x^ng$$

Now, by way of contradiction, suppose $|g^{-1}xg|$ is infinity, but $|x| = n < \infty$. Then,

$$(g^{-1}xg)^n = g^{-1}x^ng = g^{-1}(1)g = g^{-1}g = 1,$$

a contradiction. Similarly, suppose |x| is infinite, but $|g^{-1}xg| = n < \infty$. Then,

$$1 = (g^{-1}xg)^n = g^{-1}x^ng.$$

Then,

$$1 = g^{-1}x^n g \implies gg^{-1} = x^n \implies 1 = x^n$$

a contradiction. Thus, |x| is infinite if and only if $|g^{-1}xg|$ is infinite.

Now, let $a, b \in G$, x = ab, and g = a. Then,

$$|ab| = |x| = |g^{-1}xg| = |(a^{-1})(ab)(a)| = |(a^{-1}a)ba| = |ba|$$

1.1.23 Suppose $x \in G$ and $|x| = n < \infty$. If n = st for some positive integers s and t, prove that $|x^s| = t$.

Proof. Notice that $1 = x^n = x^{st} = (x^s)^t$. Hence, $|x^s| \le t$. Assume that $|x^s| = q < t$. This implies sq < st = n, and so $1 = (x^s)^q = x^{sq}$, i.e., |x| = sq < st = n, a contradiction. Thus, $|x^s| = t$.

1.3.10 Prove that if σ is the *m*-cycle $(a_1 \ a_2 \dots a_m)$, then for all $i \in \{1, 2, \dots, m\}, \sigma^i(a_k) = a_{k+i}$, where k + i is replaced by its least residue mod *m* when k + i > m. Deduce that $|\sigma| = m$.

Proof. Let $a_k \in \sigma$. We proceed by induction on *i*. For the base case, let i = 1. By definition of the function σ , we see that $\sigma^1(a_k) = (a_1 \ a_2 \dots a_m)(a_k) = a_{k+1 \pmod{m}}$. For the inductive step, assume that $\sigma^n(a_k) = a_{k+n}$ for $1 \le n \le i$. Then,

$$\sigma^{i+1}(a_k) = (\sigma^1 \circ \sigma^i)(a_k) = (\sigma^1)(a_{k+i}) = a_{k+i+1}$$

and so the conclusion holds. Now, we claim $|\sigma| = m$. That is, $\sigma^m(a_k) = a_k$ for $1 \le k \le m$. By way of contradiction, assume otherwise. That is, $\sigma^m(a_k) \ne a_k$. So,

$$a_{k+m} = \sigma^m(a_k) \neq a_k$$

This implies $k + m \neq k$, which implies $m \neq 0 \mod m$, a contradiction. Thus, $|\sigma| = m$.

1.3.11 Let σ be the *m*-cycle (1, 2, ..., m). Show that σ^i is also an *m*-cycle if and only if *i* is relatively prime to *m*.

Proof. First note that since σ is an *m*-cycle, then $o(\sigma) = m$ by the previous exercise. Again by the previous exercise, σ^i is an *m*-cycle if and only if $o(\sigma^i) = m$. By Proposition 5,

$$m = o(\sigma^i) = \frac{o(\sigma)}{gcd(m,i)} = \frac{m}{gcd(m,i)}$$

and clearly m = m/gcd(m, i) if and only if gcd(m, i) = 1, i.e., m and i are relatively prime.

1.3.16 Show that if $n \ge m$, then the number of *m*-cycles in S_n is given by

$$\frac{n(n-1)(n-2)\cdots(n-m+1)}{m}$$

Proof. If we want to construct an *m*-cycle in S_n , $n \ge m$ then we have *n* choices for the first element in the cycle, (n-1) choices for the second element in the cycle, (n-2) choices for the third element in the cycle, etc. In general, there are n-i choices for the i+1 element in the cycle. Since we want exactly *m* elements in our cycle, there are (n-(m-1)) = n-m+1 choices for the last element in our cycle. So, there are

$$n(n-1)(n-2)\cdots(n-m+1)$$

ways to construct an m-cycle. However, since each cycle can be represented in m different ways, we have over-counted by a factor of m, and so we divide by m to obtain

$$\frac{n(n-1)(n-2)\cdots(n-m+1)}{m}$$

m-cycles in S_n .

1.3.17 Show that if $n \ge 4$, then the number of permutations in S_n which are the product of two disjoint 2-cycles is n(n-1)(n-2)(n-3)/8.

Proof. Any permutation in S_n that can be written as the product of two disjoint 2-cycles will look like (qr)(st). In this representation, there are n choices for q, (n-1) choices for r, (n-2) choices for s, and finally (n-3) choices for t. So, we have n(n-1)(n-2)(n-3) permutations in S_n that can be written this way. However, since there are 2 ways to write the permutation (qr), 2 ways to write the permutation (st), and 2 ways to write the product (qr)(st), we must divide by a factor of $2 \cdot 2 \cdot 2 = 8$. Thus, there are n(n-1)(n-2)(n-3)/8 number of permutations in S_n which are the product of two disjoint 2-cycles.

1.6.17 Let G be any group. Prove that the map from G to itself defined by $g \mapsto g^{-1}$ is a homomorphism if and only if G is abelian.

Proof. (\Rightarrow) Suppose $\varphi: G \to G$ defined by $g \to g^{-1}$ is a homomorphism. Let $a, b \in G$. Then

$$ab = \varphi(a^{-1})\varphi(b^{-1}) = \varphi(a)^{-1}\varphi(b)^{-1} = (\varphi(b)\varphi(a))^{-1} = \varphi(ba)^{-1} = ((ba)^{-1})^{-1} = ba$$

and thus G is abelian.

(\Leftarrow) Suppose G is abelian. Let $a, b \in G$ and let the map $\varphi : G \to G$ be defined by $g \mapsto g^{-1}$. Then

$$\varphi(a)\varphi(b) = a^{-1}b^{-1} = b^{-1}a^{-1} = (ab)^{-1} = \varphi(ab)$$

and thus φ is a homomorphism.

1.6.20 Prove that Aut(G) is a group under function composition.

Proof. We show that $\operatorname{Aut}(G)$ is a subgroup of S_G and thus a group. Since S_G is the set of all bijections from G to itself, then certainly all of the homomorphic bijections from G to itself are in S_G , and thus, $\operatorname{Aut}(G) \subseteq S_G$. Notice that $\operatorname{Aut}(G) \neq \emptyset$ since the identity map $\varphi : G \to G$ defined by $g \mapsto g$ is in $\operatorname{Aut}(G)$. Now, let $\varphi, \psi \in \operatorname{Aut}(G)$. Then, $\varphi \circ \psi^{-1} : G \to G$ is in $\operatorname{Aut}(G)$ since isomorphic functions are closed under function composition. Therefore, $\operatorname{Aut}(G)$ is a subgroup of S_G by the Subgroup Test.

2.1.15 Let $H_1 \leq H_2 \leq \ldots$ be an ascending chain of subgroups of G. Prove that $\bigcup_{i=1}^{\infty} H_i$ is a subgroup of G.

Proof. Since $1_G \in H_i$ for all i, then $1_G \in \bigcup_{i=1}^{\infty} H_i$ and so $\bigcup_{i=1}^{\infty} H_i \neq \emptyset$. Let $a, b \in \bigcup_{i=1}^{\infty} H_i$. So, there exists j and k so that $a \in H_j$ and $b \in H_k$. Let $m = \max\{j, k\}$. So, $a, b \in H_m$ and thus $ab^{-1} \in H_m$ by closure in groups and so $ab^{-1} \in \bigcup_{i=1}^{\infty} H_i$. Thus, $\bigcup_{i=1}^{\infty} H_i$ is a subgroup of G by the Subgroup Test.

2.5.11 Subgroup lattice of

$$QD_{16} = \langle \sigma, \tau | \sigma^8 = \tau^2 = 1, \sigma\tau = \tau\sigma^3 \rangle$$

Solution:

3.1.1 Let $\varphi : G \to H$ be a homomorphism and let E be a subgroup of H. Prove that $\varphi^{-1}(E) \leq G$ (i.e., the preimage or pullback of a subgroup under a homomorphism is a subgroup). If $E \leq H$ prove that $\varphi^{-1}(E) \leq G$. Deduce that ker $\varphi \leq G$.

Proof. Let $\varphi : G \to H$ be a homomorphism and let $E \leq H$. We first show that $\varphi^{-1}(E) \leq G$. First note that $\varphi^{-1}(E) = \{g \in G | \varphi(g) \in E\}$. Since $E \leq H$, $1_H \in E$ and so $\varphi^{-1}(1_H) = 1_G$ is in $\varphi^{-1}(E)$. Thus, $\varphi^{-1}(E) \neq \emptyset$. Now, let $a, b \in \varphi^{-1}(E)$. Then

 $\varphi(ab^{-1}) = \varphi(a)\varphi(b^{-1}) = \varphi(a)\varphi(b)^{-1} \in E \text{ by closure in } E.$

Thus, $ab^{-1} \in \varphi^{-1}(E)$ and so $\varphi^{-1}(E) \leq G$ by the Subgroup Test.

Now suppose $E \leq H$. Let $g \in G$ and let $a \in \varphi^{-1}(E)$. Then,

$$\varphi(gag^{-1}) = \varphi(g)\phi(a)\varphi(g)^{-1} \in E \text{ since } E \trianglelefteq H,$$

and thus $gag^{-1} \in \varphi^{-1}(E)$.

Since $\{1_H\} \leq H - (h1_H h^{-1} = 1_H \in \{1_h\} \forall h \in H)$ — then ker $\varphi = \varphi^{-1}(1_h) \leq G$ by the previous proof.

3.1.29 Let N be a *finite* subgroup of G and suppose $G = \langle T \rangle$ and $N = \langle S \rangle$ for some subsets S and T of G. Prove that N is normal in G if and only if $tSt^{-1} \subseteq N$ for all $t \in T$.

Proof. (\Rightarrow)

$$N \trianglelefteq G \implies t \langle S \rangle t^{-1} \subseteq N \; \forall t \in T \implies t S t^{-1} \subseteq N \; \forall t \in T$$

(\Leftarrow) Suppose $tSt^{-1} \subseteq N$. This implies that $\langle tSt^{-1} \rangle \subseteq N$ by closure in N. Note that since the conjugate of a product is the product of conjugates, then for all $t \in T$, we have $t\langle S \rangle t^{-1} = \langle tSt^{-1} \rangle$.

$$tNt^{-1} = t\langle S \rangle t^{-1} = \langle tSt^{-1} \rangle \subseteq N$$

Since N is finite, $|tNt^{-1}| = |N|$, and thus, $tNt^{-1} = N$ for all $t \in T$. This implies $T \subseteq N_G(N)$, and so $G = \langle T \rangle \subseteq N_G(N)$, and then $G = N_G(N)$ which means $N \leq G$.

2.1.6 Let G be an abelian group. Prove that $\{g \in G \mid |g| < \infty\}$ is a subgroup of G (called the *torsion subgroup* of G). Give an explicit example where this set is not a subgroup when G is non-abelian.

Proof. Let $H = \{g \in G \mid |g| < \infty\}$. Notice that $1_G \in H$ since $(1_G)^1 = 1_G$. Let $x, y \in H$. Then $x^n = 1$ and $y^m = 1$ for some $n, m \in \mathbb{Z}^+$. Notice that $x^{nm} = (x^n)^m = 1^m = 1$ and $(y^{-1})^{nm} = (y^m)^{-n} = 1^{-n} = 1$. Then, since G is abelian,

$$(xy^{-1})^n m = x^{nm} (y^{-1})^{nm} = 1 \cdot 1 = 1$$

and so $xy \in H$. Thus H is a subgroup of G by the subgroup test.

Consider the nonabelian group $SL_2(\mathbb{Z})$. Notice that

$$\begin{vmatrix} \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix} \end{vmatrix} = 6 \text{ and } \begin{vmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \end{vmatrix} = 4$$
$$\begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix},$$

which has infinite order since

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}^k = \begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix}$$

for all $k \in \mathbb{Z}^+$.

but

2.3.26 Let Z_n be a cyclic group of order n and for each integer a let

$$\sigma_a: Z_n \to Z_n$$
 by $\sigma_a(x) = x^a$ for all $x \in Z_n$.

(a) Prove that σ_a is an automorphism of Z_n if and only if a and n are relatively prime.

Proof. (\Rightarrow) Suppose σ_a is an automorphism of Z_n and let $x^k \in Z_n$ for $1 \le k \le n$. By surjectivity of σ_a , there exists $x^{\ell} \in Z_n$ so that $\phi_a(x^{\ell}) = x^k$. Notice that

$$(x^{a})^{\ell} = (x^{\ell})^{a} = \phi_{a}(x^{\ell}) = x^{k}$$

Since this is true for each $k \in \{1, ..., n-1\}$, we have that $\langle x^a \rangle = Z_n$. This means that (a, n) = 1 by Proposition 6 (2).

(\Leftarrow) Conversely, suppose (a, n) = 1 and let $x, y \in Z_n$. Then, as Z_n is abelian,

$$\phi_a(xy) = (xy)^a = x^a y^a = \phi_a(x)\phi_b(x)$$

and so ϕ_a is a homomorphism. We now show that ϕ_a is bijective. Note that since (a, n) = 1, there exists integers w, z so that aw = 1 - zn. Let $x^k \in Z_n$. Then,

$$\phi_a(x^{wk}) = (x^{wk})^a = (x^{aw})^k = (x^{(1-zn)})^k = (x^1(x^n)^{-z})^k = x^k$$

and thus ϕ_a is surjective. Since we have a surjective map between two groups of the same cardinality, the map must also be injective. Thus, ϕ_a is a automorphism of Z_n .

(b) Prove that $\sigma_a = \sigma_b$ if and only if $a \equiv b \pmod{n}$.

Proof.

$$\sigma_a = \sigma_b \iff x^a = \sigma_a(x) = \sigma_b(x) = x^b$$
$$\iff x^{a-b} = 1$$
$$\iff (a-b)|n$$
$$\iff a \equiv b \pmod{n}$$

(c) Prove that *every* automorphism of Z_n is equal to σ_a for some integer a.

Proof. Let ϕ be an automorphism of Z_n . Then, since x generates Z_n , we have $\phi(x) = x^k$ for some $0 \le k \le n-1$. So, for any $x^{\ell} \in Z_n$

$$\phi(x^{\ell}) = \phi(x)^{\ell} = x^{k\ell} = x^{\ell k} = \sigma_k(x^{\ell})$$

(d) Prove that $\sigma_a \circ \sigma_b = \sigma_{ab}$. Deduce that the map $\overline{a} \to \sigma_a$ is an isomorphism of $(\mathbb{Z}/n\mathbb{Z})^{\times}$ onto the automorphism group of Z_n (so $\operatorname{Aut}(Z_n)$ is an abelian group of order $\varphi(n)$).

Proof. Let $x^{\ell} \in Z_n$ for $0 \le k \le n-1$. Then,

$$(\sigma_a \circ \sigma_b)(x^\ell) = \sigma_a(x^{\ell b}) = x^{\ell b a} = x^{\ell a b} = (x^\ell)^{a b} = \sigma_{a b}(x^\ell)$$

Thus, we see that the map

$$\varphi: (\mathbb{Z}/n\mathbb{Z})^{\times} \to \operatorname{Aut}(Z_n)$$

defined by $\overline{a} \to \sigma_a$ is a homomorphism by what was just shown, an injection by part (b), and a surjection by part (c).

- 3.1.14 Consider the additive quotient group \mathbb{Q}/\mathbb{Z} .
 - (a) Show that every coset of \mathbb{Z} in \mathbb{Q} contains exactly one representative $q \in \mathbb{Q}$ in the range $0 \le q < 1$.

Proof. We first show the existence of such a q. We define the rationals to be $\mathbb{Q} = \{a/b \mid a \in \mathbb{Z}, b \in \mathbb{Z}^+\}$. Given any rational, a/b, then by the Division Algorithm, there exists $m, r \in \mathbb{Z}, 0 \leq r < b$ so that a = mb + r. So,

$$\frac{a}{b} = m + \frac{r}{b}$$

and thus $a/b + \mathbb{Z} = r/b + \mathbb{Z}$, since a/b and r/b differ by an integer. Since r < b, then $0 \le r/b < 1$ and so our representative is q = r/b. That was fun; now onto uniqueness. Suppose that $k + \mathbb{Z} = q + \mathbb{Z}$ for $0 \le k, q < 1$. Then

$$k + \mathbb{Z} = q + \mathbb{Z} \implies (k - q) + \mathbb{Z} = \mathbb{Z} \implies (k - q) \in \mathbb{Z}$$

Since $0 \le k, q < 1$ and $(k - q) \in \mathbb{Z}$, it must be the case that k - q = 0, i.e., k = q. So, q is unique!

(b) Show that every element of \mathbb{Q}/\mathbb{Z} has finite order but that there are elements of arbitrarily large order.

Proof. Given a coset $a/b + \mathbb{Z}$ in \mathbb{Q}/\mathbb{Z} , the order of this coset is at most b since

$$\left(\frac{a}{b} + \mathbb{Z}\right)b = a + b\mathbb{Z} = a + \mathbb{Z} = \mathbb{Z}$$

Consider the coset $1/n + \mathbb{Z}$. Since 1/n is in lowest terms, the order of this coset is n, which can be made arbitrarily large.

(c) Show that \mathbb{Q}/\mathbb{Z} is the torsion subgroup of \mathbb{R}/\mathbb{Z} .

Proof. Let H be the torsion subgroup of \mathbb{R}/\mathbb{Z} . By part (b), we know that $\mathbb{Q}/\mathbb{Z} \subseteq H$. To see that $\mathbb{Q}/\mathbb{Z} = H$, we prove that all cosets in \mathbb{Q}^c/\mathbb{Z} are not in H. To get a contradiction, assume there was a $i + \mathbb{Z} \in \mathbb{Q}^c/\mathbb{Z}$ so that $|i + \mathbb{Z}| = n < \infty$ for some $n \in \mathbb{Z}^+$. This implies,

$$(i + \mathbb{Z})n = in + n\mathbb{Z} = in + \mathbb{Z} \implies in \in \mathbb{Z}$$

So, in = z for some integer z. This implies i = z/n, i.e., i is rational, a contradiction. Thus, no such coset exists. Therefore, $\mathbb{Q}/\mathbb{Z} = H$.

(d) Prove that \mathbb{Q}/\mathbb{Z} is isomorphic to the multiplicative group of root of unity in \mathbb{C}^{\times} .

Proof. We claim that $\varphi : \mathbb{Q}/\mathbb{Z} \to Z(\mathbb{C}^{\times})$ defined by $(q + \mathbb{Z}) \mapsto e^{2\pi i q}$ is an isomorphism. Let $q + \mathbb{Z}, k + \mathbb{Z} \in \mathbb{Q}/\mathbb{Z}$. Then,

$$\varphi((q+\mathbb{Z})+(k+\mathbb{Z}))=\varphi((q+k)+\mathbb{Z})=e^{2\pi i (q+k)}=e^{2\pi i q}e^{2\pi i k}=\varphi(q+\mathbb{Z})\varphi(k+\mathbb{Z})$$

and so φ preserves operation. Note that if $e^{2\pi i n} = 1$, then $n \in \mathbb{Z}$ because

$$1 = e^{2\pi i n} = \cos(2\pi n) + i\sin(2\pi n) \implies \sin(2\pi n) = 0$$
 and $\cos(2\pi n) = 1$

which occurs only when $n \in \mathbb{Z}$. Now, assume $\varphi(q + \mathbb{Z}) = \varphi(k + \mathbb{Z})$. Then

$$e^{2\pi i q} = e^{2\pi i k} \implies e^{2\pi i (q-k)} = 1$$

which only occurs when $q-k \in \mathbb{Z}$, which means $(q-k)+\mathbb{Z} = \mathbb{Z}$ and so $q+\mathbb{Z} = k+\mathbb{Z}$. Thus, φ is injective. Let $e^{2\pi i q} \in Z(\mathbb{C}^{\times})$. Then, there exists $n \in \mathbb{Z}^+$ so that

$$1 = (e^{2\pi iq})^n = e^{2\pi iqn}$$

which means $qn = z \in \mathbb{Z}$ and thus, $\mathbb{Q} \ni q = z/n$. Thus, $\varphi(q) = e^{2\pi i q}$. Therefore, φ is an isomorphism.

- 3.1.34 Let $D_{2n} = \langle r, s | r^n = s^2 = 1, rs = sr^{-1} \rangle$ be the usual presentation of the dihedral group of order 2n and let k be a positive integer dividing n.
 - (a) Prove that $\langle r^k \rangle$ is a normal subgroup of D_{2n}

Proof. Given $r^{\ell} \in \langle r^k \rangle$, and $r^q \in D_{2n}$, notice that

$$r^q r^\ell r^{-q} = r^\ell \in \langle r^k \rangle$$

and

$$sr^\ell s^{-1} = (r^\ell)^{-1} = r^{n-\ell} \in \langle r^k \rangle$$

and thus $g\langle r^k \rangle g^{-1} \subseteq \langle r^k \rangle$ for all $g \in D_{2n}$ and so $\langle r^k \rangle \trianglelefteq D_{2n}$.

(b) Prove that $D_{2n}/\langle r^k \rangle \cong D_{2k}$.

Proof. Note that $D_{2k} = \langle \rho, \sigma \mid \rho^k = 1 = \sigma^2, \rho\sigma = \sigma\rho^{-1} \rangle$.

We first show that the quotient group $D_{2n}/\langle r^k \rangle$ is generated by two elements which satisfy the same relations as the two generators of D_{2k} . We claim that these are $r\langle r^k \rangle$ and $s\langle r^k \rangle$. First notice that the smallest $i \in \mathbb{Z}^+$ so that $(r\langle r^k \rangle)^i = \langle r^k \rangle$ is also the smallest $i \in \mathbb{Z}^+$ so that $r^i \in \langle r^k \rangle$. Since $\langle r^k \rangle = \{1, r^k, r^{2k}, \ldots, r^{mk-1}\}$, (assuming $n = mk, k \in \mathbb{Z}^+$), then it is clear that i = k. Thus, $|r\langle r^k \rangle| = k$. Likewise, $(s\langle r^k \rangle)^\ell = \langle r^k \rangle$ when $s^\ell \in \langle r^k \rangle$. The smallest $\ell \in \mathbb{Z}^+$ with such a property is clearly $\ell = 2$. So, $|s\langle r^k \rangle| = 2$. Now, notice that

$$(r\langle r^k \rangle)(s\langle r^k \rangle) = (rs)\langle r^k \rangle = (sr^{-1})\langle r^k \rangle = s\langle r^k \rangle r^{-1}\langle r^k \rangle$$

Thus, the generators $r\langle r^k \rangle$ and $s\langle r^k \rangle$ satisfy the same relations as ρ and σ , respectively. Therefore, we define a map $\psi : D_{2n}/\langle r^k \rangle \to D_{2k}$ by

$$r\langle r^k \rangle \mapsto \rho \quad \text{and} \quad s\langle r^k \rangle \mapsto \sigma$$

Let $s^{\ell} \langle r^k \rangle, r^i \langle r^k \rangle \in D_{2n} / \langle r^k \rangle$. Then,

$$\psi(s^{\ell}\langle r^{k}\rangle r^{i}\langle r^{k}\rangle) = \psi(s^{\ell}r^{i}\langle r^{k}\rangle) = \sigma^{\ell}\rho^{i} = \psi(s^{\ell}\langle r^{k}\rangle)\psi(r^{i}\langle r^{k}\rangle)$$

and so ϕ preserves operation. If $\sigma^{\ell_1}\rho^{i_1} = \sigma^{\ell_2}\rho^{i_2}$, then $s^{\ell_1}r^{i_1} = s^{\ell_2}r^{i_2}$, and so $\sigma^{\ell_1-\ell_2}\rho^{i_1-i_2} = 1$, which means $\ell_1 - \ell_2 = 0$ and $i_1 - i_2 = 0$, i.e., $\ell_1 = \ell_2$ and $i_1 = i_2$. Thus, ψ is injective. Suppose $\sigma^{\ell}\rho^i \in D_{2k}$. Then,

$$\psi(s^{\ell}r^i) = \sigma^{\ell}\rho^i$$

and so clearly ψ is surjective. Thus, ψ is an isomorphism.

3.1.36 Prove that if G/Z(G) is cyclic then G is abelian.

Proof. Let G be a group and suppose G/Z(G) is cyclic. Let $\langle xZ(G)\rangle = G/Z(G)$ and $g \in G$. Then, $g \in x^aZ(G)$ for some coset $x^aZ(G) \in G/Z(G)$ for $a \in \mathbb{Z}$. So, $g = x^az_i$ for some $z_i \in Z(G)$. Now, let $g_1, g_2 \in G$ and let

$$g_1 = x^a z_i$$
 and $g_2 = x^b z_j$

for some $a, b \in \mathbb{Z}$ and $z_i, z_j \in Z(G)$. Then

$$g_1g_2 = (x^a z_i)(x^b z_j)$$

$$= z_i(x^a x^b)z_j$$

$$= z_i(x^{a+b})z_j$$

$$= z_i(x^{b+a})z_j$$

$$= z_i x^b x^a z_j$$

$$= x^b z_i x^a z_j$$

$$= x^b z_i z_j x^a$$

$$= x^b z_j z_i x^a$$

$$= (x^b z_j)(x^a z_i) = g_2g_1$$

and thus G is abelian.

3.1.38 Let A be an abelian group and let D be the (diagonal) subgroup $\{(a, a) | a \in A\}$ of $A \times A$. Prove that D is a normal subgroup of $A \times A$ and $(A \times A)/D \cong A$.

Proof. Let $(a_1, a_2) \in A \times A$ and $(d, d) \in D$. Then,

$$(a_1, a_2)(d, d)(a_1, a_2)^{-1} = (a_1 d, a_2 d)(a_1^{-1}, a_2^{-1})$$

= $(a_1 da_1^{-1}, a_2 da_2^{-1})$
= $(a_1 a_1^{-1} d, a_2 a_2^{-1} d)$ (since A is abelian)
= $(d, d) \in D$

and so $D \leq (A \times A)$. Now, define a map $\varphi : A \to (A \times A)/D$ by $a \mapsto (a, 1_A)D$. Let $a, a' \in A$. Then,

$$\varphi(aa') = (aa', 1_A)D = (a, 1_A)D(a', 1_A)D = \varphi(a)\varphi(a')$$

and so φ is a group homomorphism. Now, suppose $\varphi(a) = \varphi(a')$. Then

$$(a, 1_A)D = (a', 1_A)D \implies (a'^{-1}, 1_A)(a, 1_A) \in D$$
$$\implies (a'^{-1}a, 1_A) \in D$$
$$\implies a'^{-1}a = 1_A$$
$$\implies a = a'$$

and so φ is injective. Now, suppose $(a, a')D \in (A \times A)/D$. Notice that since $(a'^{-1}, a'^{-1}) \in D$ then,

$$(a, a')D = (a, a')(a'^{-1}, a'^{-1})D = (aa'^{-1}, 1)D$$

So,

$$\varphi(aa'^{-1}) = (aa'^{-1}, 1)D = (a, a')D$$

and thus, φ is surjective.

3.1.41 Let G be a group. Prove that $N = \langle x^{-1}y^{-1}xy | x, y \in G \rangle$ is a normal subgroup of G and G/N is abelian (N is called the *commutator subgroup* of G).

Proof. <u>Claim</u>: If G is a group and $H = \langle S \rangle$ for some subset S of G, then H is a normal subgroup of G if and only if for all $g \in G$ and all $s \in S$ we have that $gsg^{-1} \in H$. <u>Proof of Claim</u>: (\Rightarrow) Let G and H be defined as above and suppose $H \trianglelefteq G$. Since $S \subseteq G$, then for any $s \in S$ we have $gsg^{-1} \in H$.

(\Leftarrow) Now, suppose $gsg^{-1} \in H$ for all $g \in G$ and $s \in S$. Let S^{-1} be the set of all inverses for elements in S. Then, for $s_1, s_2, s_3, \dots \in S \cup S^{-1}$ and $g \in G$,

$$H \ni (gs_1^a g^{-1})(gs_2^b g^{-1})(gs_3^c g^{-1}) \dots = g(s_1^a s_2^b s_3^c \dots)g^{-1} = ghg^{-1}$$

For some $h = (s_1^a s_2^b s_3 c \dots) \in H$. Thus, $gHg^{-1} \subseteq H$ for all $g \in G$ and so $H \leq G$.

Let G be a group and $N = \langle x^{-1}y^{-1}xy | x, y \in G \rangle$. By the claim, $N \trianglelefteq G$. Now, consider G/N. Let $a, b \in G$. Then,

$$a^{-1}b^{-1}ab \in N \iff (ba)^{-1}ab \in N$$
$$\iff abN = baN$$
$$\iff aNbN = bNaN$$

and thus, G/N is abelian.

3.2.12 Let $H \leq G$. Prove that the map $x \mapsto x^{-1}$ sends each left coset of H in G onto a right coset of H and gives a bijection between the set of left cosets and the set of right cosets of H in G (hence the number of left cosets of H in G equals the number of right cosets).

Proof. Define $\varphi: G \to G$ by $x \mapsto x^{-1}$. Then, given an element $gh \in gH$, we have

$$\varphi(gh) = (gh)^{-1} = h^{-1}g^{-1} \in Hg^{-1}$$

So, φ maps elements in the left coset gH precisely to elements in the right coset Hg^{-1} . We claim that φ gives a bijection between left and right cosets. To see this, let $gh_1, gh_2 \in gH$ and suppose $\varphi(gh_1) = \varphi(gh_2)$. Then,

$$\varphi(gh_1) = \varphi(gh_2) \implies h_1^{-1}g^{-1} = h_2^{-1}g^{-1} \implies h_1^{-1} = h_2^{-1} \implies h_1 = h_2$$

and so φ is injective. Now, suppose $h_1g \in Hg$. Then, observe that

$$\varphi(g^{-1}h_1) = h_1^{-1}(g^{-1})^{-1} = h_1^{-1}g$$

and so each element in Hg can be attained through the map φ , and so it is surjective.

3.3.4 Let C be a normal subgroup of the group A and let D be a normal subgroup of the group B. Prove that $(C \times D) \trianglelefteq (A \times B)$ and $(A \times B)/(C \times D) \cong (A/C) \times (B/D)$.

Proof. We first show that $(C \times D) \leq (A \times B)$. First, notice that since C and D are subgroups of A and B, respectively, then $1_A \in C$ and $1_B \in D$ and $so(1_A, 1_B) \in (C \times D)$. Now, let $(c', d'), (c, d) \in (C \times D)$. Then,

$$(c',d')(c,d)^{-1} = (c',d')(c^{-1},d^{-1}) = (c'c^{-1},d'd^{-1}) \in C \times D$$

because $c'c^{-1} \in C$ and $d'd^{-1} \in D$ by closure in C and D. So, $(C \times D) \leq (A \times B)$. We now show that $(C \times D) \leq (A \times B)$. Let $(c,d) \in (C \times D)$ and $(a,b) \in (A \times B)$. Then,

$$(c,d)(a,b)(c,d)^{-1} = (c,d)(a,b)(c^{-1},d^{-1}) = (cac^{-1},dbd^{-1}) \in (C \times D)$$

because $cac^{-1} \in C$ and $dbd^{-1} \in D$ since C and D are normal in A and B, respectively. Thus, $(C \times D) \trianglelefteq (A \times B)$.

Now, consider the map $\varphi : (A \times B) \to (A/C) \times (B/D)$ defined by $(a, b) \mapsto (aC, bD)$. Suppose $(aC, bD) \in (A/C) \times (B/D)$. Then clearly φ is surjective since $\varphi((a, b)) = (aC, bD)$. Now, we consider ker φ :

$$\ker \varphi = \{(a, b) \in A \times B \mid \varphi((a, b)) = (C, D)\}$$
$$= \{(a, b) \in A \times B \mid a \in C \text{ and } b \in D\} = (C \times D)$$

We conclude by the First Isomorphism Theorem $(A \times B)/(C \times D) \cong (A/C) \times (B/D).$

3.2.9 This exercise outlines a proof for Cauchy's Theorem. Let G be a finite group and let p be a prime dividing |G|. Let S denote the set of p-tuples of elements of G the product of whose coordinates is 1:

$$S = \{(x_1, x_2, \dots, x_p) \mid x_i \in G \text{ and } x_1 x_2 \cdots x_p = 1\}$$

(a) Show that \mathcal{S} has $|G|^{p-1}$ elements, hence has order divisible by p.

Proof. For the *p*-tuple (x_1, x_2, \ldots, x_p) to be in \mathcal{S} , we must have

 $(x_1x_2\cdots x_{p-1})=x_p^{-1}$

In other words, we have precisely |G| choices for the first p-1 elements of the *p*-tuple, and 1 choice for the x_p term. So, there are $|G|^{p-1}$ elements in S.

Define the relation ~ on S by letting $\alpha \sim \beta$ if β is a cyclic permutation of α .

(b) Show that a cyclic permutation of an element of \mathcal{S} is again an element of \mathcal{S} .

Proof. Let $(x_1, x_2, \ldots, x_p) \in S$. Consider the cycle permutation of this element $(x_k, \ldots, x_p, x_1, \ldots, x_k$ Notice that

$$(x_1x_2\dots x_p) = (x_1\cdots x_{k-1}x_k\cdots x_p) = 1$$
$$(x_1\cdots x_{k-1})(x_k\cdots x_p) = 1$$
$$(x_1\cdots x_{k-1}) = (x_k\cdots x_p)^{-1}$$
$$(x_k\cdots x_p)(x_1\cdots x_{k-1}) = 1$$

So,

$$(x_k \cdots x_p x_1 \cdots x_{k-1}) = (x_k \cdots x_p)(x_1 \cdots x_{k-1}) = 1$$

(c) Prove that \sim is an equivalence relation on \mathcal{S} .

Proof. Let α, β, γ be cycle permutations of elements of S. *Reflexivity:* Given a cycle permutation α , the identity cyclic permutation is a permutation

of α , i.e., $\alpha \sim \alpha$

Symmetry: Let $\alpha \sim \beta$ and suppose β is a k-th cyclic permutation of α , where $0 \leq k \leq p-1$. Then, α is the (p-k)-th cyclic permutation of β . Hence, $\alpha \sim \beta \implies \beta \sim \alpha$

Transitivity: Let $\alpha \sim \beta$ and $\beta \sim \gamma$ and suppose that β is a k-th cyclic permutation of α , and γ is an ℓ -th cyclic permutation of β . Then, γ is a $(k + \ell)$ -th cyclic permutation of α , i.e., $\alpha \sim \beta$ and $\beta \sim \gamma \implies \alpha \sim \gamma$.

(d) Prove that an equivalence class contains a single element if and only if it is of the form (x, x, ..., x) with $x^p = 1$.

Proof. Suppose that we have an equivalence class of S with a single element of S, and let α be the cycle associated with this element. Then each *i*-th cyclic permutation of α for all $0 \leq i \leq p-1$ is precisely α . This occurs only when $x_1 = x_2 = \cdots = x_p$. So, the element of S associated with α is of the form (x, x, \ldots, x) with $x^p = 1$. On the other hand, suppose an element of S is of the form (x, x, \ldots, x) with $x^p = 1$. Then, the permutation associated with this element, α , has the property that every *i*-th cyclic permutation of α for $0 \leq i \leq p-1$ is precisely α , i.e., the equivalence class associated with α contains a single element.

(e) Prove that every equivalence class has order 1 or p (this uses the fact that p is a *prime*). Deduce that $|G|^{p-1} = k + pd$ where k is the number of classes of size 1 and d is the number of classes of size p.

Proof. Suppose the equivalence class of $(x_1, ..., x_p)$ contains more than 1 element. Then there exist i < j such that $x_i \neq x_j$. We want to show that for all $1 \le b < c \le p$,

$$(x_b, ..., x_p, x_1, ..., x_{b-1}) \neq (x_c, ..., x_p, x_1, ..., x_{c-1})$$

Rearranging, this means that for all $2 \le a \le p$, we want to show

$$(x_a, ..., x_p, x_1, ..., x_{a-1}) \neq (x_1, ..., x_p)$$
(1)

Now, suppose we had equality in (1). Then, let $\sigma = (1, 2, ..., p)$ and $\rho = \sigma^a$. Notice that

$$(x_{\rho(1)}, x_{\rho(2)}, \dots, x_{\rho(p)}) = (x_a, \dots, x_p, x_1, \dots, x_{a-1})$$

Equality in (1) implies that $x_i = x_{\rho(i)}$ for $1 \le i \le p$. Without loss of generality, let i = 1. So, by our assumption that each equivalence class has more than one element, $x_1 \ne x_j$ for $1 < j \le p$. From Exercise 11 of section 1.3, we know that since (a, p) = 1, then ρ is a *p*-cycle. Since ρ is a *p*-cycle, then there exists $k \in \mathbb{Z}^+$ so that $\rho^k(1) = j$. So,

$$x_1 = x_{\rho^k(1)} = x_j$$

a contradiction. So the statement in (1) holds. Therefore, every equivalence class has order p, or order which divides p. Since p is prime, the equivalence classes have order p or 1. So, if S has k classes of size 1, and d classes of size p, then

$$|\mathcal{S}| = |G|^{p-1} = k + dp$$

(f) Since $\{(1, 1, ..., 1)\}$ is an equivalence class of size 1, conclude from (e) that there must be a nonidentity element x in G with $x^p = 1$, i.e., G contains an element of order p. [Show $p \mid k$ and so k > 1].

Proof. Since $|G|^{p-1} = k + dp$, then $k = |G|^{p-1} - dp$. Since p divides $|G|^{p-1}$ and dp, then k is divisible by p and so k > 1. Thus, there must be a nonidentity element in G so that $x^p = 1$.

3.2.11 Let $H \leq K \leq G$. Prove that $[G:H] = [G:K] \cdot [K:H]$. (Do not assume G is finite).

Proof. Since the (left) cosets of K in G partition G, then

$$G = \bigsqcup_{\ell \in I_1} g_\ell H \tag{2}$$

where I_1 is an indexing set so that each g_{ℓ} is a representative from each coset of H in G. In other words, $|I_1| = [G : H]$. Similarly, we have

$$K = \bigsqcup_{j \in I_2} k_j H$$
 and $G = \bigsqcup_{i \in I_3} x_i K$

so that $|I_2| = [K : H]$ and $|I_3| = [G : K]$. Since the (left) cosets of H partition G and the (left) cosets of K partition H, then G can be written as

$$G = \bigsqcup_{i \in I_3} \bigsqcup_{j \in I_2} x_i k_j K$$

Written this way, we have G partitioned into $|I_2| \cdot |I_3|$ pieces. We can also write G as in (2), so that

$$\bigsqcup_{\ell \in I_1} g_\ell H = \bigsqcup_{i \in I_3} \bigsqcup_{j \in I_2} x_i k_j K \tag{2}$$

and so $[G:H] = [G:K] \cdot [K:H]$ as desired.

3.3.2 Prove all parts of the Lattice Isomorphism Theorem.

Let G be a group, let $N \leq G$. Define

$$\mathcal{G} = \{H \mid N \leq H \leq G\} \text{ and } \overline{\mathcal{G}} = \{\overline{H} \mid \overline{H} \leq G/N\}$$

Then the map

 $f:\mathcal{G}\to\overline{\mathcal{G}}$

defined by $H \mapsto H/N$ is a bijection. Moreover, define $\overline{G} := G/N$. If $A, B \in \mathcal{G}$ define $\overline{A} = A/N, \overline{B} = B/N$.

(1) $A \leq B \iff \overline{A} \leq \overline{B}$

Proof. (\Rightarrow) Since $\overline{A}, \overline{B} \in \overline{\mathcal{G}}$, then they are both groups. We want to show that $\overline{A} \leq \overline{B}$. Let $aN \in \overline{A}$ for $a \in A$. By our assumption $a \in B$, and so $aN = bN \in \overline{B}$ for some $b \in B$. Thus, $aN \in \overline{B}$. (\Leftarrow) Since $A, B \in \mathcal{G}$, then A and B are groups. We want to show that $A \leq B$. Let $a \in A$ and consider $aN \in \overline{A}$. By our assumption, $aN \in \overline{B}$ and so aN = bN for some $b \in B$. Then,

$$ab^{-1}N = N \implies ab^{-1} \in N \implies ab^{-1} = n, n \in N \implies a = nb$$

and so $a \in B$ since $n, b \in B$.

(2) If $A \leq B$ then $[B:A] = [\overline{B}:\overline{A}]$

Proof. Since $A \leq B$, then $\overline{A} \leq \overline{B}$ by (1). So, we consider B/A and $\overline{B}/\overline{A}$ and define a map $\varphi: B/A \to \overline{B}/\overline{A}$ by $bA \mapsto \overline{b} \overline{A}$

where \overline{b} denotes bN.

$$\varphi$$
 is well-defined: Suppose $b_1A = b_2A$. This implies $b_1 = b_2a$ for some $a \in A$. So,

$$\varphi(b_1 A) = \overline{b_1} \ \overline{A} = \overline{b_2 a} \ \overline{A} = \overline{b_2} \ \overline{a} \ \overline{A} = \overline{b_2} \ \overline{A} = \varphi(b_2 A)$$

 φ is injective: Suppose $\varphi(b_1A) = \varphi(b_2A)$. Then, $\overline{b_1} \ \overline{A} = \overline{b_2} \ \overline{A}$ which implies $\overline{b_2^{-1}} \ \overline{b_1} \in \overline{A}$, and so we have $\overline{b_1^{-1}b_2} = \overline{a}$ for some $a \in A$. Unraveling the notation, we have $(b_2^{-1}b_1)N = aN$, which means $(a^{-1}b_2^{-1}b_1)N = N$ and so $(a^{-1}b_2^{-1}b_1) \in N$. Now, this implies $b_1^{-1}b_1 \in aN$. Since $aN \subset A$, then $b_2^{-1}b_1 \in A$ and so $b_1A = b_2A$.

 φ is surjective: Let $\overline{b} \ \overline{A} \in \overline{B}/\overline{A}$. Then, $\varphi(bA) = \overline{b} \ \overline{A}$ and so φ is surjective.

So, φ is a bijection and we conclude $[B:A] = [\overline{B}:\overline{A}]$.

(3) $\overline{\langle A, B \rangle} = \langle \overline{A}, \overline{B} \rangle$

Proof. Let $x \in \overline{\langle A, B \rangle}$. Then, x = yN for some $y \in \langle A, B \rangle$. Then, $y = c_1c_2c_3...$ where $c_i \in A$ or $c_i \in B$ for all *i*. So,

$$x = yN = (c_1c_2c_3\dots)N = c_1Nc_2Nc_3N\dots$$

Since each $(c_i N) \in \overline{A}$ or \overline{B} for all i, then $x \in \langle \overline{A}, \overline{B} \rangle$. Conversely, suppose $x \in \langle \overline{A}, \overline{B} \rangle$. Then,

$$x = (d_1 N)(d_2 N)(d_3 N)...$$

for some $(d_iN) \in \overline{A}$ or $(d_iN) \in \overline{B}$ for all i, which means $d_i \in A$ or $d_i \in B$ for all i. This means $(d_1d_2d_3...) = z$ for some $z \in \langle A, B \rangle$. So,

$$x = (d_1 N)(d_2 N)(d_3 N)\dots = zN$$

and thus $x \in \overline{\langle A, B \rangle}$.

 $(4) \ \overline{A \cap B} = \overline{A} \cap \overline{B}$

Proof. Let $x \in \overline{A \cap B}$. Then, x = yN for some $y \in A \cap B$. Since $y \in A \cap B$, then $y \in A$ and $y \in B$, and so $yN \in \overline{A}$ and $yN \in \overline{B}$. Thus, $x \in \overline{A} \cap \overline{B}$. Conversely, suppose $x \in \overline{A} \cap \overline{B}$. So, $x \in \overline{A}$ and $x \in \overline{B}$, which means $x = aN \in \overline{A}$ and

Conversely, suppose $x \in A \cap B$. So, $x \in A$ and $x \in B$, which means $x = aN \in A$ and $x = bN \in \overline{B}$ for some $a \in A$ and $b \in B$. So, aN = bN, which means $b^{-1}a \in N$, and so $a \in bN$. Since $bN \subseteq B$, then $a \in B$. Thus, $a \in A \cap B$, and so $x = aN \in \overline{A \cap B}$.

$$(5) \ A \trianglelefteq G \iff \overline{A} \trianglelefteq \overline{G}$$

Proof. (\Rightarrow) Let $a \in A$ and $g \in G$. Since $A \leq G$, then $a' = gag^{-1} \in A$. Let $aN \in \overline{A}$ and $gN \in \overline{G}$. Then,

$$(gN)(aN)(g^{-1}N) = (gag^{-1})N = a'N \in \overline{A}.$$

and so $\overline{A} \leq \overline{G}$.

(⇐) Let $a \in A$ and $g \in G$. Since $\overline{A} \trianglelefteq \overline{G}$, then $(gN)(aN)(g^{-1}N) = (gag^{-1})N \in \overline{A}$. Suppose $(gag^{-1})N = xN$ for some $x \in A$. This means that $x^{-1}gag^{-1} \in N$. So, $gag^{-1} \in xN$. Since $xN \subseteq A$, then $gag^{-1} \in A$ and thus $A \trianglelefteq G$.

3.4.1 Prove that if G is an abelian simple group, then $G \cong Z_p$ for some prime p (do not assume G is a finite group).

Proof. We claim that if G is an abelian simple group, then |G| = p for some prime p. Then, every non-identity element of G must have order p, which means every non-identity element of G generates G. Then $G \cong Z_p$ since every cyclic group of order p is isomorphic to Z_p .

To prove the claim, first suppose G is an infinite group and let $x \in G$ be a non-identity element. Remember that every subgroup of an abelian group is normal. If |x| is finite, then $\langle x \rangle \leq G$ and since G is abelian $\langle x \rangle \leq G$, which means G is not simple. If |x| is infinite, then $\langle x^2 \rangle \leq G$, and $\langle x^2 \rangle \leq G$, which means G is not simple. So, G cannot be infinite. Now, suppose |G| = c for some composite number c. Let p be a prime so that p|c. Then, there exists $x \in G$ with |x| = p by Cauchy's Theorem. Then, $\langle x \rangle \leq G$ and $\langle x \rangle \leq G$, which means G is not simple, a contradiction. Thus, G must be of prime order.

3.4.6 Prove part (1) of the Jordan–Hölder Theorem by induction on |G|.

Theorem (Jordan-Hölder). Let G be a finite group with $G \neq 1$. Then (1) G has a composition series.

Proof. For the base case, we consider the case when |G| = 2. So, G is simple and so the composition series is $1 \leq G$ and G/1 is trivially simple. Now, suppose that whenever G has order less than or equal to n, G has a composition series. Let |G| = n + 1. If G is simple, then we are done (because its composition series is trivial). If G is not simple, then G has a nontrivial normal subgroup N. Notice that |N| < n which means |G/N| < n. By our inductive hypothesis, N and G/N have a composition series:

$$1 = H_1 \trianglelefteq H_2 \trianglelefteq \ldots \trianglelefteq H_k = N$$

and

$$1 = S_1/N \trianglelefteq S_2/N \trianglelefteq \ldots \trianglelefteq S_\ell/N = G/N$$

Notice that

$$N/H_k = 1 = S_1/N \implies H_k = S_1.$$

Also notice that since $S_i/N \leq S_{i+1}/N$, then $S_i \leq S_{i+1}$. So, we construct the following composition series for G:

$$1 = H_1 \trianglelefteq H_2 \trianglelefteq \ldots \trianglelefteq H_k = N = S_1 \trianglelefteq S_2 \trianglelefteq \ldots \oiint S_\ell = G.$$

Thus, every finite group has a composition series.

3.5.3 Prove that S_n is generated by $\{(i \ i+1) \mid 1 \le i \le n-1\}$. (Consider conjugates, viz. $(23)(12)(23)^{-1}$.)

Proof. Let $n \in \mathbb{Z}^+$ and $\sigma \in S_n$. We know that σ can be written as the product of transpositions. Given any transposition which is in the product of the transposition decomposition of σ , say $(a \ b)$, notice that

$$(a \ b) = (b - 1 \ b)(b \ b + 1) \dots (a + 1 \ a + 2)(a \ a + 1)(a + 1 \ a + 2) \dots (b \ b + 1)(b - 1 \ b)$$

This implies that σ can be expressed as the product of elements in the set

 $\{(i \ i+1) \mid 1 \le i \le n-1\},\$

and so S_n is generated by this set.

3.5.4 Show that $S_n = \langle (12), (12 \dots n) \rangle$ for all $n \ge 2$.

Proof. Let $n \ge 2$. Since $S_n = \langle \{(i \ i+1) \mid 1 \le i \le n-1\} \rangle$ by the previous exercise, we show

$$\langle (12), (12\dots n) \rangle = \langle \{ (i \ i+1) \mid 1 \le i \le n-1 \} \rangle.$$

First notice that $(1,2), (123...n) \in S_n$. Thus, $\langle (12)(12...n) \rangle \leq S_n$. Now, let

 $\sigma = (123...n)$ and $\tau = (12)$.

Let $i \in \{2, 3, 4, \dots, n-1\}$. We claim

$$(i\ i+1) = \sigma^{i-1}\tau\sigma^{1-i}.$$

When we prove this claim, we have $S_n \leq \langle (12)(12...n) \rangle$ and so conclude that

$$S_n = \langle (12)(12\dots n) \rangle.$$

To prove the claim, we need to show that $\sigma^{i-1}\tau\sigma^{1-i}$ obeys the same mapping as $(i \ i + 1)$. Namely, the mapping that sends i to i + 1, and i + 1 to i, and fixes all other points in $\{1, 2, \ldots, n\}$.

Let $j \in \{1, 2, ..., n\}$. We know from a previous assignment that for any *m*-cycle $\rho = (12...m)$, we have $\rho^a(j) = j + a$. So, notice

$$(\sigma^{i-1}\tau\sigma^{1-i})(j) = (\sigma^{i-1}\tau)(\sigma^{1-i}(j))$$
$$= (\sigma^{i-1}\tau)(j+1-i \mod n)$$
$$= (\sigma^{i-1})\tau(j+1-i \mod n)$$

At this point, we claim that the number $j + 1 - i \pmod{n}$ does not equal 1 nor 2, and so τ fixes it. If $j + 1 - i = 1 \pmod{n}$ then j - i = n. But, the restriction of values on i and j tell us that |i - j| < n. If $j + 1 - i = 2 \mod{n}$ then j - (i + 1) = n. But again, the restriction of values for i and j tell us that |j - (i + 1)| < n. So,

$$(\sigma^{i-1})\tau(j+1-i \mod n) = \sigma^{i-1}(j+1-i \mod n)$$
$$= j+1-i+(i-1) \mod n$$
$$= j \mod n$$
$$= j$$

Now, observe that

$$(\sigma^{i-1}\tau\sigma^{1-i})(i) = (\sigma^{i-1}\tau)(\sigma^{1-i}(i))$$

= $(\sigma^{i-1}\tau)(1)$
= $(\sigma^{i-1})(\tau)(1)$
= $(\sigma^{i-1})(2)$
= $i+1$

and also that

$$(\sigma^{i-1}\tau\sigma^{1-i})(i+1) = (\sigma^{i-1}\tau)(\sigma^{1-i}(i+1))$$

= $(\sigma^{i-1}\tau)(2)$
= $(\sigma^{i-1})(\tau)(2)$
= $(\sigma^{i-1})(1)$
= i

4.1.1 Let G act on the set A. Prove that if $a, b \in A$ and $b = g \cdot a$ for some $g \in G$, then $G_b = gG_ag^{-1}$ (G_a is the stabilizer of a). Deduce that if G acts transitively on A then the kernel of the action is $\bigcap_{g \in G} gG_ag^{-1}$.

Proof. Let $a, b \in A$ so that $g \cdot a = b$ for some $g \in G$. We show $G_b = gG_ag^{-1}$.

$$h \in G_b \iff h \cdot b = b$$
$$\iff (h \cdot b) = g \cdot a$$
$$\iff g^{-1}(h \cdot b) = a$$
$$\iff (g^{-1}h) \cdot b = a$$
$$\iff g^{-1}h(g \cdot a) = a$$
$$\iff (g^{-1}hg) \cdot a = a$$
$$\iff (g^{-1}hg) \in G_a$$
$$\iff h \in gG_ag^{-1}$$

The kernel of this group action is $\bigcap_{x \in A} G_x$. If G acts on A transitively, then $G_b = gG_ag^{-1}$ for all $a, b \in A$. So,

$$\bigcap_{g \in G} g G_a g^{-1}$$

3.4.9 Prove the following special case of part (2) of the Jordan-Hölder Theorem: assume the finite group G has two composition series

 $1 = N_0 \trianglelefteq N_1 \trianglelefteq \ldots \trianglelefteq N_r = G$ and $1 = M_0 \trianglelefteq M_1 \trianglelefteq M_2 = G$.

Show that r = 2 and that the list of composition factors is the same.

Proof. We first state and prove the following lemma:

Lemma. If A and B are normal subgroups of G, then $AB \trianglelefteq G$.

Proof. Let A, B and G be defined as above. Then, for all $g \in G$,

$$gAg^{-1} = A$$
 and $gBg^{-1} = B$

So,

$$gABg^{-1} = gABg^{-1} = gAg^{-1}gBg^{-1} = AB$$

and so $AB \leq G$.

Now, we show that $r \ge 2$. If r = 0, then G is the trivial group, which can have a compositions series. If r = 1, then G does not have any nontrivial normal subgroups, but M_1 is nontrivial and is normal in G. Thus, $r \ge 2$.

Since M_1 and N_{r-1} are normal in G, then by the Lemma, $M_1N_{r-1} \leq G$. Also, notice that $M_1 \cap N_{r-1} \leq G$. By the Second Isomorphism Theorem.

By the composition series, we know that $M_1/1 = M_1$ is simple. Also, since $M_1 \cap N_{r-1} \leq G$, then $M_1 \cap N_{r-1} \leq M_1$. Thus, either

(1)
$$M_1 \cap N_{r-1} = M_1$$
 or (2) $M_1 \cap N_{r-1} = 1$.

(1) $M_1 \cap N_{r-1} = M_1$

This implies that $M_1 \leq N_{r-1}$. By the Fourth Isomorphism Theorem, we have

 $N_{r-1}/M_1 \leq G/M_1$

Since G/M_1 is simple, then either

(a)
$$N_{r-1}/M_1 = G/M_1$$
 or (b) $N_{r-1}/M_1 = M_1$

- (a) $N_{r-1}/M_1 = G/M_1$ This implies $N_{r-1} = G$. But from the composition series, $N_{r-1} \lneq G$, thus, $N_{r-1} \neq G$.
- (b) $N_{r-1}/M_1 = M_1$ This implies $N_{r-1} = M_1$. because M_1 is simple, we have $N_{r-1} = 1$, which implies r = 2.
- (2) $M_1 \cap N_{r-1} = 1$

This implies that $M_1 \leq N_{r-1}M_1$. We know that $N_{r-1}M_1 \leq G$, and since $M_1 \leq G$, then M_1 is a strict normal subgroup of $N_{r-1}M_1$. By the composition series, we have

 $N_{r-1}M_1 = G$

and from the Fourth Isomorphism Theorem,

 $N_{r-1}M_1/M_1 \cong G/M_1$

Since G/M_1 is simple, then either

(a)
$$N_{r-1}M_1/M_1 = 1$$
 or (b) $N_{r-1}M_1/M_1 = G/M - 1$

(a) $N_{r-1}M_1/M_1 = 1$

This implies $N_{r-1} = M_1$, but since M_1 is simple, then $N_{r-1} = 1$ or $N_{r-1} = M_1$. If $N_{r-1} = 1$, then G is simple, but that contradicts the fact that M_1 is a strict normal subgroup of G. So, $N_{r-1} = M_1$ implies $N_{r-2} = 1$, which implies r = 2.

(b) $N_{r-1}M_1/M_1 = G/M - 1$ This implies $G = N_{r-1}M_1$, which means $G/M_1 \cong N_{r-1}$. So, $N_{r-1} = 1$, which means r = 2.

By part 2(a), $N_{r-1} = M_1$, and since r = 2, then $N_1 = M_1$, which means the composition series is the same.

- 4.1.7 Let G be a transitive permutation group on the finite set A. A block is a nonempty subset B of A such that for all $\sigma \in G$ either $\sigma(B) = B$ or $\sigma(B) \cap B = \emptyset$ (here $\sigma(B) = \{\sigma(b) \mid b \in B\}$).
 - (a) Prove that if B is a block containing the element a of A, then the set G_B defined by $G_B = \{ \sigma \in G \mid \sigma(B) = B \}$ is a subgroup of G containing G_a .

Proof. Let $a \in A$ and $\sigma \in G_a$. Suppose $a \in B$. Then

$$\sigma(a) = a \in B \implies \sigma(B) = B \implies \sigma \in G_B \implies G_a \subseteq G_B$$

Notice that $G_B \neq \emptyset$ since $\sigma_{id}(B) = B$ and so $\sigma_{id} \in G_B$. Let $\sigma, \tau \in G_B$. Then

$$(\sigma \circ \tau^{-1})(B) = \sigma(\tau^{-1}(B)) = \sigma(B) = B$$

and so, $\sigma \circ \tau^{-1} \in G_B$, thus $G_B \leq G$.

(b) Show that if B is a block and $\sigma_1(B), \sigma_2(B), \ldots, \sigma_n(B)$ are all the distinct images of B under the elements of G, then these form a partition of A.

Proof. We show that for $\ell, k \in \{1, 2, ..., n\}$, either $\sigma_{\ell}(B) \cap \sigma_{k}(B) = \emptyset$ or $\sigma_{\ell}(B) = \sigma_{k}(B)$. Suppose $\sigma_{\ell}(B) \cap \sigma_{k}(B) \neq \emptyset$ and let $x \in \sigma_{\ell}(B) \cap \sigma_{k}(B)$. Then, there exists $b_{1}, b_{2} \in B$ so that $\sigma_{\ell}(b_{1}) = x = \sigma_{k}(b_{2})$. Then,

$$\sigma_{\ell}(b_1) = \sigma_k(b_2) \implies b_1 = \sigma_{\ell}^{-1} \sigma_k(b_1)$$
$$\implies \sigma_{\ell}^{-1} \circ \sigma_k \in B$$
$$\implies (\sigma_{\ell}^{-1} \circ \sigma_k)(B) = B$$
$$\implies \sigma_k(B) = \sigma_{\ell}(B)$$

Thus, σ_{ℓ} and σ_k are either the same or disjoint. Now, it is clear that

$$\bigcup_{i=1}^n \sigma_i(B) \subset A.$$

Let $a \in A$ and $b \in B$. Then, since G acts transitively on A, there exists $\sigma_k \in G$ so that $\sigma(b) = a$. So, $a \in \bigcup_{i=1}^n \sigma_i(B)$ and therefore,

$$\bigcup_{i=1}^{n} \sigma_i(B) = A.$$

4.1.9 ***(Worked with Meghan Malachi and Anup Poudel)*** Assume G acts transitively on the finite set A and let H be a normal subgroups of G. Let $\mathcal{O}_1, \mathcal{O}_2, \ldots, \mathcal{O}_r$ be distinct orbits of H on A.

(a) i. Prove that G permutes the sets $\mathcal{O}_1, \mathcal{O}_2, \ldots, \mathcal{O}_r$ in the sense that for each $g \in G$ and each $i \in \{1, \ldots, r\}$ there is a j such that $g\mathcal{O}_i = O_j$, where $g\mathcal{O} = \{g \cdot a \mid a \in \mathcal{O}\}$ (i.e., $\mathcal{O}_1, \ldots, \mathcal{O}_r$ are blocks).

Proof. Recall that $H \leq G$. If $g \in G$ and $a \in A$, then we can call $H \cdot a$ an orbit of H on A. So,

$$g \cdot a_1 = a_2 \text{ for some } a_2 \in A$$
$$g \cdot (H \cdot a_1) = gH \cdot a_1$$
$$= Hg \cdot a_1$$
$$= H(g \cdot a_1) = H \cdot a_2$$

<u>ili</u>

And so, we have $g \cdot (H \cdot a_1) = H \cdot a_2$. Which means G permutes $\mathcal{O}_1, \mathcal{O}_2, \ldots, \mathcal{O}_r$.

ii. Prove G is transitive on $\{\mathcal{O}_1, \ldots, \mathcal{O}_r\}$.

Proof. We want to show that for all $H \cdot a, H \cdot a_2 \in \{\mathcal{O}_1, \mathcal{O}_2, \dots, \mathcal{O}_r\}$, there exists a $g \in G$ so that

$$g \cdot (H \cdot a_1) = H \cdot a_2$$

Let $a_1, a_2 \in A$, then since G acts transitively on A, there exists $g \in G$ such that $g \cdot a_1 = a_2$. So,

$$H(g \cdot a_1) = H \cdot a_2$$

$$gH \cdot a_1 = H \cdot a_2$$

$$gH \cdot a_1 = H \cdot a_2$$

$$g(H \cdot a_1) = H \cdot a_2$$

And so, there exists a g so that

$$g \cdot (H \cdot a_1) = H \cdot a_2$$

iii. Deduce that all orbits of H on A have the same cardinality.

Proof. Let $a_1, a_2 \in A$ and $g \cdot a_1 = a_2$ for all $g \in G$. Since $H \leq G$, then gH = Hg for all $g \in G$, which means $gHg^{-1} = h_0$ for some $h, h_0 \in H$ and for all $g \in G$. This means that $gh = h_0g$. We define a bijection between the orbits: Define the map

$$\varphi: H \cdot a_1 \to H \cdot a_2$$

by $h \cdot a_1 \mapsto h_0 \cdot a_2$. Because G acts transitively on A, then for all $a_1, a_2 \in A$ there exists a $g \in G$ such that $g \cdot a_1 = a_2$. This implies $g(H \cdot a_1) = a_2$ and so G acts transitively on each \mathcal{O}_i . Now, because $g \cdot (ha) = g \cdot (h_0 a_1)$, then $ha_1 = h_0 a_2$. So, each \mathcal{O}_i has the same cardinality.

(b) Prove that if $a \in \mathcal{O}_1$ then $|\mathcal{O}_1| = [H : H \cap G_a]$ and prove that $r = [G : HG_a]$.

Proof. We know that $|G \cdot a| = [G : G_a]$, so $H \cdot a| = [H : H_a]$. Therefore, $H_a = H \cap G_a$ since $H \leq G$ (and so $H \subset G$). Then,

$$|H \cdot a| = [H : H_a] = [H : H \cap G_a]$$

Since G acts transitively, the number of distinct orbits of H on A is

$$r = |\{H \cdot a \mid a \in A\}| = [G : G_{H \cdot a}]$$

We want to show $[G: G_{H \cdot a}] = [G: HG_a]$, i.e., $G_{H \cdot a} = HG_a$. If $g \in G_{H \cdot a}$, then $Hg \cdot a = (gH) \cdot a = g \cdot (H \cdot a) = H$. So, $g \cdot a = h \cdot a$ for $h \in H$. Then, $h^{-1}(g \cdot a) = a \implies (h^{-1}g) \cdot a = a$. So, $h^{-1}g \in G_a$, which means $g \in hG_a$ and so $g \in HG_a$. If $g \in HG_a$, then $g = h_1 x$ for $h_1 \in H$ and $x \in G_a$. Then,

$$g \cdot (H \cdot a) = (gH) \cdot a = hxH \cdot a = hHx \cdot a = Hhx \cdot a = H \cdot a$$

which means $g \in G_{H \cdot a}$.

4.1.10 ***(Worked with Meghan Malachi and Anup Poudel)*** Let H and K be subgroups of the group G. For each $x \in G$ define the HK double coset of x in G to be the set

$$HxK = \{hxk \mid h \in H, k \in K\}$$

(a) Prove that HxK is the union of the left cosets x_1K, \ldots, x_nK where $\{x_1K, \ldots, x_nK\}$ is the orbit containing xK of H acting by left multiplication on the set of left cosets of K.

Proof. Let $hxk \in HxK$ for $x \in G$. Notice $hxK = h(xK) \in HxK$ and $hxk \in (hx)K$. So,

$$hxk \in \bigcup_{x_i K \in H \cdot xK} x_i K.$$

Now, let $y \in \bigcup_{x_i K \in H \cdot xK} x_i K$. Then, $y \in x_i K$ for some $x_i K \in H \cdot xK$. This implies $x_i K = h \cdot xK = hxK$ for some $h \in H$, so $y \in hxK$. Then, $y = hxk_0$ for $k_0 \in K$. Thus, $y \in HxK$. So,

$$HxK = \bigcup_{x_iK \in H \cdot xK} x_iK$$

<u>"</u>

(b) Prove that HxK is a union of right cosets of H.

Proof. We want to show

$$HxK = \bigcup_{Hb \in H \cdot xK} Hb.$$

Let $hxk \in HxK$. Notice that $Hxk = Hx \cdot k$ and $Hx \cdot k \in Hx \cdot K$. This implies $hxk \in HxK$, and so

$$hxk \in \bigcup_{Hb \in H \cdot xK} Hb$$

Let $g \in \bigcup_{Hb \in H \cdot xK} Hb$. Then $g \in Hb$ for some $Hb \in Hx \cdot K$ and $Hb = Hx \cdot k$ for some $k \in K$. Then, Hb = Hxk, which means $Hb \in HxK$. Thus, $g \in HxK$.

(c) Show that HxK and HyK are either the same set or are disjoint for all $x, y \in G$. Show that the set of HK double cosets partitions G. Proof. We claim that $G = \bigcup HxK$. If $x \in G$ then $x = 1x1 \in HxK$. If $x \in HxK$ then clearly $x \in G$. Now, we want to show $HxK \cap HyK \neq \emptyset$ implies HxK =HyK. Suppose $h_1xk_1 = h_2yk_2$ where $h_1xk_1 \in HxK$ and $h_2yk_2 \in HyK$. Then, $xk_1 = h_1^{-1}h_2yk_2 \implies x = h_1^{-1}h_2yk_2k_1^{-1} \implies x \in HyK \implies HxK \subseteq HyK$

Similarly,

$$h_2 y = h_1 x k_1 k_2^{-1} \implies y = h_2^{-1} h_1 x k_1 k_2^{-1} \implies y \in HxK \implies HyK \subseteq HxK$$

Thus, $HxK = HyK$.

(d) Prove that $|HxK| = |K| \cdot [H : H \cap xKx^{-1}].$

Proof. We know that

$$HxK = \bigsqcup_{yK \in H \cdot xK} yK.$$

Since each yK is disjoint, |yK| = |K|. So,

$$|HxK| = |K| \cdot |H \cdot xK| = |K| \cdot [H : H_{xK}]$$

So, we claim $H_{xK} = H \cap xKx^{-1}$, and the conclusion follows. To prove the claim, observe that

$$h \in H_{xK} \iff h \cdot (xk) = xk$$
$$\iff hxk = xk$$
$$\iff x^{-1}hxk = k$$
$$\iff x^{-1}hx \in K$$
$$\iff h \in xKx^{-1}$$
$$\iff h \in H \cap xKx^{-1}$$

(e) Prove that $|HxK| = |H| \cdot [K : K \cap x^{-1}Hx].$

Proof. We know that

$$HxK = \bigsqcup_{Hy \in H \cdot xk} Hy.$$

Since each Hy is disjoint, |Hy| = |K|. So,

$$|HxK| = |H| \cdot |Hx \cdot K| = |H| \cdot [K : K_{Hx}]$$

As before, we claim $K_{Hx} = K \cap x^{-1}Hx$. Then,

$$k \in K_{Hx} \implies Hx \cdot k = Hxk = Hx$$

We Have that $xKx^{-1}H$. So,

$$k \in x^{-1}Hx \implies k \in K \text{ and } k \in x^{-1}Hx$$

Now, if $k \in K \cap x^{-1}Hx$, then $xkx^{-1} = h$ for $h \in H$, and so
 $xhx^{-1} \in H \implies Hx \cdot k = HxK = Hx \implies k \in K_{Hx}$

4.2.8 Prove that if H has finite index n then there is a normal subgroup K of G with $K \leq H$ and $[G:K] \leq n!$.

Proof. Let $C = \{gH \mid g \in G\}$ be the set of left cosets of H in G. We let G act on C by left multiplication. Let π_H be the associated permutation representation afforded by this action, i.e.,

 $\pi_H: G \to S_{\mathcal{C}}.$

Then, by Theorem 3 (Chapter 4, Dummit and Foote), we know $K = \ker \pi_H \trianglelefteq G$ and $K \le H$. Now, since [G:H] = n, then $S_{\mathcal{C}} \cong S_n$. Since $|S_n| = n!$, then $|S_{\mathcal{C}}| = n!$ as well. So, $|\pi_H(G)| \le n!$. By the First Isomorphism Theorem, $G/K \cong \pi_H(G)$. Thus,

$$n! \ge |\pi_H(G)| = |G/K| = [G:K]$$

3.2.9 (Cauchy's Theorem Revisited)

Look again at 3.2.9. Let $S = \{(x_1, \ldots, x_p) \mid x_i \in G \text{ and } x_1 \cdots x_p = 1\}$. Let σ be the *p*-cycle $(1, 2, \ldots, p)$ in S_p , and let $H = \langle \sigma \rangle$. For all $\tau \in H$ and all $(x_i, \ldots, x_p) \in S$, define

$$\tau.(x_1,\ldots,x_p)=(x_{\tau(1)},\ldots,x_{\tau(p)})$$

(i) Show that this defines a left action of H on S.

Proof. Let $(x_1, \ldots, x_p) \in S$ and σ_{id} be the identity permutation of H. Then,

 $\sigma_{id}.(x_1,\ldots,x_p) = (x_{\sigma_{id}(1)},\ldots,x_{\sigma_{id}(p)}) = (x_1,\ldots,x_p).$

Now, let $\sigma_{\ell}, \sigma^k \in H, 1 \leq \ell, k \leq p$ and $(x_1, \ldots, x_p) \in S$. By a previous exercise, we know that for any $j \in \{1, 2, \ldots, n\}$ and any power of a *p*-cycle, σ^{ℓ} , we have $\sigma^{\ell}(j) = j + \ell$. So,

$$\sigma^{\ell} (\sigma^{k} (x_{1}, \dots, x_{p})) = \sigma^{\ell} (x_{\sigma^{k}(1)}, \dots, x_{\sigma^{k}(p)})$$

$$= \sigma^{\ell} (x_{1+k}, \dots, x_{p+k})$$

$$= (x_{\sigma^{\ell}(1+k)}, \dots, x_{\sigma^{\ell}(p+k)})$$

$$= (x_{1+k+\ell}, \dots, x_{p+k+\ell})$$

$$= (x_{\sigma^{k+\ell}(1)}, \dots, x_{\sigma^{k+\ell}(p)})$$

$$= \sigma^{k+\ell} (x_{1}, \dots, x_{p})$$

$$= (\sigma^{k} \sigma^{\ell}) (x_{1}, \dots, x_{p})$$

Thus, the given mapping defines a left action of H on S.

(ii) Show that the *H*-orbits of this action are precisely the equivalence classes of the equivalence relation defined exercise 3.2.9.

Proof. Let
$$\alpha = (x_1, \dots, x_p) \in S$$
. Then,
 $\mathcal{O}_{\alpha} = \{\tau.\alpha \mid \tau \in H\}$
 $= \{\beta \mid \beta = \tau.\alpha, \tau \in H\}$
 $= \{\beta = (x_{\tau(1)}, \dots, x_{\tau(p)}) \mid \tau \in H\}$
 $= \{\beta = (x_{\tau(1)}, \dots, x_{\tau(p)}) \mid \tau \text{ is a power of the } p\text{-cycle } \sigma\}$
 $= \{\beta \text{ is cyclic permutation of } \alpha\}$

And so \mathcal{O}_{α} is the set of elements which are cyclic permutations of α , i.e., \mathcal{O}_{α} is an equivalence class of the relation defined in 3.2.9.

(iii) Use the orbit lemma to prove that every H-orbit has order 1 or p (thus giving a shorter proof of part (e) of 3.2.9).

Proof. Let $\alpha \in S$ and note that

$$[H:H_{\alpha}] = \frac{|H|}{H_a} = \frac{p}{|H_a|}.$$

Since p is prime, $|H_a| = 1$ or $|H_a| = p$. Thus,

$$[H: H_{\alpha}] = \frac{p}{1} = p \text{ or } [H: H_{\alpha}] = \frac{p}{p} = 1.$$

By the Orbit Lemma, $|\mathcal{O}_{\alpha}| = [H : H_{\alpha}]$, which means $|\mathcal{O}_{\alpha}| = 1$ or $|\mathcal{O}_{\alpha}| = p$.

4.3.29 Let p be a prime and let G be a group of order p^{α} . Prove that G has a subgroup of order p^{β} for every β with $0 \leq \beta \leq \alpha$.

Proof. We proceed by induction on α . For the base case, suppose $\alpha = 1$. Then |G| = p and G has subgroups $\{1_G\}$ and G. Clearly, $|\{1_G\}| = p^0$ and $|G| = p^1$, and so G has a subgroup of order p^{β} for each $0 \leq \beta \leq \alpha = 1$. For the inductive hypothesis, suppose that for each $1 \leq \alpha \leq n-1$, the group G of order p^{α} has a subgroup of order p^{β} for each $0 \leq \beta \leq \alpha$. Let G be a group of order p^n . By Cauchy's Theorem, there exists $g \in G$ with |g| = p. Let $N = \langle p \rangle$. So, $|G/N| = p^{n-1}$, and by the induction hypothesis, G/N has subgroups of order p^{γ} for each $0 \leq \gamma \leq n-1$. By the 4th Isomorphism Theorem, the subgroups of G/N are of the form H/N where $H \leq G$. So for each $0 \leq \gamma \leq n-1$, there is a subgroup $H \leq G$ so that

$$|H/N| = \frac{|H|}{|N|} = \frac{|H|}{p} = p^{\gamma} \implies |H| = p^{\gamma+1}$$

So, G has subgroups of order $p^{\gamma+1}$ for each $\gamma \in \{0, 1, \ldots, n-1\}$, i.e., G has subgroups of order p^{β} for each $\beta \in \{1, \ldots, n\}$. Note that clearly the trivial subgroup of G is of order p^{0} so G contains a subgroup of order p^{β} for each $0 \leq \beta \leq n$.

4.3.31 Using the usual generators and relations for the dihedral group D_{2n} , show that for n = 2k an even integer, the conjugacy classes in D_{2n} are the following:

 $\{1\}, \{r^k\}, \{r^{\pm 1}\}, \{r^{\pm 2}\}, \dots, \{r^{\pm (k-1)}\}, \{sr^{2b} \mid b = 1, \dots, k\} \text{ and } \{sr^{2b-1} \mid b = 1, \dots, k\}$

Give the class equation for D_{2n} .

Proof. We know from a previous exercise that $Z(D_{2n}) = \{1, r^k\}$. Thus, $\{1\}$ and $\{r^k\}$ are conjugacy classes of D_{2n} . Let $1 \le i, \ell \le k-1$ and $j \in \{1, 2\}$. Then, any non-identity element of D_{2n} can be written as $s^j r^i$. Now, we find the conjugacy class of r^{ℓ} :

$$(s^{j}r^{i})(r^{\ell})(s^{j}r^{i})^{-1} = (s^{j}r^{i})(r^{\ell})(r^{-i}s^{-j})$$

= $s^{j}r^{i+\ell-i}s^{j}$ (Note that $s^{j} = s^{-j}$)
= $s^{j}r^{\ell}s^{j}$.

Recall that $sr^{\ell}s = r^{-\ell}$. When j = 1, we have

$$s^j r^\ell s^j = s r^\ell s = r^{-\ell},$$

and when j = 2,

$$s^j r^\ell s^j = 1r^\ell 1 = r^\ell.$$

Thus, $\{r^{\pm \ell}\}\$ are conjugacy classes for each $\ell \in \{1, 2, \ldots, k-1\}$. We now find the conjugacy class of s:

$$(s^{j}r^{i})(s)(s^{j}r^{i})^{-1} = (s^{j}r^{i})(s)(r^{-i}s^{j}).$$

Recall that $r^{-i}s = sr^i$. When j = 1

$$(s^{j}r^{i})(s)(r^{-i}s^{j}) = sr^{i}sr^{-i}s = sr^{i}s(sr^{i}) = sr^{i}s^{2}r^{i} = sr^{2i},$$

and when j = 2,

$$(s^{j}r^{i})(s)(r^{-i}s^{j}) = r^{i}sr^{-i} = (sr^{-i})r^{-i} = sr^{-2i} = sr^{-2(n-i)}.$$

Thus, the conjugacy class of s is $\{sr^{2i} \mid 1 \leq i \leq k\}$. Finally, we find the conjugacy class of sr:

$$(s^{j}r^{i})(sr)(s^{j}r^{i})^{-1} = (s^{j}r^{i})(sr)(r^{-i}s^{j})$$

Then, when j = 1,

$$(s^{j}r^{i})(sr)(r^{-i}s^{j}) = (sr^{i})(sr)(r^{-i}s)$$

= $sr^{i}(r^{-1}s)r^{-i}s$
= $sr^{i-1}(sr^{-i})s$
= $sr^{i-1}(r^{i}s)s$
= sr^{2i-1} .

and when j = 2, we have

$$(s^{j}r^{i})(sr)(r^{-i}s^{j}) = r^{i}(sr)r^{-i}$$

= $r^{i}(r^{-1}s)r^{-i}$
= $(r^{i-1}s)r^{-i}$
= $(sr^{-i+1})r^{-i}$
= sr^{-2i+1}
= $sr^{-2(n-i)+1}$

So, the conjugacy class of sr is $\{sr^{2i-1} \mid 1 \leq i \leq k-1\}$. So, the class equation of D_{2n} is as follows:

$$|D_{2n}| = 1 + 1 + \underbrace{2 + 2 + \dots + 2}_{(k-1)- \text{ summands}} + k + k$$

4.4.8 Let G be a group with subgroups H and K with $H \leq K$.

(a) Prove that if H is characteristic in K and K is normal in G, then H is normal in G.

Proof. Let $\sigma_g \in \operatorname{Aut}(G)$ be conjugation by g for each $g \in G$. Since K is normal in G, then for each $\sigma_g \in \operatorname{Aut}(G)$, we have

$$\sigma_q(K) = gKg^{-1} = K.$$

Therefore, $\sigma_g \in \operatorname{Aut}(K)$ for each $g \in G$. Since H is characteristic in K, then for each $\sigma_g \in \operatorname{Aut}(K)$, we have

$$H = \sigma_g(H) = gHg^{-1}.$$

Thus, H is normal in G.

(b) Prove that if H is characteristic in K and K is characteristic in G then H is characteristic in G. Use this to prove that the Klein 4-group V_4 is characteristic in S_4 .

Proof. Let $\sigma \in Aut(G)$. Then, as K is characteristic in G,

$$\sigma(K) = K.$$

Thus, $\sigma \in \operatorname{Aut}(K)$. Since H is characteristic in K, then

$$\sigma(H) = H$$

and so H is characteristic in G.

To show V_4 is characteristic in S_4 , we first prove the following: If H is a unique subgroup of a given order in a group G, then H is characteristic in G.

To see this, let $\sigma \in \operatorname{Aut}(G)$. Then, since σ is bijective, then the order of the image of H under σ , $\sigma(H)$, is the order of |H|. Since σ is a homomorphism, $\sigma(H)$ is a subgroup of G. Since H is the only subgroup of order |H|, then $\sigma(H) = H$, and thus H is characteristic in G.

Now, since V_4 is the unique subgroup of A_4 of order 4, then V_4 is characteristic in A_4 . Also, since A_4 is the unique subgroup of order 12 in S_4 , then A_4 is characteristic in S_4 . So, by the result above, we know V_4 is characteristic in S_4 .

(c) Give an example to show that if H is normal in K and K is characteristic in G then H need not be normal in G.
Solution

Solution:

We know that since $V_4 = \{(), (12)(34), (13)(24), (14)(23)\}$ is abelian, then the subgroup $H = \{(), (14)(23)\}$ of V_4 is normal. So, we know that

$$H \leq V_4$$
 char A_4 .

But

$$(123)(14)(23)(132) = (13)(24) \notin H,$$

and so $H \not \leq A_4$.

4.3.17 Let A be a nonempty set and let X be any subset of S_A . Let

$$F(X) = \{a \in A \mid \sigma(A) = a \text{ for all } \sigma \in X\} \quad -\text{the fixed set of } X.$$

Let M(X) = A - F(X) be the elements which are *moved* by some element of X. Let $D = \{\sigma \in S_A \mid |M(\sigma)| < \infty\}$. Prove that D is a normal subgroup of S_A .

Proof. We first show that D is a subgroup of S_A . Notice that $\sigma_{id} \in D$ since

$$|M(\sigma_{id})| = |A - F(\sigma_{id})| = |A - A| = |\emptyset| = 0 < \infty.$$

Let $\sigma, \tau \in D$. Notice that $M(\tau) = M(\tau^{-1})$. We show that $\sigma \circ \tau^{-1} \in D$. Suppose $|M(\sigma)| = s < \infty$ and $|M(\tau^{-1})| = |M(\tau)| = t < \infty$. Notice that

$$M(\sigma\circ\tau)\subseteq M(\sigma)\cup M(\tau)$$

and so

$$|M(\sigma \circ \tau)| \le |M(\sigma)| + |M(\tau)| = s + t < \infty.$$

We now show $D \leq S_A$. Let $\sigma \in S_A$, and $\tau \in D$. We claim that $\sigma \tau \sigma^{-1} \in D$, i.e., $|M(\sigma \tau \sigma^{-1})| < \infty$. If $|A| < \infty$, then we are done. Suppose $|A| = \infty$. We proceed by contradiction. Suppose $|M(\sigma \tau \sigma^{-1})| = \infty$. Then, there exists an infinite subset $B \subseteq A$ so that for all $b \in B$ we have

$$(\sigma\tau\sigma^{-1})(b)\neq b.$$

This implies that for all $b \in B$,

$$\tau(\sigma^{-1}(b)) \neq \sigma^{-1}(b)$$

In other words $|M(\tau)| = \infty$, a contradiction, as $\tau \in D$. Thus, $|M(\sigma\tau\sigma)| < \infty$, and so $D \leq S_A$.

4.3.19 Assume $H \leq G$, and \mathcal{K} is a conjugacy class of G contained in H and $x \in \mathcal{K}$. Prove that \mathcal{K} is a union of k conjugacy classes of equal size in H, where $k = [G : HC_G(x)]$. Deduce that a conjugacy class in S_n which consists of even permutations is either a single conjugacy class under the action of A_n or is a union of two classes of the same size in A_n . [Let $A = C_G(x)$ and B = H so $A \cap B = C_H(x)$. Draw the lattice diagram associated to the Second Isomorphism Theorem and interpret the appropriate indices. See also Exercise 9, Section 1.]

Proof. Let H act on \mathcal{K} by conjugation. Then, \mathcal{K} is the union of H-orbits;

$$\mathcal{K} = \bigcup_{x \in \mathcal{K}} H.x$$

We claim that the *H*-orbit has of equal size. Let *H.a* and *H.b* be distinct *H*-orbits (conjugacy classes of \mathcal{K} in *H*). Then, as *a* and *b* are in the same conjugacy class \mathcal{K} , there exists a $g \in G$ so that $gag^{-1} = b$. We claim |H.a| = |H.b|. Notice

$$g(H.a)g^{-1} = \{g(hah^{-1})g^{-1} \mid h \in H\}$$

$$= \{(gh)a(gh)^{-1} \mid h \in H\}$$

$$= \{xax^{-1} \mid x \in gH\}$$

$$= \{yay^{-1} \mid y \in Hg\}$$

$$= \{(hg)a(hg)^{-1} \mid h \in H\}$$

$$= \{h(gag^{-1})h^{-1} \mid h \in H\}$$

$$= \{hbh^{-1} \mid h \in H\}$$

$$= H.b$$
Thus, H.a and H.b are conjugate and so |H.a| = |H.b|. Suppose $x \in \mathcal{K}$. Since all conjugacy classes in \mathcal{K} have equal size,

$$|\mathcal{K}| = k \cdot |H.x|$$
 for some $k \in \mathbb{Z}^+$.

We claim that $k = [G : HC_G(x)]$. Since K = G.x is a conjugacy class of G, then $G_x = C_G(x)$. Likewise, as H.x is a conjugacy call of H, then $H_x = C_H(x)$. Then by the Orbit-Stabilizer Theorem,

$$|G.x| = [G:G_x] = [G:C_G(x)]$$
 and $|H.x| = [H:H_x] = [H:C_H(x)]$

So,

$$|\mathcal{K}| = k \cdot |H.x| \implies \frac{|\mathcal{K}|}{|H.x|} = \frac{|G.x|}{|H.x|} = \frac{[G:C_G(x)]}{[H:C_H(x)]}$$

Since $H \leq G$ and $C_G(x) \leq G$, then $HC_G(x) \leq G$ by Corollary 15 of Section 3.2 (D&F). So,

$$C_G(x) \le HC_G(x) \le G.$$

By Exercise 11 of Section 3.2, we have

$$[G: C_G(x)] = [G: HC_G(x)] \cdot [HC_G(x): C_G(x)].$$

So,

$$\frac{[G:C_G(x)]}{[H:C_H(x)]} = \frac{[G:HC_G(x)] \cdot [HC_G(x):C_G(x)]}{[H:C_H(x)]}$$

Note that $H \cap C_G(x) = C_H(x)$. Since $H \leq G$ and $C_G(x) \leq G$, then by the Second Isomorphism Theorem,

$$HC_G(x)/H \cong C_G(x)/H \cap C_G(x) = C_G(x)/C_H(x).$$

This means

$$[HC_G(x):H] = [C_G(x):C_H(x)], \text{ which implies } \frac{|HC_G(x)|}{|H|} = \frac{|C_G(x)|}{C_H(x)}.$$

Rearranging, we get

$$\frac{|HC_G(x)|}{|C_G(x)|} = \frac{|H|}{C_H(x)} \text{ which implies } [HC_G(x) : C_G(x)] = [H : C_H(x)].$$

So,

$$\frac{[G:HC_G(x)] \cdot [HC_G(x):C_G(x)]}{[H:C_H(x)]} = \frac{[G:HC_G(x)][H:C_H(x)]}{[H:C_H(x)]}$$
$$= [G:HC_G(x)].$$

Therefore, $k = [G : HC_G(x)].$

Now, consider the normal subgroup A_n of S_n . Suppose K is a conjugacy class of S_n and $K \subseteq A_n$. If $\sigma \in K$, then by what was just proved, K is a union of distinct conjugacy classes of A_n of equal size. In particular, K is made up of $k = [S_n : A_n C_{S_n}(\sigma)]$ conjugacy classes of A_n of equal size. Now, since

$$A_n \le A_n C_{S_n}(\sigma) \le S_n$$

and A_n is a maximal subgroup of S_n , then either $A_n C_{S_n}(\sigma) = A_n$ or $A_n C_{S_n}(\sigma) = S_n$. In the former case, K is a single conjugacy class under the action of A_n . In the latter case, K is the union of two conjugacy classes of the same size in A_n .

4.3.23 Recall that a proper subgroup M of G is called *maximal* if whenever $M \leq H \leq G$, either H = M or H = G. Prove that if M is a maximal subgroup of G then either $N_G(M) = M$ or $N_G(M) = G$. Deduce that if M is a maximal subgroup of G that is not normal in G then the number of nonidentity elements of G that are contained in conjugates of M is at most (|M| - 1)[G : M].

Proof. *From Online Solution Manual*

Since M is a subgroup, we have $M \leq N_G(M) \leq G$. Then, $N_G(M) = M$ or $N_G(M) = G$. If M is not normal, then $N_G(M) = M$.

By the Orbit-Stabilizer Theorem, the number of conjugates of M is $|G.M| = [G : N_G(M)] = [G : M]$. Now all conjugates of M have the same cardinality as M, and we will have the largest number of nonidentity elements in the conjugates of M precisely when these conjugates intersect trivially. In this case, the number of nonidentity elements in the conjugates of M is at most $(|M| - 1) \cdot [G : M]$.

4.3.24 Assume H is a proper subgroup of the finite group G. Prove $G \neq \bigcup_{g \in G}$, i.e., G is not the union of the conjugates of any proper subgroup.

Proof. *From Online Solution Manual*

There exists a maximal subgroup M containing H. If M is normal in G, then

$$\bigcup_{g \in G} gHg^{-1} \subseteq \bigcup_{g \in G} gMg^{-1} = M \neq G.$$

If M is not normal, we still have

$$\bigcup_{g\in G}gHg^{-1}\subseteq \bigcup_{g\in G}gMg^{-1}.$$

By Exercise 23 above, we know that

$$\bigcup_{g \in G} gMg^{-1}$$

contains at most $(|M| - 1) \cdot [G : M]$ nonidentity elements. Thus,

$$\left| \bigcup_{g \in G} g H g^{-1} \right| \le |G| - [G : M] + 1 < |G|$$

because $[G:M] \ge 2$. Since G is finite,

$$G \neq \bigcup_{g \in G} gHg^{-1}.$$

Thus, G is not the union of all conjugates of any proper subgroup.

٩

4.3.26 Let G be a transitive permutation group on the finite set A with |A| > 1. Show that there is some $\sigma \in G$ such that $\sigma(a) \neq a$ for all $a \in A$ (such an element is called *fixed point free*).

Proof. *From Online Solution Manual*

By way of contradiction, suppose that for all $\sigma \in G$, there exists $a \in A$ such that $\sigma(a) = a$. Then

$$\bigcup_{a \in A} G_a.$$

Now because this action is transitive, if we fix $b \in A$, then as σ ranges over G, $\sigma \cdot b$ is arbitrary in A. So in fact,

$$G = \bigcup_{\sigma \in G} G_{\sigma(b)} = \bigcup_{\sigma \in G} \sigma G_b \sigma^{-1}.$$

Now, because the action is transitive, and |A| > 1, we know that G_b is a proper subgroup. Thus, $G \leq S_a$ is finite. By Exercise 24 above, we have a contradiction. Thus, there exists an element $\sigma \in G$ that is fixed point free.

4.3.27 let g_1, g_2, \ldots, g_r be representatives of the conjugacy classes of the finite group G and assume these elements pairwise commute. Prove that G is abelian.

Proof. *From Online Solution Manual* Let G act on itself by conjugation. Not that

$$g_1, g_2, \ldots, g_r \in G_{g_k}$$

for all $k \in \{1, \ldots, r\}$. Let $x \in G$. Then,

$$x = ag_i a^{-1}$$

for some $a \in G$ and g_i . Thus, $x \in aG_{g_k}a^{-1}$ for each k since g_i stabilizes each g_k . Moreover,

$$x \in \bigcup_{a \in G} aG_{g_k} a^{-1}$$

for all k. So,

$$G = \bigcup_{a \in G} a G_{g_k} a^{-1}$$

for each k. Since G is finite, then by Exercise 24, G_{g_k} must not be a proper subgroup, i.e., $G_{g_k} = G$ for each g_k .

Now, let $a, b \in G$ where $a = xg_a x^{-1}$ and $b = yg_b y^{-1}$. Then,

$$ab = (xg_a x^{-1})(yg_b y^{-1})$$
$$= xx^{-1}g_a g_b yy^{-1}$$
$$= g_b g_a$$
$$= yy^{-1}g_b g_a xx^{-1}$$
$$= yg_b y^{-1} xg_a x^{-1}$$
$$= ba$$

Therefore, G is abelian.

4.5.16 Let |G| = pqr where p, q, and r are primes with p < q < r. Prove that G has a normal Sylow subgroup subgroup for either p, q, or r.

Proof. Suppose no Sylow subgroup for either p, q, or r is normal. Then, since $n_r | pq$ then $n_r \in \{p, q, pq\}$. But since p < q < r, then neither p nor q can be congruent to 1 mod r. So, $n_r = pq$. Since each Sylow r-subgroup of G has exactly r - 1 non-identity elements, we have

$$pq(r-1) = pqr - pq \tag{1}$$

total non-identity elements of G from the Sylow r-subgroups. Since $n_q | pr$ then $n_1 \in \{p, r, pr\}$. But since p < q, then p cannot be congruent to 1 mod q. Thus, $n_q = r$ or $n_q = pr$. In either case,

$$n_q(q-1) > p(q-1) = pq - p,$$
 (2)

i.e., there are more than pq - p non-identity elements from the Sylow q- subgroups. Since $n_p|qr$, then $n_p \in \{q, r, qr\}$. By (1) and (2), G has less than

$$pqr - ((pqr - pq) + (pq - p) + 1) = p - 1$$

elements left to make up the number of nonidentity elements in the Sylow *p*-subgroups, which is impossible since there are at least q(p-1) nonidentity elements from the Sylow *p*-subgroups. Thus, we have a contradiction.

4.5.22 Prove that if |G| = 132 then G is not simple.

Proof. Notice that $132 = 2^2 \cdot 3 \cdot 11$. Since $n_2|(3 \cdot 11)$ and $n_2 \equiv 1 \mod 2$, then $n_2 \in \{1, 3, 11\}$. Similarly, since $n_3|(2^2 \cdot 11)$ and $n_3 \equiv 1 \mod 3$ then $n_3 \in \{1, 4\}$. And finally, since $n_{11}|(2^2 \cdot 3)$ and $n_{11} \equiv 1 \mod 11$ then $n_{11} \in \{1, 12\}$. Suppose for contradiction that G is simple. Then, $n_3 = 4$, which means G contains exactly 4(3 - 1) = 8 elements of order 3. Similarly, $n_{11} = 12$ which means G contains exactly 12(11 - 1) = 120 elements of order 11 in G. Then there are 132 - 8 - 120 = 4 elements of order G which are not of order 3 nor 11. So, there is space for exactly 1 Sylow 2-subgroup of order 4, i.e., $n_2 = 1$ and so G contains a normal subgroup of order 4, a contradiction. Thus G is not simple.

- 5.1.2 Let G_1, G_2, \ldots, G_n be groups and let $G = G_1 \times \cdots \times G_n$. Let I be a proper, nonempty subset of $\{1, \ldots, n\}$ and let $J = \{1, \ldots, n\} - I$. Define G_I to be the set of elements of G that have the identity of G_j in position j for all $j \in J$.
 - (a) Prove that G_I is isomorphic to the direct product of the groups G_i , $i \in J$,

Proof. We first show that $G_I \leq G$. Since $(1, 1, \ldots, 1, 1, 1) \in G_I$, then $G_I \neq \emptyset$. Let $x, y \in G_I$. For each $i \in I$, the coordinates x_i and y_i^{-1} of x and y^{-1} respectively are in G_i and so $x_i y_i^{-1} \in G_i$. For each $j \in J$, we have $x_j = 1_{G_j}$ and $y_j^{-1} = 1_{G_j}$ as the j-th coordinate of x and y, respectively, and so $x_j y_j^{-1} = 1_{G_j} \in G_j$. Since the k-th coordinate of the product of xy^{-1} is in G_k for all $1 \leq k \leq n$, then $xy^{-1} \in G_I$. So, $G_I \leq G$.

Let $I = \{i_1, i_2, \ldots, i_k\}$. We define a map

$$\varphi: G_I \to G_{i_1} \times G_{i_2} \times \cdots \times G_{i_k}$$

where the *n*-tuple x is mapped to the k-tuple y in the following way: The r-th coordinate of y takes the value corresponding to the coordinate x_{i_r} of x, where $i_r \in I$.

Given $y \in G_{i_1} \times \cdots \times G_{i_k}$, we can choose $x \in G_I$ so that for all $i_r \in I$, the i_r -th coordinate of x corresponds to the r-th coordinate of y. Thus, φ is surjective. Also, if two elements $x, y \in G_I$ are not equal, then it must be the case that for at least one index $i_r \in I$, the coordinates x_{i_r} and y_{i_r} of x and y, respectively, are not equal. Thus, by definition of φ , we will have $\varphi(x) \neq \varphi(y)$ and so φ is injective. Finally, for any $x, y \in G_I$, consider the coordinates x_{i_r} and y_{i_r} of x and y, respectively, $i_r \in I$. Then, the product xy will have $x_{i_r}y_{i_r}$ as it's i_r -th coordinate. So, $\varphi(xy)$ will have $x_{i_r}y_{i_r}$ as it's r-th coordinate. Then, $\varphi(x)$ and $\varphi(y)$ will have their r-th coordinates the values x_{i_r} and y_{i_r} , respectively. So, $\varphi(x)\varphi(y)$ will have as it's r-th coordinate the value $x_{i_r}y_{i_r}$. Thus, $\varphi(xy) = \varphi(x)\varphi(y)$. So, φ is an isomorphism.

(b) Prove that G_I is a normal subgroup of G and $G/G_I \cong G_J$.

Proof. Let $J = \{j_1, \ldots, j_\ell\}$. Define a map

$$\psi: G \to G_J$$

where the *n* tuple *x* is sent to the ℓ -tuple *y* in the following way: The *t*-th coordinate of *y* takes on the values corresponding to the j_t -th coordinate of *x*.

Given any $y \in G_j$, we can let $x \in G$ be the *n*-tuple which has x_{j_t} as the j_t -th coordinate where x_{j_t} equals the *t*-th coordinate of *y* for all $j_t \in J$. Then $\psi(x) = y$ and so ψ is surjective. By a very similar argument as in part (a), we see that ψ is a group homomorphism. Now,

 $\ker(\psi) = \{x \in G \mid \psi(x) = (1, 1, 1, \dots, 1) = \text{ the } \ell\text{-tuple consisting of all identity elements.} \}$ $= \{x \in G \mid x = (1, 1, \dots, 1) = \text{ the } n\text{-tuple consisting of all identity elements.} \}$ $= \{x \in G \mid x \text{ has the identity in the } j\text{-th coordinate for all } j \in J. \}$ $= G_I$

By the First Isomorphism Theorem, $G_I \trianglelefteq G$ and $G/G_I \cong G_J$.

(c) Prove that $G \cong G_I \times G_J$.

Proof. Since $G_I \leq G$, and $G_J \leq G$, then $G_I G_J \leq G$. Since $G_I \cap G_J = 1$, then

$$|G_I G_J| = \frac{|G_I||G_J|}{|G_I \cap G_J|} = \frac{|G_I||G_J|}{1} = |G|.$$

So, $G = G_I G_J$. By a similar map as in (b), we get that $G_J \leq G$ and so by Theorem 9, (pg. 171, D&F), we have $G \cong G_I \times G_K$.

5.4.11 Prove that if G = HK where H and K are characteristic subgroups of G with $H \cap K = 1$, then Aut $(G) \cong Aut(H) \times Aut(K)$. Deduce that if G is an abelian group of finite order then Aut(G) is isomorphic to the direct product of the automorphism groups of its Sylow subgroups. *Proof.* Define the map

$$f : \operatorname{Aut}(G) \to \operatorname{Aut}(H) \times \operatorname{Aut}(K)$$
 by $\sigma \mapsto (\sigma|_H, \sigma|_K)$.

<u>*f*</u> is a homomorphism: Let $\sigma, \tau \in \operatorname{Aut}(G)$. Since *H* is characteristic in *G*, $\sigma|_H(H) = H$ and similarly, $\tau|_H(H) = H$. So, $(\sigma \circ \tau)|_H = \sigma|_H \circ \tau|_H$. Similarly for *K*. Then,

$$f(\sigma \circ \tau) = ((\sigma \circ \tau)|_H, (\sigma \circ \tau)|_K)$$
$$= (\sigma|_H \circ \tau|_H, \sigma|_K \circ \tau|_K)$$
$$= (\sigma|_H, \sigma|_K)(\tau|_H, \tau|_K)$$
$$= f(\sigma) \circ f(\tau).$$

<u>f is surjective</u>: Let $(\alpha, \beta) \in Aut(H) \times Aut(K)$. We need to find $\sigma \in Aut(G)$ so that $f(\sigma) = (\alpha, \beta)$. First, define

$$\tilde{\sigma}: H \times K \to H \times K$$
, where $\tilde{\sigma}(h,k) = (\alpha(h), \beta(k)).$

We claim $\tilde{\sigma} \in \operatorname{Aut}(H \times K)$.

• $\tilde{\sigma}$ is a group homomorphism: Let $h, h' \in H, k, k' \in K$. Then

$$\begin{split} \tilde{\sigma}((h,k)(h',k')) &= \tilde{\sigma}((hh',kk')) \\ &= (\alpha(hh'),\beta(kk')) \\ &= (\alpha(h)\alpha(h'),\beta(k)\beta(k')) \\ &= (\alpha(h),\beta(k))(\alpha(h'),\beta(k')) \\ &= \tilde{\sigma}((h,k))\tilde{\sigma}((h',k')) \end{split}$$

• $\tilde{\sigma}$ is surjective:

Since α, β are surjective, then given $h' \in H, k' \in K$, there exists $h \in H, k \in K$ so that $\alpha(h) = h'$ and $\beta(k) = k'$. Thus, $\tilde{\sigma}((h, k)) = (\alpha(h), \beta(k)) = (h', k')$.

• $\tilde{\sigma}$ is injective: If $\tilde{\sigma}((h,k)) = \tilde{\sigma}((h'k'))$, then $(\alpha(h), \beta(k)) = (\alpha(h'), \beta(k'))$, which means $\alpha(h) = \alpha(h')$ and $\beta(k) = \beta(k')$. Since both α and β are injective, h = h' and k = k' which means (h,k) = (h',k').

Since H and K are characteristic in G, they are normal subgroups of G. Since $H \cap K = 1$ and G = HK, then by Theorem 9, (p 171, D& F), $G \cong H \times K$. Now, let

$$j: G \to H \times K$$
 where $hk \mapsto (h, k)$

be the canonical isomorphism between G and $H \times K$. Since $H \cap K = 1$ and HK = G, then each element $g \in G$ can be expressed as a *unique* product hk for $h \in H, k \in K$. Therefore, j^{-1} is well-defined. Then,

$$j^{-1} \circ \tilde{\sigma} \circ j : G \to H \times K \to H \times K \to G.$$

<u>Claim</u>: $\sigma = j^{-1} \circ \tilde{\sigma} \circ j$ gives $f(\sigma) = (\alpha, \beta)$ as desired. We show that $\sigma|_H = \alpha$. Let $h \in H$. Then,

$$\sigma(h) = (j^{-1} \circ \tilde{\sigma} \circ j)(h)$$

= $(j^{-1} \circ \tilde{\sigma})j(h)$
= $j^{-1}(\tilde{\sigma}(h, 1_G))$
= $j^{-1}((\alpha(h), \beta(1_G)))$
= $j^{-1}((\alpha(h), 1_G))$
= $\alpha(h) \cdot 1_G$
= $\alpha(h)$.

Similarly, we get $\sigma|_K = \beta$. Thus, $f(\sigma) = (\sigma|_H, \beta|_K) = (\alpha, \beta)$ and f is surjective.

<u>*f* is injective</u>: Let $\sigma, \tau \in \text{Aut}(G)$ and suppose $f(\sigma) = f(\tau)$. Then $(\sigma|_H, \sigma|_K) = (\tau|_H, \tau|_K)$ and so $\sigma|_H = \tau|_H$ and $\sigma|_K = \tau|_K$. Let $g \in G$. We need to show that $\sigma(g) = \tau(g)$. Since G = HK, g = hk for some $h \in H, k \in K$. So,

$$\sigma(g) = \sigma(hk) = \sigma(h)\sigma(k) = \tau(h)\tau(k) = \tau(hk) = \tau(g).$$

Let G be abelian and $|G| = n < \infty$ and let the unique factorization of n into distinct prime powers be

$$n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_k^{\alpha_k}$$

Since G is abelian, then all of its subgroups are normal subgroups. In particular, every Sylow p_j -subgroup is normal for all $1 \leq j \leq k$. Let $Q_j \in \text{Syl}_{p_j}(G)$ for all $1 \leq j \leq k$. Since each Q_j is normal in G, each Q_j is the unique Sylow p_j -subgroup of order $p_j^{\alpha_j}$. Since each Q_j is normal in G, then

$$Q_1 Q_2 \dots Q_k \le G.$$

For each fixed $i \in \{1, \ldots, k\}$ and $j \in \{1, \ldots, k\}$ if $i \neq j$ then $Q_i \cap Q_j = 1$ and so $|Q_1 Q_2 \dots Q_k| = |G|$. Thus, $Q_1 Q_2 \dots Q_k = G$. Therefore, by what was just proved,

$$\operatorname{Aut}(G) \cong \operatorname{Aut}(Q_1) \times \operatorname{Aut}(Q_2) \times \cdots \times \operatorname{Aut}(Q_k).$$

<u>____</u>

4.5.32 Let P be a Sylow p-subgroup of H and let H be a subgroup of K. If $P \leq H$ and $H \leq K$ prove that P is normal in K. Deduce that if $P \in Syl_p(G)$ and $H = N_G(P)$ then $N_G(H) = H$.

Proof. Since $P \trianglelefteq H$ and P is a Sylow *p*-subgroup of H, then P is characteristic in H. Since $H \trianglelefteq K$ then $conj(k)(H) = kHk^{-1} = H$ for all $k \in K$. So $conj(k) \in Aut(H)$ for all $k \in K$. Since P is characteristic in H, then

$$P = conj(k)(P) = kPk^{-1} \quad \forall k \in K.$$

Therefore, $P \trianglelefteq K$.

Since $H = N_G(P)$ then $P \leq H$. Let $K = N_G(H)$. Since $H \leq N_G(H) = K$ then by what was just proved, $P \leq K = N_G(H)$, which implies $N_G(H) = N_G(P) = H$.

4.5.34 Let $P \in Syl_p(G)$ and assume $N \leq G$. Use the conjugacy part of Sylow's Theorem to prove that $P \cap N$ is a Sylow *p*-subgroup of *N*. Deduce that PN/N is a Sylow *p*-subgroup of G/N.

Proof. Let $Q \in Syl_p(N)$. Then there exists $g \in G$ so that $Q \leq gPg^{-1}$. Since $Q \leq N$ and $Q \leq gPg^{-1}$ then $Q \leq gPg^{-1} \cap N$. Then,

$$Q \leq gPg^{-1} \cap N$$

$$Q \leq gPg^{-1} \cap gNg^{-1}$$
 (Since $N \leq G$)

$$Q \leq g(P \cap N)g^{-1}$$

 $^{-1}Qg \leq P \cap N$

Since $g^{-1}Qg \in Syl_p(N)$ then $g^{-1}Qg$ is of maximal prime power order in N. Since $P \cap N$ is a subgroup of N with prime order, it must be that $P \cap N = g^{-1}Qg$, i.e., $P \cap N \in Syl_p(N)$.

Observe that

$$|G/N| = \frac{|G|}{|N|} = p^{\alpha-\beta} \cdot (m\tilde{n}).$$

By the Second Isomorphism Theorem, $PN/N \cong P/P \cap N$. So,

g

$$|PN/N| = |P/P \cap N| = \frac{|P|}{|P \cap N|} = \frac{p^{\alpha}}{p^{\beta}} = p^{\alpha - \beta}.$$

Therefore, $PN/N \in Syl_p(G/N)$.

4.5.36 Prove that if $N \leq G$ then $n_p(G/N) \leq n_p(G)$.

Proof. Let $|G| = p^{\alpha} \cdot m$ and $|N| = p^{\beta} \cdot \tilde{n}$ where m and \tilde{n} do not divide p^{α} and p^{β} , respectively. Note that from the previous exercise, $PN/N \in Syl_p(G/N)$ for any $P \in Syl_p(G)$. Define a map

$$\varphi: Syl_p(G) \to Syl_p(G/N)$$
 by $P \mapsto PN/N$.

We show that φ is surjective so that $|Syl_p(G)| \leq |Syl_p(G/N)|$, i.e., $n_p(G/N) \leq n_p(G)$. Let $\overline{Q} \in Syl_p(G/N)$. By the 4th Isomorphism Theorem, there exists a subgroup $Q \leq G$ so that $N \leq Q$ and $Q/N = \overline{Q}$. Notice

$$p^{\alpha-\beta} = |\overline{Q}| = |Q/N| = \frac{|Q|}{|N|} \implies |Q| = p^{\alpha} \cdot \tilde{n}.$$

Let $R \in Syl_p(Q)$. Then $|R| = p^{\alpha}$ and so $R \in Syl_p(G)$. Again by the previous exercise, $RN/N \in Syl_p(G/N)$. Notice that $R \leq Q$ and $N \leq Q$ so that $RN \leq Q$. Then $RN/N \leq Q/N$ but

$$|RN/N| = p^{\alpha-\beta} = |Q/N|$$

Therefore,

$$\varphi(R) = RN/N = Q/N = \overline{Q}.$$

5.1.4 Let A and B be finite groups a p be prime. Prove that any Sylow p-subgroup of $A \times B$ is of the form $P \times Q$, where $P \in Syl_p(A)$ and $Q \in Syl_p(B)$. Prove that $n_p(A \times B) = n_p(A)n_p(B)$. Generalize both of these results to a direct product of any finite number of finite groups (so that the numbers of Sylow p-subgroups of a direct product is the product of the numbers of Sylow p-subgroups of the factors).

Proof. First notice that

$$N_{A \times B}(P \times Q) = \{(a, b) \in A \times B \mid (a, b)(p, q)(a^{-1}, b^{-1}) \in P \times Q \quad \forall (p, q) \in P \times Q\}$$

$$= \{(a, b) \in A \times B \mid (apa^{-1}, bqb^{-1}) \in P \times Q \quad \forall p \in P, \quad \forall q \times Q\}$$

$$= \{a \in A, b \in B \mid apa^{-1} \in P, bqb^{-1} \in Q \quad \forall p \in P, \quad \forall q \in Q\}$$

$$= \{a \in A \mid apa^{-1} \in P \quad \forall p \in P\} \times \{b \in B \mid bqb^{-1} \in Q \quad \forall q \in Q\}$$

$$= N_A(P) \times N_B(Q)$$

Which gives

$$n_p(A)n_p(B) = \frac{|A| \cdot |B|}{|N_A(P)| \cdot |N_B(Q)|} = \frac{|A| \cdot |B|}{|N_A(P) \times N_B(Q)|} = \frac{|A \times B|}{|N_{A \times B}(P \times Q)|} = n_p(A \times B).$$

Let $|A| = p^{\alpha} \cdot m$ and $|B| = p^{\beta} \cdot \tilde{n}$. Let $P \in Syl_p(A)$ and $Q \in Syl_p(B)$. Then, $P \times Q \leq A \times B$ and $|P \times Q| = |P| \cdot |Q| = p^{\alpha+\beta}$ which implies $P \times Q \in Syl_p(A \times B)$.

(Couldn't figure out the opposite direction for this proof. What is left is from the online solution manual).

Now, let $R \in Syl_p(A \times B)$. Define $X = \{x \in A \mid (x, y) \in R \text{ for some } y \in B\}$ and $Y = \{y \in B \mid (x, y) \in R \text{ for some } x \in A\}$. Then $X \leq A$ because

$$\begin{aligned} x_1, x_2 \in X \implies (x_1, y_1), (x_2, y_2) \in R \text{ for some } y_1, y_2 \in B \\ \implies (x_1 x_2^{-1}, y_1, y_2^{-1}) \in R \\ \implies x_1, x_2^{-1} \in X \\ \implies X \leq A. \end{aligned}$$

Similarly, we get $Y \leq B$. Note that if $(x, y) \in R$ then $|(x, y)| = p^k$ for some k. We also know $|(x, y)| = \operatorname{lcm}(|x|, |y|)$ so that x and y have p-power order. So, X and Y are p-subgroups, as otherwise some nonidentity element does not have p-power order. By Sylow's Theorem, there exist Sylow p-subgroups P and Q of A and B, respectively so that X is contained in P and Y is contained in Q, i.e., $X \leq P$ and $Y \leq Q$. Then, $R \leq X \times Y \leq P \times Q$. But since $|R| = p^{\alpha+\beta} = |P \times Q|$ implies $R = P \times Q$.

Thus any Sylow *p*-subgroup of $A \times B$ has the form $P \times Q$ for some $P \in Syl_p(A)$ and $Q \in Syl_p(B)$.

By induction we can show that the numbers of Sylow *p*-subgroups of a direct product is the product of the numbers of Sylow *p*-subgroups of the factors. The base case is done above. Suppose for some $k \geq 2$, for an arbitrary direct product of groups $G = \prod_{i=1}^{k} G_i$, every Sylow *p*-subgroup of *G* is a product of Sylow *p*-subgroups of the G_i 's, and vice versa. Let $G = \prod_{i=1}^{k+1} G_i$ are be arbitrary. Then every Sylow *p*-subgroups of *G* is of the form $P \times P_{k+1}$ where $P \leq \prod_{i=1}^{k} G_i$ and $P_{k+1} \leq G_{k+1}$ are Sylow *p*-subgroups, and vice versa. By the induction hypothesis, $P = \prod_{i=1}^{k} P_i$ for Sylow *p*-subgroups $P_1 \leq G_i$. Thus every Sylow *p*-subgroup of *G* has the form $\prod_{i=1}^{k} P_i$ for some Sylow *p*-subgroups $P_i \leq G_i$ and vice versa. Also,

$$n_p\left(\prod_{i=1}^k G_i\right) = \prod_{i=1}^k n_p(G_i)$$

l	l	ì		
1			p	

5.4.15 If A and B are normal subgroups of G such that G/A and G/B are both abelian, prove that $G/(A \cap B)$ is abelian.

Proof. Since G/A and G/B are abelian then by Proposition 7, part (4), (D& F,§5.4), $G' \leq A$ and $G' \leq B$. Then $G' \leq A \cap B$. Then by the same proposition, we have $A \cap B \leq G$ and $G/(A \cap B)$ is abelian.

5.5.1 Let H and K be groups, let φ be a homomorphism from K into $\operatorname{Aut}(H)$ and, as usual, identify H and K as subgroups of $G = H \rtimes K$. Prove that $C_K(H) = \ker \varphi$.

Proof.

$$\ker \varphi = \{k \in K \mid \varphi(k) = 1_{\operatorname{Aut}(H)}\}$$
$$= \{k \in K \mid \varphi(k)(h) = h \ \forall h \in H\}$$
$$= \{k \in K \mid k \cdot h = h \ \forall h \in H\}$$
$$= \{k \in K \mid khk^{-1} = h \ \forall h \in H\}$$
$$= \{k \in K \mid k \in C_G(H)\}$$
$$= K \cap C_G(H)$$
$$= C_K(H)$$

Alternate proof:

Let $(1,k) \in C_K(H)$. Then for all $(h,1) \in H$,

$$\begin{split} (h,1) &= ((1,k)(h,1)(1,k^{-1})) \\ &= (1k \cdot h,k)(1,k^{-1}) \\ &= (\varphi(k)(h),k)(1,k^{-1}) \\ &= ((\varphi(k)(h))k \cdot 1,kk^{-1}) \\ &= (\varphi(k)(h)\varphi(k)(1),1) \\ &= (\varphi(k)(h1),1) \\ &= (\varphi(k)(h),1). \end{split}$$

Thus, $h = \varphi(k)(h)$, which means $\varphi(k) = 1_{Aut(H)}$. Identifying k as (1, k), we have $(1, k) \in \ker \varphi$.

5.5.2 Let H and K be groups, let φ be a homomorphism from K into $\operatorname{Aut}(H)$ and, as usual, identify H and K as subgroups of $G = H \rtimes K$. Prove that $C_H(K) = N_H(K)$.

Proof. Since the centralizer of K is always contained in the normalizer of K, it suffices to show that $N_H(K) \leq C_H(K)$. Let $(h, 1) \in N_H(K)$. Then for all $(1, k) \in K$, we have

$$K \ni (h,1)(1,k)(h^{-1},1) = (h1 \cdot 1, 1k)(h^{-1},1)$$
$$= (h,k)(h^{-1},1)$$
$$= (hk \cdot h^{-1},k1)$$
$$= (h\varphi(k)(h^{-1}),k).$$

But $(h\varphi(k)(h^{-1}), k) \in K \implies (h\varphi(k)(h^{-1}), k) = (1, k)$, or in other words,

 $(h,1)(1,k)(h^{-1},1) = (h\varphi(k)(h^{-1}),k) = (1,k)$

so that $(h, 1) \in C_H(K)$.

6.1.17 Prove that $G^{(i)}$ is a characteristic subgroup of G for all i.

Proof. We proceed by induction on i. For i = 0, we have $G^0 = G$, so trivially, G is characteristic in G. Now, let $i \ge 1$ and suppose $G^{(i)}$ is characteristic in G. Let $\sigma \in \operatorname{Aut}(G)$. Notice that if $[x, y] \in G^{(i)}$, then

$$\sigma([x,y]) = \sigma(x^{-1}y^{-1}xy) = \sigma(x)^{-1}\sigma(y)^{-1}\sigma(x)\sigma(y) = [\sigma(x), \sigma(y)]$$

and so $\sigma([x, y]) \in G^{(i)}$, which means for any commutator $[x, y] \in G^{(i)}$, we have $\sigma([x, y])$ is again a commutator of $G^{(i)}$. So, $\sigma([G^{(i)}, G^{(i)}]) = [\sigma(G^{(i)}), \sigma(G^{(i)})]$. Therefore,

$$\sigma(G^{(i+1)}) = \sigma([G^{(i)}, G^{(i)}]) = [\sigma(G^{(i)}), \sigma(G^{(i)})] = [G^{(i)}, G^{(i)}] = G^{(i+1)}$$

which completes the induction.

۲

- 1. The following exercise classifies all groups of order 231 up to isomorphism: Let G be a group of order 231.
 - (a) Prove that there is a unique $P \in Syl_7(G)$ and a unique $H \in Syl_{11}(G)$ and that H lies in the center Z(G).

Proof. Let |G| = 231. notice that $231 = 3 \cdot 7 \cdot 11$. So by Sylow's Theorem, we get the following:

$$n_7 \equiv 1 \mod 7 \text{ and } n_7 | 3 \cdot 11 \implies n_7 = 1,$$

 $n_{11} \equiv 1 \mod 11 \text{ and } n_{11} | 3 \cdot 7 \implies n_{11} = 1.$

Let $H \in Syl_{11}(G)$. Since |H| = 11, then $H \cong \mathbb{Z}/11$. By Proposition 16 (D& F,§4.4) we have $\operatorname{Aut}(\mathbb{Z}/11) \cong (\mathbb{Z}/11\mathbb{Z})^{\times}$. Thus, $\operatorname{Aut}(H) \cong (\mathbb{Z}/11\mathbb{Z})^{\times} \cong \mathbb{Z}/10$. Since H is the unique Sylow 11-subgroup, $H \trianglelefteq G$, i.e., $N_G(H) = G$. Recall that $N_G(H)/C_G(H)$ is isomorphic to a subgroup of $\operatorname{Aut}(H)$. Thereore,

$$G/C_G(H) = N_G(H)/C_G(H) \cong J \le \operatorname{Aut}(H) \cong \mathbb{Z}/10$$

for some subgroup $J \leq \operatorname{Aut}(H)$. Since H is cyclic of prime order, it is abelian, which means $H \leq C_G(H)$, and so

 $H \le C_G(H) \le G.$

Since $[G : H] = [G : C_G(H)] \cdot [C_G(H) : H]$, then $[G : C_G(H)]$ divides [G : H] = |G|/|H| = 21. Since $G/C_G(H) \cong J$ then |J| divides 21. And since $J \leq \mathbb{Z}/10$, then |J| divides 10. But since gcd(10, 21) = 1, then J is trivial. So, $[G : C_G(H)] = 1$, which implies $C_G(H) = G$ and so $H \leq Z(G)$.

(b) Prove that there exist elements $x, y \in G$ such that o(x) = 3 and o(y) = 7. Let $K = \langle x, y \rangle$. Prove that G = HK and that K is a normal subgroup of G which has trivial intersection with H. Deduce that G is isomorphic to $H \times K$.

Proof. Since 3 and 7 are primes dividing |G|, then there exists $x, y \in G$ where |x| = 3and |y| = 7 by Cauchy's Theorem. Let $K = \langle x, y \rangle$. Since $H \trianglelefteq G$ and $K \le G$, then $HK \le G$. Notice that $|\langle x, y \rangle| = |\langle x \rangle \times \langle y \rangle|$ since the map $(x^i, y^j) \mapsto x^i y^j$ is an isomorphism. So, $|K| = |\langle x, y \rangle| = |\langle x \rangle \times \langle y \rangle| = 3 \cdot 7$. Since every non-identity element of H and K have order 11 and 3, respectively, then $H \cap K = \{1\}$. Then by Theorem 9, (D& F, §5.4) we have $G \cong H \times K$.

(c) Show that there are precisely two isomorphism types of groups of order 231 (use our criterion for semidirect products to describe the two possible isomorphism types of K). Let $H = \langle z \rangle$. Give a presentation with generators and relations of the two isomorphism types of G.

Proof. Since H is cyclic, of prime order, and has one generator, it cannot be broken down into a direct product or semidirect product. However, we can write K as a semidirect product. Since $\langle x, y \rangle \cong \langle x \rangle \times \langle y \rangle, \langle y \rangle \trianglelefteq K$ and $\langle x \rangle \cap \langle y \rangle = \{1\}$, then

$$K = \langle x, y \rangle \cong \langle y \rangle \mathop{\rtimes}_{\varphi} \langle x \rangle$$

where $\varphi : \langle x \rangle \to \operatorname{Aut}(\langle y \rangle)$. By the First Isomorphism Theorem, $\varphi(\langle x \rangle) \cong \langle x \rangle / \ker \varphi$. Since $\langle x \rangle \cong \mathbb{Z}/3$ and $\ker \varphi \trianglelefteq \langle x \rangle$, then $|\ker \varphi|$ is either 3 or 1. If it is 3, then $|\varphi(\langle x \rangle)| = 1$ which means φ is the trivial map. Thus,

$$\langle y \rangle \mathop{\bowtie}\limits_{\varphi} \langle x \rangle \cong \langle y \rangle \times \langle x \rangle$$

and so $K \cong \langle y \rangle \times \langle x \rangle$. Now, if $|\ker \varphi| = 1$ then $|\varphi(\langle x \rangle)| = 3$. Since $\langle y \rangle \cong \mathbb{Z}/7$, then $\operatorname{Aut}(\langle y \rangle) \cong (\mathbb{Z}/7\mathbb{Z})^{\times} \cong \mathbb{Z}/6$. Thus $\operatorname{Aut}(\langle y \rangle)$ has order 6 and is cyclic. Let $\sigma \in \operatorname{Aut}(\langle y \rangle)$ be given by the map $y \mapsto y^2$. Since $|\varphi(\langle x \rangle)| = 3$, then $\varphi(\langle x \rangle) = \{id, \sigma, \sigma^2\}$. So, φ can be defined in one of the following ways:

$$\varphi_1 : \langle x \rangle \to \operatorname{Aut}(\langle y \rangle) \text{ by } x \mapsto \sigma$$

or

$$\varphi_2: \langle x \rangle \to \operatorname{Aut}(\langle y \rangle) \text{ by } x \mapsto \sigma^2$$

We claim that in fact $\langle y \rangle \underset{\varphi_1}{\rtimes} \langle x \rangle \cong \langle y \rangle \underset{\varphi_2}{\rtimes} \langle x \rangle$. In order to show this, we show that the following defined an isomorphism between these two semidirect products:

$$\Phi: \langle y \rangle \underset{\varphi_1}{\rtimes} \langle x \rangle \to \langle y \rangle \underset{\varphi_2}{\rtimes} \langle x \rangle \quad \text{by} \quad (y^a, x^b) \mapsto (y^a, x^{2b}).$$

 Φ is a homomorphism:

$$\begin{split} \Phi((y^{a_1}, x^{b_1})(y^{a_2}, x^{b_2})) &= \Phi(y^{a_1}\varphi_2(x^{b_1})(y^{a_2}), x^{b_1+b_2})) \\ &= \Phi(y^{a_1}\sigma^2(x^{b_1})(y^{a_2}), x^{b_1+b_2})) \\ &= \Phi(y^{a_1}\sigma(x^{2b_1})(y^{a_2}), x^{2(b_1+b_2)}) \\ &= (y^{a_1}\sigma(x^{2b_1})(y^{a_2}), x^{2(b_1+b_2)}) \\ &= (y^{a_1}, x^{2b_1})(y^{a_2}, x^{2b_2}) \\ &= \Phi((y^{a_1}, x^{b_1})) \ \Phi((y^{a_2}, x^{b_2})) \end{split}$$

 Φ is injective:

If $\Phi((c,d)) = \Phi((c',d'))$ then (c,2d) = (c',2d'). Then $c = c' \mod 7$. Likewise, $2d = 2d' \mod 3 \implies 2(d-d') = 0 \mod 3 \implies d = d' \mod 3$. So, (c,d) = (c',d').

 $\begin{array}{l} \Phi \ is \ surjective: \\ \text{Given } (c,d) \in \langle y \rangle \underset{\varphi_2}{\rtimes} \langle x \rangle, \ \text{then } \Phi((c,2d)) = (c,4d) = (c,d) \ (\text{since } 4d = 1 \mod 3). \end{array}$

Therefore, the semidirect products induced by φ_1 and φ_2 are precisely the same. In sum, we have the following two possibilities for K:

$$K \cong \langle y \rangle \times \langle x \rangle \cong \mathbb{Z}/7 \times \mathbb{Z}/3$$

or

$$K \cong \langle y \rangle \underset{\varphi_1}{\rtimes} \langle x \rangle \cong \mathbb{Z} / 7 \underset{\varphi_1}{\rtimes} \mathbb{Z} / 3.$$

Therefore, we get

$$G = H \times K \cong \mathbb{Z}/11 \times \mathbb{Z}/7 \times \mathbb{Z}/3 \tag{1}$$

or

$$G = H \times K \cong \mathbb{Z}/11 \times \mathbb{Z}/7 \underset{\varphi_1}{\rtimes} \mathbb{Z}/3.$$
⁽²⁾

Then, a presentation for G in (1) is:

$$\langle a, b, c \mid a^{11} = b^7 = c^3 = 1, ab = ba, bc = cb, ac = ca \rangle.$$

To determine the presentation for G in (2), we identify y, x with r, s, respectively, and consider what relations the multiplication in the semidirect product $\langle y \rangle \rtimes \langle x \rangle$ induce on

r, s through the map $(y^a, x^b) \mapsto r^a s^b$. We find that a presentation for G in (2) is

$$\langle r, s \mid r^7 = s^3 = 1, r^2 s = sr \rangle.$$

2. The following exercise uses Sylow's Theorems to prove that all groups of order $9 \cdot 49 \cdot 13$ are solvable. Let G be a group of this order. Prove that G has a unique Sylow 13-subgroup G_1 . Then prove that G/G_1 has a unique Sylow 7-subgroup Y_2 . Let G_2 be the complete preimage of Y_2 in G. Show that

$$1 = G_0 \le G_1 \le G_2 \le G$$

is a chain of subgroups of G such that G_1 is normal in G_2 and G_2 is normal in G and such that the successive quotients are abelian. Conclude that G is solvable.

Proof. Let $|G| = 9 \cdot 49 \cdot 13$. Then by Sylow's Theorem we find that:

$$n_{13} \equiv 1 \mod 13$$
 and $n_{13} | 9 \cdot 49 = 441$.

So we consider divisors of 441: 1,3,7,9,21,49,63,147,441, and positive integers which are congruent to 1 mod 13: 1,14,27,40,53,66,79,92,105,118,131,144,157,..., 429,442. So we see that $n_{13}(G) = 1$. Now, let $G_1 \in Syl_{13}(G)$. Then $|G_1| = 13$, $G_1 \leq G$, and $|G/G_1| = 9 \cdot 7^2$. Again by the Sylow Theorems

$$n_7(G/G_1) \equiv 1 \mod 7 \text{ and } n_7|9 \implies n_7(G/G_1) = 1.$$

Let $Y_2 \in Syl7(G/G_1)$. By the 4th Isomorphism Theorem, there exists a subgroup $G_2 \leq G$ so that $G_1 \leq G_2$ and $G_2/G_1 \cong Y_2$. Since $|Y^2| = 7^2$, then

$$|G_2/G_1| = \frac{|G_2|}{|G_1|} = \frac{|G_2|}{13} \implies |G_2| = 13 \cdot 7^2.$$

Now notice:

- G_1 is of prime order and thus, cyclic, so $G_1/\{1\}$ is abelian.
- G_2/G_1 is abelian since $|G_2/G_1| = 7^2$, and all groups of order a square of a prime are abelian.
- G/G_2 is abelian since $|G/G_2| = 3^2$, and all groups of order a square of a prime are abelian.

and

- $G_1 \trianglelefteq G_2$ since $G_1 \trianglelefteq G$
- $G_2 \leq G$ since Y_2 is the unique Sylow 7-subgroup of (G/G_1) and thus $Y_2 \leq (G/G_1)$ and by the 4th Isomorphism Theorem,

$$G_2/G_1 \cong Y_2 \trianglelefteq G/G_1 \iff G_2 \trianglelefteq G.$$

So,

$$1 = G_0 \trianglelefteq G_1 \trianglelefteq G_2 \trianglelefteq G$$

is a finite chain of subgroups so that $G_0 \leq G_1, G_1 \leq G_2$, and $G_2 \leq G$ and successive quotient are abelian. So, G is solvable.

5.4.17 If K is a normal subgroup of G and K is cyclic, prove that $G' \leq C_G(K)$.

Proof. First note that the automorphism groups an infinite cyclic group is abelian. To see this, let $\alpha \in \operatorname{Aut}(\mathbb{Z})$. Then $\alpha(1) = n$ for some $n \in \mathbb{Z}$. Then for some $m \in \mathbb{Z}$, we have $\alpha(m) = 1$. So,

$$1 = \alpha(m) = \alpha(m \cdot 1) = m \cdot \alpha(1) = mn.$$

So n must be 1 or -1, i.e., there are only 2 automorphisms in $Aut(\mathbb{Z})$ and thus $Aut(\mathbb{Z})$ is abelian.

Since K is cyclic, $\operatorname{Aut}(K)$ is abelian. Since $K \leq G$, then $G = N_G(K)$. Then

$$G/C_G(K) = N_G(K)/C_G(K) \cong H \leq \operatorname{Aut}(K)$$

for some subgroup $H \leq \operatorname{Aut}(K)$. Since $\operatorname{Aut}(K)$ is abelian, H is abelian, which means $G/C_G(K)$ is abelian. Then by Proposition 7, Part (4) (D& F, §5.4, $G' \leq C_G(K)$.

5.4.18 Let K_1, K_2, \ldots, K_n be non-abelian simple groups and let $G = K_1 \times K_2 \times \cdots \times K_n$. Prove that every normal subgroup of G is of the for G_I for some subset I of $\{1, 2, \ldots, n\}$ (where G_I) is defined in Exercise 2 of section 1.

Proof. Let $i \in \{1, 2, ..., n\}$ and $a_i \in K_i$ where $a_i \neq 1_{K_i}$. Suppose $N \leq G$ and let $x \in N$ with $x = (a_1, ..., a_i, ..., a_n)$. Since K_i is non-abelian then there exists $g_i \in K_i$ such that $g_i a_i \neq a_i g_i$. Let $\tilde{g}_i = (1, ..., 1, g_i, 1, ..., 1)$ where g_i appears in the *i*th coordinate. Since $x \in N \leq G$ and $\tilde{g}_i \in G$,

$$\tilde{g}_i x^{-1} \tilde{g}_i \in N$$

and so $[\tilde{g}_i, x] \in N$ where

$$1_g \neq [\tilde{g}_i, x] = (1, \dots, 1, [g_i, a_i], 1 \dots, 1) \in N$$

Define $A_i = \{h_i \in K_i \mid (1, \dots, 1, h_i, 1, \dots, 1) \in N\}$. Then $A_i \leq K_i$. Moreover, $A_i \neq \{1_{K_i}\}$ because by the previous argument $[g_i, a_i] \neq 1_{K_i}$ and $[g_i, a_i] \in A_i$. We claim that $A_i = K_i$. Since K_i is simple, it suffices to show that $A_i \leq K_i$. let $h_i \in K_i$ and $g_i \in K_i$. Then

$$g_i h_i g_i^{-1} \in A_i \iff (1, \dots, 1, g_i h_i g_i^{-1}, 1, \dots, 1) \in N \iff \tilde{g}_i \tilde{h}_i \tilde{g}_i^{-1} \in N.$$

The latter is true since $h_i \in N$ and $N \leq G$. Let $I \subseteq \{1, 2, \ldots, n\}$ where $i \in I$ if and only if $A_i = K_i$. Then if $j \in \{1, \ldots, n\}$ and there exists $x = (a_1, \ldots, a_j, \ldots, a_n) \in N$ with $a_j \neq 1_{K_j}$. By the previous argument, $K_j = A_j \subseteq N$. Therefore $N = G_I$. 7.1.7 The *center* of a ring R is $\{z \in R \mid zr = rz \text{ for all } r \in R\}$. Prove that the center of a ring is a subring that contains the identity. Prove that the center of a division ring is a field.

Proof. Since $1_R r = r 1_R$ for all $r \in R$ then 1_R is in the center of R. Let x, y be in center of R and $r \in R$. Then

$$(x-y)r = xr - yr = rx - ry = r(x-y) \implies x-y$$
 is in the center of R ,

and

$$(xy)r = x(yr) = x(ry) = (xr)y = (rx)y = r(xy) \implies xy$$
 is in the center of R .

Thus the center of R is a subring of R. Now suppose R is a division ring. If x and y are in the center of R, then certainly xy = yx so that the center of R is commutative. Since R is a division ring, there exists $z \in R$ so that xz = zx = 1 for $x \neq 0_R$ in the center of R. Let $r \in R$. Then,

$$zr = z(r \cdot 1_R) = zr(xz) = z(xr)z = (zx)rz = (1_R)rz = rz,$$

so z is in the center of R and thus all elements of the center of R not equal to 0 have multiplicative inverses. Thus the center of R is a field.

7.1.17 Let R and S be rings. Prove that the direct product $R \times S$ is a ring under componentwise addition and multiplication. Prove that $R \times S$ is commutative if and only if both R and S are commutative. Prove that $R \times S$ has an identity if and only if both R and S have identities.

Proof. We know that $(R \times S, +)$ is an abelian group since both R and S are abelian groups. Let $r_2, r_2, r_2 \in R$ and $s_1, s_2, s_3 \in S$. Observe that

$$(r_1, s_1)((r_2, s_2)(r_3, s_3)) = (r_1, s_1)(r_2r_3, s_2s_3)$$

= $(r_1r_2r_3, s_1s_2s_3)$
= $(r_1r_2, s_1s_2)(r_2, s_3)$
= $((r_1, s_1)(r_2, s_2))(r_3, s_3)$

so that \cdot is associative. Also,

$$(r_{,}s_{1})((r_{2}, s_{2}) + (r_{3}, s_{3})) = (r_{1}, s_{1})(r_{2} + r_{3}, s_{2} + s_{3})$$

= $(r_{1}(r_{2} + r_{3}), s_{1}(s_{2} + s_{3}))$
= $(r_{1}r_{2} + r_{1}r_{3}, s_{1}s_{2} + s_{1}s_{3})$
= $(r_{1}r_{2}, s_{1}s_{2}) + (r_{1}r_{3}, s_{1}s_{3})$
= $(r_{1}, s_{1})(r_{2}, s_{2}) + (r_{1}, s_{1})(r_{3}, s_{3})$

so that the left distributive law holds in $R \times S$. Similarly for the right distributive law. Therefore, $R \times S$ is a ring. Now,

$$R, S \text{ commutative rings} \iff r_1 r_2 = r_2 r_1, s_1 s_2 = s_2 s_1$$
$$\iff (r_1 r_2, s_1 s_2) = (r_2 r_1, s_2 s_1)$$
$$\iff (r_1, s_1)(r_2, s_2) = (r_2, s_2)(r_1, s_1)$$
$$\iff R \times S \text{ is a commutative ring.}$$

Let $r \in R, s \in S$. Then

$$\begin{split} R, S \text{ contain a } 1 &\iff r \mathbf{1}_R = \mathbf{1}_R r = r, s \mathbf{1}_S = \mathbf{1}_S s = s \\ &\iff (r \mathbf{1}_R, s \mathbf{1}_S) = (\mathbf{1}_R r, \mathbf{1}_S s) = (r, s) \\ &\iff (r, s) (\mathbf{1}_R, \mathbf{1}_S) = (\mathbf{1}_R, \mathbf{1}_S) (r, s) = (rs) \\ &\iff R \times S \text{ contains a } 1. \end{split}$$

7.3.19 Prove that if $I_1 \subseteq I_2 \subseteq \ldots$ are ideals of R then $\bigcup_{n=1}^{\infty} I_n$ is an ideal of R.

Proof. Since each I_n is a subgroup of (R, +), then $\bigcup_{n=1}^{\infty} I_n$ is nonempty. Let $x, y \in \bigcup_{n=1}^{\infty} I_n$. Then $x \in I_{n_x}, y \in I_{n_y}$ for some $I_{n_x}, I_{n_y} \in \bigcup_{n=1}^{\infty} I_n$. Without loss of generality, assume $n_x \leq n_y$ so that $I_{n_x} \subseteq I_{n_y}$. Then, $x, y \in I_{n_y}$ and so $x - y \in I_{n_y}$. Thus, $x - y \in \bigcup_{n=1}^{\infty} I_n$ so that $\bigcup_{n=1}^{\infty} I_n \leq (R, +)$. Let $r \in R$ and $a \in \bigcup_{n=1}^{\infty} I_n$. Then there exists $n \in \mathbb{N}$ so that $a \in I_n$. Since I_n is an ideal of R, then $ar, ra \in I_n$. So $ar, ra \in \bigcup_{n=1}^{\infty} I_n$.

- 7.3.24 Let $\varphi : R \to S$ be a ring homomorphism.
 - (a) Prove that if J is an ideal of S then $\varphi^{-1}(J)$ is an ideal of R. Apple this to the special case when R is a subring of S and φ is the inclusion homomorphism to deduce that if J is an ideal of S then $J \cap R$ is an ideal of R.

Proof. Let J be an ideal of $S, x \in \varphi^{-1}(J)$ and $r \in R$. Then

$$\varphi(xr) = \varphi(x)\varphi(r) \in J$$

because $\varphi(x) \in J, \varphi(r) \in S$ and J is an ideal of S. Thus, $xr \in \varphi^{-1}(J)$. Similarly, we get $rx \in \varphi^{-1}(J)$. Thus $\varphi^{-1}(J)$ is an ideal of R.

Now suppose R is a subring of S, J is an ideal of S and φ is the inclusion ring homomorphism. Then $\varphi^{-1}(J) = J \cap R$, which is an ideal of R by what was proved above.

(b) Prove that if φ is surjective and I is an ideal of R then $\varphi(I)$ is an ideal of S. Give and example where this fails if φ is not surjective.

Proof. Let $y \in \varphi(I)$ and $s \in S$. Since $y \in \varphi(I)$ there exists $x \in I$ so that $\varphi(x) = y$. Since φ is surjective, there exists $r \in R$ so that $\varphi(r) = s$. Since I is an ideal of R, then $xr, rx \in I$ so that

$$\varphi(xr) = \varphi(x)\varphi(r) = ys \in \varphi(I)$$

and similarly we get $\varphi(rx) \in \varphi(I)$. Therefore, $\varphi(I)$ is an ideal of S.

Consider the ring homomorphism $\varphi : R \to R[x]$ where φ is the inclusion map. This map is not surjective and the ideal R of R has image $\varphi(R) = R$, which is not an ideal of R[x] since $xr \notin R[x]$.

- 7.1.14 Let x be a nilpotent element of the commutative ring R. Let $m \in \mathbb{Z}^+$ be the smallest so that $x^m = 0$.
 - (a) Prove that x is either zero or a zero divisor.

Proof. If m = 1, then $0 = x^m = x$. If m > 1 then $0 = x^m = x^{m-1} \cdot x$ so that x is a zero divisor.

(b) Prove that rx is nilpotent for all $r \in R$.

Proof. Let $r \in R$. Then $(rx)^m = r^m x^m$ since R is commutative and so $(rx)^m = r^m \cdot 0 = 0$.

(c) Prove that 1 + x is a unit in R.

Proof. Notice that

$$(1 - (-x))(1 - (-x) - (-x)^2 - \dots - (-x)^{m-1}) = 1 - (-x)^m = 1 - (-1)x^m = 1 - 0 = 1.$$

(d) Deduce that the sum of a nilpotent element and a unit is a unit.

Proof. Let s be a unit in R with st = ts = 1. Then tx is nilpotent so that (1 + tx) is a unit. Since the product of units is a unit, then s(1+tx) = s + stx = s + x is a unit.

- 7.2.6 Let S be a ring with identity $1 \neq 0$. Let $n \in \mathbb{Z}^+$ and let A be an $n \times n$ matrix with entries from S whose i, j entry is a_{ij} / Let E_{ij} be the element of $M_n(S)$ whose i, j entry is 1 and whose other entries are all 0.
 - (a) Prove that $E_{ij}A$ is the matrix whose i^{th} row equals the j^{th} row of A and all other rows are zero.

Proof. Let $E_{ij} = (e_{ij})$, $A = (a_{ij})$, and $(b_{pq}) = E_{ij}A$. Then $(b_{pq}) = \sum_{k=1}^{n} e_{pk}a_{kq}$. The i^{th} row of (b_{pq}) consists of elements of the form $e_{ik}a_{kq}$ for each $1 \leq k \leq n$. If $k \neq j$, then $e_{ik} = 0$ so that $b_{pq} = e_{ik}a_{kq} = 0$. When $p \neq i$ the p^{th} row of (b_{pq}) contains all zeros. When k = j, then $b_{pq} = e_{ik}a_{kq} = e_{ij}a_{jq} = 1 \cdot a_{jq} = a_{jq}$. The collection of all a_{jq} for each $1 \leq q \leq n$ is precisely the j^{th} row of A.

(b) Prove that AE_{ij} is the matrix whose j^{th} column equals the i^{th} column of A and all other columns are zero.

Proof. Let $E_{ij} = (e_{ij})$, $A = (a_{ij})$, and $(c_{pq}) = AE_{ij}$. Then $(c_{pq}) = \sum_{k=1}^{n} a_{pk}e_{kq}$. The j^{th} column of (c_{pq}) consists of elements of the form $a_{pk}e_{kj}$ for each $1 \le k \le n$. If $k \ne i$, then $e_{kj} = 0$ so that $c_{pq} = 0$. When $q \ne j$ the q^{th} column of (c_{pq}) contains all zeroes. When k = i, then $c_{pq} = a_{pi}e_{ij} = a_{pi}$. The collection of all a_{pi} for each $1 \le p \le n$ is precisely the i^{th} column of A.

(c) Deduce that $E_{pq}AE_{rs}$ is the matrix whose p, s entry is a_{qr} and all other entries are zero.

Proof. By parts (a), the p^{th} row of $E_{pq}A$ is the q^{th} row of A, and all other entries 0. Then by part (b), $E_{pq}AE_{rs}$ is the matrix whose s^{th} column is the r^{th} column of $E_{pq}A$, which is all zeroes except for the p^{th} row, whose entry is the q, r entry of A, and all other entries are zero. Thus the p, s entry of $E_{pq}AE_{rs}$ is a_{qr} .

7.2.7 Prove that the center of the ring $M_n(R)$ is the set of scalar matrices. [Use the preceding exercise.]

Proof. We need to show $Z(M_n(R)) = \{rI \mid r \in R\}.$

" \subseteq " Suppose $A = (a_{ij}) \in Z(M_N(R))$. By the previous exercise, the p, t entry of $E_{pq}AE_{rs}$ is a_{qr} . If $q \neq r$, then $a_{qr} = 0$. Thus, A must be a diagonal matrix. If q = r, then the p, s entry of $E_{ps}A$ is a_{qq} . But notice that the p^{th} row of $E_{pr}A$ is the s^{th} row of B so that the p, s entry of $E_{ps}A$ is a_{ss} . Thus, $a_{qq} = a_{ss}$ for all q and s. Hence A = aI for some $a \in R$. So, $Z(M_n(R)) \subseteq \{rI \mid r \in R\}$.

" \supseteq " Let $B \in M_n(R)$, and $A = aI \in \{rI \mid r \in R\}$. Notice that since R is commutative aB = Ba and aI = Ia. Then

$$AB = (aI)B = a(IB) = aB = Ba = (BI)a = B(Ia) = BaI = BA.$$

7.3.21 Prove that every (two-sided) ideal of $M_n(R)$ is equal to $M_n(J)$ for some (two-sided) ideal J of R. [Use Exercise 6(c)] of section 2 to show first that the set of entries of matrices in an ideal of $M_n(R)$ form an ideal in R.]

Proof. Let I be an ideal of $M_n(R)$ and define $J = \{a_{ij} \mid (a_{ij}) \in I\}$ be the set containing entries of matrices of I. We first show that J is an ideal of R and then show $I = M_n(J)$.

J is an ideal of R:

Since I is an ideal, then $(0_{ij}) \in I$ so that $0 \in J$. Let $(a_{ij}), (b_{ij}) \in I$ and $E_{pq}, E_{rs} \in M_n(R)$ be defined as in exercise 6 of section 7.2. Since I is an ideal, $E_{pq}(a_{ij})E_{rs}$ and $E_{pq}(a_{ij})E_{rs}$ are in I. Notice that by exercise 6, section 7.2, the p, s entry of $E_{pq}(a_{ij})E_{rs}$ is a_{qr} . Likewise, the p, s entry of $E_{pq}(b_{ij})E_{rs}$ is b_{qr} . Then,

$$E_{pq}(a_{ij})E_{rs} - E_{pq}(b_{ij})E_{rs} \tag{1}$$

and the p, s entry of (1) is $a_{qr} - b_{qr}$ so that J is closed under subtraction. Thus $(J, +) \leq (R, +)$. Now, let $d \in R$, $a_{qr} \in J$. Then, $d\mathcal{I}(a_{ij}) = d(a_{ij}) \in I$ with q, r entry da_{qr} so that $da_{qr} \in J$, and similarly, $a_{qr}d \in J$. Thus J is an ideal of R.

 $I = M_n(J):$

" \subseteq " Given any matrix in I, its entries are elements of J so that $I \subseteq M_n(J)$.

" \supseteq " Let $(a_{ij}) \in M_n(J)$. Then each entry of (a_{ij}) is an element of J. Since J consists of elements which come from entries of matrices in I, we can find matrices (b_{ij}) in I with at least one element matching each entry in (a_{ij}) , then multiply by E_{pq} and E_{rs} on the left and right of the $(b_{ij}$'s as needed to write (a_{ij}) as the sum of matrices of the form $E_{pq}(b_{ij})E_{rs}$. Then, each of these lie in I, so that their sum also does. Hence, $(a_{ij}) \in I$.

- 7.3.34 Let I and J be ideals of R.
 - (a) Prove that I + J is the smallest ideal of R containing both I and J.

Proof. We first show that I + J is an ideal of R. Since $0_R \in I, J$ then $0_R = 0_R + 0_R \in I + J$, so $I + J \neq \emptyset$. Let $x_1, x_2 \in I$ and $y_1, y_2 \in J$. Then $x_1 + y_1, x_2 + y_2 \in I + J$ and

$$(x_1 + y_1) - (x_2 + y_2) = x_1 + y_1 - x_1 - y_2 = (x_1 - x_2) + (y_1 - y_2) \in I + J$$

since $x_1 - x_2 \in I$ and $y_1 - y_2 \in J$. So $(I + J, +) \leq (R, +)$. Let $r \in R$. Then

$$r(x_1 + y_1) = rx_1 + ry_1 \in I + J$$
 and $(x_1 + y_1)r = x_1r + y_1r \in I + J$

since $rx_1, x_1r \in I$ and $ry_1, y_1r \in J$. Hence I + J is an ideal of R.

To see that I + K contains I and K, notice that since $0_R \in J$, then $I = I + 0_R \subseteq I + J$. Similarly, $0_R \in I$ and so $J = 0_R + J \subseteq I + J$.

Now suppose K is an ideal of R containing both I and J. Let $x_1 \in I$ and $y_1 \in J$ and $x_1 + y_1 \in I + J$. Since K contains I and J, then $x_1, y_1 \in K$. So $x_1 + y_1 \in K$ since K is closed under addition. Thus, $I + J \subseteq K$, so that I + J is the smallest ideal of R containing both I and J.

(b) Prove that IJ is an ideal contained in $I \cap J$.

Proof. Recall that

$$IJ = \left\{ \sum_{k=1}^{n} a_k b_k \mid n \in \mathbb{Z}^+, a_k \in I, b_k \in J, \forall \ 1 \le k \le n \right\}.$$

We first show that IJ is an ideal of R. Since $0_R \in I$ and $0_R \in J$ then $0_R \cdot 0_R = 0_R \in IJ$. Let $\alpha, \beta \in IJ$, where $\alpha = \sum_{k=1}^n a_k b_k$ and $\beta = \sum_{k=1}^m c_k d_k$. Note that since $c_k \in I$, and I is a subgroup, then $-c_k \in I$ for all $1 \leq k \leq m$. So

$$\alpha - \beta = \sum_{k=1}^{n} a_k b_k + \sum_{k=1}^{m} (-c_k) d_k$$

= $a_1 b_1 + \dots + a_n b_n + (-c_1) d_1 + \dots + (-c_m) d_m \in IJ$

because $\alpha - \beta$ is a finite sum of products of the form ij where $i \in I, j \in J$. So $(IJ, +) \leq (R, +)$. Let $r \in R$. Note that since I is an ideal, then $r(a_k) \in I$ for all $1 \leq k \leq n$ and since J is an ideal, then $b_k r \in J$ for all $1 \leq k \leq n$. So

$$r\alpha = \sum_{k=1}^{n} (ra_k)b_k \in IJ$$
 and $\alpha r = \sum_{k=1}^{n} a_k(b_k r) \in IJ.$

Thus, IJ is an ideal of R.

Let $\alpha \in IJ$ be defined as before and notice that since I and J are ideals, then $a_k b_k \in I$ and $a_k b_k \in J$ for all $1 \leq k \leq n$. Thus, $\alpha \in I \cap J$. Hence $IJ \subseteq I \cap J$.

(a) Prove that if P is a prime ideal of S then either φ⁻¹(P) = R or φ⁻¹(P) is a prime ideal of R. Apply this to the special case when R is a subring of S and φ is the inclusion homomorphism to deduce that if P is a prime ideal of S then P ∩ R is either R or a prime ideal of R.

Proof. We know from a previous exercise that since P is an ideal of S, then $\varphi^{-1}(P)$ is an ideal of R. If $\varphi^{-1}(P) = R$ then $\varphi^{-1}(P)$ is not a prime ideal (since prime ideals must be proper). If $\varphi^{-1}(P) \neq R$, then let $r_1r_2 \in \varphi^{-1}(P)$. Then $\varphi(r_1)\varphi(r_2) = \varphi(r_1r_2) \in P$. Since P is a prime ideal then either $\varphi(r_1)$ or $\varphi(r_2) \in P$. Hence $r_1 \in \varphi^{-1}(P)$ or $r_2 \in \varphi^{-1}(P)$. Therefore, $\varphi^{-1}(P)$ is a prime ideal of R.

Suppose R is a subring of S and let $\varphi(r) = r$ for all $r \in R$. Then $\varphi^{-1}(P) = P \cap R$. By what was just shown, either $P \cap R = R$ (which means $P \subseteq R$) or $P \cap R$ is a prime ideal of R.

(b) Prove that if M is a maximal ideal of S and φ is surjective then $\varphi^{-1}(M)$ is a maximal ideal of R. Give and example to show that this need not be the case if φ is not surjective.

Proof. We know from a previous exercise that since M is an ideal of S, then $\varphi^{-1}(M)$ is an ideal of R. Notice that $\varphi^{-1}(M) \neq R$. Otherwise, since φ is surjective, then $\varphi(R) = S$ and if $\varphi^{-1}(M) = R$, then $S = \varphi(R) = M$, which contradicts the fact that $M \neq S$ (since M, being a maximal ideal of S, must be a proper ideal of S).

Let $M' = \varphi^{-1}(M)$ and consider the quotient R/M'. We claim R/M' is a field so that M' is maximal in R. Let $\pi : S \to S/M$ be the natural projection homomorphism. Then define

$$\psi = \pi \circ \varphi : R \to S/M.$$

Since both φ and π are surjective ring homomorphisms, then ψ is a surjective ring homomorphism, i.e., $\psi(R) = S/M$. Then

$$\ker \psi = \{r \in R \mid \psi(r) = 0_{S/M}\}$$
$$= \{r \in R \mid \psi(r) = M\}$$
$$= \{r \in R \mid \pi(\varphi(r)) = M\}$$
$$= \{r \in R \mid \varphi(r) \in M\}$$
$$= \{r \in R \mid r \in \varphi^{-1}(M)\}$$
$$= \{r \in R \mid r \in M'\}.$$

By the First Isomorphism Theorem,

$$R/M' = R/\ker\psi \cong \psi(R) = S/M.$$

Therefore, R/M' and S/M are isomorphic as rings. Since M is a maximal ideal of S, then S/M is a field. We want that R/M' and S/M are isomorphic as fields. Then R/M' is a field, and M' is maximal in R. In order to check this,

we need that $\psi(1_R) = 1_{S/M} = 1_S + M$. Since $\pi(1_S) = 1_S + M$, we only need to show that $\varphi(1_R) = 1_S$. To that end, notice that since φ is surjective, there exists $r \in R$ so that $\varphi(r) = 1_S$. Then

$$1_S = \varphi(r) = \varphi(r \cdot 1_R) = \varphi(r)\varphi(1_R) = 1_S\varphi(1_R) = \varphi(1_R)$$

Let $\varphi : \mathbb{Z} \to \mathbb{Q}$ be the inclusion ring homomorphism. Then $\{0_{\mathbb{Q}}\}$ is maximal in \mathbb{Q} . Then $\varphi^{-1}(\{0_{\mathbb{Q}}\}) = 0_{\mathbb{Z}}$, but $\{0_{\mathbb{Z}}\}$ is not a maximal in \mathbb{Z} .

7.4.36 Assume R is commutative. Prove that the set of prime ideals in R has a minimal element with respect to inclusion (possibly the zero ideal). [Use Zorn's Lemma.]

Proof. Let $S = \{P \mid P \text{ is a prime ideal of } R\}$. Since R is a ring with $1 \neq 0$, then R contains a proper ideal. Since every proper ideal in a ring with $1 \neq 0$ is contained in a maximal ideal, then R has a maximal ideal. Since maximal ideals are prime ideals, then S is nonempty. We use as partial order on S inverse inclusion " \supseteq ". Let \mathcal{B} be a chain in S. Define

$$U = \bigcap_{J \in \mathcal{B}} J.$$

We claim that U is an upper bound of \mathcal{B} . Since $J \supseteq U$ for all $J \in \mathcal{B}$, then if we can show $U \in \mathcal{S}$, then U is an upper bound for \mathcal{B} . Then, applying Zorn's Lemma, we conclude that \mathcal{S} has maximal element with respect to reverse inclusion, i.e., \mathcal{S} has a minimal element with respect to inclusion.

 $(U,+) \leq (R,+)$: Since $0_R \in J$ for all $J \in \mathcal{B}$, then $0_R \in U$ and so $U \neq \emptyset$. Let $a, b \in U$. Then $a, b, a - b \in J$ for all $J \in \mathcal{B}$ and so $a - b \in U$.

<u>U is an ideal of R</u>: Let $r \in R, a \in U$. Then $a, ar, ra \in J$ for all $J \in \mathcal{B}$ and so $ar, ra \in U$.

<u>U is a prime ideal of R:</u> Let $ab \in U$. Then $ab \in J$ for all $J \in \mathcal{B}$. By way of contradiction, suppose without loss of generality that $a \notin U$. So, there exists $J_x \in \mathcal{B}$ such that $a \notin J'$. Since $ab \in J'$ and J' is a prime ideal, then $b \in J'$. Then $a \notin K$ for all $K \in \mathcal{B}$ contained in J'. For all such $K, b \in K$ since each K is a prime ideal. We claim that

$$\bigcap_{K \subseteq J', K \in \mathcal{B}} K = \bigcap_{J \in \mathcal{B}} J = U.$$

Then $b \in U$, and U is a prime ideal of R. Since the LHS is an intersection of a subset of ideals in \mathcal{B} , then the LHS is contained in the RHS. Conversely, given any point $r \in U$, it is necessarily in all ideals of \mathcal{B} . In particular, $r \in K$ for all $K \subseteq J', K \in \mathcal{B}$. Therefore, the equality above holds. 7.4.37 A commutative ring R is called a *local ring* if it has a unique maximal ideal. Prove that if R is a local ring with maximal ideal M then every element of R - M is a unit. Prove conversely that if R is a commutative ring with 1 in which the set of nonunits forms an ideal M, then R is a local ring with unique maximal ideal M.

Proof. Let R is a local ring with unique maximal ideal M. Let $u \in R - M$ and consider the principal ideal (u). Notice that (u) = R. Otherwise, (u) is a proper ideal of R, and thus contained in M. Then $u \in M$, which is a contradiction. So, $1 \in (u)$, which means there exists $v \in R$ for which $uv = vu = 1_R$. Hence, u is a unit.

Let R be a commutative ring with 1 in which the set of nonunits forms an ideal M. Suppose I is an ideal of R containing M. If I contains a unit, then I = R. If I contains no units, then $I \subseteq M$, and since $M \subseteq I$, then I = M. Therefore, M is a maximal ideal.

To show uniqueness of M, suppose N is another maximal ideal of R. Since N is a proper ideal of R, it contains no units and so $N \subseteq M$. If $N \neq M$, then N is not maximal, since it is contained in a proper ideal of R. Therefore N = M.

Let R be a ring with identity $1 \neq 0$

7.6.1 An element e is called an *idempotent* if $e^2 = e$. Assume e is an idempotent in R and er = re for all $r \in R$. Prove that Re and R(1-e) are two-sided ideals of R and that $R \cong Re \times R(1-e)$. Show that e and 1-e are identities for the subrings Re and R(1-e) respectively.

Proof. Re is a two-sided ideal:

 $0e = 0 \in Re \implies Re \neq \emptyset$ If $re, se \in Re$, then $re - se = (r - s)e \in Re \implies Re \leq R$ If $t \in R$, then $tre, ret = rte \in Re \implies Re$ is a two-sided ideal of R.

R(1-e) is a two-sided ideal:

$$0(1-e) = 0 \in R(1-e)$$
$$\implies R(1-e) \neq \emptyset$$

If
$$r(1-e), s(1-e) \in R(1-e)$$
,
then $r(1-e) - s(1-e) = (r-s)(1-e) \in R(1-e)$
 $\implies R(1-e) \le R$

If
$$t \in R$$
, then $tr(1-e) \in R(1-e)$ and
 $r(1-e)t = r(t-et) = r(t-te) = rt(1-e) \in R(1-e)$
 $\implies R(1-e)$ is a two-sided ideal of R .

We show that $R \cong Re \times R(1-e)$ as groups, then show that they are isomorphic as rings as well. To that end, observe that $Re \cap R(1-e) = 0$ because

$$x \in Re \cap R(1-e) \implies re = s(1-e) \text{ for some } r, s \in R$$
$$\implies re = s - se$$
$$\implies re^2 = se - se^2$$
$$\implies re = se - se = 0$$
$$\implies x = 0.$$

Also observe that for any $r \in R$, we have r = re + r - re = re + r(1 - e). Therefore, $R \subseteq Re + R(1-e)$. By the previous two observations, we apply the recognition theorem for direct products of groups (Theorem 9, §5.4, D& F) to conclude that the map

$$\varphi: Re \times R(1-e) \to R$$
 by $\varphi(a,b) = a+b$

is in isomorphism between groups. We claim that φ is in fact a ring isomorphism as well. To that end, let $(r_1e, s_1(1-e))(r_2e, s_2(1-e)) \in Re \times R(1-e)$. Notice that

 $(1-e)^2 = 1 - 2e + e = 1 - e$ so that 1 - e is idempotent.

$$\begin{split} \varphi\big((r_1e, s_1(1-e))(r_1e, s_1(1-e))\big) &= \varphi((r_1r_2e, s_1s_2(1-e))) \\ &= r_1r_2e + s_1s_2(1-e) = r_1r_2e^2 + s_1s_2(1-e)^2 \\ &= r_1er_2e + r_1s_2(e-e^2) + r_2s_1(e-e^2) + s_1(1-e)s_2(1-e) \\ &= (r_1e + s_1(1-e))(r_2e + s_2(1-e)) \\ &= \varphi((r_1e, s_1(1-e))) \cdot \varphi((r_1e, s_1(1-e))). \end{split}$$

So $R \cong Re \times R(1-e)$ as rings.

e and 1 - e are the identities of Re and R(1 - e), respectively:

If $re \in Re$, then $ere = re^2 = re$ and $re^2 = re$ $\implies e$ is an identity in Re.

If
$$r(1-e) \in R(1-e)$$
,
then $[r(1-e)](1-e) = r(1-e)^2 = r(1-e)$
and $(1-e)r(1-e) = (r-er)(1-e) = r(1-e)^2 = r(1-e)$
 $\implies 1-e$ is an identity in $R(1-e)$.

7.6.3 Let R and S be rings with identities. Prove that every ideal of $R \times S$ is of the form $I \times J$ where I is an ideal of R and J is an ideal of S.

Proof. Let K be an ideal of $R \times S$ and define

$$I = \{a \in R \mid (a, b) \in K \text{ for some } b \in S\}$$
$$J = \{b \in R \mid (a, b) \in K \text{ for some } a \in S\}.$$

We show that $I \times J = K$ and that I and J are ideals of R and S respectively. To that end, we certainly have $K \subseteq I \times K$ by definition of I and J. Then, let $a \in I$ and $b \in J$ and $(a, b) \in I \times J$. Therefore, there exists $b' \in S$ and $a' \in R$ so that $(a, b'), (a', b) \in K$. Since R and S have multiplicative identities, $(1_R, 0), (0, 1_S) \in K$. Notice that since Kis closed under multiplication and addition,

$$(a,b) = (1_R,0)(a,b') + (0,1_S)(a',b) \in K.$$

So, $K = I \times J$. To see that I and J are ideals, first notice that by definition of I, we have $(I, +) \leq (R, +)$. Let $a_1 \in I$. So there exists $b_1 \in S$ so that $(a_1, b_1) \in K$. Let $r \in R$. Then $(r, 1_S) \in K$. Then since K is closed under multiplication,

$$(r, 1_S)(a_1, b_1) = (ra_1, b_1) \in K$$

 $(a_1, b_1)(r, 1_S) = (a_1r, b_1) \in K$

so $ra_1, a_1r \in I$ so that I is an ideal of R. Similarly, we get that J is an ideal of S.

Now, Let I and J be ideals of R and S respectively. We know that the direct product $I \times J$ is a subgroup of $R \times S$. Let $(a, b) \in I \times J$ and $(r, s) \in R \times S$. Then

$$\begin{aligned} (a,b)(r,s) &= (ar,bs) \in I \times J \\ (r,s)(a,b) &= (ra,sb) \in I \times J \end{aligned}$$

because I and J are ideals themselves. Therefore, $I \times J$ is an ideal of $R \times S$.

- 7.6.5 Let n_1, n_2, \ldots, n_k be integers which are relatively prime in pairs: $(n_i, n_j) = 1$ for all $i \neq j$.
 - (a) Show the Chinese Reminder Theorem implies that for any $a_1, \ldots, a_k \in \mathbb{Z}$ there is a solution $x \in \mathbb{Z}$ to the simultaneous congruences

$$x \equiv a_1 \mod n_1, x \equiv a_2 \mod n_2, \dots, x \equiv a_k \mod n_k$$

and the solution x is unique mod $n = n_1 n_2 \dots n_k$.

Proof. First, notice that since $gcd(n_i, n_j) = 1$ for all $i \neq j$. For any fixed $i \neq j$, there exists integers x, y so that $1 = n_i x + n_j y$. Thus, any element of \mathbb{Z} can be written as a multiple of a linear combination of n_i and n_j . Therefore, the ideals (n_i) and (n_j) are comaximal in \mathbb{Z} . Consider the map

$$\varphi : \mathbb{Z} \to \mathbb{Z}/(n_1) \times \mathbb{Z}/(n_2) \times \cdots \times \mathbb{Z}/(n_k)$$
 by $z \mapsto (z + (n_1), z + (n_2), \dots, z + (n_k)).$

By the Chinese Remainder Theorem, this map is surjective and

$$\ker(\varphi) = (n_1)(n_2)\dots(n_k).$$

Then by the First Isomorphism Theorem,

$$\mathbb{Z}/(n_1)(n_2)\dots(n_k) \cong \mathbb{Z}/(n_1) \times \mathbb{Z}/(n_2) \times \dots \times \mathbb{Z}/(n_k).$$
 (1)

Consider the element $\overline{(a_i)} = (a_1 + (n_1), a_2 + (n_2), \dots, a_k + (n_k))$. Since φ is surjective, there exists $x \in \mathbb{Z}$ so that $\varphi(x) = \overline{(a_i)}$. By (1),

$$x + (n_1)(n_2)\dots(n_k) = (x + (n_1), x + (n_2), \dots, x + (n_k))$$

So,

$$(a_1 + (n_1), a_2 + (n_2), \dots, a_k + (n_k)) = \overline{(a_i)} = \varphi(x) = x + (n_1)(n_2) \dots (n_k) = (x + (n_1), x + (n_2), \dots, x + (n_k)),$$

which implies

$$x \equiv a_1 \mod n_1, x \equiv a_2 \mod n_2, \dots, x \equiv a_k \mod n_k.$$

The isomorphism in (1) is in particular injective. Therefore, x is unique mod $n = n_1 n_2 \dots n_k$.

(b) Let $n'_i = n/n_i$ be the quotient of n by n_i , which is relatively prime to n_i by assumption. Let t_i be the inverse of $n'_i \mod n_i$. Prove that the solution x in (a) is given by

 $x = a_1 t_1 n'_1 + a_2 t_2 n'_2 + \dots + a_k t_k n'_k \mod n.$

Note that the elements t_i can be quickly found by the Euclidean Algorithm as described in Section 2 of the Preliminaries chapter (writing $an_i + bn'_i = (n_i, n'_i) = 1$ gives $t_i = b$) and that these then quickly give the solutions to the system of congruences above for any choice of a_1, a_2, \ldots, a_k .

 $\mathit{Proof.}$ We need to show that the definition of x given above is in fact a solution, i.e., that

$$\varphi(x) = \varphi\left(\sum_{i=1}^{k} a_i t_i n'_i \mod n\right) = \overline{(a_i)}.$$

Notice that by definition, n_j divides $n'_i = n/n_i$ for all $i \neq j$. So the *j*th coordinate of $\varphi(x)$ is

$$a_1t_1n'_1 + a_2t_2n'_2 + \dots + a_kt_kn'_k \mod n + (n_j) = a_j$$

since t_j is the inverse of $n'_j \mod n_j$. So $\varphi(x) = \overline{(a_i)}$.

۲

8.1.4 Let R be a Euclidean Domain.

(a) Prove that if (a, b) = 1 and a divides dc then a divides c. More generally, show that if a divides bc with nonzero a, b, then $\frac{a}{\gcd(a, b)}$ divides c.

Proof. Since (a, b) = 1 then there exists $x, y \in R$ so that ax + by = 1. Since a divides bc, there exist $z \in R$ so that az = bc. Then

$$ax + by = 1$$

$$acx + (bc)y = c$$

$$a(cx + yz) = c \implies a|c.$$

More generally, if gcd(a, b) = d and since a divides bc, then there exists $x, y, z \in R$ so that ax + by = d and az = bc. Moreover, since d divides a there exists $m \in R$ with dm = a. Therefore,

$$ax + by = d$$

$$acx + (bc)y = dc$$

$$a(cx + yz) = dc$$

$$am(cx + yz) = (dm)c$$

$$am(cx + yz) = ac$$

$$m(cx + yz) = c$$
(Cancellation in R since $a \neq 0$.)
$$\implies m = a/d$$
 divides c.

(b) Consider the Diophantine Equation ax + by = N where a, b and N are integers and a, b are nonzero. Suppose x_0, y_0 is a solution: $ax_0 + by_0 = N$. Prove that the full set of solutions to this equation is given by

$$x = x_0 + m \frac{b}{\gcd(a,b)}, \quad y = y_0 - m \frac{a}{\gcd(a,b)}$$

as m ranges over the integers. [If x, y is a solution to ax + by = N, show that $a(x - x_0) = b(y_0 - y)$ and use (a).]

Proof. Suppose x, y is a solution to ax + by = N. Since x_0, y_0 is also a solution, then

$$ax + by = ax_0 + by_0$$

$$ax - ax_0 = by_0 - by$$

$$a(x - x_0) = b(y_0 - y).$$

Letting $c = (y_0 - y)$ in part (a), we have $\frac{a}{\gcd(a, b)}$ divides $y_0 - y$. Hence, there exists $m \in \mathbb{Z}$ with

$$m \frac{a}{\operatorname{gcd}(a,b)} = y_0 - y \implies y = y_0 - m \frac{a}{\operatorname{gcd}(a,b)}.$$

Then

$$ax + by_0 - m\frac{ab}{\gcd(a,b)} = ax_0 + by_0$$
$$ax - m\frac{ab}{\gcd(a,b)} = ax_0$$
$$a\left(x - m\frac{b}{\gcd(a,b)}\right) = ax_0$$
$$x = x_0 + m\frac{b}{\gcd(a,b)}.$$

- 8.1.11 Let R be a commutative ring with 1 and let a and b be nonzero elements of R. A least common multiple of a and b is an element e of R such that
 - (i) a|e and b|e, and
 - (ii) if a|e' and b|e' then e|e'.
 - (a) Prove that a least common multiple of a and b (if such exists) is a generator for the unique largest principal ideal contained in $(a) \cap (b)$.

Proof. Suppose e is the least common multiple of a and b. Then a and b both divide e so that $(e) \subseteq (a) \cap (b)$. Suppose $e' \in R$ and (e') is an ideal for which $(e) \subseteq (e') \subseteq (a) \cap (b)$. Thus a and b each divide e'. Since e is the least common multiple of a and b, then e divides e', which means $(e') \subseteq (e)$, i.e., (e) = (e') so that e is a generator for the unique largest principal ideal contained in $(a) \cap (b)$.

(b) Deduce that any two nonzero elements in a Euclidean Domain have a least common multiple which is unique up to multiplication by a unit.

Proof. Suppose e and e' are two least common multiples of a and b. Then e divides e' and e' divides e. Then there exists $x, y \in R$ with ex = e' and e'y = e. So, $(e'y)x = e \implies yx = 1 \implies x, y$ are units. Therefore, least common multiples of a and b are associate.

(c) Prove that in a Euclidean Domain the least common multiple of a and b is ab.

 $\overline{\operatorname{gcd}(a,b)}$

Proof. Let d = gcd(a, b) and e = lcm(a, b). Notice

$$\frac{ab}{d} = a \cdot \frac{b}{d}$$
 and $\frac{ab}{d} = b \cdot \frac{a}{d}$

so that a and b both divide $\frac{ab}{d}$. So, e divides $\frac{ab}{d}(*)$. Since a divides e, then there exists $x \in R$ so that ax = e. Then abx = be so that $\frac{ab}{e} \cdot x = b$ and thus $\frac{ab}{e}$ divides b. Similarly, $\frac{ab}{e}$ divides a. Thus, $\frac{ab}{e}$ divides d. Then there exists $z \in R$ so that $\frac{ab}{d} \cdot z = d$. Then $\frac{ab}{d} \cdot z = e$ so that $\frac{ab}{d}$ divides e (**). So by (*) and (**), we have that $e = \frac{ab}{d}$.

9.1.6 Prove that (x, y) is not a principle ideal in $\mathbb{Q}[x, y]$.

Proof. Note that

$$(x,y) = \{x \cdot g(x,y) + y \cdot h(x,y) \mid g(x,y), h(x,y) \in \mathbb{Q}[x,y]\}.$$

By way of contradiction, suppose (f(x, y)) = (x, y) for some nonzero polynomial $f(x, y) \in \mathbb{Q}[x, y]$. Since $f(x, y) \in (x, y)$, then f has no constant term. If f has any term with the variable x, then the polynomial $y \notin (f(x, y))$. Thus, f has no term with the variable x. Similarly, if f has any term with the variable y, then $x \notin (f(x, y))$. Hence, f has no term with x and no term with y, i.e., f is a constant polynomial. But then $f \notin (x, y)$, a contradiction. Thus,(x, y) is not a principle ideal in $\mathbb{Q}[x, y]$.

9.1.7 Let R be a commutative ring with 1. Prove that a polynomial ring in more than one variable over R is not a Principal Ideal Domain.

Proof. Let R be a commutative ring with 1 and $n \in \mathbb{Z}^+$, n > 1. Suppose for contradiction that $R[x_1, x_2, \ldots, x_n]$ is a Principal Ideal Domain. Since

$$R[x_1, x_2, \dots, x_{n-1}][x_n] = R[x_1, x_2, \dots, x_n]$$

then by Corollary 8, (D&F §8.2), $R[x_1, x_2, \ldots, x_{n-1}]$ is a field, which is a contradiction, since no polynomial ring is a field.

- 8.2.4 Let R be an integral domain. Prove that if the following two conditions hold then R is a Principle Ideal Domain:
 - (i) any two nonzero elements a and b in R have a greatest common divisor which can be written in the form ra + sb for some $r, s \in R$, and
 - (ii) if a_1, a_2, a_3, \ldots are nonzero elements of R such that $a_{i+1} | a_i$ for all i, then there is a positive integer N such that a_n is a unit time a_N for all $n \ge N$.

Proof. Let I be a nonzero ideal of R and $S = \{(x) \mid x \in I\}$ be a set ordered by inclusion. Since $0_R \in I$ then the ideal $\{0_r\} \in S$, i.e. $S \neq \emptyset$. Let \mathcal{C} be a chain in S. We claim that \mathcal{C} has a maximal element, and thus has an upper bound in S.¹ Suppose there exists no maximal element in \mathcal{C} . Let (a_1) be an ideal in \mathcal{C} . Since (a_1) is not maximal, there exists $(a_2) \in \mathcal{C}$ for which $(a_1) \subsetneq (a_2)$. Similarly, there exists $(a_3) \in \mathcal{C}$ for which $(a_1) \subsetneq (a_2) \subsetneq (a_3)$. Given a chain of ideals in the chain \mathcal{C} ,

$$(a_1) \subsetneq (a_2) \subsetneq (a_3) \subsetneq \cdots \subsetneq (a_n),$$

since (a_n) is not maximal, there exists $(a_{n+1}) \in C$ with $(a_n) \subsetneq (a_{n+1})$. Since C has no maximal element, this chain will continue indefinitely. So, $a_{i+1}|a_i$ for all i, and there does not exists an integer N after which $(a_n) = (a_N)$ for all $n \ge N$, which is a contradiction of (ii). Now, we claim that I is in fact a maximal element of S. Let (a) be a maximal element of S. Then $a \in I$ so that $(a) \subseteq I$. Let $b \in I$. By (i), gcd(a,b) = d exists and d = ra + sb for some $r, s \in R$. Since $a, b \in I$, then $ra, sb \in I$ and $d = ra + sb \in I$. Since d|a and d|b, then $(a) \subseteq (d)$ and $(b) \subseteq (d)$. Since (a)is maximal, then we must have (a) = (d), which means $(b) \subseteq (d) = (a)$ and hence $b \in (a)$. Therefore I = (a), which means R is a Principal Ideal Domain.

- 8.2.6 Let R be an integral domain and suppose that every *prime* ideal in R is principal. This exercise proves that every ideal of R is principal, i.e., R is a P.I.D.
 - (a) Assume that the set of ideals of R that are not principal is nonempty and prove that this set has a maximal element under inclusion (which, by hypothesis, is not prime). [Use Zorn's Lemma.]

Proof. Let $S = \{I \mid I \subseteq R \text{ is a nonprincipal ideal}\}$ be a set ordered by inclusion. Suppose S is nonempty and let C be a chain in S. Define $J = \bigcup_{C \in C} C$. Then J is an upper bound for C. It remains to show that J is an element of S. Once this is verified, then S contains a maximal element by Zorn's Lemma. Since the union of totally ordered ideals is an ideal, then J is an ideal. Suppose for contradiction that J was principal with (j) = J for some $j \in R$. Since $j \in J$, then $j \in C_j$ for some $C_j \in C$. So $(j) \subseteq C_j$ and $C_j \subseteq J = (j)$, which means $C_j = (j)$, i.e., C_j is principal, a contradiction. Thus $J \in S$.

¹Since every element in C can be compared, a maximal element in C is an upper bound in C, and in particular an upper bound in S.

(b) Let I be an ideal which is maximal with respect to being nonprincipal, and let $a, b \in R$ with $ab \in I$ but $a \notin I$ and $b \notin I$. Let $I_a = (I, a)$ be the ideal generated by I and a, let $I_b = (I, b)$ be the ideal generated by I and b, and define $J = \{r \in R \mid rI_a \subseteq I\}$. Prove that $I_a = (\alpha)$ and $J = (\beta)$ are principal ideals in R with $I \subsetneq I_b \subseteq J$ and $I_aJ = (\alpha\beta) \subseteq I$.

Proof.

• I_a is principal.

If $i \in I$ then $i \in I_a$ and so $I \subseteq I_a$. Since $a \in I_a$ but $a \notin I$, then $I \subsetneq I_a$, which implies I_a is a principal ideal since I is maximal in R with respect to being nonprincipal.

• J is principal.

Note that \overline{J} is an ideal. Let $i \in I$. Then $iI_a = I$ which means $i \in J$. Hence $I \subseteq J$. Notice that since bI = I and $ba \in I$, then sums of elements in bI with ab lie in I. Hence, $bI_a = I$. So, $b \in J$. Since $b \notin I$, then $I \subsetneq J$, which means J is principal.

• $I \subsetneq I_b \subseteq J$ and $I_a J = (\alpha \beta) \subseteq I$ Since $b \notin I$ and $b \in I_b$, then $I \subsetneq I_b$. Moreover, since $I \subseteq J$ and $b \in J$, then $I_b \subseteq J$ so that

$$I \subsetneq I_b \subseteq J.$$

Letting $I_a = (\alpha)$ and $J = (\beta)$ for $\alpha, \beta \in \mathbb{R}$, we have $(\alpha)(\beta) = (\alpha\beta)$, which gives

$$I_a J = (\alpha \beta) \subseteq I$$

(c) If $x \in I$ show that $x = s\alpha$ for some $s \in J$. Deduce that $I = I_a J$ is principal, a contradiction, and conclude that R is a P.I.D.

Proof. Let $x \in I$. Since $I \subsetneq I_a = (\alpha)$, then $x = s\alpha$ for some $s \in R$. Since

$$sI_a = s(\alpha) = (s\alpha) = (x) \subseteq I_s$$

then $s \in J$. So $x \in I_a J$, which means $I \subseteq I_a J$. Therefore, $I = I_a J$ so that I is a principal ideal, which is a contradiction. Therefore, the set S in part (a) is empty, which means R is a P.I.D.

8.3.5 Let $R = \mathbb{Z}[\sqrt{-n}]$ where n is a squarefree integer greater than 3.

(a) Prove that $2, \sqrt{-n}$, and $1 + \sqrt{-n}$ are irreducibles in R.

Proof. We use the standard norm of the complex numbers, $N(a + b\sqrt{-n}) = a^2 + b^2n$, restricted to R. So, $N(\alpha)N(\beta) = N(\alpha\beta)$. We claim $N(x) = 1 \iff x$ is a unit. First suppose x is a unit. Then there exists $y \in R$ with xy = 1. Then N(x)N(y) = N(xy) = N(1) = 1 which implies N(x) and N(y) are both 1. Conversely, suppose $x = a + b\sqrt{-n}$ and N(x) = 1. Then $1 = N(x) = a^2 + b^2n$, and since n > 3, we must have b = 0 and $1 = a^2$, which means $x = \pm 1$ and thus x is a unit.

• <u>2 is irreducible.</u>

Suppose $2 = \alpha\beta$. Then $4 = N(2) = N(\alpha)N(\beta)$. If $N(\alpha) = 1$ then α is a unit, and 2 is irreducible. If $N(\alpha) = 4$ then $N(\beta) = 1$ which means β is a unit so that 2 is irreducible. Suppose $\alpha = a + b\sqrt{-n}$ and $N(\alpha) = 2$. So $2 = N(\alpha) = a^2 + b^2n$, which implies b = 0 since n > 3. Thus, $2 = a^2$, which means $a \notin \mathbb{Z}$, a contradiction. Thus, $N(\alpha) \neq 2$.

• $\sqrt{-n}$ is irreducible.

Suppose $\sqrt{-n} = \alpha\beta$. Then $N(\alpha)N(\beta) = N(\sqrt{-n}) = n$. Since *n* is squarefree, $N(\alpha) \neq N(\beta)$. Without loss of generality, suppose $N(\alpha) < N(\beta)$. Let $\alpha = a + b\sqrt{-n}$. Since $n = N(\alpha)N(\beta)$ then

$$N(\alpha) < \sqrt{n} < N(\beta) \tag{(*)}$$

If this inequality did not hold, then either

$$N(\alpha) < N(\beta) < \sqrt{n}$$
 or $\sqrt{n} < N(\alpha) < N(\beta)$.

In the former case,

$$N(\alpha) < \sqrt{n} \text{ and } N(\beta) < \sqrt{n} \implies N(\alpha)N(\beta) < n,$$

which is a contradiction. In the latter case,

$$\sqrt{n} < N(\alpha) \text{ and } \sqrt{n} < N(\beta) \implies n < N(\alpha)N(\beta),$$

which again is a contradiction. So, the inequality in (*) holds. Therefore,

$$a^2 + b^2 n = N(\alpha) < \sqrt{n}.$$

Since n > 3, then $\sqrt{n} < n$. Hence, $b^2 = 0$. Thus $N(\alpha) = a^2$ and so

$$n = N(\alpha)N(\beta) = a^2 N(\beta).$$

Since n is squarefree, then $a^2 = 1$, i.e., $N(\alpha) = 1$, which means α is a unit. Therefore, $\sqrt{-n}$ is irreducible. • $1 + \sqrt{-n}$ is irreducible.

Suppose $1 + \sqrt{-n} = \alpha \beta$ and $\alpha = a + b\sqrt{-n}$ and $\beta = c + d\sqrt{-n}$. Then

$$1 + n = N(1 + \sqrt{-n}) = N(\alpha)N(\beta)$$

= $(a^2 + b^2n)(c^2 + d^2n)$
= $a^2c^2 + (a^2d^2 + b^2c^2)n + (b^2d^2)n^2$,

which gives the following equalities: $a^2c^2 = 1$, $a^2d^2 + b^2c^2 = 1$, and $b^2d^2 = 0$. The first equality gives $a, c = \pm 1$ which means $d^2 + b^2 = 1$ and so

$$d^2 = 1 - b^2$$
, $b^2(1 - b^2) = 0 \implies b = 0$ or $b = \pm 1$.

Then, $\alpha = 1 + b\sqrt{-n}$ and so $N(\alpha) = 1^2 + b^2n \le 1 + n$. Therefore,

$$1 + n = N(\alpha)N(\beta) \le (1 + n)N(\beta) \implies N(\beta) = 1 \implies \beta$$
 is a unit

and hence $1 + \sqrt{-n}$ is irreducible.

(b) Prove that R is not a U.F.D. Conclude that the quadratic integer ring \mathcal{O} is not a U.F.D. for $D \equiv 2, 3 \mod 4, D < -3$ (so also not Euclidean and not a P.I.D.) [Show that either $\sqrt{-n}$ or $1 + \sqrt{-n}$ is not prime.]

Proof. We claim $n \in \mathbb{Z}[\sqrt{-n}]$ has two distinct factorizations into irreducibles so that $\mathbb{Z}[\sqrt{n}]$ is not a U.F.D. If n is even then n = 2k for some $k \in \mathbb{Z}$ odd and also $n = (-1)(\sqrt{-n})^2$, and these factorizations are distinct. Now suppose n is odd. Then n + 1 is even, and $n + 1 = (1 + \sqrt{-n})(1 - \sqrt{-n})$, but also n + 1 = 2m for some $m \in \mathbb{Z}$, which gives two distinct factorizations of n + 1. Hence $\mathbb{Z}[\sqrt{-n}]$ is not a U.F.D. By definition of the quadratic integer ring,

$$\mathcal{O} := \mathcal{O}_{\mathbb{Q}(\sqrt{D})} = \mathbb{Z}[\omega] = \{a + b\omega \mid a, b \in \mathbb{Z}\},\$$

where

$$\omega = \begin{cases} \sqrt{D} & \text{if } D \equiv 2,3 \mod 4\\ \frac{1+\sqrt{D}}{2} & \text{if } D \equiv 1 \mod 4. \end{cases}$$

Since n > 3, then setting D = -n means D < -3. Suppose $D \equiv 2, 3 \mod 4$. Then

$$\mathcal{O} = \mathbb{Z}[\sqrt{D}] = \mathbb{Z}[\sqrt{-n}]$$

which is not a U.F.D. by the above proof.

۳

Let F be a field and x be an indeterminate over F.

9.2.1 Let $f(x) \in F[x]$ be a polynomial of degree $n \ge 1$ and let bars denote passage to the quotient F[x]/(f(x)). Prove that for each $\overline{g(x)}$ there is a unique polynomial $g_0(x)$ of degree $\le n - 1$ such that $\overline{g(x)} = \overline{g_0(x)}$.

Proof. Notice that $g(x) = g_0(x)$ if and only if $g(x) - g_0(x) \in (f(x))$ if and only if f(x) divides $g(x) - g_0(x)$. Since F is a field, F[x] is a Euclidean Domain where the division algorithm in F[x] yields unique $q(x), r(x) \in F[x]$ such that

$$g(x) = q(x)f(x) + r(x)$$
 with $r(x) = 0$ or $\deg r(x) < \deg f(x)$.

Define $g_0(x) := r(x)$ so that $g(x) - g_0(x) = q(x)f(x)$ and thus $\overline{g(x)} = \overline{g_0(x)}$ where $\deg g_0(x) < \deg f(x) = n$.

9.2.5 Exhibit all the ideals in the ring F[x]/(p(x)) where p(x) is a polynomial in F[x].

Proof. Since F is a field, then F[x] is a Euclidean Domain. In particular, F[x] is a UFD. Thus if p(x) is an irreducible polynomial, then p(x) is prime polynomial so that (p(x)) is a prime ideal. Since F[x] is a Euclidean Domain, then in particular F[x] is a PID so that (p(x)) is a maximal ideal since prime ideals in a PID are also maximal ideals. Therefore, F[x]/(p(x)) is a field which means its only ideals are $(0_F + p(x))$ and F[x]/(p(x)).

Now suppose p(x) is reducible. By the 4th Isomorphism Theorem for rings, there is a bijection between the ideals of F[x] which contain p(x) and the ideals of F[x]/(p(x)). Since F[x] is a PID, then all of the ideals which contain p(x) are principal. Moreover, if $p(x) \in (f(x))$ for some $f(x) \in F[x]$, then f(x) divides p(x). So, the ideals of F[x]/p(x) are precisely those of the form (f(x))/(p(x)) where $f(x) \in F[x]$ divides p(x) (and of course the zero ideal).

9.4.17 Prove the following version of Eisenstein's Criterion: Let P be a prime ideal in the UFD R and let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ be a polynomial in R[x] with $n \ge 1$. Suppose $a_n \notin P, a_{n-1}, \ldots, a_0 \in P$ and $a_0 \notin P^2$. Prove that f(x) is irreducible in F[x], where F is the quotient field of R.

Proof. Suppose f(x) is reducible in F[x]. Then there exists polynomials

$$c(x) = c_k x^k + \dots + c_1 x + c_0$$
 and $d(x) = d_\ell x^\ell + \dots + d_1 x + d_0$

in F[x] with $c_k \neq 0 \neq d_k$ and $1 \leq k, \ell < n$ such that f(x) = c(x)d(x). Now, we compare the coefficients of p(x) = c(x)d(x). Since $a_0 = c_0d_0$ and $a_0 \in P$, then either c_0 or d_0 is in P. Without loss of generality, suppose $c_0 \in P$. Since $a_0 \notin P^2$, then $d_0 \notin P$. Then

$$a_1 = c_1 d_0 + c_0 d_1.$$

Since $c_0 \in P$ then $c_0 d_1 \in P$. Since $a_1 \in P$, then $c_1 d_0 \in P$. But since $d_0 \notin P$, then $c_1 \in P$ since P is a prime ideal. For $1 \leq i \leq k < n$, we have

$$a_i = c_i d_0 + c_{i-1} d_1 + \dots + c_0 d_\ell.$$

By induction, $c_{i-1}d_1 + \cdots + c_0d_\ell \in P$. Since $a_i \in P$, then $c_id_0 \in P$. But again since $d_0 \notin P$, then $c_i \in P$ since P is a prime ideal. Hence $c_i \in P$ for all $1 \leq i \leq k$. In particular, $c_k \in P$, which implies that $c_kd_\ell \in P$. But $c_kd_\ell = a_n \notin P$, a contradiction.
- 9.3.4 Let $R = \mathbb{Z} + x\mathbb{Q}[x] \subset \mathbb{Q}[x]$ be the set of polynomials in x with rational coefficients whose constant term is an integer.
 - (a) Prove that R is an integral domain and its units are ± 1 .

Proof. Let $f(x), g(x) \in R$ with leading coefficients a and b, respectively. Then f(x)g(x) = 0 if and only if ab = 0 if and only if a = 0 or b = 0 (since \mathbb{Q}) is an integral domain) if and only if f(x) = 0 or g(x) = 0. Therefore, R is an integral domain.

Moreover, since $R \subset \mathbb{Q}[x]$, then $R^{\times} \subseteq (\mathbb{Q}[x])^{\times} = \mathbb{Q}^{\times}$. However, since the constant polynomials in R are isomorphic to \mathbb{Z} , then $R^{\times} = \mathbb{Z}^{\times} = \{\pm 1\}$.

(b) Show that the irreducibles in R are $\pm p$ where p is a prime in \mathbb{Z} and the polynomials f(x) that are irreducible in $\mathbb{Q}[x]$ and have constant term ± 1 . Prove that these irreducibles are prime in R.

Proof. If $f(x) = a \in R$ is a constant polynomial, then $a \in \mathbb{Z}$ which means f(x) is irreducible if and only if a is irreducible in \mathbb{Z} if and only if a is prime in \mathbb{Z} (since \mathbb{Z} is a UFD).

Now suppose $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 \in \mathbb{R}$ with $n \ge 1$ and $a_0 \ne 0$. Then we can factor f(x) into the product

$$f(x) = (a_0) \left(\frac{a_n}{a_0} x^n + \frac{a_{n-1}}{a_0} x^{n-1} + \dots + \frac{a_1}{a_0} x + 1 \right).$$

If $a_0 \neq \pm 1$, then f(x) is reducible, since the above factorization exhibits f(x) as the product of two nonunits in R. Since $n \geq 1$, then the second factor of f(x) written above is not a unit in R. So f(x) is irreducible precisely when $a_0 = \pm 1$ and f(x) is irreducible in $\mathbb{Q}[x]$.

Suppose f(x) is irreducible in R. If f is a constant polynomial, then as we stated above, f(x) = p for some prime in \mathbb{Z} . Since $\mathbb{Z} \subset R$, then f(x) = p is prime in R.

Now suppose $f(x) \in R$ is irreducible and not a constant polynomial, and suppose f(x) = a(x)b(x) for $a(x), b(x) \in R$. Since \mathbb{Q} is a field then $\mathbb{Q}[x]$ is a Euclidean Domain, and in particular $\mathbb{Q}[x]$ is a UFD, so that every irreducible polynomial in $\mathbb{Q}[x]$ is prime in $\mathbb{Q}[x]$. Therefore, since $f(x) \in \mathbb{Q}[x]$ then either f(x)|a(x) or f(x)|b(x). Without loss of generality, suppose f(x)|a(x). So a(x) = f(x)q(x) for some $q(x) \in \mathbb{Q}[x]$. Let a_0, q_0, f_0 be the constant terms in a(x), q(x), and f(x), respectively. Since $a(x) \in R$, then $a_0 \in \mathbb{Z}$. Since $f_0 = \pm 1$, then $a_0 = \pm q_0$, i.e., $q_0 \in \mathbb{Z}$. Therefore, $q(x) \in R$ and so f(x) is prime in R.

(c) Show that x cannot be written as the product of irreducibles in R (in particular, x is not irreducible) and conclude that R is not a UFD.

Proof. Suppose $x = f_1(x)f_2(x)\cdots f_k(x)$ where $f_i(x) \in R$ is irreducible for all $1 \le i \le k$. Then

$$1 = \deg(x) = \deg(f_1(x) \cdots f_k(x)) = \deg(f_1(x)) + \cdots + \deg(f_k(x)),$$

which means all but one of the factors of x are constant polynomials. Without loss of generality, suppose $f_1(x)$ is the one nonconstant polynomial in the factorization of x. Then $f_1(x) = a_1x + b$ for some $a_1 \in \mathbb{Q}$, and $b \in \mathbb{Z}$. Since $f_1(x)$ is irreducible in R, then and $b = \pm 1$ by part (b). Let $f_i(x) = a_i$ where $a_i \in \mathbb{Z}$ are irreducible for all $2 \le i \le k$. Notice that

$$x = (a_1 x \pm 1)a_2 a_3 \cdots a_k = (a_1 a_2 \cdots a_k)x \pm a_2 a_3 \cdots a_k.$$

But since a_2, a_3, \dots, a_k are irreducible, then their product is nonzero, which means x has a nonzero constant term, a contradiction. Therefore, R is not a UFD, since $x \in R$ cannot be factored into a finite product of irreducibles.

(d) Show that x is not a prime in R and describe the quotient ring R/(x).

Proof. Notice that x is not prime in R since it is not irreducible in R. Therefore R/(x) is not an integral domain since (x) is not prime. Moreover R/(x) has identity element f(x) + (x) where f(x) is a polynomial with no constant term and an integer coefficient on its x term. **I couldn't figure out how the rest of the cosets looked, so the following is from the online solution manual**: $R/(x) = \{a + bx + (x) \mid a \in \mathbb{Z}, b \in \mathbb{Q}, b \in [0, 1)\}.$

ů.

9.4.3 Show that the polynomial (x-1)(x-2)...(x-n)-1 is irreducible over \mathbb{Z} for all $n \ge 1$. [If the polynomial factors consider the values of the factors at x = 1, 2, ..., n.]

Proof. Let $p(x) = (x - 1)(x - 2) \dots (x - n) - 1$ and suppose p(x) = f(x)g(x) for some polynomials $f(x), g(x) \in \mathbb{Z}[x]$. Notice that since p(x) has degree n, both f(x) and g(x) have degree less than n. Without loss of generality suppose deg $f(x) \leq \deg g(x)$. Notice that for all $1 \leq k \leq n$, we have f(k)g(k) = -1. So, f(k) and g(k) are equal to ± 1 for all $1 \leq k \leq n$.

Now, consider the polynomial $p(x) + (f(x))^2$. Since deg $f(x) \le \text{deg } g(x)$, then deg $f(x) \le n/2$. Thus deg $(f(x))^2 \le n$ and so deg $(p(x) + (f(x))^2) = n$. Notice that the roots of this polynomial are $k \in \{1, \dots, n\}$. Then

$$p(x) + (f(x))^2 = (x-1)(x-2)\cdots(x-n) = p(x) + 1,$$

i.e., $(f(x))^2 = 1$ and so $f(x) = \pm 1$. Behold! This means f(x) is a unit in $\mathbb{Z}[x]$ so that p(x) is irreducible.

9.4.11 Prove that $x^2 + y^2 - 1$ is irreducible in $\mathbb{Q}[x, y]$.

Proof. Since $\mathbb{Q}[x, y] = \mathbb{Q}[x][y]$, we consider $y^2 + x^2 - 1$ as a polynomial in the variable y with coefficients in $\mathbb{Q}[x]$. Thus $y^2 + x^2 - 1$ is a monic polynomial with constant term $x^2 - 1$. We claim that x + 1 is a prime element in $\mathbb{Q}[x, y]$. Once this is verified, then the ideal P = (x + 1) is a prime ideal containing the constant term $(x - 1)^2$ — indeed, $(x - 1)^2 = (x + 1)(x - 1)$ — but the ideal $P^2 = ((x + 1)^2)$ does not contain the constant term $(x - 1)^2$. Then by Eisenstein's Criterion, $y^2 + x^2 - 1$ is irreducible.

Since \mathbb{Q} is a UFD, then $\mathbb{Q}[x][y]$ is also a UFD, and hence it suffices to show that x + 1 is irreducible in $\mathbb{Q}[x][y]$. To that end, suppose x + 1 = f(x, y)g(x, y) for some $f(x, y), g(x, y) \in \mathbb{Q}[x][y]$. Then

$$0 = \deg(x+1) = \deg(f(x,y)) + \deg(g(x,y))$$

which means $\deg(g(x,y)) = \deg(f(x,y)) = 0$, i.e., f(x,y), g(x,y) are constant polynomials. Then f(x,y), g(x,y) are both units since \mathbb{Q} is a field. Hence, x + 1 is irreducible.