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0.3.13 Let n 2 Z, n > 1, and let a 2 Z with 1  a  n. Prove that if a and n are relatively prime,

then there is an integer c such that ac ⌘ (mod n).

Proof. Let n 2 Z, n > 1, and let a 2 Z with 1  a  n. Assume a and n are relatively

prime. In other words, there exists integers b and c so that nb+ ac = 1. Then, 1� ac = nb
and so n divides (1� ac). Thus, ac ⌘ 1 (mod n). ⌅

1.1.8 Let G = {z 2 C|zn = 1 for some n 2 Z+}.

(a) Prove that G is a group under multiplication.

Proof. First, notice that 1 2 G as 1
1
= 1. Since 1 is the identity element of C and

G ⇢ C, then 1 is the identity element of G. Similarly, since C is associative, and G ⇢ C,
then G is also associative.

To show closure, first assume x, y 2 G. Then, there exists n,m 2 G so that xn
= 1 and

ym = 1. Notice that xnm
= (xn

)
m
= 1

m
= 1 and similarly ynm = ymn

= (ym)n = 1
n
= 1.

Since x, y 2 C and C is an abelian group we can compute

(xy)nm = xnmynm = 1 · 1 = 1

Thus, xy 2 G and hence G is closed under multiplication.

Next, by properties of complex numbers, we know that xx�1
= 1, i.e., x�1

is the inverse

of x. To see that x�1 2 G, simply observe that (x�1
)
n
= x�n

= (xn
)
�1

= 1
�1

= 1. Thus,

G contains inverses. ⌅

(b) Prove that G is not a group under addition.

Proof. G is not a group under addition because there is no identity element. To show

this, we assume that G is a group with identity element e. Let x 2 G and notice that

by a group axiom, e+ x = x. Applying the inverse of x to both sides on the right gives

e = 0. But, 0
n
= 0 for all n 2 Z+

so e 62 G. )( ⌅

1.1.19 Let x 2 G and let a, b 2 Z+

(a) Prove that xa+b
= xaxb

and (xa
)
b
= xab

Proof. xa+b
= x · x · · · x| {z }

a+b times

= (x · x · · · x)| {z }
a times

· (x · x · · · x)| {z }
b times

= xaxb

(xa
)
b
= xa · xa · · · xa

| {z }
b times

= (x · x · · · x)| {z }
a times

· (x · x · · · x)| {z }
a times

· · · (x · x · · · x)| {z }
a times| {z }

b times

= xab ⌅

(b) Prove that (xa
)
�1

= x�a
.
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Proof. Since x 2 G, then xa 2 G by closure in groups. Thus, (xa
)
�1 2 G and

xa · (xa
)
�1

= 1 (1)

Then, multiplying both sides of (1) by x�1
exactly a-times on the left,

(x�1 · x�1 · · · x�1
)| {z }

a times

(xa · (xa
)
�1
) = (x�1 · x�1 · · · x�1

)| {z }
a times

·1.

Then, after we re-associate and write xa
as x · x · · · x (exactly a times), we have

(x�1 · x�1 · · · x�1
| {z }

a times

· x · x · · · x| {z }
a times

)(xa
)
�1

= (x�1 · x�1 · · · x�1
)| {z }

a times

.

Thus,

(xa
)
�1

= x�a.

⌅

(c) Establish part (a) for arbitrary integers a and b.

Proof.

Case 1 — a, b 2 Z+
completed in part (a).

Case 2 — a, b 2 Z�

(i) xa+b
= (x�a�b

)
�1

= (x�b�a
)
�1

by Case 1z}|{
= (x�bx�a

)
�1

= (x�a
)
�1
(x�b

)
�1

=

xaxb

(ii) (xa
)
b
= ((xa

)
�b
)
�1

= (xa · xa · · · xa
| {z }

�b times

)
�1

=

0

BBBBB@
(x · x · · · x)| {z }

a times

· (x · x · · · x)| {z }
a times

· · · (x · x · · · · x)| {z }
a times| {z }

�b times

1

CCCCCA

�1

= (x�ab
)
�1

= xab

Case 3 — a 2 Z+, b 2 Z�
.

(i) • If |b| < a, then a+ b > 0. First, notice that

(xa+b
)(x�bx�a

) = xa+b�bx�a
= xax�a

= 1

Thus, (xa+b
)
�1

= (x�bx�a
) = (xaxb

)
�1
. Then, since inverses are unique,

xa+b
= xaxb

• If |b| > a, then a+ b < 0 which implies �b� a > 0. Using the previous

subcase,

xa+b
= (x�b�a

)
�1

= (x(�b)+(�a)
)
�1

= (x�bx�a
)
�1

= (x�a
)
�1
(x�b

)
�1

= xaxb
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• If |b| = a, then a+ b = 0. Notice that this implies xa
= x�b

. Then,

xa+b
= x0

= 1 = xax�a
= xaxb

(ii)

(xa
)
b
= ((xa

)
�b
)
�1

by Case 1z}|{
= (x�ab

)
�1

= xab

Case 4 — a = 0, b 2 Z.
(i) xa+b

= x0+b
= xb

= 1 · xb
= x0xb

= xaxb

(ii) (xa
)
b
= (x0

)
b
= 1

b
= 1 = x0

= x0·b
= xab

⌅

1.1.25 Prove that if x2
= 1 for all x 2 G then G is abelian.

Proof. Let x2
= 1 for all x in a group G. Let x, y 2 G. By closure in groups, (xy) 2 G and

so (xy)(xy) = 1. Then,

(xy)(xy) = 1

(yx)(xy)(xy) = (yx)1

y(xx)yxy = yx

y(1)yxy = yx

(yy)xy = yx

xy = yx

and so G is abelian. ⌅

1.2.4 If n = 2k is even and n � 4, show that z = rk is an element of order 2 which commutes with

all elements of D2n. Show that z is the only nonidentity element in D2n which commutes

with all elements in D2n.

Proof. Let n = 2k be even with n � 4. Consider the element z = rk 2 D2n. Clearly,

z2 = r2k = rn = 1 and so the order of z is 2. Now, we prove that z commutes with all

elements of D2n. First, we note that z commutes trivially with the identity. Next, we see

that z commutes with all rotations because, for an arbitrary rotation rm with 1  m  n�1,

we have

rkrm = rk+m
= rm+k

= rmrk

Finally, we claim that

rks = sr�k
(⇤)

Using the relation rs = sr�1
, we prove (⇤) by showing that

rks = rr · · · r| {z }
k�1 times

(rs) = rr · · · r| {z }
k�1 times

(sr�1
) = rr · · · r| {z }

k�2 times

(rs)r�1
= rr · · · r| {z }

k�2 times

(sr�1
)r�1

= · · · = sr�k.

Now, notice that since rn = 1 then r2k = 1, which implies rk = r�k
. Then, by (⇤),

rks = sr�k
=) rks = srk,
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and so rk commutes with the reflection s.
Now, to show that z is the only nonidentity element which commutes with all elements in

D2n, first let rt be an any rotation, t 6= k. Now, we want to show that rt 6= r�t
. So, assume

that in fact rt = r�t
. This would imply r2t = 1 = rn. In other words, 2t = n, and thus t = k,

a contradiction. By (⇤) we know that rts = sr�t
. Since rt 6= r�t

, then rts 6= srt. So, rt does
not commute with all elements in D2n. We’ve also show that, the only other nonidentity

element in D2n, s, does not commute with all elements in D2n. ⌅

1.3.2

� = (1 13 5 10)(3 15 8)(4 14 11 7 12 9)

⌧ = (1 14)(2 9 15 13 4)(3 10)(5 12 7)(8 11)

�2
= (1 5)(3 8 15)(4 11 12)(7 9 14)(10 13)

�⌧ = (1 11 3)(2 4)(5 9 8 7 10 15)(13 14)

⌧� = (1 4)(2 9)(3 13 12 15 11 5)(8 10 14)

⌧ 2� = (1 2 15 8 3 4 14 11 12 13 7 5 10)
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1.1.22 If x and g are elements of the group G, prove that |x| = |g�1xg|. Deduce that |ab| = |ba| for
all a, b 2 G.

Proof. Let x, g 2 G and |g�1xg| = n < 1. Then,

(g�1xg)n = 1 (⇤)
(g�1xg)(g�1xg) · · · (g�1xg)| {z }

n factors

= 1

g�1x(gg�1
)x(gg�1

)x · · · x(gg�1
)xg = 1

g�1x(1)x(1)x(1)x · · · x(1)x(1)xg = 1

g�1
(xx · · · x)| {z }
n factors

g = 1

g�1xng = 1 (⇤⇤)
(g)g�1xng(g�1

) = (g)1(g�1
)

xn
= gg�1

xn
= 1

Hence, |g�1xg| = n implies |x| = n. Following the equations in the opposite direction shows

|x| = n () |g�1xg| = n, i.e., |x| = |g�1xg|.
Notice that (⇤) =) (⇤⇤), which then implies

(g�1xg)n = g�1xng

Now, by way of contradiction, suppose |g�1xg| is infinity, but |x| = n < 1. Then,

(g�1xg)n = g�1xng = g�1
(1)g = g�1g = 1,

a contradiction. Similarly, suppose |x| is infinite, but |g�1xg| = n < 1. Then,

1 = (g�1xg)n = g�1xng.

Then,

1 = g�1xng =) gg�1
= xn

=) 1 = xn,

a contradiction. Thus, |x| is infinite if and only if |g�1xg| is infinite.

Now, let a, b 2 G, x = ab, and g = a. Then,

|ab| = |x| = |g�1xg| = |(a�1
)(ab)(a)| = |(a�1a)ba| = |ba|

⌅

1.1.23 Suppose x 2 G and |x| = n < 1. If n = st for some positive integers s and t, prove that

|xs| = t.

Proof. Notice that 1 = xn
= xst

= (xs
)
t
. Hence, |xs|  t. Assume that |xs| = q < t. This

implies sq < st = n, and so 1 = (xs
)
q
= xsq

, i.e., |x| = sq < st = n, a contradiction. Thus,

|xs| = t. ⌅
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1.3.10 Prove that if � is the m-cycle (a1 a2 . . . am), then for all i 2 {1, 2, , . . . ,m}, �i
(ak) = ak+i,

where k + i is replaced by its least residue mod m when k + i > m. Deduce that |�| = m.

Proof. Let ak 2 �. We proceed by induction on i. For the base case, let i = 1. By definition

of the function �, we see that �1
(ak) = (a1 a2 . . . am)(ak) = ak+1 (mod m)

. For the inductive

step, assume that �n
(ak) = ak+n for 1  n  i. Then,

�i+1
(ak) = (�1 � �i

)(ak) = (�1
)(ak+i) = ak+i+1

and so the conclusion holds. Now, we claim |�| = m. That is, �m
(ak) = ak for 1  k  m.

By way of contradiction, assume otherwise. That is, �m
(ak) 6= ak. So,

ak+m = �m
(ak) 6= ak

This implies k +m 6= k, which implies m 6= 0 mod m, a contradiction. Thus, |�| = m. ⌅

1.3.11 Let � be the m-cycle (1, 2, . . . ,m). Show that �i
is also an m-cycle if and only if i is relatively

prime to m.

Proof. First note that since � is an m-cycle, then o(�) = m by the previous exercise. Again

by the previous exercise, �i
is an m-cycle if and only if o(�i

) = m. By Proposition 5,

m = o(�i
) =

o(�)

gcd(m, i)
=

m

gcd(m, i)
,

and clearly m = m/gcd(m, i) if and only if gcd(m, i) = 1, i.e., m and i are relatively

prime. ⌅

1.3.16 Show that if n � m, then the number of m-cycles in Sn is given by

n(n� 1)(n� 2) · · · (n�m+ 1)

m

Proof. If we want to construct an m-cycle in Sn, n � m then we have n choices for the first

element in the cycle, (n� 1) choices for the second element in the cycle, (n� 2) choices for

the third element in the cycle, etc. In general, there are n� i choices for the i+1 element in

the cycle. Since we want exactly m elements in our cycle, there are (n�(m�1)) = n�m+1

choices for the last element in our cycle. So, there are

n(n� 1)(n� 2) · · · (n�m+ 1)

ways to construct an m-cycle. However, since each cycle can be represented in m di↵erent

ways, we have over-counted by a factor of m, and so we divide by m to obtain

n(n� 1)(n� 2) · · · (n�m+ 1)

m

m-cycles in Sn. ⌅
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1.3.17 Show that if n � 4, then the number of permutations in Sn which are the product of two

disjoint 2-cycles is n(n� 1)(n� 2)(n� 3)/8.

Proof. Any permutation in Sn that can be written as the product of two disjoint 2-cycles

will look like (qr)(st). In this representation, there are n choices for q, (n� 1) choices for r,
(n � 2) choices for s, and finally (n � 3) choices for t. So, we have n(n � 1)(n � 2)(n � 3)

permutations in Sn that can be written this way. However, since there are 2 ways to write

the permutation (qr), 2 ways to write the permutation (st), and 2 ways to write the product

(qr)(st), we must divide by a factor of 2 · 2 · 2 = 8. Thus, there are n(n� 1)(n� 2)(n� 3)/8
number of permutations in Sn which are the product of two disjoint 2-cycles.

⌅



Nicholas Camacho Abstract Algebra — Homework 2A September 6, 2016

1.6.17 Let G be any group. Prove that the map from G to itself defined by g 7! g
�1

is a

homomorphism if and only if G is abelian.

Proof. ()) Suppose ' : G ! G defined by g ! g
�1

is a homomorphism. Let a, b 2 G.

Then

ab = '(a
�1
)'(b

�1
) = '(a)

�1
'(b)

�1
= ('(b)'(a))

�1
= '(ba)

�1
= ((ba)

�1
)
�1

= ba

and thus G is abelian.

(() Suppose G is abelian. Let a, b 2 G and let the map ' : G ! G be defined by

g 7! g
�1
. Then

'(a)'(b) = a
�1
b
�1

= b
�1
a
�1

= (ab)
�1

= '(ab)

and thus ' is a homomorphism. ⌅

1.6.20 Prove that Aut(G) is a group under function composition.

Proof. We show that Aut(G) is a subgroup of SG and thus a group. Since SG is the

set of all bijections from G to itself, then certainly all of the homomorphic bijections

from G to itself are in SG, and thus, Aut(G) ✓ SG. Notice that Aut(G) 6= ; since the

identity map ' : G ! G defined by g 7! g is in Aut(G). Now, let ', 2 Aut(G). Then,

' �  �1
: G ! G is in Aut(G) since isomorphic functions are closed under function

composition. Therefore, Aut(G) is a subgroup of SG by the Subgroup Test. ⌅

2.1.15 Let H1  H2  . . . be an ascending chain of subgroups of G. Prove that [1
i=1Hi is a

subgroup of G.

Proof. Since 1G 2 Hi for all i, then 1G 2 [1
i=1Hi and so [1

i=1Hi 6= ;. Let a, b 2 [1
i=1Hi.

So, there exists j and k so that a 2 Hj and b 2 Hk. Let m = max{j, k}. So, a, b 2 Hm

and thus ab
�1 2 Hm by closure in groups and so ab

�1 2 [1
i=1Hi. Thus, [1

i=1Hi is a

subgroup of G by the Subgroup Test. ⌅
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2.5.11 Subgroup lattice of

QD16 = h�, ⌧ |�8
= ⌧

2
= 1, �⌧ = ⌧�

3i

Solution:

QD16

h�ih�2
, ⌧i h�2

, �⌧i

h�4
, ⌧ih�2

⌧, �
4i h�2i h�⌧i h�3

⌧i

h�4ih⌧ih�4
⌧ih�6

⌧ih�2
⌧i

1

3.1.1 Let ' : G ! H be a homomorphism and let E be a subgroup of H. Prove that

'
�1
(E)  G (i.e., the preimage or pullback of a subgroup under a homomorphism is a

subgroup). If E E H prove that '
�1
(E) E G. Deduce that ker' E G.

Proof. Let ' : G ! H be a homomorphism and let E  H. We first show that

'
�1
(E)  G. First note that '

�1
(E) = {g 2 G|'(g) 2 E}. Since E  H, 1H 2 E and

so '
�1
(1H) = 1G is in '

�1
(E). Thus, '

�1
(E) 6= ;. Now, let a, b 2 '

�1
(E). Then

'(ab
�1
) = '(a)'(b

�1
) = '(a)'(b)

�1 2 E by closure in E.

Thus, ab
�1 2 '

�1
(E) and so '

�1
(E)  G by the Subgroup Test.

Now suppose E E H. Let g 2 G and let a 2 '
�1
(E). Then,

'(gag
�1
) = '(g)�(a)'(g)

�1 2 E since E E H,

and thus gag
�1 2 '

�1
(E).

Since {1H} E H — (h1Hh
�1

= 1H 2 {1h}8h 2 H) — then ker' = '
�1
(1h) E G by

the previous proof. ⌅
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3.1.29 Let N be a finite subgroup of G and suppose G = hT i and N = hSi for some subsets

S and T of G. Prove that N is normal in G if and only if tSt
�1 ✓ N for all t 2 T .

Proof. ())

N E G =) thSit�1 ✓ N 8t 2 T =) tSt
�1 ✓ N 8t 2 T

(() Suppose tSt
�1 ✓ N . This implies that htSt�1i ✓ N by closure in N . Note that

since the conjugate of a product is the product of conjugates, then for all t 2 T , we

have thSit�1
= htSt�1i.

tNt
�1

= thSit�1
= htSt�1i ✓ N

Since N is finite, |tNt
�1| = |N |, and thus, tNt

�1
= N for all t 2 T . This implies T ✓

NG(N), and so G = hT i ✓ NG(N), and then G = NG(N) which means N E G. ⌅



Nicholas Camacho Abstract Algebra — Homework 2B September 9, 2016

2.1.6 Let G be an abelian group. Prove that {g 2 G
�� |g| < 1} is a subgroup of G (called

the torsion subgroup of G). Give an explicit example where this set is not a subgroup

when G is non-abelian.

Proof. Let H = {g 2 G
�� |g| < 1}. Notice that 1G 2 H since (1G)

1
= 1G. Let x, y 2

H. Then x
n
= 1 and y

m
= 1 for some n,m 2 Z+

. Notice that x
nm

= (x
n
)
m
= 1

m
= 1

and (y
�1
)
nm

= (y
m
)
�n

= 1
�n

= 1. Then, since G is abelian,

(xy
�1
)
n
m = x

nm
(y

�1
)
nm

= 1 · 1 = 1

and so xy 22 H. Thus H is a subgroup of G by the subgroup test.

Consider the nonabelian group SL2(Z). Notice that

����

✓
1 �1

1 0

◆���� = 6 and

����

✓
0 1

�1 0

◆���� = 4

but ✓
1 �1

1 0

◆✓
0 1

�1 0

◆
=

✓
1 1

0 1

◆
,

which has infinite order since

✓
1 1

0 1

◆k

=

✓
1 k

0 1

◆

for all k 2 Z+
.

⌅

2.3.26 Let Zn be a cyclic group of order n and for each integer a let

�a : Zn ! Zn by �a(x) = x
a
for all x 2 Zn.

(a) Prove that �a is an automorphism of Zn if and only if a and n are relatively prime.

Proof. ()) Suppose �a is an automorphism of Zn and let x
k 2 Zn for 1  k  n.

By surjectivity of �a, there exists x
` 2 Zn so that �a(x

`
) = x

k
. Notice that

(x
a
)
`
= (x

`
)
a
= �a(x

`
) = x

k

Since this is true for each k 2 {1, . . . , n�1}, we have that hxai = Zn. This means

that (a, n) = 1 by Proposition 6 (2).

(() Conversely, suppose (a, n) = 1 and let x, y 2 Zn. Then, as Zn is abelian,

�a(xy) = (xy)
a
= x

a
y
a
= �a(x)�b(x)

and so �a is a homomorphism. We now show that �a is bijective. Note that since

(a, n) = 1, there exists integers w, z so that aw = 1� zn. Let x
k 2 Zn. Then,

�a(x
wk
) = (x

wk
)
a
= (x

aw
)
k
= (x

(1�zn)
)
k
= (x

1
(x

n
)
�z
)
k
= x

k

and thus �a is surjective. Since we have a surjective map between two groups of

the same cardinality, the map must also be injective. Thus, �a is a automorphism

of Zn. ⌅
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(b) Prove that �a = �b if and only if a ⌘ b (mod n).

Proof.

�a = �b () x
a
= �a(x) = �b(x) = x

b

() x
a�b

= 1

() (a� b)|n
() a ⌘ b (mod n)

⌅

(c) Prove that every automorphism of Zn is equal to �a for some integer a.

Proof. Let � be an automorphism of Zn. Then, since x generates Zn, we have

�(x) = x
k
for some 0  k  n� 1. So, for any x

` 2 Zn

�(x
`
) = �(x)

`
= x

k`
= x

`k
= �k(x

`
)

⌅

(d) Prove that �a � �b = �ab. Deduce that the map a ! �a is an isomorphism of

(Z/nZ)⇥ onto the automorphism group of Zn (so Aut(Zn) is an abelian group of

order '(n)).

Proof. Let x
` 2 Zn for 0  k  n� 1. Then,

(�a � �b)(x`
) = �a(x

`b
) = x

`ba
= x

`ab
= (x

`
)
ab
= �ab(x

`
)

Thus, we see that the map

' : (Z/nZ)⇥ ! Aut(Zn)

defined by a ! �a is a homomorphism by what was just shown, an injection by

part (b), and a surjection by part (c). ⌅

3.1.14 Consider the additive quotient group Q/Z.

(a) Show that every coset of Z in Q contains exactly one representative q 2 Q in the

range 0  q < 1.

Proof. We first show the existence of such a q. We define the rationals to be

Q = {a/b | a 2 Z, b 2 Z+}. Given any rational, a/b, then by the Division

Algorithm, there exists m, r 2 Z, 0  r < b so that a = mb+ r. So,

a

b
= m+

r

b
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and thus a/b + Z = r/b + Z, since a/b and r/b di↵er by an integer. Since r < b,

then 0  r/b < 1 and so our representative is q = r/b. That was fun; now onto

uniqueness. Suppose that k + Z = q + Z for 0  k, q < 1. Then

k + Z = q + Z =) (k � q) + Z = Z =) (k � q) 2 Z

Since 0  k, q < 1 and (k� q) 2 Z, it must be the case that k� q = 0, i.e., k = q.

So, q is unique! ⌅

(b) Show that every element of Q/Z has finite order but that there are elements of

arbitrarily large order.

Proof. Given a coset a/b+ Z in Q/Z, the order of this coset is at most b since

⇣
a

b
+ Z

⌘
b = a+ bZ = a+ Z = Z

Consider the coset 1/n + Z. Since 1/n is in lowest terms, the order of this coset

is n, which can be made arbitrarily large. ⌅

(c) Show that Q/Z is the torsion subgroup of R/Z.

Proof. Let H be the torsion subgroup of R/Z. By part (b), we know that Q/Z ✓
H. To see that Q/Z = H, we prove that all cosets in Qc

/Z are not in H. To get

a contradiction, assume there was a i + Z 2 Qc
/Z so that |i + Z| = n < 1 for

some n 2 Z+
. This implies,

(i+ Z)n = in+ nZ = in+ Z =) in 2 Z

So, in = z for some integer z. This implies i = z/n, i.e., i is rational, a contra-

diction. Thus, no such coset exists. Therefore, Q/Z = H. ⌅

(d) Prove that Q/Z is isomorphic to the multiplicative group of root of unity in C⇥
.

Proof. We claim that ' : Q/Z ! Z(C⇥
) defined by (q + Z) 7! e

2⇡iq
is an isomor-

phism. Let q + Z, k + Z 2 Q/Z. Then,

'((q+Z) + (k+Z)) = '((q+ k) +Z) = e
2⇡i(q+k)

= e
2⇡iq

e
2⇡ik

= '(q+Z)'(k+Z)

and so ' preserves operation. Note that if e
2⇡in

= 1, then n 2 Z because

1 = e
2⇡in

= cos(2⇡n) + i sin(2⇡n) =) sin(2⇡n) = 0 and cos(2⇡n) = 1

which occurs only when n 2 Z. Now, assume '(q + Z) = '(k + Z). Then

e
2⇡iq

= e
2⇡ik

=) e
2⇡i(q�k)

= 1

which only occurs when q�k 2 Z, which means (q�k)+Z = Z and so q+Z = k+Z.
Thus, ' is injective. Let e

2⇡iq 2 Z(C⇥
). Then, there exists n 2 Z+

so that

1 = (e
2⇡iq

)
n
= e

2⇡iqn

which means qn = z 2 Z and thus, Q 3 q = z/n. Thus, '(q) = e
2⇡iq

. Therefore,

' is an isomorphism. ⌅
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3.1.34 Let D2n = hr, s|rn = s
2
= 1, rs = sr

�1i be the usual presentation of the dihedral group

of order 2n and let k be a positive integer dividing n.

(a) Prove that hrki is a normal subgroup of D2n

Proof. Given r
` 2 hrki, and r

q 2 D2n, notice that

r
q
r
`
r
�q

= r
` 2 hrki

and

sr
`
s
�1

= (r
`
)
�1

= r
n�` 2 hrki

and thus ghrkig�1 ✓ hrki for all g 2 D2n and so hrki E D2n.

⌅

(b) Prove that D2n/hrki ⇠= D2k.

Proof. Note that D2k = h⇢, � | ⇢k = 1 = �
2
, ⇢� = �⇢

�1i.
We first show that the quotient groupD2n/hrki is generated by two elements which

satisfy the same relations as the two generators of D2k. We claim that these are

rhrki and shrki. First notice that the smallest i 2 Z+
so that (rhrki)i = hrki is

also the smallest i 2 Z+
so that r

i 2 hrki. Since hrki = {1, rk, r2k, . . . rmk�1},
(assuming n = mk, k 2 Z+

), then it is clear that i = k. Thus, |rhrki| = k.

Likewise, (shrki)` = hrki when s
` 2 hrki. The smallest ` 2 Z+

with such a

property is clearly ` = 2. So, |shrki| = 2. Now, notice that

(rhrki)(shrki) = (rs)hrki = (sr
�1
)hrki = shrkir�1hrki

Thus, the generators rhrki and shrki satisfy the same relations as ⇢ and �, re-

spectively. Therefore, we define a map  : D2n/hrki ! D2k by

rhrki 7! ⇢ and shrki 7! �

Let s
`hrki, rihrki 2 D2n/hrki. Then,

 (s
`hrkirihrki) =  (s

`
r
ihrki) = �

`
⇢
i
=  (s

`hrki) (rihrki)

and so � preserves operation. If �
`1⇢

i1 = �
`2⇢

i2 , then s
`1r

i1 = s
`2r

i2 , and so

�
`1�`2⇢

i1�i2 = 1, which means `1 � `2 = 0 and i1 � i2 = 0, i.e., `1 = `2 and i1 = i2.

Thus,  is injective. Suppose �
`
⇢
i 2 D2k. Then,

 (s
`
r
i
) = �

`
⇢
i

and so clearly  is surjective. Thus,  is an isomorphism. ⌅
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3.1.36 Prove that if G/Z(G) is cyclic then G is abelian.

Proof. Let G be a group and suppose G/Z(G) is cyclic. Let hxZ(G)i = G/Z(G) and

g 2 G. Then, g 2 x
a
Z(G) for some coset x

a
Z(G) 2 G/Z(G) for a 2 Z. So, g = x

a
zi

for some zi 2 Z(G). Now, let g1, g2 2 G and let

g1 = x
a
zi and g2 = x

b
zj

for some a, b 2 Z and zi, zj 2 Z(G). Then

g1g2 = (x
a
zi)(x

b
zj)

= zi(x
a
x
b
)zj

= zi(x
a+b

)zj

= zi(x
b+a

)zj

= zix
b
x
a
zj

= x
b
zix

a
zj

= x
b
zizjx

a

= x
b
zjzix

a

= (x
b
zj)(x

a
zi) = g2g1

and thus G is abelian. ⌅

3.1.38 Let A be an abelian group and let D be the (diagonal) subgroup {(a, a)|a 2 A} of

A⇥ A. Prove that D is a normal subgroup of A⇥ A and (A⇥ A)/D ⇠= A.

Proof. Let (a1, a2) 2 A⇥ A and (d, d) 2 D. Then,

(a1, a2)(d, d)(a1, a2)
�1

= (a1d, a2d)(a
�1
1 , a

�1
2 )

= (a1da
�1
1 , a2da

�1
2 )

= (a1a
�1
1 d, a2a

�1
2 d) (since A is abelian)

= (d, d) 2 D

and so D E (A ⇥ A). Now, define a map ' : A ! (A ⇥ A)/D by a 7! (a, 1A)D. Let

a, a
0 2 A. Then,

'(aa
0
) = (aa

0
, 1A)D = (a, 1A)D(a

0
, 1A)D = '(a)'(a

0
)

and so ' is a group homomorphism. Now, suppose '(a) = '(a
0
). Then

(a, 1A)D = (a
0
, 1A)D =) (a

0�1
, 1A)(a, 1A) 2 D

=) (a
0�1

a, 1A) 2 D

=) a
0�1

a = 1A

=) a = a
0
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and so ' is injective. Now, suppose (a, a
0
)D 2 (A ⇥ A)/D. Notice that since

(a
0�1

, a
0�1

) 2 D then,

(a, a
0
)D = (a, a

0
)(a

0�1
, a

0�1
)D = (aa

0�1
, 1)D

So,

'(aa
0�1

) = (aa
0�1

, 1)D = (a, a
0
)D

and thus, ' is surjective. ⌅

3.1.41 Let G be a group. Prove that N = hx�1
y
�1
xy|x, y 2 Gi is a normal subgroup of G

and G/N is abelian (N is called the commutator subgroup of G).

Proof. Claim: If G is a group and H = hSi for some subset S of G, then H is a normal

subgroup of G if and only if for all g 2 G and all s 2 S we have that gsg
�1 2 H.

Proof of Claim: ()) Let G and H be defined as above and suppose H E G. Since

S ✓ G, then for any s 2 S we have gsg
�1 2 H.

(() Now, suppose gsg
�1 2 H for all g 2 G and s 2 S. Let S

�1
be the set of all

inverses for elements in S. Then, for s1, s2, s3, · · · 2 S [ S
�1

and g 2 G,

H 3 (gs
a
1g

�1
)(gs

b
2g

�1
)(gs

c
3g

�1
) · · · = g(s

a
1s

b
2s

c
3 . . . )g

�1
= ghg

�1

For some h = (s
a
1s

b
2s3c . . . ) 2 H. Thus, gHg

�1 ✓ H for all g 2 G and so H E G.

Let G be a group and N = hx�1
y
�1
xy|x, y 2 Gi. By the claim, N E G. Now, consider

G/N . Let a, b 2 G. Then,

a
�1
b
�1
ab 2 N () (ba)

�1
ab 2 N

() abN = baN

() aNbN = bNaN

and thus, G/N is abelian. ⌅

3.2.12 Let H  G. Prove that the map x 7! x
�1

sends each left coset of H in G onto a

right coset of H and gives a bijection between the set of left cosets and the set of right

cosets of H in G (hence the number of left cosets of H in G equals the number of right

cosets).

Proof. Define ' : G ! G by x 7! x
�1
. Then, given an element gh 2 gH, we have

'(gh) = (gh)
�1

= h
�1
g
�1 2 Hg

�1

So, ' maps elements in the left coset gH precisely to elements in the right coset

Hg
�1
. We claim that ' gives a bijection between left and right cosets. To see this, let

gh1, gh2 2 gH and suppose '(gh1) = '(gh2). Then,

'(gh1) = '(gh2) =) h
�1
1 g

�1
= h

�1
2 g

�1
=) h

�1
1 = h

�1
2 =) h1 = h2
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and so ' is injective. Now, suppose h1g 2 Hg. Then, observe that

'(g
�1
h1) = h

�1
1 (g

�1
)
�1

= h
�1
1 g

and so each element in Hg can be attained through the map ', and so it is surjective.

⌅

3.3.4 Let C be a normal subgroup of the group A and let D be a normal subgroup of the

group B. Prove that (C ⇥D) E (A⇥ B) and (A⇥ B)/(C ⇥D) ⇠= (A/C)⇥ (B/D).

Proof. We first show that (C ⇥ D)  (A ⇥ B). First, notice that since C and D are

subgroups of A and B, respectively, then 1A 2 C and 1B 2 D and so(1A, 1B) 2 (C⇥D).

Now, let (c
0
, d

0
), (c, d) 2 (C ⇥D). Then,

(c
0
, d

0
)(c, d)

�1
= (c

0
, d

0
)(c

�1
, d

�1
) = (c

0
c
�1
, d

0
d
�1
) 2 C ⇥D

because c
0
c
�1 2 C and d

0
d
�1 2 D by closure in C and D. So, (C ⇥D)  (A⇥ B).

We now show that (C ⇥ D) E (A ⇥ B). Let (c, d) 2 (C ⇥ D) and (a, b) 2 (A ⇥ B).

Then,

(c, d)(a, b)(c, d)
�1

= (c, d)(a, b)(c
�1
, d

�1
) = (cac

�1
, dbd

�1
) 2 (C ⇥D)

because cac
�1 2 C and dbd

�1 2 D since C and D are normal in A and B, respectively.

Thus, (C ⇥D) E (A⇥ B).

Now, consider the map ' : (A ⇥ B) ! (A/C) ⇥ (B/D) defined by (a, b) 7! (aC, bD).

Suppose (aC, bD) 2 (A/C) ⇥ (B/D). Then clearly ' is surjective since '((a, b)) =

(aC, bD). Now, we consider ker':

ker' = {(a, b) 2 A⇥ B | '((a, b)) = (C,D)}
= {(a, b) 2 A⇥ B | a 2 C and b 2 D} = (C ⇥D)

We conclude by the First Isomorphism Theorem (A⇥B)/(C ⇥D) ⇠= (A/C)⇥ (B/D).

⌅
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3.2.9 This exercise outlines a proof for Cauchy’s Theorem. Let G be a finite group and let p be a
prime dividing |G|. Let S denote the set of p-tuples of elements of G the product of whose
coordinates is 1:

S = {(x1, x2, . . . , xp) | xi 2 G and x1x2 · · · xp = 1}

(a) Show that S has |G|p�1 elements, hence has order divisible by p.

Proof. For the p-tuple (x1, x2, . . . , xp) to be in S, we must have

(x1x2 · · · xp�1) = x
�1
p

In other words, we have precisely |G| choices for the first p � 1 elements of the p-tuple,
and 1 choice for the xp term. So, there are |G|p�1 elements in S. ⌅

Define the relation ⇠ on S by letting ↵ ⇠ � if � is a cyclic permutation of ↵.

(b) Show that a cyclic permutation of an element of S is again an element of S.

Proof. Let (x1, x2, . . . , xp) 2 S. Consider the cycle permutation of this element (xk, . . . , xp, x1, . . . , xk�1).
Notice that

(x1x2 . . . xp) = (x1 · · · xk�1xk · · · xp) = 1

(x1 · · · xk�1)(xk · · · xp) = 1

(x1 · · · xk�1) = (xk · · · xp)
�1

(xk · · · xp)(x1 · · · xk�1) = 1

So,
(xk · · · xpx1 · · · xk�1) = (xk · · · xp)(x1 · · · xk�1) = 1

⌅

(c) Prove that ⇠ is an equivalence relation on S.

Proof. Let ↵, �, � be cycle permutations of elements of S.
Reflexivity: Given a cycle permutation ↵, the identity cyclic permutation is a permutation
of ↵, i.e., ↵ ⇠ ↵

Symmetry: Let ↵ ⇠ � and suppose � is a k-th cyclic permutation of ↵, where 0  k  p�1.
Then, ↵ is the (p� k)-th cyclic permutation of �. Hence, ↵ ⇠ � =) � ⇠ ↵

Transitivity: Let ↵ ⇠ � and � ⇠ � and suppose that � is a k-th cyclic permutation of ↵,
and � is an `-th cyclic permutation of �. Then, � is a (k + `)-th cyclic permutation of ↵,
i.e., ↵ ⇠ � and � ⇠ � =) ↵ ⇠ �. ⌅

(d) Prove that an equivalence class contains a single element if and only if it is of the form
(x, x, . . . , x) with x

p = 1.

Proof. Suppose that we have an equivalence class of S with a single element of S, and
let ↵ be the cycle associated with this element. Then each i-th cyclic permutation of ↵
for all 0  i  p � 1 is precisely ↵. This occurs only when x1 = x2 = · · · = xp. So, the
element of S associated with ↵ is of the form (x, x, . . . , x) with x

p = 1. On the other hand,
suppose an element of S is of the form (x, x . . . , x) with x

p = 1. Then, the permutation
associated with this element, ↵, has the property that every i-th cyclic permutation of ↵
for 0  i  p � 1 is precisely ↵, i.e., the equivalence class associated with ↵ contains a
single element. ⌅
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(e) Prove that every equivalence class has order 1 or p (this uses the fact that p is a prime).
Deduce that |G|p�1 = k+pd where k is the number of classes of size 1 and d is the number
of classes of size p.

Proof. Suppose the equivalence class of (x1, ..., xp) contains more than 1 element. Then
there exist i < j such that xi 6= xj. We want to show that for all 1  b < c  p,

(xb, ..., xp, x1, ..., xb�1) 6= (xc, ..., xp, x1, ..., xc�1)

Rearranging, this means that for all 2  a  p, we want to show

(xa, ..., xp, x1, ..., xa�1) 6= (x1, ..., xp) (1)

Now, suppose we had equality in (1). Then, let � = (1, 2, . . . , p) and ⇢ = �
a. Notice that

(x⇢(1), x⇢(2), . . . , x⇢(p)) = (xa, ..., xp, x1, ..., xa�1)

Equality in (1) implies that xi = x⇢(i) for 1  i  p. Without loss of generality, let i = 1.
So, by our assumption that each equivalence class has more than one element, x1 6= xj

for 1 < j  p. From Exercise 11 of section 1.3, we know that since (a, p) = 1, then ⇢ is a
p-cycle. Since ⇢ is a p-cycle, then there exists k 2 Z+ so that ⇢k(1) = j. So,

x1 = x⇢k(1) = xj

a contradiction. So the statement in (1) holds. Therefore, every equivalence class has
order p, or order which divides p. Since p is prime, the equivalence classes have order p or
1. So, if S has k classes of size 1, and d classes of size p, then

|S| = |G|p�1 = k + dp

⌅

(f) Since {(1, 1, . . . , 1)} is an equivalence class of size 1, conclude from (e) that there must be
a nonidentity element x in G with x

p = 1, i.e., G contains an element of order p. [Show
p | k and so k > 1].

Proof. Since |G|p�1 = k + dp, then k = |G|p�1 � dp. Since p divides |G|p�1 and dp, then
k is divisible by p and so k > 1. Thus, there must be a nonidentity element in G so that
x
p = 1. ⌅

3.2.11 Let H  K  G. Prove that [G : H] = [G : K] · [K : H]. (Do not assume G is finite).

Proof. Since the (left) cosets of K in G partition G, then

G =
G

`2I1

g`H (2)

where I1 is an indexing set so that each g` is a representative from each coset of H in G. In
other words, |I1| = [G : H]. Similarly, we have

K =
G

j2I2

kjH and G =
G

i2I3

xiK
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so that |I2| = [K : H] and |I3| = [G : K]. Since the (left) cosets of H partition G and the (left)
cosets of K partition H, then G can be written as

G =
G

i2I3

G

j2I2

xikjK

Written this way, we have G partitioned into |I2| · |I3| pieces. We can also write G as in (2), so
that G

`2I1

g`H =
G

i2I3

G

j2I2

xikjK (2)

and so [G : H] = [G : K] · [K : H] as desired. ⌅

3.3.2 Prove all parts of the Lattice Isomorphism Theorem.
Let G be a group, let N E G. Define

G = {H | N  H  G} and G = {H | H  G/N}

Then the map
f : G ! G

defined by H 7! H/N is a bijection. Moreover, define G := G/N . If A,B 2 G define A =
A/N,B = B/N .

(1) A  B () A  B

Proof. ()) Since A,B 2 G, then they are both groups. We want to show that A  B. Let
aN 2 A for a 2 A. By our assumption a 2 B, and so aN = bN 2 B for some b 2 B. Thus,
aN 2 B. (() Since A,B 2 G, then A and B are groups. We want to show that A  B.
Let a 2 A and consider aN 2 A. By our assumption, aN 2 B and so aN = bN for some
b 2 B. Then,

ab
�1
N = N =) ab

�1 2 N =) ab
�1 = n, n 2 N =) a = nb

and so a 2 B since n, b 2 B. ⌅

(2) If A  B then [B : A] = [B : A]

Proof. Since A  B, then A  B by (1). So, we consider B/A and B/A and define a map

' : B/A ! B/A by bA 7! b A

where b denotes bN .

' is well-defined: Suppose b1A = b2A. This implies b1 = b2a for some a 2 A. So,

'(b1A) = b1 A = b2a A = b2 a A = b2 A = '(b2A)

' is injective: Suppose '(b1A) = '(b2A). Then, b1 A = b2 A which implies b�1
2 b1 2 A, and

so we have b
�1
1 b2 = a for some a 2 A. Unraveling the notation, we have (b�1

2 b1)N = aN ,
which means (a�1

b
�1
2 b1)N = N and so (a�1

b
�1
2 b1) 2 N . Now, this implies b

�1
1 b1 2 aN .

Since aN ⇢ A, then b
�1
2 b1 2 A and so b1A = b2A.

' is surjective: Let b A 2 B/A. Then, '(bA) = b A and so ' is surjective.

So, ' is a bijection and we conclude [B : A] = [B : A]. ⌅
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(3) hA,Bi = hA,Bi

Proof. Let x 2 hA,Bi. Then, x = yN for some y 2 hA,Bi. Then, y = c1c2c3 . . . where
ci 2 A or ci 2 B for all i. So,

x = yN = (c1c2c3 . . . )N = c1Nc2Nc3N . . .

Since each (ciN) 2 A or B for all i, then x 2 hA,Bi.
Conversely, suppose x 2 hA,Bi. Then,

x = (d1N)(d2N)(d3N)...

for some (diN) 2 A or (diN) 2 B for all i, which means di 2 A or di 2 B for all i. This
means (d1d2d3...) = z for some z 2 hA,Bi. So,

x = (d1N)(d2N)(d3N)... = zN

and thus x 2 hA,Bi. ⌅

(4) A \ B = A \B

Proof. Let x 2 A \ B. Then, x = yN for some y 2 A \ B. Since y 2 A \ B, then y 2 A

and y 2 B, and so yN 2 A and yN 2 B. Thus, x 2 A \B.
Conversely, suppose x 2 A \ B. So, x 2 A and x 2 B, which means x = aN 2 A and
x = bN 2 B for some a 2 A and b 2 B. So, aN = bN , which means b

�1
a 2 N , and so

a 2 bN . Since bN ✓ B, then a 2 B. Thus, a 2 A \ B, and so x = aN 2 A \ B. ⌅

(5) A E G () A E G

Proof. ()) Let a 2 A and g 2 G. Since A E G, then a
0 = gag

�1 2 A. Let aN 2 A and
gN 2 G. Then,

(gN)(aN)(g�1
N) = (gag�1)N = a

0
N 2 A.

and so A E G.
(() Let a 2 A and g 2 G. Since A E G, then (gN)(aN)(g�1

N) = (gag�1)N 2 A. Suppose
(gag�1)N = xN for some x 2 A. This means that x�1

gag
�1 2 N . So, gag�1 2 xN . Since

xN ✓ A, then gag
�1 2 A and thus A E G. ⌅
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3.4.1 Prove that if G is an abelian simple group, then G ⇠= Zp for some prime p (do not assume

G is a finite group).

Proof. We claim that if G is an abelian simple group, then |G| = p for some prime p. Then,

every non-identity element of G must have order p, which means every non-identity element

of G generates G. Then G ⇠= Zp since every cyclic group of order p is isomorphic to Zp.

To prove the claim, first suppose G is an infinite group and let x 2 G be a non-identity

element. Remember that every subgroup of an abelian group is normal. If |x| is finite, then
hxi � G and since G is abelian hxi E G, which means G is not simple. If |x| is infinite,

then hx2i � G, and hx2i E G, which means G is not simple. So, G cannot be infinite. Now,

suppose |G| = c for some composite number c. Let p be a prime so that p|c. Then, there

exists x 2 G with |x| = p by Cauchy’s Theorem. Then, hxi � G and hxi E G, which means

G is not simple, a contradiction. Thus, G must be of prime order. ⌅

3.4.6 Prove part (1) of the Jordan–Hölder Theorem by induction on |G|.

Theorem (Jordan–Hölder). Let G be a finite group with G 6= 1. Then
(1) G has a composition series.

Proof. For the base case, we consider the case when |G| = 2. So, G is simple and so the

composition series is 1 E G and G/1 is trivially simple. Now, suppose that whenever G has

order less than or equal to n, G has a composition series. Let |G| = n + 1. If G is simple,

then we are done (because its composition series is trivial). If G is not simple, then G has

a nontrivial normal subgroup N . Notice that |N | < n which means |G/N | < n. By our

inductive hypothesis, N and G/N have a composition series:

1 = H1 E H2 E . . . E Hk = N

and

1 = S1/N E S2/N E . . . E S`/N = G/N

Notice that

N/Hk = 1 = S1/N =) Hk = S1.

Also notice that since Si/N E Si+1/N , then Si E Si+1. So, we construct the following

composition series for G:

1 = H1 E H2 E . . . E Hk = N = S1 E S2 E . . . E S` = G.

Thus, every finite group has a composition series. ⌅

3.5.3 Prove that Sn is generated by {(i i + 1) | 1  i  n � 1}. (Consider conjugates, viz.

(23)(12)(23)
�1
.)

Proof. Let n 2 Z+
and � 2 Sn. We know that � can be written as the product of transpo-

sitions. Given any transposition which is in the product of the transposition decomposition

of �, say (a b), notice that

(a b) = (b� 1 b)(b b+ 1) . . . (a+ 1 a+ 2)(a a+ 1)(a+ 1 a+ 2) . . . (b b+ 1)(b� 1 b)
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This implies that � can be expressed as the product of elements in the set

{(i i+ 1) | 1  i  n� 1},

and so Sn is generated by this set. ⌅

3.5.4 Show that Sn = h(12), (12 . . . n)i for all n � 2.

Proof. Let n � 2. Since Sn = h{(i i+1) | 1  i  n� 1}i by the previous exercise, we show

h(12), (12 . . . n)i = h{(i i+ 1) | 1  i  n� 1}i.

First notice that (1, 2), (123 . . . n) 2 Sn. Thus, h(12)(12 . . . n)i  Sn. Now, let

� = (123 . . . n) and ⌧ = (12).

Let i 2 {2, 3, 4, . . . n� 1}. We claim

(i i+ 1) = �
i�1

⌧�
1�i

.

When we prove this claim, we have Sn  h(12)(12 . . . n)i and so conclude that

Sn = h(12)(12 . . . n)i.

To prove the claim, we need to show that �
i�1

⌧�
1�i

obeys the same mapping as (i i + 1).

Namely, the mapping that sends i to i + 1, and i + 1 to i, and fixes all other points in

{1, 2, . . . , n}.
Let j 2 {1, 2, . . . , n}. We know from a previous assignment that for any m-cycle ⇢ =

(12 . . .m), we have ⇢
a
(j) = j + a. So, notice

(�
i�1

⌧�
1�i

)(j) = (�
i�1

⌧)(�
1�i

(j))

= (�
i�1

⌧)(j + 1� i mod n)

= (�
i�1

)⌧(j + 1� i mod n)

At this point, we claim that the number j + 1� i (mod n) does not equal 1 nor 2, and so ⌧

fixes it. If j+1� i = 1 (mod n) then j� i = n. But, the restriction of values on i and j tell

us that |i� j| < n. If j + 1� i = 2 mod n then j � (i+ 1) = n. But again, the restriction

of values for i and j tell us that |j � (i+ 1)| < n. So,

(�
i�1

)⌧(j + 1� i mod n) = �
i�1

(j + 1� i mod n)

= j + 1� i+ (i� 1) mod n

= j mod n

= j

Now, observe that

(�
i�1

⌧�
1�i

)(i) = (�
i�1

⌧)(�
1�i

(i))

= (�
i�1

⌧)(1)

= (�
i�1

)(⌧)(1)

= (�
i�1

)(2)

= i+ 1
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and also that

(�
i�1

⌧�
1�i

)(i+ 1) = (�
i�1

⌧)(�
1�i

(i+ 1))

= (�
i�1

⌧)(2)

= (�
i�1

)(⌧)(2)

= (�
i�1

)(1)

= i

⌅

4.1.1 Let G act on the set A. Prove that if a, b 2 A and b = g ·a for some g 2 G, then Gb = gGag
�1

(Ga is the stabilizer of a). Deduce that if G acts transitively on A then the kernel of the

action is
T

g2G gGag
�1
.

Proof. Let a, b 2 A so that g · a = b for some g 2 G. We show Gb = gGag
�1
.

h 2 Gb () h · b = b

() (h · b) = g · a
() g

�1
(h · b) = a

() (g
�1
h) · b = a

() g
�1
h(g · a) = a

() (g
�1
hg) · a = a

() (g
�1
hg) 2 Ga

() h 2 gGag
�1

The kernel of this group action is
T

x2A Gx. If G acts on A transitively, then Gb = gGag
�1

for all a, b 2 A. So, \

g2G

gGag
�1

⌅
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3.4.9 Prove the following special case of part (2) of the Jordan-Hölder Theorem: assume the

finite group G has two composition series

1 = N0 E N1 E . . . E Nr = G and 1 = M0 E M1 E M2 = G.

Show that r = 2 and that the list of composition factors is the same.

Proof. We first state and prove the following lemma:

Lemma. If A and B are normal subgroups of G, then AB E G.

Proof. Let A,B and G be defined as above. Then, for all g 2 G,

gAg�1
= A and gBg�1

= B

So,

gABg�1
= gABg�1

= gAg�1gBg�1
= AB

and so AB E G. K

Now, we show that r � 2. If r = 0, then G is the trivial group, which cant have a

compositions series. If r = 1, then G does not have any nontrivial normal subgroups,

but M1 is nontrivial and is normal in G. Thus, r � 2.

Since M1 and Nr�1 are normal in G, then by the Lemma, M1Nr�1 E G. Also, notice

that M1 \Nr�1 E G. By the Second Isomorphism Theorem.

G

M1Nr�1

M1 Nr�1

M1 \Nr�1

1

By the composition series, we know thatM1/1 = M1 is simple. Also, sinceM1\Nr�1 E
G, then M1 \Nr�1 E M1. Thus, either

(1) M1 \Nr�1 = M1 or (2) M1 \Nr�1 = 1.
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(1) M1 \Nr�1 = M1

This implies that M1  Nr�1. By the Fourth Isomorphism Theorem, we have

Nr�1/M1 E G/M1

Since G/M1 is simple, then either

(a) Nr�1/M1 = G/M1 or (b) Nr�1/M1 = M1

(a) Nr�1/M1 = G/M1

This implies Nr�1 = G. But from the composition series, Nr�1 � G, thus,

Nr�1 6= G.

(b) Nr�1/M1 = M1

This implies Nr�1 = M1. because M1 is simple, we have Nr�1 = 1, which

implies r = 2.

(2) M1 \Nr�1 = 1

This implies that M1  Nr�1M1. We know that Nr�1M1 E G, and since M1 E G,

then M1 is a strict normal subgroup of Nr�1M1. By the composition series, we

have

Nr�1M1 = G

and from the Fourth Isomorphism Theorem,

Nr�1M1/M1
⇠= G/M1

Since G/M1 is simple, then either

(a) Nr�1M1/M1 = 1 or (b) Nr�1M1/M1 = G/M � 1

(a) Nr�1M1/M1 = 1

This implies Nr�1 = M1, but since M1 is simple, then Nr�1 = 1 or Nr�1 = M1.

If Nr�1 = 1, then G is simple, but that contradicts the fact that M1 is a strict

normal subgroup of G. So, Nr�1 = M1 implies Nr�2 = 1, which implies r = 2.

(b) Nr�1M1/M1 = G/M � 1

This implies G = Nr�1M1, which means G/M1
⇠= Nr�1. So, Nr�1 = 1, which

means r = 2.

By part 2(a), Nr�1 = M1, and since r = 2, thenN1 = M1, which means the composition

series is the same. K

4.1.7 Let G be a transitive permutation group on the finite set A. A block is a nonempty

subset B of A such that for all � 2 G either �(B) = B or �(B) \ B = ; (here

�(B) = {�(b) | b 2 B}).

(a) Prove that if B is a block containing the element a of A, then the set GB defined

by GB = {� 2 G | �(B) = B} is a subgroup of G containing Ga.
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Proof. Let a 2 A and � 2 Ga. Suppose a 2 B. Then

�(a) = a 2 B =) �(B) = B =) � 2 GB =) Ga ✓ GB

Notice that GB 6= ; since �id(B) = B and so �id 2 GB. Let �, ⌧ 2 GB. Then

(� � ⌧�1
)(B) = �(⌧�1

(B)) = �(B) = B

and so, � � ⌧�1
2 GB, thus GB  G. K

(b) Show that if B is a block and �1(B), �2(B), . . . , �n(B) are all the distinct images

of B under the elements of G, then these form a partition of A.

Proof. We show that for `, k 2 {1, 2, . . . n}, either �`(B) \ �k(B) = ; or �`(B) =

�k(B). Suppose �`(B)\ �k(B) 6= ; and let x 2 �`(B)\ �k(B). Then, there exists

b1, b2 2 B so that �`(b1) = x = �k(b2). Then,

�`(b1) = �k(b2) =) b1 = ��1
`
�k(b1)

=) ��1
`

� �k 2 B

=) (��1
`

� �k)(B) = B

=) �k(B) = �`(B)

Thus, �` and �k are either the same or disjoint. Now, it is clear that

n[

i=1

�i(B) ⇢ A.

Let a 2 A and b 2 B. Then, since G acts transitively on A, there exists �k 2 G
so that �(b) = a. So, a 2

S
n

i=1 �i(B) and therefore,

n[

i=1

�i(B) = A.

K

4.1.9 ***(Worked with Meghan Malachi and Anup Poudel)***

Assume G acts transitively on the finite set A and let H be a normal subgroups of G.

Let O1,O2, . . . ,Or be distinct orbits of H on A.

(a) i. Prove that G permutes the sets O1,O2, . . . ,Or in the sense that for each

g 2 G and each i 2 {1, . . . , r} there is a j such that gOi = Oj, where

gO = {g · a | a 2 O} (i.e., O1, . . . ,Or are blocks).

Proof. Recall that H E G. If g 2 G and a 2 A, then we can call H · a an

orbit of H on A. So,

g · a1 = a2 for some a2 2 A

g · (H · a1) = gH · a1
= Hg · a1
= H(g · a1) = H · a2
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And so, we have g ·(H ·a1) = H ·a2. Which means G permutes O1,O2, . . . ,Or.

K

ii. Prove G is transitive on {O1, . . . ,Or}.

Proof. We want to show that for all H · a,H · a2 2 {O1,O2, . . . ,Or}, there

exists a g 2 G so that

g · (H · a1) = H · a2

Let a1, a2 2 A, then since G acts transitively on A, there exists g 2 G such

that g · a1 = a2. So,

H(g · a1) = H · a2
gH · a1 = H · a2
gH · a1 = H · a2

g(H · a1) = H · a2

And so, there exists a g so that

g · (H · a1) = H · a2

K

iii. Deduce that all orbits of H on A have the same cardinality.

Proof. Let a1, a2 2 A and g · a1 = a2 for all g 2 G. Since H E G, then

gH = Hg for all g 2 G, which means gHg�1
= h0 for some h, h0 2 H and

for all g 2 G. This means that gh = h0g. We define a bijection between the

orbits: Define the map

' : H · a1 ! H · a2

by h · a1 7! h0 · a2. Because G acts transitively on A, then for all a1, a2 2 A
there exists a g 2 G such that g · a1 = a2. This implies g(H · a1) = a2 and

so G acts transitively on each Oi. Now, because g · (ha) = g · (h0a1), then
ha1 = h0a2. So, each Oi has the same cardinality. K

(b) Prove that if a 2 O1 then |O1| = [H : H \Ga] and prove that r = [G : HGa].

Proof. We know that |G · a| = [G : Ga], so H · a| = [H : Ha]. Therefore,

Ha = H \Ga since H  G ( and so H ⇢ G). Then,

|H · a| = [H : Ha] = [H : H \Ga]

Since G acts transitively, the number of distinct orbits of H on A is

r = |{H · a | a 2 A}| = [G : GH·a]

We want to show [G : GH·a] = [G : HGa], i.e., GH·a = HGa.

If g 2 GH·a, then Hg · a = (gH) · a = g · (H · a) = H. So, g · a = h · a for h 2 H.

Then, h�1
(g · a) = a =) (h�1g) · a = a. So, h�1g 2 Ga, which means g 2 hGa
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and so g 2 HGa.

If g 2 HGa, then g = h1x for h1 2 H and x 2 Ga. Then,

g · (H · a) = (gH) · a = hxH · a = hHx · a = Hhx · a = H · a

which means g 2 GH·a. K

4.1.10 ***(Worked with Meghan Malachi and Anup Poudel)***

Let H and K be subgroups of the group G. For each x 2 G define the HK double
coset of x in G to be the set

HxK = {hxk | h 2 H, k 2 K}

(a) Prove thatHxK is the union of the left cosets x1K, . . . , xnK where {x1K, . . . , xnK}

is the orbit containing xKofH acting by left multiplication on the set of left cosets

of K.

Proof. Let hxk 2 HxK for x 2 G. Notice hxK = h(xK) 2 HxK and hxk 2

(hx)K. So,

hxk 2

[

xiK2H·xK

xiK.

Now, let y 2

[

xiK2H·xK

xiK. Then, y 2 xiK for some xiK 2 H · xK. This implies

xiK = h · xK = hxK for some h 2 H, so y 2 hxK. Then, y = hxk0 for k0 2 K.

Thus, y 2 HxK. So,

HxK =

[

xiK2H·xK

xiK

K

(b) Prove that HxK is a union of right cosets of H.

Proof. We want to show

HxK =

[

Hb2H·xK

Hb.

Let hxk 2 HxK. Notice that Hxk = Hx · k and Hx · k 2 Hx ·K. This implies

hxk 2 HxK, and so

hxk 2

[

Hb2H·xK

Hb

Let g 2
S

Hb2H·xK Hb. Then g 2 Hb for some Hb 2 Hx ·K and Hb = Hx · k for

some k 2 K. Then, Hb = Hxk, which means Hb 2 HxK. Thus, g 2 HxK. K

(c) Show that HxK and HyK are either the same set or are disjoint for all x, y 2 G.

Show that the set of HK double cosets partitions G.
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Proof. We claim that G =
S
HxK. If x 2 G then x = 1x1 2 HxK. If x 2 HxK

then clearly x 2 G. Now, we want to show HxK \ HyK 6= ; implies HxK =

HyK. Suppose h1xk1 = h2yk2 where h1xk1 2 HxK and h2yk2 2 HyK. Then,

xk1 = h�1
1 h2yk2 =) x = h�1

1 h2yk2k
�1
1 =) x 2 HyK =) HxK ✓ HyK

Similarly,

h2y = h1xk1k
�1
2 =) y = h�1

2 h1xk1k
�1
2 =) y 2 HxK =) HyK ✓ HxK

Thus, HxK = HyK. K

(d) Prove that |HxK| = |K| · [H : H \ xKx�1
].

Proof. We know that

HxK =

G

yK2H·xK

yK.

Since each yK is disjoint, |yK| = |K|. So,

|HxK| = |K| · |H · xK| = |K| · [H : HxK ]

So, we claim HxK = H \ xKx�1
, and the conclusion follows. To prove the claim,

observe that

h 2 HxK () h · (xk) = xk

() hxk = xk

() x�1hxk = k

() x�1hx 2 K

() h 2 xKx�1

() h 2 H \ xKx�1

K

(e) Prove that |HxK| = |H| · [K : K \ x�1Hx].

Proof. We know that

HxK =

G

Hy2H·xk

Hy.

Since each Hy is disjoint, |Hy| = |K|. So,

|HxK| = |H| · |Hx ·K| = |H| · [K : KHx]

As before, we claim KHx = K \ x�1Hx. Then,

k 2 KHx =) Hx · k = Hxk = Hx

We Have that xKx�1
ıH. So,

k 2 x�1Hx =) k 2 K and k 2 x�1Hx

Now, if k 2 K \ x�1Hx, then xkx�1
= h for h 2 H, and so

xhx�1
2 H =) Hx · k = HxK = Hx =) k 2 KHx

K
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4.2.8 Prove that if H has finite index n then there is a normal subgroup K of G with K  H and
[G : K]  n!.

Proof. Let C = {gH | g 2 G} be the set of left cosets of H in G. We let G act on C by left
multiplication. Let ⇡H be the associated permutation representation a↵orded by this action,
i.e.,

⇡H : G ! SC.

Then, by Theorem 3 (Chapter 4, Dummit and Foote), we know K = ker ⇡H E G and
K  H. Now, since [G : H] = n, then SC ⇠= Sn. Since |Sn| = n!, then |SC| = n! as well. So,
|⇡H(G)|  n!. By the First Isomorphism Theorem, G/K ⇠= ⇡H(G). Thus,

n! � |⇡H(G)| = |G/K| = [G : K]

K

3.2.9 (Cauchy’s Theorem Revisited)
Look again at 3.2.9. Let S = {(x1, . . . , xp) | xi 2 G and x1 · · · xp = 1}. Let � be the p-cycle
(1, 2, . . . , p) in Sp, and let H = h�i. For all ⌧ 2 H and all (xi, . . . , xp) 2 S, define

⌧.(x1, . . . , xp) = (x⌧(1), . . . , x⌧(p))

(i) Show that this defines a left action of H on S.

Proof. Let (x1, . . . , xp) 2 S and �id be the identity permutation of H. Then,

�id.(x1, . . . , xp) = (x�id(1), . . . , x�id(p)) = (x1, . . . , xp).

Now, let �`, �
k
2 H, 1  `, k  p and (x1, . . . , xp) 2 S. By a previous exercise, we know

that for any j 2 {1, 2 . . . , n} and any power of a p-cycle, �`, we have �`(j) = j + `. So,

�
`
.(�k

.(x1, . . . , xp) = �
`
.(x�k(1), . . . , x�k(p))

= �
`
.(x1+k, . . . , xp+k)

= (x�`(1+k), . . . , x�`(p+k))

= (x1+k+`, . . . , xp+k+`)

= (x�k+`(1), . . . , x�k+`(p))

= �
k+`

.(x1, . . . , xp)

= (�k
�
`).(x1, . . . , xp)

Thus, the given mapping defines a left action of H on S. K

(ii) Show that the H-orbits of this action are precisely the equivalence classes of the equiv-
alence relation defined exercise 3.2.9.

Proof. Let ↵ = (x1, . . . , xp) 2 S. Then,

O↵ = {⌧.↵ | ⌧ 2 H}

= {� | � = ⌧.↵, ⌧ 2 H}

= {� = (x⌧(1), . . . , x⌧(p)) | ⌧ 2 H}

= {� = (x⌧(1), . . . , x⌧(p)) | ⌧ is a power of the p-cycle �}

= {� is cyclic permutation of ↵}



Nicholas Camacho Abstract Algebra — Homework 5A September 27, 2016

And so O↵ is the set of elements which are cyclic permutations of ↵, i.e., O↵ is an
equivalence class of the relation defined in 3.2.9. K

(iii) Use the orbit lemma to prove that every H-orbit has order 1 or p (thus giving a shorter
proof of part (e) of 3.2.9).

Proof. Let ↵ 2 S and note that

[H : H↵] =
|H|

Ha

=
p

|Ha|
.

Since p is prime, |Ha| = 1 or |Ha| = p. Thus,

[H : H↵] =
p

1
= p or [H : H↵] =

p

p
= 1.

By the Orbit Lemma, |O↵| = [H : H↵], which means |O↵| = 1 or |O↵| = p. K

4.3.29 Let p be a prime and let G be a group of order p↵. Prove that G has a subgroup of order p�

for every � with 0  �  ↵.

Proof. We proceed by induction on ↵. For the base case, suppose ↵ = 1. Then |G| = p and
G has subgroups {1G} and G. Clearly, |{1G}| = p

0 and |G| = p
1, and so G has a subgroup

of order p
� for each 0  �  ↵ = 1. For the inductive hypothesis, suppose that for each

1  ↵  n� 1, the group G of order p↵ has a subgroup of order p� for each 0  �  ↵.
Let G be a group of order pn. By Cauchy’s Theorem, there exists g 2 G with |g| = p. Let
N = hpi. So, |G/N | = p

n�1, and by the induction hypothesis, G/N has subgroups of order
p
� for each 0  �  n� 1. By the 4th Isomorphism Theorem, the subgroups of G/N are of
the form H/N where H  G. So for each 0  �  n� 1, there is a subgroup H  G so that

|H/N | =
|H|

|N |
=

|H|

p
= p

� =) |H| = p
�+1

So, G has subgroups of order p
�+1 for each � 2 {0, 1, . . . , n � 1}, i.e., G has subgroups of

order p� for each � 2 {1, . . . , n},. Note that clearly the trivial subgroup of G is of order p0

so G contains a subgroup of order p� for each 0  �  n.

K

4.3.31 Using the usual generators and relations for the dihedral group D2n, show that for n = 2k
an even integer, the conjugacy classes in D2n are the following:

{1}, {rk}, {r±1
}, {r

±2
}, . . . , {r

±(k�1)
}, {sr

2b
| b = 1, . . . , k} and {sr

2b�1
| b = 1, . . . , k}

Give the class equation for D2n.

Proof. We know from a previous exercise that Z(D2n) = {1, rk}. Thus, {1} and {r
k
} are

conjugacy classes of D2n. Let 1  i, `  k�1 and j 2 {1, 2}. Then, any non-identity element
of D2n can be written as sjri. Now, we find the conjugacy class of r`:

(sjri)(r`)(sjri)�1 = (sjri)(r`)(r�i
s
�j)

= s
j
r
i+`�i

s
j (Note that sj = s

�j)

= s
j
r
`
s
j
.
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Recall that sr`s = r
�`. When j = 1, we have

s
j
r
`
s
j = sr

`
s = r

�`
,

and when j = 2,
s
j
r
`
s
j = 1r`1 = r

`
.

Thus, {r±`
} are conjugacy classes for each ` 2 {1, 2, . . . , k � 1}. We now find the conjugacy

class of s:
(sjri)(s)(sjri)�1 = (sjri)(s)(r�i

s
j).

Recall that r�i
s = sr

i. When j = 1

(sjri)(s)(r�i
s
j) = sr

i
sr

�i
s = sr

i
s(sri) = sr

i
s
2
r
i = sr

2i
,

and when j = 2,

(sjri)(s)(r�i
s
j) = r

i
sr

�i = (sr�i)r�i = sr
�2i = sr

�2(n�i)
.

Thus, the conjugacy class of s is {sr2i | 1  i  k}. Finally, we find the conjugacy class of
sr:

(sjri)(sr)(sjri)�1 = (sjri)(sr)(r�i
s
j)

Then, when j = 1,

(sjri)(sr)(r�i
s
j) = (sri)(sr)(r�i

s)

= sr
i(r�1

s)r�i
s

= sr
i�1(sr�i)s

= sr
i�1(ris)s

= sr
2i�1

.

and when j = 2, we have

(sjri)(sr)(r�i
s
j) = r

i(sr)r�i

= r
i(r�1

s)r�i

= (ri�1
s)r�i

= (sr�i+1)r�i

= sr
�2i+1

= sr
�2(n�i)+1

.

So, the conjugacy class of sr is {sr2i�1
| 1  i  k � 1}. So, the class equation of D2n is as

follows:
|D2n| = 1 + 1 + 2 + 2 + · · ·+ 2| {z }

(k�1)� summands

+k + k

K

4.4.8 Let G be a group with subgroups H and K with H  K.
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(a) Prove that if H is characteristic in K and K is normal in G, then H is normal in G.

Proof. Let �g 2 Aut(G) be conjugation by g for each g 2 G. Since K is normal in G,
then for each �g 2 Aut(G), we have

�g(K) = gKg
�1 = K.

Therefore, �g 2 Aut(K) for each g 2 G. Since H is characteristic in K, then for each
�g 2 Aut(K), we have

H = �g(H) = gHg
�1
.

Thus, H is normal in G. K

(b) Prove that ifH is characteristic inK andK is characteristic inG thenH is characteristic
in G. Use this to prove that the Klein 4-group V4 is characteristic in S4.

Proof. Let � 2 Aut(G). Then, as K is characteristic in G,

�(K) = K.

Thus, � 2 Aut(K). Since H is characteristic in K, then

�(H) = H

and so H is characteristic in G.

To show V4 is characteristic in S4, we first prove the following: If H is a unique subgroup
of a given order in a group G, then H is characteristic in G.
To see this, let � 2 Aut(G). Then, since � is bijective, then the order of the image of
H under �, �(H), is the order of |H|. Since � is a homomorphism, �(H) is a subgroup
of G. Since H is the only subgroup of order |H|, then �(H) = H, and thus H is
characteristic in G.
Now, since V4 is the unique subgroup of A4 of order 4, then V4 is characteristic in A4.
Also, since A4 is the unique subgroup of order 12 in S4, then A4 is characteristic in S4.
So, by the result above, we know V4 is characteristic in S4. K

(c) Give an example to show that if H is normal in K and K is characteristic in G then H

need not be normal in G.
Solution:

We know that since V4 = {(), (12)(34), (13)(24), (14)(23)} is abelian, then the subgroup
H = {(), (14)(23)} of V4 is normal. So, we know that

H E V4 char A4.

But
(123)(14)(23)(132) = (13)(24) 62 H,

and so H 6E A4.
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4.3.17 Let A be a nonempty set and let X be any subset of SA. Let

F (X) = {a 2 A | �(A) = a for all � 2 X} — the fixed set of X.

Let M(X) = A � F (X) be the elements which are moved by some element of X. Let
D = {� 2 SA | |M(�)| < 1}. Prove that D is a normal subgroup of SA.

Proof. We first show that D is a subgroup of SA. Notice that �id 2 D since

|M(�id)| = |A� F (�id)| = |A� A| = |;| = 0 < 1.

Let �, ⌧ 2 D. Notice that M(⌧) = M(⌧�1). We show that � � ⌧�1 2 D. Suppose |M(�)| =
s < 1 and |M(⌧�1)| = |M(⌧)| = t < 1. Notice that

M(� � ⌧) ✓ M(�) [M(⌧)

and so
|M(� � ⌧)|  |M(�)|+ |M(⌧)| = s+ t < 1.

We now show D E SA. Let � 2 SA, and ⌧ 2 D. We claim that �⌧��1 2 D, i.e., |M(�⌧��1)| <
1. If |A| < 1, then we are done. Suppose |A| = 1. We proceed by contradiction. Suppose
|M(�⌧��1)| = 1. Then, there exists an infinite subset B ✓ A so that for all b 2 B we have

(�⌧��1)(b) 6= b.

This implies that for all b 2 B,
⌧(��1(b)) 6= �

�1(b).

In other words |M(⌧)| = 1, a contradiction, as ⌧ 2 D. Thus, |M(�⌧�)| < 1, and so
D E SA. K

4.3.19 Assume H E G, and K is a conjugacy class of G contained in H and x 2 K. Prove that K
is a union of k conjugacy classes of equal size in H, where k = [G : HCG(x)]. Deduce that
a conjugacy class in Sn which consists of even permutations is either a single conjugacy class
under the action of An or is a union of two classes of the same size in An. [Let A = CG(x) and
B = H so A \ B = CH(x). Draw the lattice diagram associated to the Second Isomorphism
Theorem and interpret the appropriate indices. See also Exercise 9, Section 1.]

Proof. Let H act on K by conjugation. Then, K is the union of H-orbits;

K =
[

x2K

H.x

We claim that the H-orbit has of equal size. Let H.a and H.b be distinct H-orbits (conjugacy
classes of K in H). Then, as a and b are in the same conjugacy class K, there exists a g 2 G

so that gag�1 = b. We claim |H.a| = |H.b|. Notice
g(H.a)g�1 = {g(hah�1)g�1 | h 2 H}

= {(gh)a(gh)�1 | h 2 H}
= {xax�1 | x 2 gH}
= {yay�1 | y 2 Hg} (gH = Hg since H E G)

= {(hg)a(hg)�1 | h 2 H}
= {h(gag�1)h�1 | h 2 H}
= {hbh�1 | h 2 H}
= H.b
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Thus, H.a and H.b are conjugate and so |H.a| = |H.b|. Suppose x 2 K. Since all conjugacy
classes in K have equal size,

|K| = k · |H.x| for some k 2 Z+
.

We claim that k = [G : HCG(x)]. Since K = G.x is a conjugacy class of G, then Gx = CG(x).
Likewise, as H.x is a conjugacy call of H, then Hx = CH(x). Then by the Orbit-Stabilizer
Theorem,

|G.x| = [G : Gx] = [G : CG(x)] and |H.x| = [H : Hx] = [H : CH(x)].

So,

|K| = k · |H.x| =) |K|
|H.x| =

|G.x|
|H.x| =

[G : CG(x)]

[H : CH(x)]
.

Since H E G and CG(x)  G, then HCG(x)  G by Corollary 15 of Section 3.2 (D&F). So,

CG(x)  HCG(x)  G.

By Exercise 11 of Section 3.2, we have

[G : CG(x)] = [G : HCG(x)] · [HCG(x) : CG(x)].

So,
[G : CG(x)]

[H : CH(x)]
=

[G : HCG(x)] · [HCG(x) : CG(x)]

[H : CH(x)]
.

Note thatH\CG(x) = CH(x). SinceH E G and CG(x)  G, then by the Second Isomorphism
Theorem,

HCG(x)
�
H ⇠= CG(x)

�
H \ CG(x) = CG(x)

�
CH(x).

This means

[HCG(x) : H] = [CG(x) : CH(x)], which implies
|HCG(x)|

|H| =
|CG(x)|
CH(x)

.

Rearranging, we get

|HCG(x)|
|CG(x)|

=
|H|

CH(x)
which implies [HCG(x) : CG(x)] = [H : CH(x)].

So,

[G : HCG(x)] · [HCG(x) : CG(x)]

[H : CH(x)]
=

[G : HCG(x)][H : CH(x)]

[H : CH(x)]

= [G : HCG(x)].

Therefore, k = [G : HCG(x)].
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Now, consider the normal subgroup An of Sn. Suppose K is a conjugacy class of Sn and
K ✓ An. If � 2 K, then by what was just proved, K is a union of distinct conjugacy classes
of An of equal size. In particular, K is made up of k = [Sn : AnCSn(�)] conjugacy classes of
An of equal size. Now, since

An  AnCSn(�)  Sn

and An is a maximal subgroup of Sn, then either AnCSn(�) = An or AnCSn(�) = Sn. In the
former case, K is a single conjugacy class under the action of An. In the latter case, K is the
union of two conjugacy classes of the same size in An. K

4.3.23 Recall that a proper subgroup M of G is called maximal if whenever M  H  G, either
H = M or H = G. Prove that if M is a maximal subgroup of G then either NG(M) = M

or NG(M) = G. Deduce that if M is a maximal subgroup of G that is not normal in G then
the number of nonidentity elements of G that are contained in conjugates of M is at most
(|M |� 1)[G : M ].

Proof. *From Online Solution Manual*
Since M is a subgroup, we have M  NG(M)  G. Then, NG(M) = M or NG(M) = G. If
M is not normal, then NG(M) = M .
By the Orbit-Stabilizer Theorem, the number of conjugates of M is |G.M | = [G : NG(M)] =
[G : M ]. Now all conjugates of M have the same cardinality as M , ans we will have the
largest number of nonidentity elements in the conjugates ofM precisely when these conjugates
intersect trivially. In this case, the number of nonidentity elements in the conjugates of M is
at most (|M |� 1) · [G : M ]. K

4.3.24 Assume H is a proper subgroup of the finite group G. Prove G 6= [g2G, i.e., G is not the
union of the conjugates of any proper subgroup.

Proof. *From Online Solution Manual*
There exists a maximal subgroup M containing H. If M is normal in G, then

[

g2G

gHg
�1 ✓

[

g2G

gMg
�1 = M 6= G.

If M is not normal, we still have
[

g2G

gHg
�1 ✓

[

g2G

gMg
�1
.

By Exercise 23 above, we know that [

g2G

gMg
�1

contains at most (|M |� 1) · [G : M ] nonidentity elements. Thus,
�����
[

g2G

gHg
�1

�����  |G|� [G : M ] + 1 < |G|

because [G : M ] � 2. Since G is finite,

G 6=
[

g2G

gHg
�1
.

Thus, G is not the union of all conjugates of any proper subgroup. K



Nicholas Camacho Abstract Algebra — Homework 5B September 30, 2016

4.3.26 Let G be a transitive permutation group on the finite set A with |A| > 1. Show that there is
some � 2 G such that �(a) 6= a for all a 2 A (such an element is called fixed point free).

Proof. *From Online Solution Manual*
By way of contradiction, suppose that for all � 2 G, there exists a 2 A such that �(a) = a.
Then [

a2A

Ga.

Now because this action is transitive, if we fix b 2 A, then as � ranges over G, � ·b is arbitrary
in A. So in fact,

G =
[

�2G

G�(b) =
[

�2G

�Gb�
�1
.

Now, because the action is transitive, and |A| > 1, we know that Gb is a proper subgroup.
Thus, G  Sa is finite. By Exercise 24 above, we have a contradiction. Thus, there exists an
element � 2 G that is fixed point free. K

4.3.27 let g1, g2, . . . , gr be representatives of the conjugacy classes of the finite group G and assume
these elements pairwise commute. Prove that G is abelian.

Proof. *From Online Solution Manual*
Let G act on itself by conjugation. Not that

g1, g2, . . . , gr 2 Ggk

for all k 2 {1, . . . , r}. Let x 2 G. Then,

x = agia
�1

for some a 2 G and gi. Thus, x 2 aGgk
a
�1 for each k since gi stabilizes each gk. Moreover,

x 2
[

a2G

aGgk
a
�1

for all k. So,
G =

[

a2G

aGgk
a
�1

for each k. Since G is finite, then by Exercise 24, Ggk
must not be a proper subgroup, i.e.,

Ggk
= G for each gk.

Now, let a, b 2 G where a = xgax
�1 and b = ygby

�1. Then,

ab = (xgax
�1)(ygby

�1)

= xx
�1
gagbyy

�1

= gbga

= yy
�1
gbgaxx

�1

= ygby
�1
xgax

�1

= ba

Therefore, G is abelian. K
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4.5.16 Let |G| = pqr where p, q, and r are primes with p < q < r. Prove that G has a normal Sylow
subgroup subgroup for either p, q, or r.

Proof. Suppose no Sylow subgroup for either p, q, or r is normal. Then, since nr|pq then
nr 2 {p, q, pq}. But since p < q < r, then neither p nor q can be congruent to 1 mod r. So,
nr = pq. Since each Sylow r-subgroup of G has exactly r � 1 non-identity elements, we have

pq(r � 1) = pqr � pq (1)

total non-identity elements of G from the Sylow r-subgroups.
Since nq|pr then n1 2 {p, r, pr}. But since p < q, then p cannot be congruent to 1 mod q.
Thus, nq = r or nq = pr. In either case,

nq(q � 1) > p(q � 1) = pq � p, (2)

i.e., there are more than pq � p non-identity elements from the Sylow q- subgroups. Since
np|qr, then np 2 {q, r, qr}. By (1) and (2), G has less than

pqr � ((pqr � pq) + (pq � p) + 1) = p� 1

elements left to make up the number of nonidentity elements in the Sylow p-subgroups, which
is impossible since there are at least q(p�1) nonidentity elements from the Sylow p-subgroups.
Thus, we have a contradiction. K

4.5.22 Prove that if |G| = 132 then G is not simple.

Proof. Notice that 132 = 22 · 3 · 11. Since n2|(3 · 11) and n2 ⌘ 1 mod 2, then n2 2 {1, 3, 11}.
Similarly, since n3|(22 · 11) and n3 ⌘ 1 mod 3 then n3 2 {1, 4}. And finally, since n11|(22 · 3)
and n11 ⌘ 1 mod 11 then n11 2 {1, 12}. Suppose for contradiction that G is simple. Then,
n3 = 4, which means G contains exactly 4(3� 1) = 8 elements of order 3. Similarly, n11 = 12
which means G contains exactly 12(11� 1) = 120 elements of order 11 in G. Then there are
132� 8� 120 = 4 elements of order G which are not of order 3 nor 11. So, there is space for
exactly 1 Sylow 2-subgroup of order 4, i.e., n2 = 1 and so G contains a normal subgroup of
order 4, a contradiction. Thus G is not simple.

K

5.1.2 Let G1, G2, . . . , Gn be groups and let G = G1⇥ · · ·⇥Gn. Let I be a proper, nonempty subset
of {1, . . . , n} and let J = {1, . . . , n}� I. Define GI to be the set of elements of G that have
the identity of Gj in position j for all j 2 J .

(a) Prove that GI is isomorphic to the direct product of the groups Gi, i 2 J ,

Proof. We first show that GI  G. Since (1, 1, . . . , 1, 1, 1) 2 GI , then GI 6= Ø. Let
x, y 2 GI . For each i 2 I, the coordinates xi and y

�1
i

of x and y
�1 respectively are in

Gi and so xiy
�1
i

2 Gi. For each j 2 J , we have xj = 1Gj and y
�1
j

= 1Gj as the j-th
coordinate of x and y, respectively, and so xjy

�1
j

= 1Gj 2 Gj. Since the k-th coordinate
of the product of xy�1 is in Gk for all 1  k  n, then xy

�1 2 GI . So, GI  G.
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Let I = {i1, i2, . . . , ik}. We define a map

' : GI ! Gi1 ⇥Gi2 ⇥ · · ·⇥Gik

where the n-tuple x is mapped to the k-tuple y in the following way: The r-th coordinate
of y takes the value corresponding to the coordinate xir of x, where ir 2 I.
Given y 2 Gi1⇥ · · ·⇥Gik

, we can choose x 2 GI so that for all ir 2 I, the ir-th coordinate
of x corresponds to the r-th coordinate of y. Thus, ' is surjective. Also, if two elements
x, y 2 GI are not equal, then it must be the case that for at least one index ir 2 I, the
coordinates xir and yir of x and y, respectively, are not equal. Thus, by definition of ',
we will have '(x) 6= '(y) and so ' is injective. Finally, for any x, y 2 GI , consider the
coordinates xir and yir of x and y, respectively, ir 2 I. Then, the product xy will have
xiryir as it’s ir-th coordinate. So, '(xy) will have xiryir as it’s r-th coordinate. Then,
'(x) and '(y) will have their r-th coordinates the values xir and yir , respectively. So,
'(x)'(y) will have as it’s r-th coordinate the value xiryir . Thus, '(xy) = '(x)'(y). So,
' is an isomorphism. K

(b) Prove that GI is a normal subgroup of G and G/GI
⇠= GJ .

Proof. Let J = {j1, . . . , j`}. Define a map

 : G ! GJ

where the n tuple x is sent to the `-tuple y in the following way: The t-th coordinate of
y takes on the values corresponding to the jt-th coordinate of x.
Given any y 2 Gj, we can let x 2 G be the n-tuple which has xjt as the jt-th coordinate
where xjt equals the t-th coordinate of y for all jt 2 J . Then  (x) = y and so  

is surjective. By a very similar argument as in part (a), we see that  is a group
homomorphism. Now,

ker( ) = {x 2 G |  (x) = (1, 1, 1 . . . , 1) = the `-tuple consisting of all identity elements.}
= {x 2 G | x = (1, 1, . . . , 1) = the n-tuple consisting of all identity elements.}
= {x 2 G | x has the identity in the j-th coordinate for all j 2 J .}
= GI

By the First Isomorphism Theorem, GI E G and G/GI
⇠= GJ . K

(c) Prove that G ⇠= GI ⇥GJ .

Proof. Since GI E G, and GJ  G, then GIGJ  G. Since GI \GJ = 1, then

|GIGJ | =
|GI ||GJ |
|GI \GJ |

=
|GI ||GJ |

1
= |G|.

So, G = GIGJ . By a similar map as in (b), we get that GJ E G and so by Theorem 9,
(pg. 171, D&F), we have G ⇠= GI ⇥GK . K

5.4.11 Prove that if G = HK where H and K are characteristic subgroups of G with H\K = 1, then
Aut(G) ⇠= Aut(H)⇥Aut(K). Deduce that if G is an abelian group of finite order then Aut(G)
is isomorphic to the direct product of the automorphism groups of its Sylow subgroups.
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Proof. Define the map

f : Aut(G) ! Aut(H)⇥ Aut(K) by � 7! (�|H , �|K).

f is a homomorphism: Let �, ⌧ 2 Aut(G). Since H is characteristic in G, �|H(H) = H and
similarly, ⌧ |H(H) = H. So, (� � ⌧)|H = �|H � ⌧ |H . Similarly for K. Then,

f(� � ⌧) = ((� � ⌧)|H , (� � ⌧)|K)
= (�|H � ⌧ |H , �|K � ⌧ |K)
= (�|H , �|K)(⌧ |H , ⌧ |K)
= f(�) � f(⌧).

f is surjective: Let (↵, �) 2 Aut(H)⇥Aut(K). We need to find � 2 Aut(G) so that f(�) =
(↵, �). First, define

�̃ : H ⇥K ! H ⇥K, where �̃(h, k) = (↵(h), �(k)).

We claim �̃ 2 Aut(H ⇥K).

• �̃ is a group homomorphism:
Let h, h0 2 H, k, k

0 2 K. Then

�̃((h, k)(h0
, k

0)) = �̃((hh0
, kk

0))

= (↵(hh0), �(kk0))

= (↵(h)↵(h0), �(k)�(k0))

= (↵(h), �(k))(↵(h0), �(k0))

= �̃((h, k))�̃((h0
, k

0))

• �̃ is surjective:
Since ↵, � are surjective, then given h

0 2 H, k
0 2 K, there exists h 2 H, k 2 K so that

↵(h) = h
0 and �(k) = k

0. Thus, �̃((h, k)) = (↵(h), �(k)) = (h0
, k

0).

• �̃ is injective:
If �̃((h, k)) = �̃((h0

k
0)), then (↵(h), �(k)) = (↵(h0), �(k0)), which means ↵(h) = ↵(h0)

and �(k) = �(k0). Since both ↵ and � are injective, h = h
0 and k = k

0 which means
(h, k) = (h0

, k
0).

Since H and K are characteristic in G, they are normal subgroups of G. Since H \ K = 1
and G = HK, then by Theorem 9, (p 171, D& F), G ⇠= H ⇥K. Now, let

j : G ! H ⇥K where hk 7! (h, k)

be the canonical isomorphism between G and H ⇥K. Since H \K = 1 and HK = G, then
each element g 2 G can be expressed as a unique product hk for h 2 H, k 2 K. Therefore,
j
�1 is well-defined. Then,

j
�1 � �̃ � j : G ! H ⇥K ! H ⇥K ! G.
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Claim: � = j
�1 � �̃ � j gives f(�) = (↵, �) as desired. We show that �|H = ↵. Let h 2 H.

Then,

�(h) = (j�1 � �̃ � j)(h)
= (j�1 � �̃)j(h)
= j

�1(�̃(h, 1G))

= j
�1((↵(h), �(1G)))

= j
�1((↵(h), 1G))

= ↵(h) · 1G
= ↵(h).

Similarly, we get �|K = �. Thus, f(�) = (�|H , �|K) = (↵, �) and f is surjective.
f is injective: Let �, ⌧ 2 Aut(G) and suppose f(�) = f(⌧). Then (�|H , �|K) = (⌧ |H , ⌧ |K)
and so �|H = ⌧ |H and �|K = ⌧ |K . Let g 2 G. We need to show that �(g) = ⌧(g). Since
G = HK, g = hk for some h 2 H, k 2 K. So,

�(g) = �(hk) = �(h)�(k) = ⌧(h)⌧(k) = ⌧(hk) = ⌧(g).

Let G be abelian and |G| = n < 1 and let the unique factorization of n into distinct prime
powers be

n = p
↵1
1 p

↵2
2 . . . p

↵k
k

Since G is abelian, then all of its subgroups are normal subgroups. In particular, every Sylow
pj-subgroup is normal for all 1  j  k. Let Qj 2 Sylpj(G) for all 1  j  k. Since each Qj is
normal in G, each Qj is the unique Sylow pj-subgroup of order p

↵j

j
. Since each Qj is normal

in G, then
Q1Q2 . . . Qk  G.

For each fixed i 2 {1, . . . , k} and j 2 {1, . . . , k} if i 6= j thenQi\Qj = 1 and so |Q1Q2 . . . Qk| =
|G|. Thus, Q1Q2 . . . Qk = G. Therefore, by what was just proved,

Aut(G) ⇠= Aut(Q1)⇥ Aut(Q2)⇥ · · ·⇥ Aut(Qk).

K
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4.5.32 Let P be a Sylow p-subgroup of H and let H be a subgroup of K. If P E H and H E K

prove that P is normal inK. Deduce that if P 2 Sylp(G) and H = NG(P ) then NG(H) = H.

Proof. Since P E H and P is a Sylow p-subgroup of H, then P is characteristic in H. Since
H E K then conj(k)(H) = kHk

�1 = H for all k 2 K. So conj(k) 2 Aut(H) for all k 2 K.
Since P is characteristic in H, then

P = conj(k)(P ) = kPk
�1 8k 2 K.

Therefore, P E K.

Since H = NG(P ) then P E H. Let K = NG(H). Since H E NG(H) = K then by what
was just proved, P E K = NG(H), which implies NG(H) = NG(P ) = H. K

4.5.34 Let P 2 Sylp(G) and assume N E G. Use the conjugacy part of Sylow’s Theorem to prove
that P \N is a Sylow p-subgroup of N . Deduce that PN/N is a Sylow p-subgroup of G/N .

Proof. Let Q 2 Sylp(N). Then there exists g 2 G so that Q  gPg
�1. Since Q  N and

Q  gPg
�1 then Q  gPg

�1 \N . Then,

Q  gPg
�1 \N

Q  gPg
�1 \ gNg

�1 (Since N E G)

Q  g(P \N)g�1

g
�1
Qg  P \N

Since g
�1
Qg 2 Sylp(N) then g

�1
Qg is of maximal prime power order in N . Since P \N is

a subgroup of N with prime order, it must be that P \N = g
�1
Qg, i.e., P \N 2 Sylp(N).

Observe that

|G
�
N | = |G|

|N | = p
↵�� · (mñ).

By the Second Isomorphism Theorem, PN
�
N ⇠= P

�
P \N . So,

|PN
�
N | = |P

�
P \N | = |P |

|P \N | =
p
↵

p�
= p

↵��
.

Therefore, PN
�
N 2 Sylp(G/N). K

4.5.36 Prove that if N E G then np(G/N)  np(G).

Proof. Let |G| = p
↵ ·m and |N | = p

� · ñ where m and ñ do not divide p↵ and p
�, respectively.

Note that from the previous exercise, PN/N 2 Sylp(G/N) for any P 2 Sylp(G). Define a
map

' : Sylp(G) ! Sylp(G/N) by P 7! PN/N.
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We show that ' is surjective so that |Sylp(G)|  |Sylp(G/N)|, i.e., np(G/N)  np(G). Let
Q 2 Sylp(G/N). By the 4th Isomorphism Theorem, there exists a subgroup Q  G so that
N  Q and Q/N = Q. Notice

p
↵�� = |Q| =

��Q
�
N
�� = |Q|

|N | =) |Q| = p
↵ · ñ.

Let R 2 Sylp(Q). Then |R| = p
↵ and so R 2 Sylp(G). Again by the previous exercise,

RN
�
N 2 Sylp(G/N). Notice that R  Q and N E Q so that RN  Q. Then RN

�
N 

Q
�
N but

|RN
�
N | = p

↵�� = |Q
�
N |.

Therefore,
'(R) = RN

�
N = Q

�
N = Q.

K

5.1.4 Let A and B be finite groups a p be prime. Prove that any Sylow p-subgroup of A⇥B is of
the form P ⇥Q, where P 2 Sylp(A) and Q 2 Sylp(B). Prove that np(A⇥B) = np(A)np(B).
Generalize both of these results to a direct product of any finite number of finite groups (so
that the numbers of Sylow p-subgroups of a direct product is the product of the numbers of
Sylow p-subgroups of the factors).

Proof. First notice that

NA⇥B(P ⇥Q) = {(a, b) 2 A⇥ B | (a, b)(p, q)(a�1
, b

�1) 2 P ⇥Q 8 (p, q) 2 P ⇥Q}
= {(a, b) 2 A⇥ B | (apa�1

, bqb
�1) 2 P ⇥Q 8 p 2 P, 8 q ⇥Q}

= {a 2 A, b 2 B | apa�1 2 P, bqb
�1 2 Q 8 p 2 P, 8 q 2 Q}

= {a 2 A | apa�1 2 P 8 p 2 P}⇥ {b 2 B | bqb�1 2 Q 8 q 2 Q}
= NA(P )⇥NB(Q)

Which gives

np(A)np(B) =
|A| · |B|

|NA(P )| · |NB(Q)| =
|A| · |B|

|NA(P )⇥NB(Q)| =
|A⇥ B|

|NA⇥B(P ⇥Q)| = np(A⇥ B).

Let |A| = p
↵ ·m and |B| = p

� · ñ. Let P 2 Sylp(A) and Q 2 Sylp(B). Then, P ⇥Q  A⇥B

and |P ⇥Q| = |P | · |Q| = p
↵+� which implies P ⇥Q 2 Sylp(A⇥ B).

(Couldn’t figure out the opposite direction for this proof. What is left is from the online
solution manual).
Now, let R 2 Sylp(A ⇥ B). Define X = {x 2 A | (x, y) 2 R for some y 2 B} and
Y = {y 2 B | (x, y) 2 R for some x 2 A}. Then X  A because

x1, x2 2 X =) (x1, y1), (x2, y2) 2 R for some y1, y2 2 B

=) (x1x
�1
2 , y1, y

�1
2 ) 2 R

=) x1, x
�1
2 2 X

=) X  A.
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Similarly, we get Y  B. Note that if (x, y) 2 R then |(x, y)| = p
k for some k. We also know

|(x, y)| = lcm(|x|, |y|) so that x and y have p-power order. So, X and Y are p-subgroups,
as otherwise some nonidentity element does not have p-power order. By Sylow’s Theorem,
there exist Sylow p-subgroups P and Q of A and B, respectively so that X is contained in
P and Y is contained in Q, i.e., X  P and Y  Q. Then, R  X ⇥ Y  P ⇥Q. But since
|R| = p

↵+� = |P ⇥Q| implies R = P ⇥Q.
Thus any Sylow p-subgroup of A ⇥ B has the form P ⇥ Q for some P 2 Sylp(A) and
Q 2 Sylp(B).

By induction we can show that the numbers of Sylow p-subgroups of a direct product is the
product of the numbers of Sylow p-subgroups of the factors. The base case is done above.
Suppose for some k � 2, for an arbitrary direct product of groups G =

Qk
i=1 Gi, every

Sylow p-subgroup of G is a product of Sylow p-subgroups of the Gi’s, and vice versa. Let
G =

Qk+1
i=1 be arbitrary. Then every Sylow p-subgroup of G is of the form P ⇥ Pk+1 where

P 
Qk

i=1 Gi and Pk+1  Gk+1 are Sylow p-subgroups, and vice versa. By the induction
hypothesis, P =

Qk
i=1 Pi for Sylow p-subgroups P1  Gi. Thus every Sylow p-subgroup of

G has the form
Qk

i=1 Pi for some Sylow p-subgroups Pi  Gi and vice versa. Also,

np

 
kY

i=1

Gi

!
=

kY

i=1

np(Gi)

K
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5.4.15 If A and B are normal subgroups of G such that G
�
A and G

�
B are both abelian, prove

that G
�
(A \B) is abelian.

Proof. Since G
�
A and G

�
B are abelian then by Proposition 7, part (4), (D& F,§5.4) ,

G
0  A and G

0  B. Then G
0  A \B. Then by the same proposition, we have A \B E G

and G
�
(A \ B) is abelian. K

5.5.1 Let H and K be groups, let ' be a homomorphism from K into Aut(H) and, as usual,
identify H and K as subgroups of G = Ho

'

K. Prove that CK(H) = ker'.

Proof.

ker' = {k 2 K | '(k) = 1Aut(H)}
= {k 2 K | '(k)(h) = h 8h 2 H}
= {k 2 K | k · h = h 8h 2 H}
= {k 2 K | khk�1 = h 8h 2 H}
= {k 2 K | k 2 CG(H)}
= K \ CG(H)

= CK(H)

Alternate proof:
Let (1, k) 2 CK(H). Then for all (h, 1) 2 H,

(h, 1) = ((1, k)(h, 1)(1, k�1))

= (1k · h, k)(1, k�1)

= ('(k)(h), k)(1, k�1)

= (('(k)(h))k · 1, kk�1)

= ('(k)(h)'(k)(1), 1)

= ('(k)(h1), 1)

= ('(k)(h), 1).

Thus, h = '(k)(h), which means '(k) = 1Aut(H). Identifying k as (1, k), we have (1, k) 2
ker'.

K

5.5.2 Let H and K be groups, let ' be a homomorphism from K into Aut(H) and, as usual,
identify H and K as subgroups of G = Ho

'

K. Prove that CH(K) = NH(K).

Proof. Since the centralizer of K is always contained in the normalizer of K, it su�ces to
show that NH(K)  CH(K). Let (h, 1) 2 NH(K). Then for all (1, k) 2 K, we have

K 3 (h, 1)(1, k)(h�1
, 1) = (h1 · 1, 1k)(h�1

, 1)

= (h, k)(h�1
, 1)

= (hk · h�1
, k1)

= (h'(k)(h�1), k).
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But (h'(k)(h�1), k) 2 K =) (h'(k)(h�1), k) = (1, k), or in other words,

(h, 1)(1, k)(h�1
, 1) = (h'(k)(h�1), k) = (1, k)

so that (h, 1) 2 CH(K). K

6.1.17 Prove that G(i) is a characteristic subgroup of G for all i.

Proof. We proceed by induction on i. For i = 0, we have G
0 = G, so trivially, G is

characteristic in G. Now, let i � 1 and suppose G
(i) is characteristic in G. Let � 2 Aut(G).

Notice that if [x, y] 2 G
(i), then

�([x, y]) = �(x�1
y
�1
xy) = �(x)�1

�(y)�1
�(x)�(y) = [�(x), �(y)]

and so �([x, y]) 2 G
(i), which means for any commutator [x, y] 2 G

(i), we have �([x, y]) is
again a commutator of G(i). So, �([G(i)

, G
(i)]) = [�(G(i)), �(G(i))]. Therefore,

�(G(i+1)) = �([G(i)
, G

(i)]) = [�(G(i)), �(G(i))] = [G(i)
, G

(i)] = G
(i+1)

which completes the induction. K
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1. The following exercise classifies all groups of order 231 up to isomorphism: Let G be a group
of order 231.

(a) Prove that there is a unique P 2 Syl7(G) and a unique H 2 Syl11(G) and that H lies
in the center Z(G).

Proof. Let |G| = 231. notice that 231 = 3 · 7 · 11. So by Sylow’s Theorem, we get the
following:

n7 ⌘ 1 mod 7 and n7

��3 · 11 =) n7 = 1,

n11 ⌘ 1 mod 11 and n11

��3 · 7 =) n11 = 1.

Let H 2 Syl11(G). Since |H| = 11, then H ⇠= Z
�
11. By Proposition 16 (D& F,§4.4 )

we have Aut(Z
�
11) ⇠= (Z

�
11Z)⇥. Thus, Aut(H) ⇠= (Z

�
11Z)⇥ ⇠= Z

�
10. Since H is the

unique Sylow 11-subgroup, H E G, i.e., NG(H) = G. Recall that NG(H)
�
CG(H) is

isomorphic to a subgroup of Aut(H). Thereore,

G
�
CG(H) = NG(H)

�
CG(H) ⇠= J  Aut(H) ⇠= Z

�
10

for some subgroup J  Aut(H). Since H is cyclic of prime order, it is abelian, which
means H  CG(H), and so

H  CG(H)  G.

Since [G : H] = [G : CG(H)] · [CG(H) : H], then [G : CG(H)] divides [G : H] =
|G|

�
|H| = 21. Since G

�
CG(H) ⇠= J then |J | divides 21. And since J  Z

�
10, then |J |

divides 10. But since gcd(10, 21) = 1, then J is trivial. So, [G : CG(H)] = 1, which
implies CG(H) = G and so H  Z(G). K

(b) Prove that there exist elements x, y 2 G such that o(x) = 3 and o(y) = 7. Let
K = hx, yi. Prove that G = HK and that K is a normal subgroup of G which has
trivial intersection with H. Deduce that G is isomorphic to H ⇥K.

Proof. Since 3 and 7 are primes dividing |G|, then there exists x, y 2 G where |x| = 3
and |y| = 7 by Cauchy’s Theorem. Let K = hx, yi. Since H E G and K  G,
then HK  G. Notice that |hx, yi| = |hxi ⇥ hyi| since the map (xi

, y
j) 7! x

i
y
j is an

isomorphism. So, |K| = |hx, yi| = |hxi ⇥ hyi| = 3 · 7.
Since every non-identity element of H and K have order 11 and 3, respectively, then
H \K = {1}. Then by Theorem 9, (D& F, §5.4) we have G ⇠= H ⇥K. K

(c) Show that there are precisely two isomorphism types of groups of order 231 (use our
criterion for semidirect products to describe the two possible isomorphism types of K).
Let H = hzi. Give a presentation with generators and relations of the two isomorphism
types of G.

Proof. Since H is cyclic, of prime order, and has one generator, it cannot be broken
down into a direct product or semidirect product. However, we can write K as a
semidirect product. Since hx, yi ⇠= hxi ⇥ hyi, hyi E K and hxi \ hyi = {1}, then

K = hx, yi ⇠= hyio
'
hxi
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where ' : hxi ! Aut(hyi). By the First Isomorphism Theorem, '(hxi) ⇠= hxi
�
ker'.

Since hxi ⇠= Z
�
3 and ker' E hxi, then | ker'| is either 3 or 1. If it is 3, then |'(hxi)| = 1

which means ' is the trivial map. Thus,

hyio
'
hxi ⇠= hyi ⇥ hxi

and so K ⇠= hyi ⇥ hxi. Now, if | ker'| = 1 then |'(hxi)| = 3. Since hyi ⇠= Z
�
7, then

Aut(hyi) ⇠= (Z
�
7Z)⇥ ⇠= Z

�
6. Thus Aut(hyi) has order 6 and is cyclic. Let � 2 Aut(hyi)

be given by the map y 7! y
2. Since |'(hxi)| = 3, then '(hxi) = {id, �, �2}. So, ' can

be defined in one of the following ways:

'1 : hxi ! Aut(hyi) by x 7! �

or
'2 : hxi ! Aut(hyi) by x 7! �

2
.

We claim that in fact hyio
'1

hxi ⇠= hyio
'2

hxi. In order to show this, we show that the

following defined an isomorphism between these two semidirect products:

� : hyio
'1

hxi ! hyio
'2

hxi by (ya, xb) 7! (ya, x2b).

� is a homomorphism:

�((ya1 , xb1)(ya2 , xb2)) = �(ya1'2(x
b1)(ya2), xb1+b2))

= �(ya1�2(xb1)(ya2), xb1+b2))

= �(ya1�(x2b1)(ya2), xb1+b2))

= (ya1�(x2b1)(ya2), x2(b1+b2))

= (ya1 , x2b1)(ya2 , x2b2)

= �((ya1 , xb1)) �((ya2 , xb2))

� is injective:
If �((c, d)) = �((c0, d0)) then (c, 2d) = (c0, 2d0). Then c = c

0 mod 7. Likewise, 2d = 2d0

mod 3 =) 2(d� d
0) = 0 mod 3 =) d = d

0 mod 3. So, (c, d) = (c0, d0).

� is surjective:
Given (c, d) 2 hyio

'2

hxi, then �((c, 2d)) = (c, 4d) = (c, d) (since 4d = 1 mod 3).

Therefore, the semidirect products induced by '1 and '2 are precisely the same. In
sum, we have the following two possibilities for K:

K ⇠= hyi ⇥ hxi ⇠= Z
�
7⇥ Z

�
3

or
K ⇠= hyio

'1

hxi ⇠= Z
�
7o
'1

Z
�
3.

Therefore, we get
G = H ⇥K ⇠= Z

�
11⇥ Z

�
7⇥ Z

�
3 (1)
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or
G = H ⇥K ⇠= Z

�
11⇥ Z

�
7o
'1

Z
�
3. (2)

Then, a presentation for G in (1) is:

ha, b, c | a11 = b
7 = c

3 = 1, ab = ba, bc = cb, ac = cai.

To determine the presentation for G in (2), we identify y, x with r, s, respectively, and
consider what relations the multiplication in the semidirect product hyio

'1

hxi induce on

r, s through the map (ya, xb) 7! r
a
s
b. We find that a presentation for G in (2) is

hr, s | r7 = s
3 = 1, r2s = sri.

K

2. The following exercise uses Sylow’s Theorems to prove that all groups of order 9 · 49 · 13 are
solvable. Let G be a group of this order. Prove that G has a unique Sylow 13-subgroup G1.
Then prove that G

�
G1 has a unique Sylow 7-subgroup Y2. Let G2 be the complete preimage

of Y2 in G. Show that
1 = G0  G1  G2  G

is a chain of subgroups of G such that G1 is normal in G2 and G2 is normal in G and such
that the successive quotients are abelian. Conclude that G is solvable.

Proof. Let |G| = 9 · 49 · 13. Then by Sylow’s Theorem we find that:

n13 ⌘ 1 mod 13 and n13

��9 · 49 = 441.

So we consider divisors of 441: 1,3,7,9,21,49,63,147,441, and positive integers which are
congruent to 1 mod 13: 1,14,27,40,53,66,79,92,105,118,131,144,157,..., 429,442. So we see
that n13(G) = 1. Now, let G1 2 Syl13(G). Then |G1| = 13, G1 E G, and |G

�
G1| = 9 · 72.

Again by the Sylow Theorems

n7(G
�
G1) ⌘ 1 mod 7 and n7

���9 =) n7(G
�
G1) = 1.

Let Y2 2 Syl7(G
�
G1). By the 4th Isomorphism Theorem, there exists a subgroup G2  G

so that G1 E G2 and G2

�
G1

⇠= Y2. Since |Y 2| = 72, then

|G2

�
G1| =

|G2|
|G1|

=
|G2|
13

=) |G2| = 13 · 72.

Now notice:

• G1 is of prime order and thus, cyclic, so G1

�
{1} is abelian.

• G2

�
G1 is abelian since |G2

�
G1| = 72, and all groups of order a square of a prime are

abelian.

• G
�
G2 is abelian since |G

�
G2| = 32, and all groups of order a square of a prime are

abelian.
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and

• G1 E G2 since G1 E G

• G2 E G since Y2 is the unique Sylow 7-subgroup of (G
�
G1) and thus Y2 E (G

�
G1) and

by the 4th Isomorphism Theorem,

G2

�
G1

⇠= Y2 E G
�
G1 () G2 E G.

So,
1 = G0 E G1 E G2 E G

is a finite chain of subgroups so that G0 E G1, G1 E G2, and G2 E G and successive quotient
are abelian. So, G is solvable. K

5.4.17 If K is a normal subgroup of G and K is cyclic, prove that G0  CG(K).

Proof. First note that the automorphism groups an infinite cyclic group is abelian. To see
this, let ↵ 2 Aut(Z). Then ↵(1) = n for some n 2 Z. Then for some m 2 Z, we have
↵(m) = 1. So,

1 = ↵(m) = ↵(m · 1) = m · ↵(1) = mn.

So n must be 1 or �1, i.e., there are only 2 automorphisms in Aut(Z) and thus Aut(Z) is
abelian.
Since K is cyclic, Aut(K) is abelian. Since K E G, then G = NG(K). Then

G
�
CG(K) = NG(K)

�
CG(K) ⇠= H  Aut(K)

for some subgroup H  Aut(K). Since Aut(K) is abelian, H is abelian, which means
G
�
CG(K) is abelian. Then by Proposition 7, Part (4) (D& F, §5.4, G0  CG(K).

K

5.4.18 Let K1, K2, . . . , Kn be non-abelian simple groups and let G = K1 ⇥K2 ⇥ · · · ⇥Kn. Prove
that every normal subgroup of G is of the for GI for some subset I of {1, 2 . . . , n} (where
GI) is defined in Exercise 2 of section 1.

Proof. Let i 2 {1, 2, . . . , n} and ai 2 Ki where ai 6= 1Ki . Suppose N E G and let x 2 N

with x = (a1, . . . , ai, . . . , an). Since Ki is non-abelian then there exists gi 2 Ki such that
giai 6= aigi. Let g̃i = (1, . . . , 1, gi, 1 . . . , 1) where gi appears in the ith coordinate. Since
x 2 N E G and g̃i 2 G,

g̃ix
�1
g̃i 2 N

and so [g̃i, x] 2 N where

1g 6= [g̃i, x] = (1, . . . , 1, [gi, ai], 1 . . . , 1) 2 N.

Define Ai = {hi 2 Ki | (1, . . . , 1, hi, 1, . . . 1) 2 N}. Then Ai  Ki. Moreover, Ai 6= {1Ki}
because by the previous argument [gi, ai] 6= 1Ki and [gi, ai] 2 Ai. We claim that Ai = Ki.
Since Ki is simple, it su�ces to show that Ai E Ki. let hi 2 Ki and gi 2 Ki. Then

gihig
�1
i 2 Ai () (1, . . . , 1, gihig

�1
i , 1, . . . , 1) 2 N () g̃ih̃ig̃i

�1 2 N.

The latter is true since h̃i 2 N and N E G. Let I ✓ {1, 2, . . . , n} where i 2 I if and only if
Ai = Ki. Then if j 2 {1, . . . n} and there exists x = (a1, . . . , aj, . . . , an) 2 N with aj 6= 1Kj .
By the previous argument, Kj = Aj ✓ N . Therefore N = GI . K
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7.1.7 The center of a ring R is {z 2 R | zr = rz for all r 2 R}. Prove that the center of a ring is
a subring that contains the identity. Prove that the center of a division ring is a field.

Proof. Since 1Rr = r1R for all r 2 R then 1R is in the center of R. Let x, y be in center of
R and r 2 R. Then

(x� y)r = xr � yr = rx� ry = r(x� y) =) x� y is in the center of R,

and

(xy)r = x(yr) = x(ry) = (xr)y = (rx)y = r(xy) =) xy is in the center of R.

Thus the center of R is a subring of R. Now suppose R is a division ring. If x and y are in
the center of R, then certainly xy = yx so that the center of R is commutative. Since R is
a division ring, there exists z 2 R so that xz = zx = 1 for x 6= 0R in the center of R. Let
r 2 R. Then,

zr = z(r · 1R) = zr(xz) = z(xr)z = (zx)rz = (1R)rz = rz,

so z is in the center of R and thus all elements of the center of R not equal to 0 have
multiplicative inverses. Thus the center of R is a field. K

7.1.17 Let R and S be rings. Prove that the direct product R ⇥ S is a ring under componentwise
addition and multiplication. Prove that R ⇥ S is commutative if and only if both R and
S are commutative. Prove that R ⇥ S has an identity if and only if both R and S have
identities.

Proof. We know that (R⇥S,+) is an abelian group since both R and S are abelian groups.
Let r2, r2, r2 2 R and s1, s2, s3 2 S. Observe that

(r1, s1)((r2, s2)(r3, s3)) = (r1, s1)(r2r3, s2s3)

= (r1r2r3, s1s2s3)

= (r1r2, s1s2)(r2, s3)

= ((r1, s1)(r2, s2))(r3, s3)

so that · is associative. Also,

(r,s1)((r2, s2) + (r3, s3)) = (r1, s1)(r2 + r3, s2 + s3)

= (r1(r2 + r3), s1(s2 + s3))

= (r1r2 + r1r3, s1s2 + s1s3)

= (r1r2, s1s2) + (r1r3, s1s3)

= (r1, s1)(r2, s2) + (r1, s1)(r3, s3)

so that the left distributive law holds in R ⇥ S. Similarly for the right distributive law.
Therefore, R⇥ S is a ring. Now,

R, S commutative rings () r1r2 = r2r1, s1s2 = s2s1
() (r1r2, s1s2) = (r2r1, s2s1)

() (r1, s1)(r2, s2) = (r2, s2)(r1, s1)

() R⇥ S is a commutative ring.
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Let r 2 R, s 2 S. Then

R, S contain a 1 () r1R = 1Rr = r, s1S = 1Ss = s

() (r1R, s1S) = (1Rr, 1Ss) = (r, s)

() (r, s)(1R, 1S) = (1R, 1S)(r, s) = (rs)

() R⇥ S contains a 1.

K

7.3.19 Prove that if I1 ✓ I2 ✓ . . . are ideals of R then
S1

n=1 In is an ideal of R.

Proof. Since each In is a subgroup of (R,+), then
S1

n=1 In is nonempty. Let x, y 2
S1

n=1 In.
Then x 2 Inx , y 2 Iny for some Inx , Iny 2

S1
n=1 In. Without loss of generality, assume

nx  ny so that Inx ✓ Iny . Then, x, y 2 Iny and so x � y 2 Iny . Thus, x � y 2
S1

n=1 In so
that

S1
n=1 In  (R,+). Let r 2 R and a 2

S1
n=1 In. Then there exists n 2 N so that a 2 In.

Since In is an ideal of R, then ar, ra 2 In. So ar, ra 2
S1

n=1 In. K

7.3.24 Let ' : R ! S be a ring homomorphism.

(a) Prove that if J is an ideal of S then '�1(J) is an ideal of R. Apple this to the special
case when R is a subring of S and ' is the inclusion homomorphism to deduce that if
J is an ideal of S then J \R is an ideal of R.

Proof. Let J be an ideal of S, x 2 '�1(J) and r 2 R. Then

'(xr) = '(x)'(r) 2 J

because '(x) 2 J,'(r) 2 S and J is an ideal of S. Thus, xr 2 '�1(J). Similarly, we
get rx 2 '�1(J). Thus '�1(J) is an ideal of R.

Now suppose R is a subring of S, J is an ideal of S and ' is the inclusion ring ho-
momorphism. Then '�1(J) = J \ R, which is an ideal of R by what was proved
above. K

(b) Prove that if ' is surjective and I is an ideal of R then '(I) is an ideal of S. Give and
example where this fails if ' is not surjective.

Proof. Let y 2 '(I) and s 2 S. Since y 2 '(I) there exists x 2 I so that '(x) = y.
Since ' is surjective, there exists r 2 R so that '(r) = s. Since I is an ideal of R, then
xr, rx 2 I so that

'(xr) = '(x)'(r) = ys 2 '(I)

and similarly we get '(rx) 2 '(I). Therefore, '(I) is an ideal of S.

Consider the ring homomorphism ' : R ! R[x] where ' is the inclusion map. This
map is not surjective and the ideal R of R has image '(R) = R, which is not an ideal
of R[x] since xr 62 R[x]. K
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7.1.14 Let x be a nilpotent element of the commutative ring R. Let m 2 Z+ be the smallest so
that xm = 0.

(a) Prove that x is either zero or a zero divisor.

Proof. If m = 1, then 0 = xm = x. If m > 1 then 0 = xm = xm�1 · x so that x is a zero
divisor. K

(b) Prove that rx is nilpotent for all r 2 R.

Proof. Let r 2 R. Then (rx)m = rmxm since R is commutative and so (rx)m = rm ·0 =
0. K

(c) Prove that 1 + x is a unit in R.

Proof. Notice that

(1� (�x))(1� (�x)� (�x)2 � · · ·� (�x)m�1) = 1� (�x)m = 1� (�1)xm = 1� 0 = 1.

K

(d) Deduce that the sum of a nilpotent element and a unit is a unit.

Proof. Let s be a unit in R with st = ts = 1. Then tx is nilpotent so that (1 + tx) is a
unit. Since the product of units is a unit, then s(1+ tx) = s+stx = s+x is a unit. K

7.2.6 Let S be a ring with identity 1 6= 0. Let n 2 Z+ and let A be an n⇥ n matrix with entries
from S whose i, j entry is aij/ Let Eij be the element of Mn(S) whose i, j entry is 1 and
whose other entries are all 0.

(a) Prove that EijA is the matrix whose ith row equals the jth row of A and all other rows
are zero.

Proof. Let Eij = (eij), A = (aij), and (bpq) = EijA. Then (bpq) =
Pn

k=1 epkakq. The ith

row of (bpq) consists of elements of the form eikakq for each 1  k  n. If k 6= j, then
eik = 0 so that bpq = eikakq = 0. When p 6= i the pth row of (bpq) contains all zeros.
When k = j, then bpq = eikakq = eijajq = 1 · ajq = ajq. The collection of all ajq for each
1  q  n is precisely the jth row of A. K

(b) Prove that AEij is the matrix whose jth column equals the ith column of A and all
other columns are zero.

Proof. Let Eij = (eij), A = (aij), and (cpq) = AEij. Then (cpq) =
Pn

k=1 apkekq. The
jth column of (cpq) consists of elements of the form apkekj for each 1  k  n. If k 6= i,
then ekj = 0 so that cpq = 0. When q 6= j the qth column of (cpq) contains all zeroes.
When k = i, then cpq = apieij = api. The collection of all api for each 1  p  n is
precisely the ith column of A. K

(c) Deduce that EpqAErs is the matrix whose p, s entry is aqr and all other entries are zero.
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Proof. By parts (a), the pth row of EpqA is the qth row of A, and all other entries 0.
Then by part (b), EpqAErs is the matrix whose sth column is the rth column of EpqA,
which is all zeroes except for the pth row, whose entry is the q, r entry of A, and all
other entries are zero. Thus the p, s entry of EpqAErs is aqr. K

7.2.7 Prove that the center of the ring Mn(R) is the set of scalar matrices. [Use the preceding
exercise.]

Proof. We need to show Z(Mn(R)) = {rI | r 2 R}.
“ ✓ ” Suppose A = (aij) 2 Z(MN(R)). By the previous exercise, the p, t entry of EpqAErs

is aqr. If q 6= r, then aqr = 0. Thus, A must be a diagonal matrix. If q = r, then the p, s
entry of EpsA is aqq. But notice that the pth row of EprA is the sth row of B so that the p, s
entry of EpsA is ass. Thus, aqq = ass for all q and s. Hence A = aI for some a 2 R. So,
Z(Mn(R)) ✓ {rI | r 2 R}.
“ ◆ ” Let B 2 Mn(R), and A = aI 2 {rI | r 2 R}. Notice that since R is commutative
aB = Ba and aI = Ia. Then

AB = (aI)B = a(IB) = aB = Ba = (BI)a = B(Ia) = BaI = BA.

K

7.3.21 Prove that every (two-sided) ideal of Mn(R) is equal to Mn(J) for some (two-sided) ideal J
of R. [Use Exercise 6(c)] of section 2 to show first that the set of entries of matrices in an
ideal of Mn(R) form an ideal in R.]

Proof. Let I be an ideal of Mn(R) and define J = {aij | (aij) 2 I} be the set containing
entries of matrices of I. We first show that J is an ideal of R and then show I = Mn(J).

J is an ideal of R:
Since I is an ideal, then (0ij) 2 I so that 0 2 J . Let (aij), (bij) 2 I and Epq, Ers 2 Mn(R) be
defined as in exercise 6 of section 7.2. Since I is an ideal, Epq(aij)Ers and Epq(aij)Ers are in
I. Notice that by exercise 6, section 7.2, the p, s entry of Epq(aij)Ers is aqr. Likewise, the
p, s entry of Epq(bij)Ers is bqr. Then,

Epq(aij)Ers � Epq(bij)Ers (1)

and the p, s entry of (1) is aqr � bqr so that J is closed under subtraction. Thus (J,+) 
(R,+). Now, let d 2 R, aqr 2 J . Then, dI(aij) = d(aij) 2 I with q, r entry daqr so that
daqr 2 J , and similarly, aqrd 2 J . Thus J is an ideal of R.

I = Mn(J):
“ ✓ ” Given any matrix in I, its entries are elements of J so that I ✓ Mn(J).
“ ◆ ” Let (aij) 2 Mn(J). Then each entry of (aij) is an element of J . Since J consists of
elements which come from entries of matrices in I, we can find matrices (bij) in I with at
least one element matching each entry in (aij), then multiply by Epq and Ers on the left and
right of the (bij’s as needed to write (aij) as the sum of matrices of the form Epq(bij)Ers.
Then, each of these lie in I, so that their sum also does. Hence, (aij) 2 I. K
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7.3.34 Let I and J be ideals of R.

(a) Prove that I + J is the smallest ideal of R containing both I and J .

Proof. We first show that I + J is an ideal of R. Since 0R 2 I, J then 0R = 0R +
0R 2 I+J , so I+J 6= ;. Let x1, x2 2 I and y1, y2 2 J . Then x1+y1, x2+y2 2 I+J
and

(x1 + y1)� (x2 + y2) = x1 + y1 � x1 � y2 = (x1 � x2) + (y1 � y2) 2 I + J

since x1 � x2 2 I and y1 � y2 2 J . So (I + J,+)  (R,+). Let r 2 R. Then

r(x1 + y1) = rx1 + ry1 2 I + J and (x1 + y1)r = x1r + y1r 2 I + J

since rx1, x1r 2 I and ry1, y1r 2 J . Hence I + J is an ideal of R.

To see that I + K contains I and K, notice that since 0R 2 J , then I =
I + 0R ✓ I + J . Similarly, 0R 2 I and so J = 0R + J ✓ I + J .

Now suppose K is an ideal of R containing both I and J . Let x1 2 I and
y1 2 J and x1 + y1 2 I + J . Since K contains I and J , then x1, y1 2 K. So
x1 + y1 2 K since K is closed under addition. Thus, I + J ✓ K, so that I + J is
the smallest ideal of R containing both I and J . K

(b) Prove that IJ is an ideal contained in I \ J .

Proof. Recall that

IJ =

(
nX

k=1

akbk | n 2 Z+, ak 2 I, bk 2 J, 8 1  k  n

)
.

We first show that IJ is an ideal of R. Since 0R 2 I and 0R 2 J then 0R · 0R =
0R 2 IJ . Let ↵, � 2 IJ , where ↵ =

Pn
k=1 akbk and � =

Pm
k=1 ckdk. Note that

since ck 2 I , and I is a subgroup, then �ck 2 I for all 1  k  m. So

↵� � =
nX

k=1

akbk +
mX

k=1

(�ck)dk

= a1b1 + · · ·+ anbn + (�c1)d1 + · · ·+ (�cm)dm 2 IJ

because ↵ � � is a finite sum of products of the form ij where i 2 I, j 2 J . So
(IJ,+)  (R,+). Let r 2 R. Note that since I is an ideal, then r(ak) 2 I for all
1  k  n and since J is an ideal, then bkr 2 J for all 1  k  n. So

r↵ =
nX

k=1

(rak)bk 2 IJ and ↵r =
nX

k=1

ak(bkr) 2 IJ.

Thus, IJ is an ideal of R.

Let ↵ 2 IJ be defined as before and notice that since I and J are ideals, then
akbk 2 I and akbk 2 J for all 1  k  n. Thus, ↵ 2 I \ J . Hence IJ ✓ I \ J . K
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7.4.13 (a) Prove that if P is a prime ideal of S then either '�1(P ) = R or '�1(P ) is a prime
ideal of R. Apply this to the special case when R is a subring of S and ' is the
inclusion homomorphism to deduce that if P is a prime ideal of S then P \ R is
either R or a prime ideal of R.

Proof. We know from a previous exercise that since P is an ideal of S, then
'�1(P ) is an ideal of R. If '�1(P ) = R then '�1(P ) is not a prime ideal (since
prime ideals must be proper). If '�1(P ) 6= R, then let r1r2 2 '�1(P ). Then
'(r1)'(r2) = '(r1r2) 2 P . Since P is a prime ideal then either '(r1) or '(r2) 2 P .
Hence r1 2 '�1(P ) or r2 2 '�1(P ). Therefore, '�1(P ) is a prime ideal of R.

Suppose R is a subring of S and let '(r) = r for all r 2 R. Then '�1(P ) =
P \ R. By what was just shown, either P \ R = R (which means P ✓ R) or
P \R is a prime ideal of R. K

(b) Prove that if M is a maximal ideal of S and ' is surjective then '�1(M) is a
maximal ideal of R. Give and example to show that this need not be the case if
' is not surjective.

Proof. We know from a previous exercise that since M is an ideal of S, then
'�1(M) is an ideal of R. Notice that '�1(M) 6= R. Otherwise, since ' is surjec-
tive, then '(R) = S and if '�1(M) = R, then S = '(R) = M , which contradicts
the fact that M 6= S (since M , being a maximal ideal of S, must be a proper
ideal of S).

Let M 0 = '�1(M) and consider the quotient R
�
M 0. We claim R

�
M 0 is a

field so that M 0 is maximal in R. Let ⇡ : S ! S
�
M be the natural projection

homomorphism. Then define

 = ⇡ � ' : R ! S
�
M.

Since both ' and ⇡ are surjective ring homomorphisms, then  is a surjective ring
homomorphism, i.e.,  (R) = S

�
M . Then

ker = {r 2 R |  (r) = 0S/M}
= {r 2 R |  (r) = M}
= {r 2 R | ⇡('(r)) = M}
= {r 2 R | '(r) 2 M}
= {r 2 R | r 2 '�1(M)}
= {r 2 R | r 2 M 0}.

By the First Isomorphism Theorem,

R
�
M 0 = R

�
ker ⇠=  (R) = S

�
M.

Therefore, R
�
M 0 and S

�
M are isomorphic as rings. Since M is a maximal

ideal of S, then S
�
M is a field. We want that R

�
M 0 and S

�
M are isomorphic

as fields. Then R
�
M 0 is a field, and M 0 is maximal in R. In order to check this,
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we need that  (1R) = 1S/M = 1S +M . Since ⇡(1S) = 1S +M , we only need to
show that '(1R) = 1S. To that end, notice that since ' is surjective, there exists
r 2 R so that '(r) = 1S. Then

1S = '(r) = '(r · 1R) = '(r)'(1R) = 1S'(1R) = '(1R)

Let ' : Z ! Q be the inclusion ring homomorphism. Then {0Q} is maximal
in Q. Then '�1({0Q}) = 0Z, but {0Z} is not a maximal in Z. K

7.4.36 Assume R is commutative. Prove that the set of prime ideals in R has a minimal
element with respect to inclusion (possibly the zero ideal). [Use Zorn’s Lemma.]

Proof. Let S = {P | P is a prime ideal of R}. Since R is a ring with 1 6= 0, then R
contains a proper ideal. Since every proper ideal in a ring with 1 6= 0 is contained in
a maximal ideal, then R has a maximal ideal. Since maximal ideals are prime ideals,
then S is nonempty. We use as partial order on S inverse inclusion “ ◆ ”. Let B be a
chain in S. Define

U =
\

J2B

J.

We claim that U is an upper bound of B. Since J ◆ U for all J 2 B, then if we can
show U 2 S, then U is an upper bound for B. Then, applying Zorn’s Lemma, we
conclude that S has maximal element with respect to reverse inclusion, i.e., S has a
minimal element with respect to inclusion.

(U,+)  (R,+): Since 0R 2 J for all J 2 B, then 0R 2 U and so U 6= ;. Let
a, b 2 U . Then a, b, a� b 2 J for all J 2 B and so a� b 2 U .

U is an ideal of R: Let r 2 R, a 2 U . Then a, ar, ra 2 J for all J 2 B and so
ar, ra 2 U .

U is a prime ideal of R: Let ab 2 U . Then ab 2 J for all J 2 B. By way of
contradiction, suppose without loss of generality that a 62 U . So, there exists Jx 2 B
such that a 62 J 0. Since ab 2 J 0 and J 0 is a prime ideal, then b 2 J 0. Then a 62 K for
all K 2 B contained in J 0. For all such K, b 2 K since each K is a prime ideal. We
claim that \

K✓J 0,K2B

K =
\

J2B

J = U.

Then b 2 U , and U is a prime ideal of R. Since the LHS is an intersection of a subset
of ideals in B, then the LHS is contained in the RHS. Conversely, given any point
r 2 U , it is necessarily in all ideals of B. In particular, r 2 K for all K ✓ J 0, K 2 B.
Therefore, the equality above holds. K
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7.4.37 A commutative ring R is called a local ring if it has a unique maximal ideal. Prove
that if R is a local ring with maximal ideal M then every element of R�M is a unit.
Prove conversely that if R is a commutative ring with 1 in which the set of nonunits
forms an ideal M , then R is a local ring with unique maximal ideal M .

Proof. Let R is a local ring with unique maximal ideal M . Let u 2 R�M and consider
the principal ideal (u). Notice that (u) = R. Otherwise, (u) is a proper ideal of R,
and thus contained in M . Then u 2 M , which is a contradiction. So, 1 2 (u), which
means there exists v 2 R for which uv = vu = 1R. Hence, u is a unit.

Let R be a commutative ring with 1 in which the set of nonunits forms an ideal
M . Suppose I is an ideal of R containing M . If I contains a unit, then I = R. If I
contains no units, then I ✓ M , and since M ✓ I, then I = M . Therefore, M is a
maximal ideal.

To show uniqueness of M , suppose N is another maximal ideal of R. Since N is
a proper ideal of R, it contains no units and so N ✓ M . If N 6= M , then N is not
maximal, since it is contained in a proper ideal of R. Therefore N = M . K
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Let R be a ring with identity 1 6= 0

7.6.1 An element e is called an idempotent if e2 = e. Assume e is an idempotent in R and

er = re for all r 2 R. Prove that Re and R(1� e) are two-sided ideals of R and that

R ⇠= Re ⇥ R(1 � e). Show that e and 1 � e are identities for the subrings Re and

R(1� e) respectively.

Proof. Re is a two-sided ideal:

0e = 0 2 Re =) Re 6= ;
If re, se 2 Re, then re� se = (r � s)e 2 Re =) Re  R

If t 2 R, then tre, ret = rte 2 Re =) Re is a two-sided ideal of R.

R(1� e) is a two-sided ideal:

0(1� e) = 0 2 R(1� e)

=) R(1� e) 6= ;

If r(1� e), s(1� e) 2 R(1� e),

then r(1� e)� s(1� e) = (r � s)(1� e) 2 R(1� e)

=) R(1� e)  R

If t 2 R, then tr(1� e) 2 R(1� e) and

r(1� e)t = r(t� et) = r(t� te) = rt(1� e) 2 R(1� e)

=) R(1� e) is a two-sided ideal of R.

We show that R ⇠= Re ⇥ R(1 � e) as groups, then show that they are isomorphic

as rings as well. To that end, observe that Re \R(1� e) = 0 because

x 2 Re \R(1� e) =) re = s(1� e) for some r, s 2 R

=) re = s� se

=) re2 = se� se2

=) re = se� se = 0

=) x = 0.

Also observe that for any r 2 R, we have r = re + r � re = re + r(1� e). Therefore,
R ✓ Re+R(1�e). By the previous two observations, we apply the recognition theorem

for direct products of groups (Theorem 9, §5.4, D& F) to conclude that the map

' : Re⇥R(1� e) ! R by '(a, b) = a+ b

is in isomorphism between groups. We claim that ' is in fact a ring isomorphism as

well. To that end, let (r1e, s1(1 � e))(r2e, s2(1 � e)) 2 Re ⇥ R(1 � e). Notice that
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(1� e)2 = 1� 2e+ e = 1� e so that 1� e is idempotent.

'
�
(r1e, s1(1� e))(r1e, s1(1� e))

�
= '((r1r2e, s1s2(1� e)))

= r1r2e+ s1s2(1� e) = r1r2e
2
+ s1s2(1� e)2

= r1er2e+ r1s2(e� e2) + r2s1(e� e2) + s1(1� e)s2(1� e)

= (r1e+ s1(1� e))(r2e+ s2(1� e))

= '((r1e, s1(1� e))) · '((r1e, s1(1� e)).

So R ⇠= Re⇥R(1� e) as rings.

e and 1� e are the identities of Re and R(1� e), respectively:

If re 2 Re, then ere = re2 = re and re2 = re

=) e is an identity in Re.

If r(1� e) 2 R(1� e),

then [r(1� e)](1� e) = r(1� e)2 = r(1� e)

and (1� e)r(1� e) = (r � er)(1� e) = r(1� e)2 = r(1� e)

=) 1� e is an identity in R(1� e).

K

7.6.3 Let R and S be rings with identities. Prove that every ideal of R ⇥ S is of the form

I ⇥ J where I is an ideal of R and J is an ideal of S.

Proof. Let K be an ideal of R⇥ S and define

I = {a 2 R | (a, b) 2 K for some b 2 S}
J = {b 2 R | (a, b) 2 K for some a 2 S}.

We show that I ⇥ J = K and that I and J are ideals of R and S respectively. To that

end, we certainly have K ✓ I ⇥K by definition of I and J . Then, let a 2 I and b 2 J
and (a, b) 2 I ⇥ J . Therefore, there exists b0 2 S and a0 2 R so that (a, b0), (a0, b) 2 K.

Since R and S have multiplicative identities, (1R, 0), (0, 1S) 2 K. Notice that since K
is closed under multiplication and addition,

(a, b) = (1R, 0)(a, b
0
) + (0, 1S)(a

0, b) 2 K.

So, K = I ⇥ J . To see that I and J are ideals, first notice that by definition of I, we
have (I,+)  (R,+). Let a1 2 I. So there exists b1 2 S so that (a1, b1) 2 K. Let

r 2 R. Then (r, 1S) 2 K. Then since K is closed under multiplication,

(r, 1S)(a1, b1) = (ra1, b1) 2 K

(a1, b1)(r, 1S) = (a1r, b1) 2 K
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so ra1, a1r 2 I so that I is an ideal of R. Similarly, we get that J is an ideal of S.

Now, Let I and J be ideals of R and S respectively. We know that the direct

product I ⇥ J is a subgroup of R⇥ S. Let (a, b) 2 I ⇥ J and (r, s) 2 R⇥ S. Then

(a, b)(r, s) = (ar, bs) 2 I ⇥ J

(r, s)(a, b) = (ra, sb) 2 I ⇥ J

because I and J are ideals themselves. Therefore, I ⇥ J is an ideal of R⇥ S. K

7.6.5 Let n1, n2, . . . , nk be integers which are relatively prime in pairs: (ni, nj) = 1 for all

i 6= j.

(a) Show the Chinese Reminder Theorem implies that for any a1, . . . , ak 2 Z there is

a solution x 2 Z to the simultaneous congruences

x ⌘ a1 mod n1, x ⌘ a2 mod n2, . . . , x ⌘ ak mod nk

and the solution x is unique mod n = n1n2 . . . nk.

Proof. First, notice that since gcd(ni, nj) = 1 for all i 6= j. For any fixed i 6= j,
there exists integers x, y so that 1 = nix + njy. Thus, any element of Z can be

written as a multiple of a linear combination of ni and nj. Therefore, the ideals

(ni) and (nj) are comaximal in Z. Consider the map

' : Z ! Z
�
(n1)⇥Z

�
(n2)⇥ · · ·⇥Z

�
(nk) by z 7! (z+(n1), z+(n2), . . . , z+(nk)).

By the Chinese Remainder Theorem, this map is surjective and

ker(') = (n1)(n2) . . . (nk).

Then by the First Isomorphism Theorem,

Z
�
(n1)(n2) . . . (nk)

⇠= Z
�
(n1)⇥ Z

�
(n2)⇥ · · ·⇥ Z

�
(nk). (1)

Consider the element (ai) = (a1 + (n1), a2 + (n2), . . . , ak + (nk)). Since ' is sur-

jective, there exists x 2 Z so that '(x) = (ai). By (1),

x+ (n1)(n2) . . . (nk) = (x+ (n1), x+ (n2), . . . , x+ (nk)).

So,

(a1 + (n1), a2 + (n2), . . . , ak + (nk)) = (ai)

= '(x)

= x+ (n1)(n2) . . . (nk)

= (x+ (n1), x+ (n2), . . . , x+ (nk)),

which implies

x ⌘ a1 mod n1, x ⌘ a2 mod n2, . . . , x ⌘ ak mod nk.

The isomorphism in (1) is in particular injective. Therefore, x is unique mod

n = n1n2 . . . nk. K
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(b) Let n0
i = n/ni be the quotient of n by ni, which is relatively prime to ni by

assumption. Let ti be the inverse of n0
i mod ni. Prove that the solution x in (a)

is given by

x = a1t1n
0
1 + a2t2n

0
2 + · · ·+ aktkn

0
k mod n.

Note that the elements ti can be quickly found by the Euclidean Algorithm as

described in Section 2 of the Preliminaries chapter (writing ani+bn0
i = (ni, n0

i) = 1

gives ti = b) and that these then quickly give the solutions to the system of

congruences above for any choice of a1, a2, . . . , ak.

Proof. We need to show that the definition of x given above is in fact a solution,

i.e., that

'(x) = '

 
kX

i=1

aitin
0
i mod n

!
= (ai).

Notice that by definition, nj divides n0
i = n/ni for all i 6= j. So the jth coordinate

of '(x) is
a1t1n

0
1 + a2t2n

0
2 + · · ·+ aktkn

0
k mod n+ (nj) = aj

since tj is the inverse of n0
j mod nj. So '(x) = (ai). K
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8.1.4 Let R be a Euclidean Domain.

(a) Prove that if (a, b) = 1 and a divides dc then a divides c. More generally, show

that if a divides bc with nonzero a, b, then
a

gcd(a, b)
divides c.

Proof. Since (a, b) = 1 then there exists x, y 2 R so that ax + by = 1. Since a
divides bc, there exist z 2 R so that az = bc. Then

ax+ by = 1

acx+ (bc)y = c

a(cx+ yz) = c =) a|c.

More generally, if gcd(a, b) = d and since a divides bc, then there exists x, y, z 2 R
so that ax+ by = d and az = bc. Moreover, since d divides a there exists m 2 R
with dm = a. Therefore,

ax+ by = d

acx+ (bc)y = dc

a(cx+ yz) = dc

am(cx+ yz) = (dm)c

am(cx+ yz) = ac

m(cx+ yz) = c (Cancellation in R since a 6= 0.)

=) m = a/d divides c.

K

(b) Consider the Diophantine Equation ax + by = N where a, b and N are integers

and a, b are nonzero. Suppose x0, y0 is a solution: ax0 + by0 = N . Prove that the

full set of solutions to this equation is given by

x = x0 +m
b

gcd(a, b)
, y = y0 �m

a

gcd(a, b)

as m ranges over the integers. [If x, y is a solution to ax + by = N , show that

a(x� x0) = b(y0 � y) and use (a).]

Proof. Suppose x, y is a solution to ax + by = N . Since x0, y0 is also a solution,

then

ax+ by = ax0 + by0
ax� ax0 = by0 � by

a(x� x0) = b(y0 � y).

Letting c = (y0 � y) in part (a), we have
a

gcd(a, b)
divides y0 � y. Hence, there

exists m 2 Z with

m
a

gcd(a, b)
= y0 � y =) y = y0 �m

a

gcd(a, b)
.
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Then

ax+ by0 �m
ab

gcd(a, b)
= ax0 + by0

ax�m
ab

gcd(a, b)
= ax0

a

✓
x�m

b

gcd(a, b)

◆
= ax0

x = x0 +m
b

gcd(a, b)
.

K

8.1.11 Let R be a commutative ring with 1 and let a and b be nonzero elements of R. A least
common multiple of a and b is an element e of R such that

(i) a|e and b|e, and
(ii) if a|e0 and b|e0 then e|e0.

(a) Prove that a least common multiple of a and b (if such exists) is a generator for

the unique largest principal ideal contained in (a) \ (b).

Proof. Suppose e is the least common multiple of a and b. Then a and b both

divide e so that (e) ✓ (a) \ (b). Suppose e0 2 R and (e0) is an ideal for which

(e) ✓ (e0) ✓ (a) \ (b). Thus a and b each divide e0. Since e is the least common

multiple of a and b, then e divides e0, which means (e0) ✓ (e), i.e., (e) = (e0) so that
e is a generator for the unique largest principal ideal contained in (a) \ (b). K

(b) Deduce that any two nonzero elements in a Euclidean Domain have a least com-

mon multiple which is unique up to multiplication by a unit.

Proof. Suppose e and e0 are two least common multiples of a and b. Then e divides
e0 and e0 divides e. Then there exists x, y 2 R with ex = e0 and e0y = e. So,

(e0y)x = e =) yx = 1 =) x, y are units. Therefore, least common multiples

of a and b are associate. K

(c) Prove that in a Euclidean Domain the least common multiple of a and b is

ab

gcd(a, b)
.

Proof. Let d = gcd(a, b) and e = lcm(a, b). Notice

ab

d
= a · b

d
and

ab

d
= b · a

d

so that a and b both divide
ab
d . So, e divides

ab
d (⇤). Since a divides e, then there

exists x 2 R so that ax = e. Then abx = be so that
ab
e · x = b and thus

ab
e divides

b. Similarly,
ab
e divides a. Thus,

ab
e divides d. Then there exists z 2 R so that

ab
e · z = d. Then ab

d · z = e so that
ab
d divides e (⇤⇤). So by (⇤) and (⇤⇤), we have

that e = ab
d . K
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9.1.6 Prove that (x, y) is not a principle ideal in Q[x, y].

Proof. Note that

(x, y) = {x · g(x, y) + y · h(x, y) | g(x, y), h(x, y) 2 Q[x, y]}.

By way of contradiction, suppose (f(x, y)) = (x, y) for some nonzero polynomial

f(x, y) 2 Q[x, y]. Since f(x, y) 2 (x, y), then f has no constant term. If f has

any term with the variable x, then the polynomial y 62 (f(x, y)). Thus, f has no term

with the variable x. Similarly, if f has any term with the variable y, then x 62 (f(x, y)).
Hence, f has no term with x and no term with y, i.e., f is a constant polynomial. But

then f 62 (x, y), a contradiction. Thus,(x, y) is not a principle ideal in Q[x, y]. K

9.1.7 Let R be a commutative ring with 1. Prove that a polynomial ring in more than one

variable over R is not a Principal Ideal Domain.

Proof. Let R be a commutative ring with 1 and n 2 Z+, n > 1. Suppose for contra-

diction that R[x1, x2, . . . , xn] is a Principal Ideal Domain. Since

R[x1, x2, . . . , xn�1][xn] = R[x1, x2, . . . , xn]

then by Corollary 8, (D&F §8.2), R[x1, x2, . . . , xn�1] is a field, which is a contradiction,

since no polynomial ring is a field. K
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8.2.4 Let R be an integral domain. Prove that if the following two conditions hold then
R is a Principle Ideal Domain:

(i) any two nonzero elements a and b in R have a greatest common divisor which
can be written in the form ra+ sb for some r, s 2 R, and

(ii) if a1, a2, a3, . . . are nonzero elements of R such that ai+1

��ai for all i, then there
is a positive integer N such that an is a unit time aN for all n � N .

Proof. Let I be a nonzero ideal of R and S = {(x) | x 2 I} be a set ordered by
inclusion. Since 0R 2 I then the ideal {0r} 2 S, i.e. S 6= ;. Let C be a chain in
S. We claim that C has a maximal element, and thus has an upper bound in S.1

Suppose there exists no maximal element in C. Let (a1) be an ideal in C. Since (a1)
is not maximal, there exists (a2) 2 C for which (a1) ( (a2). Similarly, there exists
(a3) 2 C for which (a1) ( (a2) ( (a3). Given a chain of ideals in the chain C,

(a1) ( (a2) ( (a3) ( · · · ( (an),

since (an) is not maximal, there exists (an+1) 2 C with (an) ( (an+1). Since C has
no maximal element, this chain will continue indefinitely. So, ai+1|ai for all i, and
there does not exists an integer N after which (an) = (aN) for all n � N , which is
a contradiction of (ii). Now, we claim that I is in fact a maximal element of S. Let
(a) be a maximal element of S. Then a 2 I so that (a) ✓ I. Let b 2 I. By (i),
gcd(a, b) = d exists and d = ra+sb for some r, s 2 R. Since a, b 2 I, then ra, sb 2 I
and d = ra + sb 2 I. Since d|a and d|b, then (a) ✓ (d) and (b) ✓ (d). Since (a)
is maximal, then we must have (a) = (d), which means (b) ✓ (d) = (a) and hence
b 2 (a). Therefore I = (a), which means R is a Principal Ideal Domain. K

8.2.6 Let R be an integral domain and suppose that every prime ideal in R is principal.
This exercise proves that every ideal of R is principal, i.e., R is a P.I.D.

(a) Assume that the set of ideals of R that are not principal is nonempty and prove
that this set has a maximal element under inclusion (which, by hypothesis, is
not prime). [Use Zorn’s Lemma.]

Proof. Let S = {I | I ✓ R is a nonprincipal ideal} be a set ordered by inclu-
sion. Suppose S is nonempty and let C be a chain in S. Define J =

S
C2C C.

Then J is an upper bound for C. It remains to show that J is an element of
S. Once this is verified, then S contains a maximal element by Zorn’s Lemma.
Since the union of totally ordered ideals is an ideal, then J is an ideal. Sup-
pose for contradiction that J was principal with (j) = J for some j 2 R. Since
j 2 J , then j 2 Cj for some Cj 2 C. So (j) ✓ Cj and Cj ✓ J = (j), which
means Cj = (j), i.e., Cj is principal, a contradiction. Thus J 2 S. K

1Since every element in C can be compared, a maximal element in C is an upper bound in C, and in
particular an upper bound in S.



Nicholas Camacho Abstract Algebra — Homework 10B November 18, 2016

(b) Let I be an ideal which is maximal with respect to being nonprincipal, and
let a, b 2 R with ab 2 I but a 62 I and b 62 I. Let Ia = (I, a) be the ideal
generated by I and a, let Ib = (I, b) be the ideal generated by I and b, and
define J = {r 2 R | rIa ✓ I}. Prove that Ia = (↵) and J = (�) are principal
ideals in R with I ( Ib ✓ J and IaJ = (↵�) ✓ I.

Proof.

• Ia is principal.
If i 2 I then i 2 Ia and so I ✓ Ia. Since a 2 Ia but a 62 I, then I ( Ia,
which implies Ia is a principal ideal since I is maximal in R with respect
to being nonprincipal.

• J is principal.
Note that J is an ideal. Let i 2 I. Then iIa = I which means i 2 J .
Hence I ✓ J . Notice that since bI = I and ba 2 I, then sums of elements
in bI with ab lie in I. Hence, bIa = I. So, b 2 J . Since b 62 I, then I ( J ,
which means J is principal.

• I ( Ib ✓ J and IaJ = (↵�) ✓ I
Since b 62 I and b 2 Ib, then I ( Ib. Moreover, since I ✓ J and b 2 J ,
then Ib ✓ J so that

I ( Ib ✓ J.

Letting Ia = (↵) and J = (�) for ↵, � 2 R, we have (↵)(�) = (↵�), which
gives

IaJ = (↵�) ✓ I.

K

(c) If x 2 I show that x = s↵ for some s 2 J . Deduce that I = IaJ is principal, a
contradiction, and conclude that R is a P.I.D.

Proof. Let x 2 I. Since I ( Ia = (↵), then x = s↵ for some s 2 R. Since

sIa = s(↵) = (s↵) = (x) ✓ I,

then s 2 J .So x 2 IaJ , which means I ✓ IaJ . Therefore, I = IaJ so that I is
a principal ideal, which is a contradiction. Therefore, the set S in part (a) is
empty, which means R is a P.I.D. K
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8.3.5 Let R = Z[
p
�n] where n is a squarefree integer greater than 3.

(a) Prove that 2,
p
�n, and 1 +

p
�n are irreducibles in R.

Proof. We use the standard norm of the complex numbers, N(a + b
p
�n) =

a2+b2n, restricted to R. So, N(↵)N(�) = N(↵�). We claim N(x) = 1 () x
is a unit. First suppose x is a unit. Then there exists y 2 R with xy = 1. Then
N(x)N(y) = N(xy) = N(1) = 1 which implies N(x) and N(y) are both 1.
Conversely, suppose x = a+ b

p
�n and N(x) = 1. Then 1 = N(x) = a2 + b2n,

and since n > 3, we must have b = 0 and 1 = a2, which means x = ±1 and
thus x is a unit.

• 2 is irreducible.
Suppose 2 = ↵�. Then 4 = N(2) = N(↵)N(�). If N(↵) = 1 then ↵ is
a unit, and 2 is irreducible. If N(↵) = 4 then N(�) = 1 which means �
is a unit so that 2 is irreducible. Suppose ↵ = a + b

p
�n and N(↵) = 2.

So 2 = N(↵) = a2 + b2n, which implies b = 0 since n > 3. Thus, 2 = a2,
which means a 62 Z, a contradiction. Thus, N(↵) 6= 2.

•
p
�n is irreducible.

Suppose
p
�n = ↵�. Then N(↵)N(�) = N(

p
�n) = n. Since n is

squarefree, N(↵) 6= N(�). Without loss of generality, suppose N(↵) <
N(�). Let ↵ = a+ b

p
�n. Since n = N(↵)N(�) then

N(↵) <
p
n < N(�) (⇤)

If this inequality did not hold, then either

N(↵) < N(�) <
p
n or

p
n < N(↵) < N(�).

In the former case,

N(↵) <
p
n and N(�) <

p
n =) N(↵)N(�) < n,

which is a contradiction. In the latter case,

p
n < N(↵) and

p
n < N(�) =) n < N(↵)N(�),

which again is a contradiction. So, the inequality in (⇤) holds. Therefore,

a2 + b2n = N(↵) <
p
n.

Since n > 3, then
p
n < n. Hence, b2 = 0. Thus N(↵) = a2 and so

n = N(↵)N(�) = a2N(�).

Since n is squarefree, then a2 = 1, i.e., N(↵) = 1, which means ↵ is a unit.
Therefore,

p
�n is irreducible.
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• 1 +
p
�n is irreducible.

Suppose 1 +
p
�n = ↵� and ↵ = a+ b

p
�n and � = c+ d

p
�n. Then

1 + n = N(1 +
p
�n) = N(↵)N(�)

= (a2 + b2n)(c2 + d2n)

= a2c2 + (a2d2 + b2c2)n+ (b2d2)n2,

which gives the following equalities: a2c2 = 1, a2d2 + b2c2 = 1, and
b2d2 = 0. The first equality gives a, c = ±1 which means d2 + b2 = 1 and
so

d2 = 1� b2, b2(1� b2) = 0 =) b = 0 or b = ±1.

Then, ↵ = 1 + b
p
�n and so N(↵) = 12 + b2n  1 + n. Therefore,

1 + n = N(↵)N(�)  (1 + n)N(�) =) N(�) = 1 =) � is a unit

and hence 1 +
p
�n is irreducible.

K

(b) Prove that R is not a U.F.D. Conclude that the quadratic integer ring O is
not a U.F.D. for D ⌘ 2, 3 mod 4, D < �3 (so also not Euclidean and not a
P.I.D.) [Show that either

p
�n or 1 +

p
�n is not prime.]

Proof. We claim n 2 Z[
p
�n] has two distinct factorizations into irreducibles

so that Z[
p
n] is not a U.F.D. If n is even then n = 2k for some k 2 Z odd

and also n = (�1)(
p
�n)2, and these factorizations are distinct. Now suppose

n is odd. Then n + 1 is even, and n + 1 = (1 +
p
�n)(1 �

p
�n), but also

n + 1 = 2m for some m 2 Z, which gives two distinct factorizations of n + 1.
Hence Z[

p
�n] is not a U.F.D. By definition of the quadratic integer ring,

O := OQ(
p
D) = Z[!] = {a+ b! | a, b 2 Z},

where

! =

(p
D if D ⌘ 2, 3 mod 4

1+
p
D

2 if D ⌘ 1 mod 4.

Since n > 3, then setting D = �n means D < �3. Suppose D ⌘ 2, 3 mod 4.
Then

O = Z[
p

D] = Z[
p
�n]

which is not a U.F.D. by the above proof. K
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Let F be a field and x be an indeterminate over F .

9.2.1 Let f(x) 2 F [x] be a polynomial of degree n � 1 and let bars denote passage to the quotient

F [x]/(f(x)). Prove that for each g(x) there is a unique polynomial g0(x) of degree  n � 1 such

that g(x) = g0(x).

Proof. Notice that g(x) = g0(x) if and only if g(x) � g0(x) 2 (f(x)) if and only if f(x) divides

g(x)�g0(x). Since F is a field, F [x] is a Euclidean Domain where the division algorithm in F [x] yields
unique q(x), r(x) 2 F [x] such that

g(x) = q(x)f(x) + r(x) with r(x) = 0 or deg r(x) < deg f(x).

Define g0(x) := r(x) so that g(x) � g0(x) = q(x)f(x) and thus g(x) = g0(x) where deg g0(x) <
deg f(x) = n. K

9.2.5 Exhibit all the ideals in the ring F [x]/(p(x)) where p(x) is a polynomial in F [x].

Proof. Since F is a field, then F [x] is a Euclidean Domain. In particular, F [x] is a UFD. Thus if p(x)
is an irreducible polynomial, then p(x) is prime polynomial so that (p(x)) is a prime ideal. Since F [x]
is a Euclidean Domain, then in particular F [x] is a PID so that (p(x)) is a maximal ideal since prime

ideals in a PID are also maximal ideals. Therefore, F [x]/(p(x)) is a field which means its only ideals

are (0F + p(x)) and F [x]/(p(x)).

Now suppose p(x) is reducible. By the 4th Isomorphism Theorem for rings, there is a bijection

between the ideals of F [x] which contain p(x) and the ideals of F [x]/(p(x)). Since F [x] is a PID, then

all of the ideals which contain p(x) are principal. Moreover, if p(x) 2 (f(x)) for some f(x) 2 F [x],
then f(x) divides p(x). So, the ideals of F [x]/p(x) are precisely those of the form (f(x))/(p(x)) where
f(x) 2 F [x] divides p(x) (and of course the zero ideal). K

9.4.17 Prove the following version of Eisenstein’s Criterion: Let P be a prime ideal in the UFD R and

let f(x) = anxn
+ an�1xn�1

+ · · · + a1x + a0 be a polynomial in R[x] with n � 1. Suppose an 62
P, an�1, . . . , a0 2 P and a0 62 P 2

. Prove that f(x) is irreducible in F [x], where F is the quotient field

of R.

Proof. Suppose f(x) is reducible in F [x]. Then there exists polynomials

c(x) = ckx
k
+ · · ·+ c1x+ c0 and d(x) = d`x

`
+ . . . d1x+ d0

in F [x] with ck 6= 0 6= dk and 1  k, ` < n such that f(x) = c(x)d(x). Now, we compare the coe�cients

of p(x) = c(x)d(x). Since a0 = c0d0 and a0 2 P , then either c0 or d0 is in P . Without loss of generality,

suppose c0 2 P . Since a0 62 P 2
, then d0 62 P . Then

a1 = c1d0 + c0d1.

Since c0 2 P then c0d1 2 P . Since a1 2 P , then c1d0 2 P . But since d0 62 P , then c1 2 P since P is a

prime ideal. For 1  i  k < n, we have

ai = cid0 + ci�1d1 + · · ·+ c0d`.

By induction, ci�1d1 + · · · + c0d` 2 P . Since ai 2 P , then cid0 2 P . But again since d0 62 P , then

ci 2 P since P is a prime ideal. Hence ci 2 P for all 1  i  k. In particular, ck 2 P , which implies

that ckd` 2 P . But ckd` = an 62 P , a contradiction. K

1
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9.3.4 Let R = Z+xQ[x] ⇢ Q[x] be the set of polynomials in x with rational coe�cients whose constant term
is an integer.

(a) Prove that R is an integral domain and its units are ±1.

Proof. Let f(x), g(x) 2 R with leading coe�cients a and b, respectively. Then f(x)g(x) = 0 if
and only if ab = 0 if and only if a = 0 or b = 0 (since Q) is an integral domain) if and only if
f(x) = 0 or g(x) = 0. Therefore, R is an integral domain.

Moreover, since R ⇢ Q[x], then R⇥ ✓ (Q[x])⇥ = Q⇥. However, since the constant polynomials
in R are isomorphic to Z, then R⇥ = Z⇥ = {±1}. K

(b) Show that the irreducibles in R are ±p where p is a prime in Z and the polynomials f(x) that are
irreducible in Q[x] and have constant term ±1. Prove that these irreducibles are prime in R.

Proof. If f(x) = a 2 R is a constant polynomial, then a 2 Z which means f(x) is irreducible if
and only if a is irreducible in Z if and only if a is prime in Z (since Z is a UFD).

Now suppose f(x) = anxn + an�1xn�1 + · · ·+ a1x+ a0 2 R with n � 1 and a0 6= 0. Then we
can factor f(x) into the product

f(x) = (a0)

✓
an
a0

xn +
an�1

a0
xn�1 + · · ·+ a1

a0
x+ 1

◆
.

If a0 6= ±1, then f(x) is reducible, since the above factorization exhibits f(x) as the product of
two nonunits in R. Since n � 1, then the second factor of f(x) written above is not a unit in R.
So f(x) is irreducible precisely when a0 = ±1 and f(x) is irreducible in Q[x].

Suppose f(x) is irreducible in R. If f is a constant polynomial, then as we stated above,
f(x) = p for some prime in Z. Since Z ⇢ R, then f(x) = p is prime in R.

Now suppose f(x) 2 R is irreducible and not a constant polynomial, and suppose f(x) =
a(x)b(x) for a(x), b(x) 2 R. Since Q is a field then Q[x] is a Euclidean Domain, and in particular
Q[x] is a UFD, so that every irreducible polynomial in Q[x] is prime in Q[x]. Therefore, since
f(x) 2 Q[x] then either f(x)|a(x) or f(x)|b(x). Without loss of generality, suppose f(x)|a(x). So
a(x) = f(x)q(x) for some q(x) 2 Q[x]. Let a0, q0, f0 be the constant terms in a(x), q(x), and f(x),
respectively. Since a(x) 2 R, then a0 2 Z. Since f0 = ±1, then a0 = ±q0, i.e., q0 2 Z. Therefore,
q(x) 2 R and so f(x) is prime in R. K

(c) Show that x cannot be written as the product of irreducibles in R (in particular, x is not irre-
ducible) and conclude that R is not a UFD.

Proof. Suppose x = f1(x)f2(x) · · · fk(x) where fi(x) 2 R is irreducible for all 1  i  k. Then

1 = deg(x) = deg(f1(x) · · · fk(x)) = deg(f1(x)) + · · ·+ deg(fk(x)),

which means all but one of the factors of x are constant polynomials. Without loss of generality,
suppose f1(x) is the one nonconstant polynomial in the factorization of x. Then f1(x) = a1x+ b
for some a1 2 Q, and b 2 Z. Since f1(x) is irreducible in R, then and b = ±1 by part (b). Let
fi(x) = ai where ai 2 Z are irreducible for all 2  i  k. Notice that

x = (a1x± 1)a2a3 · · · ak = (a1a2 · · · ak)x± a2a3 · · · ak.

But since a2, a3, · · · , ak are irreducible, then their product is nonzero, which means x has a nonzero
constant term, a contradiction. Therefore, R is not a UFD, since x 2 R cannot be factored into
a finite product of irreducibles. K

(d) Show that x is not a prime in R and describe the quotient ring R/(x).

Proof. Notice that x is not prime in R since it is not irreducible in R. Therefore R/(x) is not an
integral domain since (x) is not prime. Moreover R/(x) has identity element f(x) + (x) where
f(x) is a polynomial with no constant term and an integer coe�cient on its x term. **I couldn’t
figure out how the rest of the cosets looked, so the following is from the online solution manual**:
R/(x) = {a+ bx+ (x) | a 2 Z, b 2 Q, b 2 [0, 1)}.

K
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9.4.3 Show that the polynomial (x � 1)(x � 2) . . . (x � n) � 1 is irreducible over Z for all n � 1. [If the
polynomial factors consider the values of the factors at x = 1, 2, . . . , n.]

Proof. Let p(x) = (x � 1)(x � 2) . . . (x � n) � 1 and suppose p(x) = f(x)g(x) for some polynomials
f(x), g(x) 2 Z[x]. Notice that since p(x) has degree n, both f(x) and g(x) have degree less than
n. Without loss of generality suppose deg f(x)  deg g(x). Notice that for all 1  k  n, we have
f(k)g(k) = �1. So, f(k) and g(k) are equal to ±1 for all 1  k  n.

Now, consider the polynomial p(x) + (f(x))2. . Since deg f(x)  deg g(x), then deg f(x)  n/2.
Thus deg(f(x))2  n and so deg(p(x) + (f(x))2) = n. Notice that the roots of this polynomial are
k 2 {1, · · · , n}. Then

p(x) + (f(x))2 = (x� 1)(x� 2) · · · (x� n) = p(x) + 1,

i.e., (f(x))2 = 1 and so f(x) = ±1. Behold! This means f(x) is a unit in Z[x] so that p(x) is
irreducible. K

9.4.11 Prove that x2 + y2 � 1 is irreducible in Q[x, y].

Proof. Since Q[x, y] = Q[x][y], we consider y2+x2�1 as a polynomial in the variable y with coe�cients
in Q[x]. Thus y2 + x2 � 1 is a monic polynomial with constant term x2 � 1. We claim that x+ 1 is a
prime element in Q[x, y]. Once this is verified, then the ideal P = (x + 1) is a prime ideal containing
the constant term (x� 1)2 — indeed, (x� 1)2 = (x+ 1)(x� 1) — but the ideal P 2 = ((x+ 1)2) does
not contain the constant term (x� 1)2. Then by Eisenstein’s Criterion, y2 + x2 � 1 is irreducible.

Since Q is a UFD, then Q[x][y] is also a UFD, and hence it su�ces to show that x+1 is irreducible
in Q[x][y]. To that end, suppose x+ 1 = f(x, y)g(x, y) for some f(x, y), g(x, y) 2 Q[x][y]. Then

0 = deg(x+ 1) = deg(f(x, y)) + deg(g(x, y))

which means deg(g(x, y)) = deg(f(x, y)) = 0, i.e., f(x, y), g(x, y) are constant polynomials. Then
f(x, y), g(x, y) are both units since Q is a field. Hence, x+ 1 is irreducible. K
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