Homework for Introduction to Abstract Algebra I

Nicholas Camacho
Department of Mathematics
University of Iowa
Fall 2016

Most exercises are from
Abstract Algebra (3rd Edition) by Dummit \& Foote.
For example, "4.2.8" means exercise 8
from section 4.2 in Dummit \& Foote.
Beware: Some solutions may be incorrect!
0.3.13 Let $n \in \mathbb{Z}, n>1$, and let $a \in \mathbb{Z}$ with $1 \leq a \leq n$. Prove that if a and n are relatively prime, then there is an integer c such that $a c \equiv(\bmod n)$.

Proof. Let $n \in \mathbb{Z}, n>1$, and let $a \in \mathbb{Z}$ with $1 \leq a \leq n$. Assume a and n are relatively prime. In other words, there exists integers b and c so that $n b+a c=1$. Then, $1-a c=n b$ and so n divides $(1-a c)$. Thus, $a c \equiv 1(\bmod n)$.
1.1.8 Let $G=\left\{z \in \mathbb{C} \mid z^{n}=1\right.$ for some $\left.n \in \mathbb{Z}^{+}\right\}$.
(a) Prove that G is a group under multiplication.

Proof. First, notice that $1 \in G$ as $1^{1}=1$. Since 1 is the identity element of \mathbb{C} and $G \subset \mathbb{C}$, then 1 is the identity element of G. Similarly, since \mathbb{C} is associative, and $G \subset \mathbb{C}$, then G is also associative.

To show closure, first assume $x, y \in G$. Then, there exists $n, m \in G$ so that $x^{n}=1$ and $y^{m}=1$. Notice that $x^{n m}=\left(x^{n}\right)^{m}=1^{m}=1$ and similarly $y^{n m}=y^{m n}=\left(y^{m}\right)^{n}=1^{n}=1$. Since $x, y \in \mathbb{C}$ and \mathbb{C} is an abelian group we can compute

$$
(x y)^{n m}=x^{n m} y^{n m}=1 \cdot 1=1
$$

Thus, $x y \in G$ and hence G is closed under multiplication.
Next, by properties of complex numbers, we know that $x x^{-1}=1$, i.e., x^{-1} is the inverse of x. To see that $x^{-1} \in G$, simply observe that $\left(x^{-1}\right)^{n}=x^{-n}=\left(x^{n}\right)^{-1}=1^{-1}=1$. Thus, G contains inverses.
(b) Prove that G is not a group under addition.

Proof. G is not a group under addition because there is no identity element. To show this, we assume that G is a group with identity element e. Let $x \in G$ and notice that by a group axiom, $e+x=x$. Applying the inverse of x to both sides on the right gives $e=0$. But, $0^{n}=0$ for all $n \in \mathbb{Z}^{+}$so $e \notin G . \Rightarrow \Leftarrow$
1.1.19 Let $x \in G$ and let $a, b \in \mathbb{Z}^{+}$
(a) Prove that $x^{a+b}=x^{a} x^{b}$ and $\left(x^{a}\right)^{b}=x^{a b}$

$$
\begin{aligned}
& \text { Proof. } x^{a+b}=\underbrace{x \cdot x \cdots x}_{a+b \text { times }}=\underbrace{(x \cdot x \cdots x)}_{a \text { times }} \cdot \underbrace{(x \cdot x \cdots x)}_{b \text { times }}=x^{a} x^{b} \\
& \left(x^{a}\right)^{b}=\underbrace{x^{a} \cdot x^{a} \cdots x^{a}}_{b \text { times }}=\underbrace{(x \cdot x \cdots x) \cdot(\underbrace{(x \cdot x \cdots x)}_{a \text { times }} \cdots \underbrace{(x \cdot x \cdots x)}_{a \text { times }}}_{b \text { times }}=x^{a b}
\end{aligned}
$$

(b) Prove that $\left(x^{a}\right)^{-1}=x^{-a}$.

Proof. Since $x \in G$, then $x^{a} \in G$ by closure in groups. Thus, $\left(x^{a}\right)^{-1} \in G$ and

$$
\begin{equation*}
x^{a} \cdot\left(x^{a}\right)^{-1}=1 \tag{1}
\end{equation*}
$$

Then, multiplying both sides of (1) by x^{-1} exactly a-times on the left,

$$
\underbrace{\left(x^{-1} \cdot x^{-1} \cdots x^{-1}\right)}_{a \text { times }}\left(x^{a} \cdot\left(x^{a}\right)^{-1}\right)=\underbrace{\left(x^{-1} \cdot x^{-1} \cdots x^{-1}\right)}_{a \text { times }} \cdot 1 .
$$

Then, after we re-associate and write x^{a} as $x \cdot x \cdots x$ (exactly a times), we have

$$
(\underbrace{x^{-1} \cdot x^{-1} \cdots x^{-1}}_{a \text { times }} \cdot \underbrace{x \cdot x \cdots x}_{a \text { times }})\left(x^{a}\right)^{-1}=\underbrace{\left(x^{-1} \cdot x^{-1} \cdots x^{-1}\right)}_{a \text { times }} .
$$

Thus,

$$
\left(x^{a}\right)^{-1}=x^{-a} .
$$

(c) Establish part (a) for arbitrary integers a and b.

Proof.

Case $1-a, b \in \mathbb{Z}^{+}$completed in part (a).
Case $2-a, b \in \mathbb{Z}^{-}$
(i) $\begin{aligned} & x^{a+b}=\left(x^{-a-b}\right)^{-1}=\left(x^{-b-a}\right)^{-1} \overbrace{=}^{\text {by Case } 1}\left(x^{-b} x^{-a}\right)^{-1}=\left(x^{-a}\right)^{-1}\left(x^{-b}\right)^{-1}= \\ & x^{a} x^{b}\end{aligned}$
(ii) $\left(x^{a}\right)^{b}=\left(\left(x^{a}\right)^{-b}\right)^{-1}=(\underbrace{x^{a} \cdot x^{a} \cdots x^{a}}_{-b \text { times }})^{-1}$

$$
=(\underbrace{\underbrace{(x \cdot x \cdots x)}_{a \text { times }} \cdot \underbrace{(x \cdot x \cdots x)}_{a \text { times }} \cdots \underbrace{(x \cdot x \cdots x)}_{a \text { times }}}_{-b \text { times }})^{-1}=\left(x^{-a b}\right)^{-1}=x^{a b}
$$

Case $3-a \in \mathbb{Z}^{+}, b \in \mathbb{Z}^{-}$.
(i) - If $|b|<a$, then $a+b>0$. First, notice that

$$
\left(x^{a+b}\right)\left(x^{-b} x^{-a}\right)=x^{a+b-b} x^{-a}=x^{a} x^{-a}=1
$$

Thus, $\left(x^{a+b}\right)^{-1}=\left(x^{-b} x^{-a}\right)=\left(x^{a} x^{b}\right)^{-1}$. Then, since inverses are unique, $x^{a+b}=x^{a} x^{b}$

- If $|b|>a$, then $a+b<0$ which implies $-b-a>0$. Using the previous subcase,

$$
x^{a+b}=\left(x^{-b-a}\right)^{-1}=\left(x^{(-b)+(-a)}\right)^{-1}=\left(x^{-b} x^{-a}\right)^{-1}=\left(x^{-a}\right)^{-1}\left(x^{-b}\right)^{-1}=x^{a} x^{b}
$$

- If $|b|=a$, then $a+b=0$. Notice that this implies $x^{a}=x^{-b}$. Then,

$$
x^{a+b}=x^{0}=1=x^{a} x^{-a}=x^{a} x^{b}
$$

(ii)

$$
\left(x^{a}\right)^{b}=\left(\left(x^{a}\right)^{-b}\right)^{-1} \overbrace{=}^{\text {by Case } 1}\left(x^{-a b}\right)^{-1}=x^{a b}
$$

Case $4-a=0, b \in \mathbb{Z}$.

$$
\begin{aligned}
& \text { (i) } x^{a+b}=x^{0+b}=x^{b}=1 \cdot x^{b}=x^{0} x^{b}=x^{a} x^{b} \\
& \text { (ii) }\left(x^{a}\right)^{b}=\left(x^{0}\right)^{b}=1^{b}=1=x^{0}=x^{0 . b}=x^{a b}
\end{aligned}
$$

1.1.25 Prove that if $x^{2}=1$ for all $x \in G$ then G is abelian.

Proof. Let $x^{2}=1$ for all x in a group G. Let $x, y \in G$. By closure in groups, $(x y) \in G$ and so $(x y)(x y)=1$. Then,

$$
\begin{aligned}
(x y)(x y) & =1 \\
(y x)(x y)(x y) & =(y x) 1 \\
y(x x) y x y & =y x \\
y(1) y x y & =y x \\
(y y) x y & =y x \\
x y & =y x
\end{aligned}
$$

and so G is abelian.
1.2.4 If $n=2 k$ is even and $n \geq 4$, show that $z=r^{k}$ is an element of order 2 which commutes with all elements of $D_{2 n}$. Show that z is the only nonidentity element in $D_{2 n}$ which commutes with all elements in $D_{2 n}$.

Proof. Let $n=2 k$ be even with $n \geq 4$. Consider the element $z=r^{k} \in D_{2 n}$. Clearly, $z^{2}=r^{2 k}=r^{n}=1$ and so the order of z is 2 . Now, we prove that z commutes with all elements of $D_{2 n}$. First, we note that z commutes trivially with the identity. Next, we see that z commutes with all rotations because, for an arbitrary rotation r^{m} with $1 \leq m \leq n-1$, we have

$$
r^{k} r^{m}=r^{k+m}=r^{m+k}=r^{m} r^{k}
$$

Finally, we claim that

$$
\begin{equation*}
r^{k} s=s r^{-k} \tag{*}
\end{equation*}
$$

Using the relation $r s=s r^{-1}$, we prove $(*)$ by showing that

$$
r^{k} s=\underbrace{r r \cdots r}_{k-1 \text { times }}(r s)=\underbrace{r r \cdots r}_{k-1 \text { times }}\left(s r^{-1}\right)=\underbrace{r r \cdots r}_{k-2 \text { times }}(r s) r^{-1}=\underbrace{r r \cdots r}_{k-2 \text { times }}\left(s r^{-1}\right) r^{-1}=\cdots=s r^{-k} .
$$

Now, notice that since $r^{n}=1$ then $r^{2 k}=1$, which implies $r^{k}=r^{-k}$. Then, by $(*)$,

$$
r^{k} s=s r^{-k} \Longrightarrow r^{k} s=s r^{k}
$$

and so r^{k} commutes with the reflection s.
Now, to show that z is the only nonidentity element which commutes with all elements in $D_{2 n}$, first let r^{t} be an any rotation, $t \neq k$. Now, we want to show that $r^{t} \neq r^{-t}$. So, assume that in fact $r^{t}=r^{-t}$. This would imply $r^{2 t}=1=r^{n}$. In other words, $2 t=n$, and thus $t=k$, a contradiction. By ($*$) we know that $r^{t} s=s r^{-t}$. Since $r^{t} \neq r^{-t}$, then $r^{t} s \neq s r^{t}$. So, r^{t} does not commute with all elements in $D_{2 n}$. We've also show that, the only other nonidentity element in $D_{2 n}$, s, does not commute with all elements in $D_{2 n}$.
1.3.2

$$
\left.\begin{array}{rl}
\sigma & =\left(\begin{array}{llll}
1 & 13 & 5 & 10
\end{array}\right)\left(\begin{array}{ll}
3 & 15 \\
8
\end{array}\right)\binom{4}{1} 117129
\end{array}\right)
$$

1.1.22 If x and g are elements of the group G, prove that $|x|=\left|g^{-1} x g\right|$. Deduce that $|a b|=|b a|$ for all $a, b \in G$.

Proof. Let $x, g \in G$ and $\left|g^{-1} x g\right|=n<\infty$. Then,

$$
\begin{align*}
\left(g^{-1} x g\right)^{n} & =1 \tag{*}\\
\underbrace{\left(g^{-1} x g\right)\left(g^{-1} x g\right) \cdots\left(g^{-1} x g\right)}_{n \text { factors }} & =1 \\
g^{-1} x\left(g g^{-1}\right) x\left(g g^{-1}\right) x \cdots x\left(g g^{-1}\right) x g & =1 \\
g^{-1} x(1) x(1) x(1) x \cdots x(1) x(1) x g & =1 \\
g^{-1} \underbrace{(x x \cdots x)}_{n \text { factors }} g & =1 \\
g^{-1} x^{n} g & =1 \tag{**}\\
(g) g^{-1} x^{n} g\left(g^{-1}\right) & =(g) 1\left(g^{-1}\right) \\
x^{n} & =g g^{-1} \\
x^{n} & =1
\end{align*}
$$

Hence, $\left|g^{-1} x g\right|=n$ implies $|x|=n$. Following the equations in the opposite direction shows $|x|=n \Longleftrightarrow\left|g^{-1} x g\right|=n$, i.e., $|x|=\left|g^{-1} x g\right|$.
Notice that $(*) \Longrightarrow(* *)$, which then implies

$$
\left(g^{-1} x g\right)^{n}=g^{-1} x^{n} g
$$

Now, by way of contradiction, suppose $\left|g^{-1} x g\right|$ is infinity, but $|x|=n<\infty$. Then,

$$
\left(g^{-1} x g\right)^{n}=g^{-1} x^{n} g=g^{-1}(1) g=g^{-1} g=1
$$

a contradiction. Similarly, suppose $|x|$ is infinite, but $\left|g^{-1} x g\right|=n<\infty$. Then,

$$
1=\left(g^{-1} x g\right)^{n}=g^{-1} x^{n} g
$$

Then,

$$
1=g^{-1} x^{n} g \Longrightarrow g g^{-1}=x^{n} \Longrightarrow 1=x^{n}
$$

a contradiction. Thus, $|x|$ is infinite if and only if $\left|g^{-1} x g\right|$ is infinite.

Now, let $a, b \in G, x=a b$, and $g=a$. Then,

$$
|a b|=|x|=\left|g^{-1} x g\right|=\left|\left(a^{-1}\right)(a b)(a)\right|=\left|\left(a^{-1} a\right) b a\right|=|b a|
$$

1.1.23 Suppose $x \in G$ and $|x|=n<\infty$. If $n=s t$ for some positive integers s and t, prove that $\left|x^{s}\right|=t$.

Proof. Notice that $1=x^{n}=x^{s t}=\left(x^{s}\right)^{t}$. Hence, $\left|x^{s}\right| \leq t$. Assume that $\left|x^{s}\right|=q<t$. This implies $s q<s t=n$, and so $1=\left(x^{s}\right)^{q}=x^{s q}$, i.e., $|x|=s q<s t=n$, a contradiction. Thus, $\left|x^{s}\right|=t$.
1.3.10 Prove that if σ is the m-cycle $\left(a_{1} a_{2} \ldots a_{m}\right)$, then for all $i \in\{1,2, \ldots, m\}, \sigma^{i}\left(a_{k}\right)=a_{k+i}$, where $k+i$ is replaced by its least residue $\bmod m$ when $k+i>m$. Deduce that $|\sigma|=m$.

Proof. Let $a_{k} \in \sigma$. We proceed by induction on i. For the base case, let $i=1$. By definition of the function σ, we see that $\sigma^{1}\left(a_{k}\right)=\left(a_{1} a_{2} \ldots a_{m}\right)\left(a_{k}\right)=a_{k+1}(\bmod m)$. For the inductive step, assume that $\sigma^{n}\left(a_{k}\right)=a_{k+n}$ for $1 \leq n \leq i$. Then,

$$
\sigma^{i+1}\left(a_{k}\right)=\left(\sigma^{1} \circ \sigma^{i}\right)\left(a_{k}\right)=\left(\sigma^{1}\right)\left(a_{k+i}\right)=a_{k+i+1}
$$

and so the conclusion holds. Now, we claim $|\sigma|=m$. That is, $\sigma^{m}\left(a_{k}\right)=a_{k}$ for $1 \leq k \leq m$. By way of contradiction, assume otherwise. That is, $\sigma^{m}\left(a_{k}\right) \neq a_{k}$. So,

$$
a_{k+m}=\sigma^{m}\left(a_{k}\right) \neq a_{k}
$$

This implies $k+m \neq k$, which implies $m \neq 0 \bmod m$, a contradiction. Thus, $|\sigma|=m$.
1.3.11 Let σ be the m-cycle $(1,2, \ldots, m)$. Show that σ^{i} is also an m-cycle if and only if i is relatively prime to m.

Proof. First note that since σ is an m-cycle, then $o(\sigma)=m$ by the previous exercise. Again by the previous exercise, σ^{i} is an m-cycle if and only if $o\left(\sigma^{i}\right)=m$. By Proposition 5,

$$
m=o\left(\sigma^{i}\right)=\frac{o(\sigma)}{\operatorname{gcd}(m, i)}=\frac{m}{\operatorname{gcd}(m, i)},
$$

and clearly $m=m / \operatorname{gcd}(m, i)$ if and only if $\operatorname{gcd}(m, i)=1$, i.e., m and i are relatively prime.
1.3.16 Show that if $n \geq m$, then the number of m-cycles in S_{n} is given by

$$
\frac{n(n-1)(n-2) \cdots(n-m+1)}{m}
$$

Proof. If we want to construct an m-cycle in $S_{n}, n \geq m$ then we have n choices for the first element in the cycle, $(n-1)$ choices for the second element in the cycle, $(n-2)$ choices for the third element in the cycle, etc. In general, there are $n-i$ choices for the $i+1$ element in the cycle. Since we want exactly m elements in our cycle, there are $(n-(m-1))=n-m+1$ choices for the last element in our cycle. So, there are

$$
n(n-1)(n-2) \cdots(n-m+1)
$$

ways to construct an m-cycle. However, since each cycle can be represented in m different ways, we have over-counted by a factor of m, and so we divide by m to obtain

$$
\frac{n(n-1)(n-2) \cdots(n-m+1)}{m}
$$

m-cycles in S_{n}.
1.3.17 Show that if $n \geq 4$, then the number of permutations in S_{n} which are the product of two disjoint 2-cycles is $n(n-1)(n-2)(n-3) / 8$.

Proof. Any permutation in S_{n} that can be written as the product of two disjoint 2-cycles will look like $(q r)(s t)$. In this representation, there are n choices for $q,(n-1)$ choices for r, $(n-2)$ choices for s, and finally $(n-3)$ choices for t. So, we have $n(n-1)(n-2)(n-3)$ permutations in S_{n} that can be written this way. However, since there are 2 ways to write the permutation ($q r$), 2 ways to write the permutation $(s t)$, and 2 ways to write the product $(q r)(s t)$, we must divide by a factor of $2 \cdot 2 \cdot 2=8$. Thus, there are $n(n-1)(n-2)(n-3) / 8$ number of permutations in S_{n} which are the product of two disjoint 2-cycles.
1.6.17 Let G be any group. Prove that the map from G to itself defined by $g \mapsto g^{-1}$ is a homomorphism if and only if G is abelian.

Proof. (\Rightarrow) Suppose $\varphi: G \rightarrow G$ defined by $g \rightarrow g^{-1}$ is a homomorphism. Let $a, b \in G$. Then

$$
a b=\varphi\left(a^{-1}\right) \varphi\left(b^{-1}\right)=\varphi(a)^{-1} \varphi(b)^{-1}=(\varphi(b) \varphi(a))^{-1}=\varphi(b a)^{-1}=\left((b a)^{-1}\right)^{-1}=b a
$$

and thus G is abelian.
(\Leftarrow) Suppose G is abelian. Let $a, b \in G$ and let the map $\varphi: G \rightarrow G$ be defined by $g \mapsto g^{-1}$. Then

$$
\varphi(a) \varphi(b)=a^{-1} b^{-1}=b^{-1} a^{-1}=(a b)^{-1}=\varphi(a b)
$$

and thus φ is a homomorphism.
1.6.20 Prove that $\operatorname{Aut}(G)$ is a group under function composition.

Proof. We show that $\operatorname{Aut}(G)$ is a subgroup of S_{G} and thus a group. Since S_{G} is the set of all bijections from G to itself, then certainly all of the homomorphic bijections from G to itself are in S_{G}, and thus, $\operatorname{Aut}(G) \subseteq S_{G}$. Notice that $\operatorname{Aut}(G) \neq \emptyset$ since the identity map $\varphi: G \rightarrow G$ defined by $g \mapsto g$ is in $\operatorname{Aut}(G)$. Now, let $\varphi, \psi \in \operatorname{Aut}(G)$. Then, $\varphi \circ \psi^{-1}: G \rightarrow G$ is in $\operatorname{Aut}(G)$ since isomorphic functions are closed under function composition. Therefore, $\operatorname{Aut}(G)$ is a subgroup of S_{G} by the Subgroup Test.
2.1.15 Let $H_{1} \leq H_{2} \leq \ldots$ be an ascending chain of subgroups of G. Prove that $\cup_{i=1}^{\infty} H_{i}$ is a subgroup of G.

Proof. Since $1_{G} \in H_{i}$ for all i, then $1_{G} \in \cup_{i=1}^{\infty} H_{i}$ and so $\cup_{i=1}^{\infty} H_{i} \neq \emptyset$. Let $a, b \in \cup_{i=1}^{\infty} H_{i}$. So, there exists j and k so that $a \in H_{j}$ and $b \in H_{k}$. Let $m=\max \{j, k\}$. So, $a, b \in H_{m}$ and thus $a b^{-1} \in H_{m}$ by closure in groups and so $a b^{-1} \in \cup_{i=1}^{\infty} H_{i}$. Thus, $\cup_{i=1}^{\infty} H_{i}$ is a subgroup of G by the Subgroup Test.
2.5.11 Subgroup lattice of

$$
Q D_{16}=\left\langle\sigma, \tau \mid \sigma^{8}=\tau^{2}=1, \sigma \tau=\tau \sigma^{3}\right\rangle
$$

Solution:

3.1.1 Let $\varphi: G \rightarrow H$ be a homomorphism and let E be a subgroup of H. Prove that $\varphi^{-1}(E) \leq G$ (i.e., the preimage or pullback of a subgroup under a homomorphism is a subgroup). If $E \unlhd H$ prove that $\varphi^{-1}(E) \unlhd G$. Deduce that $\operatorname{ker} \varphi \unlhd G$.

Proof. Let $\varphi: G \rightarrow H$ be a homomorphism and let $E \leq H$. We first show that $\varphi^{-1}(E) \leq G$. First note that $\varphi^{-1}(E)=\{g \in G \mid \varphi(g) \in E\}$. Since $E \leq H, 1_{H} \in E$ and so $\varphi^{-1}\left(1_{H}\right)=1_{G}$ is in $\varphi^{-1}(E)$. Thus, $\varphi^{-1}(E) \neq \emptyset$. Now, let $a, b \in \varphi^{-1}(E)$. Then

$$
\varphi\left(a b^{-1}\right)=\varphi(a) \varphi\left(b^{-1}\right)=\varphi(a) \varphi(b)^{-1} \in E \text { by closure in } E .
$$

Thus, $a b^{-1} \in \varphi^{-1}(E)$ and so $\varphi^{-1}(E) \leq G$ by the Subgroup Test.

Now suppose $E \unlhd H$. Let $g \in G$ and let $a \in \varphi^{-1}(E)$. Then,

$$
\varphi\left(g a g^{-1}\right)=\varphi(g) \phi(a) \varphi(g)^{-1} \in E \quad \text { since } E \unlhd H
$$

and thus $\mathrm{gag}^{-1} \in \varphi^{-1}(E)$.

Since $\left\{1_{H}\right\} \unlhd H-\left(h 1_{H} h^{-1}=1_{H} \in\left\{1_{h}\right\} \forall h \in H\right)$ - then $\operatorname{ker} \varphi=\varphi^{-1}\left(1_{h}\right) \unlhd G$ by the previous proof.
3.1.29 Let N be a finite subgroup of G and suppose $G=\langle T\rangle$ and $N=\langle S\rangle$ for some subsets S and T of G. Prove that N is normal in G if and only if $t S t^{-1} \subseteq N$ for all $t \in T$.

Proof. (\Rightarrow)

$$
N \unlhd G \Longrightarrow t\langle S\rangle t^{-1} \subseteq N \forall t \in T \Longrightarrow t S t^{-1} \subseteq N \forall t \in T
$$

(\Leftarrow) Suppose $t S t^{-1} \subseteq N$. This implies that $\left\langle t S t^{-1}\right\rangle \subseteq N$ by closure in N. Note that since the conjugate of a product is the product of conjugates, then for all $t \in T$, we have $t\langle S\rangle t^{-1}=\left\langle t S t^{-1}\right\rangle$.

$$
t N t^{-1}=t\langle S\rangle t^{-1}=\left\langle t S t^{-1}\right\rangle \subseteq N
$$

Since N is finite, $\left|t N t^{-1}\right|=|N|$, and thus, $t N t^{-1}=N$ for all $t \in T$. This implies $T \subseteq$ $N_{G}(N)$, and so $G=\langle T\rangle \subseteq N_{G}(N)$, and then $G=N_{G}(N)$ which means $N \unlhd G$.
2.1.6 Let G be an abelian group. Prove that $\{g \in G||g|<\infty\}$ is a subgroup of G (called the torsion subgroup of G). Give an explicit example where this set is not a subgroup when G is non-abelian.

Proof. Let $H=\{g \in G| | g \mid<\infty\}$. Notice that $1_{G} \in H$ since $\left(1_{G}\right)^{1}=1_{G}$. Let $x, y \in$ H. Then $x^{n}=1$ and $y^{m}=1$ for some $n, m \in \mathbb{Z}^{+}$. Notice that $x^{n m}=\left(x^{n}\right)^{m}=1^{m}=1$ and $\left(y^{-1}\right)^{n m}=\left(y^{m}\right)^{-n}=1^{-n}=1$. Then, since G is abelian,

$$
\left(x y^{-1}\right)^{n} m=x^{n m}\left(y^{-1}\right)^{n m}=1 \cdot 1=1
$$

and so $x y \in \in H$. Thus H is a subgroup of G by the subgroup test.

Consider the nonabelian group $S L_{2}(\mathbb{Z})$. Notice that

$$
\left|\left(\begin{array}{cc}
1 & -1 \\
1 & 0
\end{array}\right)\right|=6 \quad \text { and } \quad\left|\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\right|=4
$$

but

$$
\left(\begin{array}{cc}
1 & -1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

which has infinite order since

$$
\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)^{k}=\left(\begin{array}{ll}
1 & k \\
0 & 1
\end{array}\right)
$$

for all $k \in \mathbb{Z}^{+}$.
2.3.26 Let Z_{n} be a cyclic group of order n and for each integer a let

$$
\sigma_{a}: Z_{n} \rightarrow Z_{n} \quad \text { by } \quad \sigma_{a}(x)=x^{a} \text { for all } x \in Z_{n}
$$

(a) Prove that σ_{a} is an automorphism of Z_{n} if and only if a and n are relatively prime.

Proof. (\Rightarrow) Suppose σ_{a} is an automorphism of Z_{n} and let $x^{k} \in Z_{n}$ for $1 \leq k \leq n$. By surjectivity of σ_{a}, there exists $x^{\ell} \in Z_{n}$ so that $\phi_{a}\left(x^{\ell}\right)=x^{k}$. Notice that

$$
\left(x^{a}\right)^{\ell}=\left(x^{\ell}\right)^{a}=\phi_{a}\left(x^{\ell}\right)=x^{k}
$$

Since this is true for each $k \in\{1, \ldots, n-1\}$, we have that $\left\langle x^{a}\right\rangle=Z_{n}$. This means that $(a, n)=1$ by Proposition 6 (2).
(\Leftarrow) Conversely, suppose $(a, n)=1$ and let $x, y \in Z_{n}$. Then, as Z_{n} is abelian,

$$
\phi_{a}(x y)=(x y)^{a}=x^{a} y^{a}=\phi_{a}(x) \phi_{b}(x)
$$

and so ϕ_{a} is a homomorphism. We now show that ϕ_{a} is bijective. Note that since $(a, n)=1$, there exists integers w, z so that $a w=1-z n$. Let $x^{k} \in Z_{n}$. Then,

$$
\phi_{a}\left(x^{w k}\right)=\left(x^{w k}\right)^{a}=\left(x^{a w}\right)^{k}=\left(x^{(1-z n)}\right)^{k}=\left(x^{1}\left(x^{n}\right)^{-z}\right)^{k}=x^{k}
$$

and thus ϕ_{a} is surjective. Since we have a surjective map between two groups of the same cardinality, the map must also be injective. Thus, ϕ_{a} is a automorphism of Z_{n}.
(b) Prove that $\sigma_{a}=\sigma_{b}$ if and only if $a \equiv b(\bmod n)$.

Proof.

$$
\begin{aligned}
\sigma_{a}=\sigma_{b} & \Longleftrightarrow x^{a}=\sigma_{a}(x)=\sigma_{b}(x)=x^{b} \\
& \Longleftrightarrow x^{a-b}=1 \\
& \Longleftrightarrow(a-b) \mid n \\
& \Longleftrightarrow a \equiv b \quad(\bmod n)
\end{aligned}
$$

(c) Prove that every automorphism of Z_{n} is equal to σ_{a} for some integer a.

Proof. Let ϕ be an automorphism of Z_{n}. Then, since x generates Z_{n}, we have $\phi(x)=x^{k}$ for some $0 \leq k \leq n-1$. So, for any $x^{\ell} \in Z_{n}$

$$
\phi\left(x^{\ell}\right)=\phi(x)^{\ell}=x^{k \ell}=x^{\ell k}=\sigma_{k}\left(x^{\ell}\right)
$$

(d) Prove that $\sigma_{a} \circ \sigma_{b}=\sigma_{a b}$. Deduce that the map $\bar{a} \rightarrow \sigma_{a}$ is an isomorphism of $(\mathbb{Z} / n \mathbb{Z})^{\times}$onto the automorphism group of $Z_{n}\left(\operatorname{so} \operatorname{Aut}\left(Z_{n}\right)\right.$ is an abelian group of order $\varphi(n))$.

Proof. Let $x^{\ell} \in Z_{n}$ for $0 \leq k \leq n-1$. Then,

$$
\left(\sigma_{a} \circ \sigma_{b}\right)\left(x^{\ell}\right)=\sigma_{a}\left(x^{\ell b}\right)=x^{\ell b a}=x^{\ell a b}=\left(x^{\ell}\right)^{a b}=\sigma_{a b}\left(x^{\ell}\right)
$$

Thus, we see that the map

$$
\varphi:(\mathbb{Z} / n \mathbb{Z})^{\times} \rightarrow \operatorname{Aut}\left(Z_{n}\right)
$$

defined by $\bar{a} \rightarrow \sigma_{a}$ is a homomorphism by what was just shown, an injection by part (b), and a surjection by part (c).
3.1.14 Consider the additive quotient group \mathbb{Q} / \mathbb{Z}.
(a) Show that every coset of \mathbb{Z} in \mathbb{Q} contains exactly one representative $q \in \mathbb{Q}$ in the range $0 \leq q<1$.

Proof. We first show the existence of such a q. We define the rationals to be $\mathbb{Q}=\left\{a / b \mid a \in \mathbb{Z}, b \in \mathbb{Z}^{+}\right\}$. Given any rational, a / b, then by the Division Algorithm, there exists $m, r \in \mathbb{Z}, 0 \leq r<b$ so that $a=m b+r$. So,

$$
\frac{a}{b}=m+\frac{r}{b}
$$

and thus $a / b+\mathbb{Z}=r / b+\mathbb{Z}$, since a / b and r / b differ by an integer. Since $r<b$, then $0 \leq r / b<1$ and so our representative is $q=r / b$. That was fun; now onto uniqueness. Suppose that $k+\mathbb{Z}=q+\mathbb{Z}$ for $0 \leq k, q<1$. Then

$$
k+\mathbb{Z}=q+\mathbb{Z} \Longrightarrow(k-q)+\mathbb{Z}=\mathbb{Z} \Longrightarrow(k-q) \in \mathbb{Z}
$$

Since $0 \leq k, q<1$ and $(k-q) \in \mathbb{Z}$, it must be the case that $k-q=0$, i.e., $k=q$. So, q is unique!
(b) Show that every element of \mathbb{Q} / \mathbb{Z} has finite order but that there are elements of arbitrarily large order.

Proof. Given a coset $a / b+\mathbb{Z}$ in \mathbb{Q} / \mathbb{Z}, the order of this coset is at most b since

$$
\left(\frac{a}{b}+\mathbb{Z}\right) b=a+b \mathbb{Z}=a+\mathbb{Z}=\mathbb{Z}
$$

Consider the coset $1 / n+\mathbb{Z}$. Since $1 / n$ is in lowest terms, the order of this coset is n, which can be made arbitrarily large.
(c) Show that \mathbb{Q} / \mathbb{Z} is the torsion subgroup of \mathbb{R} / \mathbb{Z}.

Proof. Let H be the torsion subgroup of \mathbb{R} / \mathbb{Z}. By part (b), we know that $\mathbb{Q} / \mathbb{Z} \subseteq$ H. To see that $\mathbb{Q} / \mathbb{Z}=H$, we prove that all cosets in $\mathbb{Q}^{c} / \mathbb{Z}$ are not in H. To get a contradiction, assume there was a $i+\mathbb{Z} \in \mathbb{Q}^{c} / \mathbb{Z}$ so that $|i+\mathbb{Z}|=n<\infty$ for some $n \in \mathbb{Z}^{+}$. This implies,

$$
(i+\mathbb{Z}) n=i n+n \mathbb{Z}=i n+\mathbb{Z} \Longrightarrow i n \in \mathbb{Z}
$$

So, $i n=z$ for some integer z. This implies $i=z / n$, i.e., i is rational, a contradiction. Thus, no such coset exists. Therefore, $\mathbb{Q} / \mathbb{Z}=H$.
(d) Prove that \mathbb{Q} / \mathbb{Z} is isomorphic to the multiplicative group of root of unity in \mathbb{C}^{\times}. Proof. We claim that $\varphi: \mathbb{Q} / \mathbb{Z} \rightarrow Z\left(\mathbb{C}^{\times}\right)$defined by $(q+\mathbb{Z}) \mapsto e^{2 \pi i q}$ is an isomorphism. Let $q+\mathbb{Z}, k+\mathbb{Z} \in \mathbb{Q} / \mathbb{Z}$. Then,

$$
\varphi((q+\mathbb{Z})+(k+\mathbb{Z}))=\varphi((q+k)+\mathbb{Z})=e^{2 \pi i(q+k)}=e^{2 \pi i q} e^{2 \pi i k}=\varphi(q+\mathbb{Z}) \varphi(k+\mathbb{Z})
$$

and so φ preserves operation. Note that if $e^{2 \pi i n}=1$, then $n \in \mathbb{Z}$ because

$$
1=e^{2 \pi i n}=\cos (2 \pi n)+i \sin (2 \pi n) \Longrightarrow \sin (2 \pi n)=0 \quad \text { and } \quad \cos (2 \pi n)=1
$$

which occurs only when $n \in \mathbb{Z}$. Now, assume $\varphi(q+\mathbb{Z})=\varphi(k+\mathbb{Z})$. Then

$$
e^{2 \pi i q}=e^{2 \pi i k} \Longrightarrow e^{2 \pi i(q-k)}=1
$$

which only occurs when $q-k \in \mathbb{Z}$, which means $(q-k)+\mathbb{Z}=\mathbb{Z}$ and so $q+\mathbb{Z}=k+\mathbb{Z}$. Thus, φ is injective. Let $e^{2 \pi i q} \in Z\left(\mathbb{C}^{\times}\right)$. Then, there exists $n \in \mathbb{Z}^{+}$so that

$$
1=\left(e^{2 \pi i q}\right)^{n}=e^{2 \pi i q n}
$$

which means $q n=z \in \mathbb{Z}$ and thus, $\mathbb{Q} \ni q=z / n$. Thus, $\varphi(q)=e^{2 \pi i q}$. Therefore, φ is an isomorphism.
3.1.34 Let $D_{2 n}=\left\langle r, s \mid r^{n}=s^{2}=1, r s=s r^{-1}\right\rangle$ be the usual presentation of the dihedral group of order $2 n$ and let k be a positive integer dividing n.
(a) Prove that $\left\langle r^{k}\right\rangle$ is a normal subgroup of $D_{2 n}$

Proof. Given $r^{\ell} \in\left\langle r^{k}\right\rangle$, and $r^{q} \in D_{2 n}$, notice that

$$
r^{q} r^{\ell} r^{-q}=r^{\ell} \in\left\langle r^{k}\right\rangle
$$

and

$$
s r^{\ell} s^{-1}=\left(r^{\ell}\right)^{-1}=r^{n-\ell} \in\left\langle r^{k}\right\rangle
$$

and thus $g\left\langle r^{k}\right\rangle g^{-1} \subseteq\left\langle r^{k}\right\rangle$ for all $g \in D_{2 n}$ and so $\left\langle r^{k}\right\rangle \unlhd D_{2 n}$.
(b) Prove that $D_{2 n} /\left\langle r^{k}\right\rangle \cong D_{2 k}$.

Proof. Note that $D_{2 k}=\left\langle\rho, \sigma \mid \rho^{k}=1=\sigma^{2}, \rho \sigma=\sigma \rho^{-1}\right\rangle$.
We first show that the quotient group $D_{2 n} /\left\langle r^{k}\right\rangle$ is generated by two elements which satisfy the same relations as the two generators of $D_{2 k}$. We claim that these are $r\left\langle r^{k}\right\rangle$ and $s\left\langle r^{k}\right\rangle$. First notice that the smallest $i \in \mathbb{Z}^{+}$so that $\left(r\left\langle r^{k}\right\rangle\right)^{i}=\left\langle r^{k}\right\rangle$ is also the smallest $i \in \mathbb{Z}^{+}$so that $r^{i} \in\left\langle r^{k}\right\rangle$. Since $\left\langle r^{k}\right\rangle=\left\{1, r^{k}, r^{2 k}, \ldots r^{m k-1}\right\}$, (assuming $n=m k, k \in \mathbb{Z}^{+}$), then it is clear that $i=k$. Thus, $\left|r\left\langle r^{k}\right\rangle\right|=k$. Likewise, $\left(s\left\langle r^{k}\right\rangle\right)^{\ell}=\left\langle r^{k}\right\rangle$ when $s^{\ell} \in\left\langle r^{k}\right\rangle$. The smallest $\ell \in \mathbb{Z}^{+}$with such a property is clearly $\ell=2$. So, $\left|s\left\langle r^{k}\right\rangle\right|=2$. Now, notice that

$$
\left(r\left\langle r^{k}\right\rangle\right)\left(s\left\langle r^{k}\right\rangle\right)=(r s)\left\langle r^{k}\right\rangle=\left(s r^{-1}\right)\left\langle r^{k}\right\rangle=s\left\langle r^{k}\right\rangle r^{-1}\left\langle r^{k}\right\rangle
$$

Thus, the generators $r\left\langle r^{k}\right\rangle$ and $s\left\langle r^{k}\right\rangle$ satisfy the same relations as ρ and σ, respectively. Therefore, we define a map $\psi: D_{2 n} /\left\langle r^{k}\right\rangle \rightarrow D_{2 k}$ by

$$
r\left\langle r^{k}\right\rangle \mapsto \rho \quad \text { and } \quad s\left\langle r^{k}\right\rangle \mapsto \sigma
$$

Let $s^{\ell}\left\langle r^{k}\right\rangle, r^{i}\left\langle r^{k}\right\rangle \in D_{2 n} /\left\langle r^{k}\right\rangle$. Then,

$$
\psi\left(s^{\ell}\left\langle r^{k}\right\rangle r^{i}\left\langle r^{k}\right\rangle\right)=\psi\left(s^{\ell} r^{i}\left\langle r^{k}\right\rangle\right)=\sigma^{\ell} \rho^{i}=\psi\left(s^{\ell}\left\langle r^{k}\right\rangle\right) \psi\left(r^{i}\left\langle r^{k}\right\rangle\right)
$$

and so ϕ preserves operation. If $\sigma^{\ell_{1}} \rho^{i_{1}}=\sigma^{\ell_{2}} \rho^{i_{2}}$, then $s^{\ell_{1}} r^{i_{1}}=s^{\ell_{2}} r^{i_{2}}$, and so $\sigma^{\ell_{1}-\ell_{2}} \rho^{i_{1}-i_{2}}=1$, which means $\ell_{1}-\ell_{2}=0$ and $i_{1}-i_{2}=0$, i.e., $\ell_{1}=\ell_{2}$ and $i_{1}=i_{2}$. Thus, ψ is injective. Suppose $\sigma^{\ell} \rho^{i} \in D_{2 k}$. Then,

$$
\psi\left(s^{\ell} r^{i}\right)=\sigma^{\ell} \rho^{i}
$$

and so clearly ψ is surjective. Thus, ψ is an isomorphism.
3.1.36 Prove that if $G / Z(G)$ is cyclic then G is abelian.

Proof. Let G be a group and suppose $G / Z(G)$ is cyclic. Let $\langle x Z(G)\rangle=G / Z(G)$ and $g \in G$. Then, $g \in x^{a} Z(G)$ for some coset $x^{a} Z(G) \in G / Z(G)$ for $a \in \mathbb{Z}$. So, $g=x^{a} z_{i}$ for some $z_{i} \in Z(G)$. Now, let $g_{1}, g_{2} \in G$ and let

$$
g_{1}=x^{a} z_{i} \text { and } g_{2}=x^{b} z_{j}
$$

for some $a, b \in \mathbb{Z}$ and $z_{i}, z_{j} \in Z(G)$. Then

$$
\begin{aligned}
g_{1} g_{2} & =\left(x^{a} z_{i}\right)\left(x^{b} z_{j}\right) \\
& =z_{i}\left(x^{a} x^{b}\right) z_{j} \\
& =z_{i}\left(x^{a+b}\right) z_{j} \\
& =z_{i}\left(x^{b+a}\right) z_{j} \\
& =z_{i} x^{b} x^{a} z_{j} \\
& =x^{b} z_{i} x^{a} z_{j} \\
& =x^{b} z_{i} z_{j} x^{a} \\
& =x^{b} z_{j} z_{i} x^{a} \\
& =\left(x^{b} z_{j}\right)\left(x^{a} z_{i}\right)=g_{2} g_{1}
\end{aligned}
$$

and thus G is abelian.
3.1.38 Let A be an abelian group and let D be the (diagonal) subgroup $\{(a, a) \mid a \in A\}$ of $A \times A$. Prove that D is a normal subgroup of $A \times A$ and $(A \times A) / D \cong A$.

Proof. Let $\left(a_{1}, a_{2}\right) \in A \times A$ and $(d, d) \in D$. Then,

$$
\begin{array}{rlr}
\left(a_{1}, a_{2}\right)(d, d)\left(a_{1}, a_{2}\right)^{-1} & =\left(a_{1} d, a_{2} d\right)\left(a_{1}^{-1}, a_{2}^{-1}\right) \\
& =\left(a_{1} d a_{1}^{-1}, a_{2} d a_{2}^{-1}\right) \\
& =\left(a_{1} a_{1}^{-1} d, a_{2} a_{2}^{-1} d\right) \quad \text { (since } A \text { is abelian) } \\
& =(d, d) \in D
\end{array}
$$

and so $D \unlhd(A \times A)$. Now, define a map $\varphi: A \rightarrow(A \times A) / D$ by $a \mapsto\left(a, 1_{A}\right) D$. Let $a, a^{\prime} \in A$. Then,

$$
\varphi\left(a a^{\prime}\right)=\left(a a^{\prime}, 1_{A}\right) D=\left(a, 1_{A}\right) D\left(a^{\prime}, 1_{A}\right) D=\varphi(a) \varphi\left(a^{\prime}\right)
$$

and so φ is a group homomorphism. Now, suppose $\varphi(a)=\varphi\left(a^{\prime}\right)$. Then

$$
\begin{aligned}
\left(a, 1_{A}\right) D=\left(a^{\prime}, 1_{A}\right) D & \Longrightarrow\left(a^{\prime-1}, 1_{A}\right)\left(a, 1_{A}\right) \in D \\
& \Longrightarrow\left(a^{\prime-1} a, 1_{A}\right) \in D \\
& \Longrightarrow a^{\prime-1} a=1_{A} \\
& \Longrightarrow a=a^{\prime}
\end{aligned}
$$

and so φ is injective. Now, suppose $\left(a, a^{\prime}\right) D \in(A \times A) / D$. Notice that since $\left(a^{\prime-1}, a^{\prime-1}\right) \in D$ then,

$$
\left(a, a^{\prime}\right) D=\left(a, a^{\prime}\right)\left(a^{\prime-1}, a^{\prime-1}\right) D=\left(a a^{\prime-1}, 1\right) D
$$

So,

$$
\varphi\left(a a^{\prime-1}\right)=\left(a a^{\prime-1}, 1\right) D=\left(a, a^{\prime}\right) D
$$

and thus, φ is surjective.
3.1.41 Let G be a group. Prove that $N=\left\langle x^{-1} y^{-1} x y \mid x, y \in G\right\rangle$ is a normal subgroup of G and G / N is abelian (N is called the commutator subgroup of G).

Proof. Claim: If G is a group and $H=\langle S\rangle$ for some subset S of G, then H is a normal subgroup of G if and only if for all $g \in G$ and all $s \in S$ we have that $g s g^{-1} \in H$.
Proof of Claim: (\Rightarrow) Let G and H be defined as above and suppose $H \unlhd G$. Since

(\Leftarrow) Now, suppose $g s g^{-1} \in H$ for all $g \in G$ and $s \in S$. Let S^{-1} be the set of all inverses for elements in S. Then, for $s_{1}, s_{2}, s_{3}, \cdots \in S \cup S^{-1}$ and $g \in G$,

$$
H \ni\left(g s_{1}^{a} g^{-1}\right)\left(g s_{2}^{b} g^{-1}\right)\left(g s_{3}^{c} g^{-1}\right) \cdots=g\left(s_{1}^{a} s_{2}^{b} s_{3}^{c} \ldots\right) g^{-1}=g h g^{-1}
$$

For some $h=\left(s_{1}^{a} s_{2}^{b} s_{3} c \ldots\right) \in H$. Thus, $g H g^{-1} \subseteq H$ for all $g \in G$ and so $H \unlhd G$.

Let G be a group and $N=\left\langle x^{-1} y^{-1} x y \mid x, y \in G\right\rangle$. By the claim, $N \unlhd G$. Now, consider G / N. Let $a, b \in G$. Then,

$$
\begin{aligned}
a^{-1} b^{-1} a b \in N & \Longleftrightarrow(b a)^{-1} a b \in N \\
& \Longleftrightarrow a b N=b a N \\
& \Longleftrightarrow a N b N=b N a N
\end{aligned}
$$

and thus, G / N is abelian.
3.2.12 Let $H \leq G$. Prove that the map $x \mapsto x^{-1}$ sends each left coset of H in G onto a right coset of H and gives a bijection between the set of left cosets and the set of right cosets of H in G (hence the number of left cosets of H in G equals the number of right cosets).

Proof. Define $\varphi: G \rightarrow G$ by $x \mapsto x^{-1}$. Then, given an element $g h \in g H$, we have

$$
\varphi(g h)=(g h)^{-1}=h^{-1} g^{-1} \in H g^{-1}
$$

So, φ maps elements in the left coset $g H$ precisely to elements in the right coset $H g^{-1}$. We claim that φ gives a bijection between left and right cosets. To see this, let $g h_{1}, g h_{2} \in g H$ and suppose $\varphi\left(g h_{1}\right)=\varphi\left(g h_{2}\right)$. Then,

$$
\varphi\left(g h_{1}\right)=\varphi\left(g h_{2}\right) \Longrightarrow h_{1}^{-1} g^{-1}=h_{2}^{-1} g^{-1} \Longrightarrow h_{1}^{-1}=h_{2}^{-1} \Longrightarrow h_{1}=h_{2}
$$

and so φ is injective. Now, suppose $h_{1} g \in H g$. Then, observe that

$$
\varphi\left(g^{-1} h_{1}\right)=h_{1}^{-1}\left(g^{-1}\right)^{-1}=h_{1}^{-1} g
$$

and so each element in $H g$ can be attained through the map φ, and so it is surjective.
3.3.4 Let C be a normal subgroup of the group A and let D be a normal subgroup of the group B. Prove that $(C \times D) \unlhd(A \times B)$ and $(A \times B) /(C \times D) \cong(A / C) \times(B / D)$.

Proof. We first show that $(C \times D) \leq(A \times B)$. First, notice that since C and D are subgroups of A and B, respectively, then $1_{A} \in C$ and $1_{B} \in D$ and so $\left(1_{A}, 1_{B}\right) \in(C \times D)$. Now, let $\left(c^{\prime}, d^{\prime}\right),(c, d) \in(C \times D)$. Then,

$$
\left(c^{\prime}, d^{\prime}\right)(c, d)^{-1}=\left(c^{\prime}, d^{\prime}\right)\left(c^{-1}, d^{-1}\right)=\left(c^{\prime} c^{-1}, d^{\prime} d^{-1}\right) \in C \times D
$$

because $c^{\prime} c^{-1} \in C$ and $d^{\prime} d^{-1} \in D$ by closure in C and D. So, $(C \times D) \leq(A \times B)$.
We now show that $(C \times D) \unlhd(A \times B)$. Let $(c, d) \in(C \times D)$ and $(a, b) \in(A \times B)$. Then,

$$
(c, d)(a, b)(c, d)^{-1}=(c, d)(a, b)\left(c^{-1}, d^{-1}\right)=\left(c a c^{-1}, d b d^{-1}\right) \in(C \times D)
$$

because $\mathrm{cac}^{-1} \in C$ and $d b d^{-1} \in D$ since C and D are normal in A and B, respectively. Thus, $(C \times D) \unlhd(A \times B)$.
Now, consider the map $\varphi:(A \times B) \rightarrow(A / C) \times(B / D)$ defined by $(a, b) \mapsto(a C, b D)$. Suppose $(a C, b D) \in(A / C) \times(B / D)$. Then clearly φ is surjective since $\varphi((a, b))=$ $(a C, b D)$. Now, we consider $\operatorname{ker} \varphi$:

$$
\begin{aligned}
\operatorname{ker} \varphi & =\{(a, b) \in A \times B \mid \varphi((a, b))=(C, D)\} \\
& =\{(a, b) \in A \times B \mid a \in C \text { and } b \in D\}=(C \times D)
\end{aligned}
$$

We conclude by the First Isomorphism Theorem $(A \times B) /(C \times D) \cong(A / C) \times(B / D)$.
3.2.9 This exercise outlines a proof for Cauchy's Theorem. Let G be a finite group and let p be a prime dividing $|G|$. Let \mathcal{S} denote the set of p-tuples of elements of G the product of whose coordinates is 1 :

$$
\mathcal{S}=\left\{\left(x_{1}, x_{2}, \ldots, x_{p}\right) \mid x_{i} \in G \text { and } x_{1} x_{2} \cdots x_{p}=1\right\}
$$

(a) Show that \mathcal{S} has $|G|^{p-1}$ elements, hence has order divisible by p.

Proof. For the p-tuple $\left(x_{1}, x_{2}, \ldots, x_{p}\right)$ to be in \mathcal{S}, we must have

$$
\left(x_{1} x_{2} \cdots x_{p-1}\right)=x_{p}^{-1}
$$

In other words, we have precisely $|G|$ choices for the first $p-1$ elements of the p-tuple, and 1 choice for the x_{p} term. So, there are $|G|^{p-1}$ elements in \mathcal{S}.

Define the relation \sim on \mathcal{S} by letting $\alpha \sim \beta$ if β is a cyclic permutation of α.
(b) Show that a cyclic permutation of an element of \mathcal{S} is again an element of \mathcal{S}.

Proof. Let $\left(x_{1}, x_{2}, \ldots, x_{p}\right) \in \mathcal{S}$. Consider the cycle permutation of this element $\left(x_{k}, \ldots, x_{p}, x_{1}, \ldots, x_{k}\right.$. Notice that

$$
\begin{aligned}
\left(x_{1} x_{2} \ldots x_{p}\right)=\left(x_{1} \cdots x_{k-1} x_{k} \cdots x_{p}\right) & =1 \\
\left(x_{1} \cdots x_{k-1}\right)\left(x_{k} \cdots x_{p}\right) & =1 \\
\left(x_{1} \cdots x_{k-1}\right) & =\left(x_{k} \cdots x_{p}\right)^{-1} \\
\left(x_{k} \cdots x_{p}\right)\left(x_{1} \cdots x_{k-1}\right) & =1
\end{aligned}
$$

So,

$$
\left(x_{k} \cdots x_{p} x_{1} \cdots x_{k-1}\right)=\left(x_{k} \cdots x_{p}\right)\left(x_{1} \cdots x_{k-1}\right)=1
$$

(c) Prove that \sim is an equivalence relation on \mathcal{S}.

Proof. Let α, β, γ be cycle permutations of elements of S.
Reflexivity: Given a cycle permutation α, the identity cyclic permutation is a permutation of α, i.e., $\alpha \sim \alpha$
Symmetry: Let $\alpha \sim \beta$ and suppose β is a k-th cyclic permutation of α, where $0 \leq k \leq p-1$. Then, α is the $(p-k)$-th cyclic permutation of β. Hence, $\alpha \sim \beta \Longrightarrow \beta \sim \alpha$
Transitivity: Let $\alpha \sim \beta$ and $\beta \sim \gamma$ and suppose that β is a k-th cyclic permutation of α, and γ is an ℓ-th cyclic permutation of β. Then, γ is a $(k+\ell)$-th cyclic permutation of α, i.e., $\alpha \sim \beta$ and $\beta \sim \gamma \Longrightarrow \alpha \sim \gamma$.
(d) Prove that an equivalence class contains a single element if and only if it is of the form (x, x, \ldots, x) with $x^{p}=1$.

Proof. Suppose that we have an equivalence class of \mathcal{S} with a single element of \mathcal{S}, and let α be the cycle associated with this element. Then each i-th cyclic permutation of α for all $0 \leq i \leq p-1$ is precisely α. This occurs only when $x_{1}=x_{2}=\cdots=x_{p}$. So, the element of \mathcal{S} associated with α is of the form (x, x, \ldots, x) with $x^{p}=1$. On the other hand, suppose an element of \mathcal{S} is of the form $(x, x \ldots, x)$ with $x^{p}=1$. Then, the permutation associated with this element, α, has the property that every i-th cyclic permutation of α for $0 \leq i \leq p-1$ is precisely α, i.e., the equivalence class associated with α contains a single element.
(e) Prove that every equivalence class has order 1 or p (this uses the fact that p is a prime). Deduce that $|G|^{p-1}=k+p d$ where k is the number of classes of size 1 and d is the number of classes of size p.

Proof. Suppose the equivalence class of $\left(x_{1}, \ldots, x_{p}\right)$ contains more than 1 element. Then there exist $i<j$ such that $x_{i} \neq x_{j}$. We want to show that for all $1 \leq b<c \leq p$,

$$
\left(x_{b}, \ldots, x_{p}, x_{1}, \ldots, x_{b-1}\right) \neq\left(x_{c}, \ldots, x_{p}, x_{1}, \ldots, x_{c-1}\right)
$$

Rearranging, this means that for all $2 \leq a \leq p$, we want to show

$$
\begin{equation*}
\left(x_{a}, \ldots, x_{p}, x_{1}, \ldots, x_{a-1}\right) \neq\left(x_{1}, \ldots, x_{p}\right) \tag{1}
\end{equation*}
$$

Now, suppose we had equality in (1). Then, let $\sigma=(1,2, \ldots, p)$ and $\rho=\sigma^{a}$. Notice that

$$
\left(x_{\rho(1)}, x_{\rho(2)}, \ldots, x_{\rho(p)}\right)=\left(x_{a}, \ldots, x_{p}, x_{1}, \ldots, x_{a-1}\right)
$$

Equality in (1) implies that $x_{i}=x_{\rho(i)}$ for $1 \leq i \leq p$. Without loss of generality, let $i=1$. So, by our assumption that each equivalence class has more than one element, $x_{1} \neq x_{j}$ for $1<j \leq p$. From Exercise 11 of section 1.3, we know that since $(a, p)=1$, then ρ is a p-cycle. Since ρ is a p-cycle, then there exists $k \in \mathbb{Z}^{+}$so that $\rho^{k}(1)=j$. So,

$$
x_{1}=x_{\rho^{k}(1)}=x_{j}
$$

a contradiction. So the statement in (1) holds. Therefore, every equivalence class has order p, or order which divides p. Since p is prime, the equivalence classes have order p or 1. So, if \mathcal{S} has k classes of size 1 , and d classes of size p, then

$$
|\mathcal{S}|=|G|^{p-1}=k+d p
$$

(f) Since $\{(1,1, \ldots, 1)\}$ is an equivalence class of size 1 , conclude from (e) that there must be a nonidentity element x in G with $x^{p}=1$, i.e., G contains an element of order p. [Show $p \mid k$ and so $k>1]$.

Proof. Since $|G|^{p-1}=k+d p$, then $k=|G|^{p-1}-d p$. Since p divides $|G|^{p-1}$ and $d p$, then k is divisible by p and so $k>1$. Thus, there must be a nonidentity element in G so that $x^{p}=1$.
3.2.11 Let $H \leq K \leq G$. Prove that $[G: H]=[G: K] \cdot[K: H]$. (Do not assume G is finite).

Proof. Since the (left) cosets of K in G partition G, then

$$
\begin{equation*}
G=\bigsqcup_{\ell \in I_{1}} g_{\ell} H \tag{2}
\end{equation*}
$$

where I_{1} is an indexing set so that each g_{ℓ} is a representative from each coset of H in G. In other words, $\left|I_{1}\right|=[G: H]$. Similarly, we have

$$
K=\bigsqcup_{j \in I_{2}} k_{j} H \text { and } G=\bigsqcup_{i \in I_{3}} x_{i} K
$$

so that $\left|I_{2}\right|=[K: H]$ and $\left|I_{3}\right|=[G: K]$. Since the (left) cosets of H partition G and the (left) cosets of K partition H, then G can be written as

$$
G=\bigsqcup_{i \in I_{3}} \bigsqcup_{j \in I_{2}} x_{i} k_{j} K
$$

Written this way, we have G partitioned into $\left|I_{2}\right| \cdot\left|I_{3}\right|$ pieces. We can also write G as in (2), so that

$$
\begin{equation*}
\bigsqcup_{\ell \in I_{1}} g_{\ell} H=\bigsqcup_{i \in I_{3}} \bigsqcup_{j \in I_{2}} x_{i} k_{j} K \tag{2}
\end{equation*}
$$

and so $[G: H]=[G: K] \cdot[K: H]$ as desired.
3.3.2 Prove all parts of the Lattice Isomorphism Theorem.

Let G be a group, let $N \unlhd G$. Define

$$
\mathcal{G}=\{H \mid N \leq H \leq G\} \text { and } \overline{\mathcal{G}}=\{\bar{H} \mid \bar{H} \leq G / N\}
$$

Then the map

$$
f: \mathcal{G} \rightarrow \overline{\mathcal{G}}
$$

defined by $H \mapsto H / N$ is a bijection. Moreover, define $\bar{G}:=G / N$. If $A, B \in \mathcal{G}$ define $\bar{A}=$ $A / N, \bar{B}=B / N$.
(1) $A \leq B \Longleftrightarrow \bar{A} \leq \bar{B}$

Proof. (\Rightarrow) Since $\bar{A}, \bar{B} \in \overline{\mathcal{G}}$, then they are both groups. We want to show that $\bar{A} \leq \bar{B}$. Let $a N \in \bar{A}$ for $a \in A$. By our assumption $a \in B$, and so $a N=b N \in \bar{B}$ for some $b \in B$. Thus, $a N \in \bar{B} .(\Leftarrow)$ Since $A, B \in \mathcal{G}$, then A and B are groups. We want to show that $A \leq B$. Let $a \in A$ and consider $a N \in \bar{A}$. By our assumption, $a N \in \bar{B}$ and so $a N=b N$ for some $b \in B$. Then,

$$
a b^{-1} N=N \Longrightarrow a b^{-1} \in N \Longrightarrow a b^{-1}=n, n \in N \Longrightarrow a=n b
$$

and so $a \in B$ since $n, b \in B$.
(2) If $A \leq B$ then $[B: A]=[\bar{B}: \bar{A}]$

Proof. Since $A \leq B$, then $\bar{A} \leq \bar{B}$ by (1). So, we consider B / A and \bar{B} / \bar{A} and define a map

$$
\varphi: B / A \rightarrow \bar{B} / \bar{A} \text { by } b A \mapsto \bar{b} \bar{A}
$$

where \bar{b} denotes $b N$.
φ is well-defined: Suppose $b_{1} A=b_{2} A$. This implies $b_{1}=b_{2} a$ for some $a \in A$. So,

$$
\varphi\left(b_{1} A\right)=\overline{b_{1}} \bar{A}=\overline{b_{2} a} \bar{A}=\overline{b_{2}} \bar{a} \bar{A}=\overline{b_{2}} \bar{A}=\varphi\left(b_{2} A\right)
$$

φ is injective: Suppose $\varphi\left(b_{1} A\right)=\varphi\left(b_{2} A\right)$. Then, $\overline{b_{1}} \bar{A}=\overline{b_{2}} \bar{A}$ which implies $\overline{b_{2}^{-1}} \overline{b_{1}} \in \bar{A}$, and so we have $\overline{b_{1}^{-1} b_{2}}=\bar{a}$ for some $a \in A$. Unraveling the notation, we have $\left(b_{2}^{-1} b_{1}\right) N=a N$, which means $\left(a^{-1} b_{2}^{-1} b_{1}\right) N=N$ and so $\left(a^{-1} b_{2}^{-1} b_{1}\right) \in N$. Now, this implies $b_{1}^{-1} b_{1} \in a N$. Since $a N \subset A$, then $b_{2}^{-1} b_{1} \in A$ and so $b_{1} A=b_{2} A$.
φ is surjective: Let $\bar{b} \bar{A} \in \bar{B} / \bar{A}$. Then, $\varphi(b A)=\bar{b} \bar{A}$ and so φ is surjective.
So, φ is a bijection and we conclude $[B: A]=[\bar{B}: \bar{A}]$.
(3) $\overline{\langle A, B\rangle}=\langle\bar{A}, \bar{B}\rangle$

Proof. Let $x \in \overline{\langle A, B\rangle}$. Then, $x=y N$ for some $y \in\langle A, B\rangle$. Then, $y=c_{1} c_{2} c_{3} \ldots$ where $c_{i} \in A$ or $c_{i} \in B$ for all i. So,

$$
x=y N=\left(c_{1} c_{2} c_{3} \ldots\right) N=c_{1} N c_{2} N c_{3} N \ldots
$$

Since each $\left(c_{i} N\right) \in \bar{A}$ or \bar{B} for all i, then $x \in\langle\bar{A}, \bar{B}\rangle$.
Conversely, suppose $x \in\langle\bar{A}, \bar{B}\rangle$. Then,

$$
x=\left(d_{1} N\right)\left(d_{2} N\right)\left(d_{3} N\right) \ldots
$$

for some $\left(d_{i} N\right) \in \bar{A}$ or $\left(d_{i} N\right) \in \bar{B}$ for all i, which means $d_{i} \in A$ or $d_{i} \in B$ for all i. This means $\left(d_{1} d_{2} d_{3} \ldots\right)=z$ for some $z \in\langle A, B\rangle$. So,

$$
x=\left(d_{1} N\right)\left(d_{2} N\right)\left(d_{3} N\right) \ldots=z N
$$

and thus $x \in \overline{\langle A, B\rangle}$.
(4) $\overline{A \cap B}=\bar{A} \cap \bar{B}$

Proof. Let $x \in \overline{A \cap B}$. Then, $x=y N$ for some $y \in A \cap B$. Since $y \in A \cap B$, then $y \in A$ and $y \in B$, and so $y N \in \bar{A}$ and $y N \in \bar{B}$. Thus, $x \in \bar{A} \cap \bar{B}$.
Conversely, suppose $x \in \bar{A} \cap \bar{B}$. So, $x \in \bar{A}$ and $x \in \bar{B}$, which means $x=a N \in \bar{A}$ and $x=b N \in \bar{B}$ for some $a \in A$ and $b \in B$. So, $a N=b N$, which means $b^{-1} a \in N$, and so $a \in b N$. Since $b N \subseteq B$, then $a \in B$. Thus, $a \in A \cap B$, and so $x=a N \in \overline{A \cap B}$.
(5) $A \unlhd G \Longleftrightarrow \bar{A} \unlhd \bar{G}$

Proof. (\Rightarrow) Let $a \in A$ and $g \in G$. Since $A \unlhd G$, then $a^{\prime}=g a g^{-1} \in A$. Let $a N \in \bar{A}$ and $g N \in \bar{G}$. Then,

$$
(g N)(a N)\left(g^{-1} N\right)=\left(g a g^{-1}\right) N=a^{\prime} N \in \bar{A} .
$$

and so $\bar{A} \unlhd \bar{G}$.
(\Leftarrow) Let $a \in A$ and $g \in G$. Since $\bar{A} \unlhd \bar{G}$, then $(g N)(a N)\left(g^{-1} N\right)=\left(g a g^{-1}\right) N \in \bar{A}$. Suppose $\left(g a g^{-1}\right) N=x N$ for some $x \in A$. This means that $x^{-1} g a g^{-1} \in N$. So, $g a g^{-1} \in x N$. Since $x N \subseteq A$, then $g a g^{-1} \in A$ and thus $A \unlhd G$.
3.4.1 Prove that if G is an abelian simple group, then $G \cong Z_{p}$ for some prime p (do not assume G is a finite group).

Proof. We claim that if G is an abelian simple group, then $|G|=p$ for some prime p. Then, every non-identity element of G must have order p, which means every non-identity element of G generates G. Then $G \cong Z_{p}$ since every cyclic group of order p is isomorphic to Z_{p}.
To prove the claim, first suppose G is an infinite group and let $x \in G$ be a non-identity element. Remember that every subgroup of an abelian group is normal. If $|x|$ is finite, then $\langle x\rangle \lesseqgtr G$ and since G is abelian $\langle x\rangle \unlhd G$, which means G is not simple. If $|x|$ is infinite, then $\left\langle x^{2}\right\rangle \lesseqgtr G$, and $\left\langle x^{2}\right\rangle \unlhd G$, which means G is not simple. So, G cannot be infinite. Now, suppose $|G|=c$ for some composite number c. Let p be a prime so that $p \mid c$. Then, there exists $x \in G$ with $|x|=p$ by Cauchy's Theorem. Then, $\langle x\rangle \lesseqgtr G$ and $\langle x\rangle \unlhd G$, which means G is not simple, a contradiction. Thus, G must be of prime order.
3.4.6 Prove part (1) of the Jordan-Hölder Theorem by induction on $|G|$.

Theorem (Jordan-Hölder). Let G be a finite group with $G \neq 1$. Then (1) G has a composition series.

Proof. For the base case, we consider the case when $|G|=2$. So, G is simple and so the composition series is $1 \unlhd G$ and $G / 1$ is trivially simple. Now, suppose that whenever G has order less than or equal to n, G has a composition series. Let $|G|=n+1$. If G is simple, then we are done (because its composition series is trivial). If G is not simple, then G has a nontrivial normal subgroup N. Notice that $|N|<n$ which means $|G / N|<n$. By our inductive hypothesis, N and G / N have a composition series:

$$
1=H_{1} \unlhd H_{2} \unlhd \ldots \unlhd H_{k}=N
$$

and

$$
1=S_{1} / N \unlhd S_{2} / N \unlhd \ldots \unlhd S_{\ell} / N=G / N
$$

Notice that

$$
N / H_{k}=1=S_{1} / N \Longrightarrow H_{k}=S_{1}
$$

Also notice that since $S_{i} / N \unlhd S_{i+1} / N$, then $S_{i} \unlhd S_{i+1}$. So, we construct the following composition series for G :

$$
1=H_{1} \unlhd H_{2} \unlhd \ldots \unlhd H_{k}=N=S_{1} \unlhd S_{2} \unlhd \ldots \unlhd S_{\ell}=G .
$$

Thus, every finite group has a composition series.
3.5.3 Prove that S_{n} is generated by $\left\{\left.\left(\begin{array}{ll}i & i\end{array}\right) \right\rvert\, 1 \leq i \leq n-1\right\}$. (Consider conjugates, viz. $\left.(23)(12)(23)^{-1}.\right)$

Proof. Let $n \in \mathbb{Z}^{+}$and $\sigma \in S_{n}$. We know that σ can be written as the product of transpositions. Given any transposition which is in the product of the transposition decomposition of σ, say $(a b)$, notice that

$$
(a b)=(b-1 b)(b b+1) \ldots(a+1 a+2)(a a+1)(a+1 a+2) \ldots(b b+1)(b-1 b)
$$

This implies that σ can be expressed as the product of elements in the set

$$
\{(i i+1) \mid 1 \leq i \leq n-1\}
$$

and so S_{n} is generated by this set.
3.5.4 Show that $S_{n}=\langle(12),(12 \ldots n)\rangle$ for all $n \geq 2$.

Proof. Let $n \geq 2$. Since $S_{n}=\langle\{(i i+1) \mid 1 \leq i \leq n-1\}\rangle$ by the previous exercise, we show

$$
\langle(12),(12 \ldots n)\rangle=\langle\{(i i+1) \mid 1 \leq i \leq n-1\}\rangle .
$$

First notice that $(1,2),(123 \ldots n) \in S_{n}$. Thus, $\langle(12)(12 \ldots n)\rangle \leq S_{n}$. Now, let

$$
\sigma=(123 \ldots n) \text { and } \tau=(12)
$$

Let $i \in\{2,3,4, \ldots n-1\}$. We claim

$$
(i i+1)=\sigma^{i-1} \tau \sigma^{1-i}
$$

When we prove this claim, we have $S_{n} \leq\langle(12)(12 \ldots n)\rangle$ and so conclude that

$$
S_{n}=\langle(12)(12 \ldots n)\rangle
$$

To prove the claim, we need to show that $\sigma^{i-1} \tau \sigma^{1-i}$ obeys the same mapping as $(i i+1)$. Namely, the mapping that sends i to $i+1$, and $i+1$ to i, and fixes all other points in $\{1,2, \ldots, n\}$.
Let $j \in\{1,2, \ldots, n\}$. We know from a previous assignment that for any m-cycle $\rho=$ $(12 \ldots m)$, we have $\rho^{a}(j)=j+a$. So, notice

$$
\begin{aligned}
&\left(\sigma^{i-1} \tau \sigma^{1-i}\right)(j)=\left(\sigma^{i-1} \tau\right)\left(\sigma^{1-i}(j)\right) \\
&=\left(\sigma^{i-1} \tau\right)(j+1-i \\
&\bmod n) \\
&=\left(\sigma^{i-1}\right) \tau(j+1-i \\
&\bmod n)
\end{aligned}
$$

At this point, we claim that the number $j+1-i(\bmod n)$ does not equal 1 nor 2 , and so τ fixes it. If $j+1-i=1(\bmod n)$ then $j-i=n$. But, the restriction of values on i and j tell us that $|i-j|<n$. If $j+1-i=2 \bmod n$ then $j-(i+1)=n$. But again, the restriction of values for i and j tell us that $|j-(i+1)|<n$. So,

$$
\begin{aligned}
\left(\sigma^{i-1}\right) \tau(j+1-i \bmod n) & =\sigma^{i-1}(j+1-i \quad \bmod n) \\
& =j+1-i+(i-1) \bmod n \\
& =j \bmod n \\
& =j
\end{aligned}
$$

Now, observe that

$$
\begin{aligned}
\left(\sigma^{i-1} \tau \sigma^{1-i}\right)(i) & =\left(\sigma^{i-1} \tau\right)\left(\sigma^{1-i}(i)\right) \\
& =\left(\sigma^{i-1} \tau\right)(1) \\
& =\left(\sigma^{i-1}\right)(\tau)(1) \\
& =\left(\sigma^{i-1}\right)(2) \\
& =i+1
\end{aligned}
$$

and also that

$$
\begin{aligned}
\left(\sigma^{i-1} \tau \sigma^{1-i}\right)(i+1) & =\left(\sigma^{i-1} \tau\right)\left(\sigma^{1-i}(i+1)\right) \\
& =\left(\sigma^{i-1} \tau\right)(2) \\
& =\left(\sigma^{i-1}\right)(\tau)(2) \\
& =\left(\sigma^{i-1}\right)(1) \\
& =i
\end{aligned}
$$

4.1.1 Let G act on the set A. Prove that if $a, b \in A$ and $b=g \cdot a$ for some $g \in G$, then $G_{b}=g G_{a} g^{-1}$ (G_{a} is the stabilizer of a). Deduce that if G acts transitively on A then the kernel of the action is $\bigcap_{g \in G} g G_{a} g^{-1}$.

Proof. Let $a, b \in A$ so that $g \cdot a=b$ for some $g \in G$. We show $G_{b}=g G_{a} g^{-1}$.

$$
\begin{aligned}
h \in G_{b} & \Longleftrightarrow h \cdot b=b \\
& \Longleftrightarrow(h \cdot b)=g \cdot a \\
& \Longleftrightarrow g^{-1}(h \cdot b)=a \\
& \Longleftrightarrow\left(g^{-1} h\right) \cdot b=a \\
& \Longleftrightarrow g^{-1} h(g \cdot a)=a \\
& \Longleftrightarrow\left(g^{-1} h g\right) \cdot a=a \\
& \Longleftrightarrow\left(g^{-1} h g\right) \in G_{a} \\
& \Longleftrightarrow h \in g G_{a} g^{-1}
\end{aligned}
$$

The kernel of this group action is $\bigcap_{x \in A} G_{x}$. If G acts on A transitively, then $G_{b}=g G_{a} g^{-1}$ for all $a, b \in A$. So,

$$
\bigcap_{g \in G} g G_{a} g^{-1}
$$

3.4.9 Prove the following special case of part (2) of the Jordan-Hölder Theorem: assume the finite group G has two composition series

$$
1=N_{0} \unlhd N_{1} \unlhd \ldots \unlhd N_{r}=G \quad \text { and } \quad 1=M_{0} \unlhd M_{1} \unlhd M_{2}=G .
$$

Show that $r=2$ and that the list of composition factors is the same.
Proof. We first state and prove the following lemma:
Lemma. If A and B are normal subgroups of G, then $A B \unlhd G$.
Proof. Let A, B and G be defined as above. Then, for all $g \in G$,

$$
g A g^{-1}=A \text { and } g B g^{-1}=B
$$

So,

$$
g A B g^{-1}=g A B g^{-1}=g A g^{-1} g B g^{-1}=A B
$$

and so $A B \unlhd G$.
Now, we show that $r \geq 2$. If $r=0$, then G is the trivial group, which cant have a compositions series. If $r=1$, then G does not have any nontrivial normal subgroups, but M_{1} is nontrivial and is normal in G. Thus, $r \geq 2$.

Since M_{1} and N_{r-1} are normal in G, then by the Lemma, $M_{1} N_{r-1} \unlhd G$. Also, notice that $M_{1} \cap N_{r-1} \unlhd G$. By the Second Isomorphism Theorem.

By the composition series, we know that $M_{1} / 1=M_{1}$ is simple. Also, since $M_{1} \cap N_{r-1} \unlhd$ G, then $M_{1} \cap N_{r-1} \unlhd M_{1}$. Thus, either

$$
\text { (1) } M_{1} \cap N_{r-1}=M_{1} \text { or (2) } M_{1} \cap N_{r-1}=1 \text {. }
$$

(1) $M_{1} \cap N_{r-1}=M_{1}$

This implies that $M_{1} \leq N_{r-1}$. By the Fourth Isomorphism Theorem, we have

$$
N_{r-1} / M_{1} \unlhd G / M_{1}
$$

Since G / M_{1} is simple, then either

$$
\text { (a) } N_{r-1} / M_{1}=G / M_{1} \text { or (b) } N_{r-1} / M_{1}=M_{1}
$$

(a) $N_{r-1} / M_{1}=G / M_{1}$

This implies $N_{r-1}=G$. But from the composition series, $N_{r-1} \leq G$, thus, $N_{r-1} \neq G$.
(b) $N_{r-1} / M_{1}=M_{1}$

This implies $N_{r-1}=M_{1}$. because M_{1} is simple, we have $N_{r-1}=1$, which implies $r=2$.
(2) $M_{1} \cap N_{r-1}=1$

This implies that $M_{1} \leq N_{r-1} M_{1}$. We know that $N_{r-1} M_{1} \unlhd G$, and since $M_{1} \unlhd G$, then M_{1} is a strict normal subgroup of $N_{r-1} M_{1}$. By the composition series, we have

$$
N_{r-1} M_{1}=G
$$

and from the Fourth Isomorphism Theorem,

$$
N_{r-1} M_{1} / M_{1} \cong G / M_{1}
$$

Since G / M_{1} is simple, then either

$$
\text { (a) } N_{r-1} M_{1} / M_{1}=1 \text { or (b) } N_{r-1} M_{1} / M_{1}=G / M-1
$$

(a) $N_{r-1} M_{1} / M_{1}=1$

This implies $N_{r-1}=M_{1}$, but since M_{1} is simple, then $N_{r-1}=1$ or $N_{r-1}=M_{1}$. If $N_{r-1}=1$, then G is simple, but that contradicts the fact that M_{1} is a strict normal subgroup of G. So, $N_{r-1}=M_{1}$ implies $N_{r-2}=1$, which implies $r=2$.
(b) $N_{r-1} M_{1} / M_{1}=G / M-1$

This implies $G=N_{r-1} M_{1}$, which means $G / M_{1} \cong N_{r-1}$. So, $N_{r-1}=1$, which means $r=2$.

By part 2(a), $N_{r-1}=M_{1}$, and since $r=2$, then $N_{1}=M_{1}$, which means the composition series is the same.
4.1.7 Let G be a transitive permutation group on the finite set A. A block is a nonempty subset B of A such that for all $\sigma \in G$ either $\sigma(B)=B$ or $\sigma(B) \cap B=\emptyset$ (here $\sigma(B)=\{\sigma(b) \mid b \in B\})$.
(a) Prove that if B is a block containing the element a of A, then the set G_{B} defined by $G_{B}=\{\sigma \in G \mid \sigma(B)=B\}$ is a subgroup of G containing G_{a}.

Proof. Let $a \in A$ and $\sigma \in G_{a}$. Suppose $a \in B$. Then

$$
\sigma(a)=a \in B \Longrightarrow \sigma(B)=B \Longrightarrow \sigma \in G_{B} \Longrightarrow G_{a} \subseteq G_{B}
$$

Notice that $G_{B} \neq \emptyset$ since $\sigma_{i d}(B)=B$ and so $\sigma_{i d} \in G_{B}$. Let $\sigma, \tau \in G_{B}$. Then

$$
\left(\sigma \circ \tau^{-1}\right)(B)=\sigma\left(\tau^{-1}(B)\right)=\sigma(B)=B
$$

and so, $\sigma \circ \tau^{-1} \in G_{B}$, thus $G_{B} \leq G$.
(b) Show that if B is a block and $\sigma_{1}(B), \sigma_{2}(B), \ldots, \sigma_{n}(B)$ are all the distinct images of B under the elements of G, then these form a partition of A.

Proof. We show that for $\ell, k \in\{1,2, \ldots n\}$, either $\sigma_{\ell}(B) \cap \sigma_{k}(B)=\emptyset$ or $\sigma_{\ell}(B)=$ $\sigma_{k}(B)$. Suppose $\sigma_{\ell}(B) \cap \sigma_{k}(B) \neq \emptyset$ and let $x \in \sigma_{\ell}(B) \cap \sigma_{k}(B)$. Then, there exists $b_{1}, b_{2} \in B$ so that $\sigma_{\ell}\left(b_{1}\right)=x=\sigma_{k}\left(b_{2}\right)$. Then,

$$
\begin{aligned}
\sigma_{\ell}\left(b_{1}\right)=\sigma_{k}\left(b_{2}\right) & \Longrightarrow b_{1}=\sigma_{\ell}^{-1} \sigma_{k}\left(b_{1}\right) \\
& \Longrightarrow \sigma_{\ell}^{-1} \circ \sigma_{k} \in B \\
& \Longrightarrow\left(\sigma_{\ell}^{-1} \circ \sigma_{k}\right)(B)=B \\
& \Longrightarrow \sigma_{k}(B)=\sigma_{\ell}(B)
\end{aligned}
$$

Thus, σ_{ℓ} and σ_{k} are either the same or disjoint. Now, it is clear that

$$
\bigcup_{i=1}^{n} \sigma_{i}(B) \subset A
$$

Let $a \in A$ and $b \in B$. Then, since G acts transitively on A, there exists $\sigma_{k} \in G$ so that $\sigma(b)=a$. So, $a \in \bigcup_{i=1}^{n} \sigma_{i}(B)$ and therefore,

$$
\bigcup_{i=1}^{n} \sigma_{i}(B)=A
$$

4.1.9 ${ }^{* * *}\left(\right.$ Worked with Meghan Malachi and Anup Poudel) ${ }^{* * *}$

Assume G acts transitively on the finite set A and let H be a normal subgroups of G. Let $\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots, \mathcal{O}_{r}$ be distinct orbits of H on A.
(a) i. Prove that G permutes the sets $\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots, \mathcal{O}_{r}$ in the sense that for each $g \in G$ and each $i \in\{1, \ldots, r\}$ there is a j such that $g \mathcal{O}_{i}=O_{j}$, where $g \mathcal{O}=\{g \cdot a \mid a \in \mathcal{O}\}$ (i.e., $\mathcal{O}_{1}, \ldots, \mathcal{O}_{r}$ are blocks).
Proof. Recall that $H \unlhd G$. If $g \in G$ and $a \in A$, then we can call $H \cdot a$ an orbit of H on A. So,

$$
\begin{aligned}
g \cdot a_{1} & =a_{2} \text { for some } a_{2} \in A \\
g \cdot\left(H \cdot a_{1}\right) & =g H \cdot a_{1} \\
& =H g \cdot a_{1} \\
& =H\left(g \cdot a_{1}\right)=H \cdot a_{2}
\end{aligned}
$$

And so, we have $g \cdot\left(H \cdot a_{1}\right)=H \cdot a_{2}$. Which means G permutes $\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots, \mathcal{O}_{r}$.
ii. Prove G is transitive on $\left\{\mathcal{O}_{1}, \ldots, \mathcal{O}_{r}\right\}$.

Proof. We want to show that for all $H \cdot a, H \cdot a_{2} \in\left\{\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots, \mathcal{O}_{r}\right\}$, there exists a $g \in G$ so that

$$
g \cdot\left(H \cdot a_{1}\right)=H \cdot a_{2}
$$

Let $a_{1}, a_{2} \in A$, then since G acts transitively on A, there exists $g \in G$ such that $g \cdot a_{1}=a_{2}$. So,

$$
\begin{aligned}
H\left(g \cdot a_{1}\right) & =H \cdot a_{2} \\
g H \cdot a_{1} & =H \cdot a_{2} \\
g H \cdot a_{1} & =H \cdot a_{2} \\
g\left(H \cdot a_{1}\right) & =H \cdot a_{2}
\end{aligned}
$$

And so, there exists a g so that

$$
g \cdot\left(H \cdot a_{1}\right)=H \cdot a_{2}
$$

iii. Deduce that all orbits of H on A have the same cardinality.

Proof. Let $a_{1}, a_{2} \in A$ and $g \cdot a_{1}=a_{2}$ for all $g \in G$. Since $H \unlhd G$, then $g H=H g$ for all $g \in G$, which means $g H g^{-1}=h_{0}$ for some $h, h_{0} \in H$ and for all $g \in G$. This means that $g h=h_{0} g$. We define a bijection between the orbits: Define the map

$$
\varphi: H \cdot a_{1} \rightarrow H \cdot a_{2}
$$

by $h \cdot a_{1} \mapsto h_{0} \cdot a_{2}$. Because G acts transitively on A, then for all $a_{1}, a_{2} \in A$ there exists a $g \in G$ such that $g \cdot a_{1}=a_{2}$. This implies $g\left(H \cdot a_{1}\right)=a_{2}$ and so G acts transitively on each \mathcal{O}_{i}. Now, because $g \cdot(h a)=g \cdot\left(h_{0} a_{1}\right)$, then $h a_{1}=h_{0} a_{2}$. So, each \mathcal{O}_{i} has the same cardinality.
(b) Prove that if $a \in \mathcal{O}_{1}$ then $\left|\mathcal{O}_{1}\right|=\left[H: H \cap G_{a}\right]$ and prove that $r=\left[G: H G_{a}\right]$.

Proof. We know that $|G \cdot a|=\left[G: G_{a}\right]$, so $H \cdot a \mid=\left[H: H_{a}\right]$. Therefore, $H_{a}=H \cap G_{a}$ since $H \leq G$ (and so $H \subset G$). Then,

$$
|H \cdot a|=\left[H: H_{a}\right]=\left[H: H \cap G_{a}\right]
$$

Since G acts transitively, the number of distinct orbits of H on A is

$$
r=|\{H \cdot a \mid a \in A\}|=\left[G: G_{H \cdot a}\right]
$$

We want to show $\left[G: G_{H \cdot a}\right]=\left[G: H G_{a}\right]$, i.e., $G_{H \cdot a}=H G_{a}$.
If $g \in G_{H \cdot a}$, then $H g \cdot a=(g H) \cdot a=g \cdot(H \cdot a)=H$. So, $g \cdot a=h \cdot a$ for $h \in H$. Then, $h^{-1}(g \cdot a)=a \Longrightarrow\left(h^{-1} g\right) \cdot a=a$. So, $h^{-1} g \in G_{a}$, which means $g \in h G_{a}$
and so $g \in H G_{a}$.
If $g \in H G_{a}$, then $g=h_{1} x$ for $h_{1} \in H$ and $x \in G_{a}$. Then,

$$
g \cdot(H \cdot a)=(g H) \cdot a=h x H \cdot a=h H x \cdot a=H h x \cdot a=H \cdot a
$$

which means $g \in G_{H \cdot a}$.
4.1.10 ${ }^{* * *}(\text { Worked with Meghan Malachi and Anup Poudel })^{* * *}$

Let H and K be subgroups of the group G. For each $x \in G$ define the $H K$ double coset of x in G to be the set

$$
H x K=\{h x k \mid h \in H, k \in K\}
$$

(a) Prove that $H x K$ is the union of the left cosets $x_{1} K, \ldots, x_{n} K$ where $\left\{x_{1} K, \ldots, x_{n} K\right\}$ is the orbit containing $x K$ of H acting by left multiplication on the set of left cosets of K.

Proof. Let $h x k \in H x K$ for $x \in G$. Notice $h x K=h(x K) \in H x K$ and $h x k \in$ (hx)K. So,

$$
h x k \in \bigcup_{x_{i} K \in H \cdot x K} x_{i} K
$$

Now, let $y \in \quad \bigcup \quad x_{i} K$. Then, $y \in x_{i} K$ for some $x_{i} K \in H \cdot x K$. This implies $x_{i} K=h \cdot x K \stackrel{x_{i} K \in H \cdot x K}{=h x K}$ for some $h \in H$, so $y \in h x K$. Then, $y=h x k_{0}$ for $k_{0} \in K$. Thus, $y \in H x K$. So,

$$
H x K=\bigcup_{x_{i} K \in H \cdot x K} x_{i} K
$$

(b) Prove that $H x K$ is a union of right cosets of H.

Proof. We want to show

$$
H x K=\bigcup_{H b \in H \cdot x K} H b .
$$

Let $h x k \in H x K$. Notice that $H x k=H x \cdot k$ and $H x \cdot k \in H x \cdot K$. This implies $h x k \in H x K$, and so

$$
h x k \in \bigcup_{H b \in H \cdot x K} H b
$$

Let $g \in \bigcup_{H b \in H \cdot x K} H b$. Then $g \in H b$ for some $H b \in H x \cdot K$ and $H b=H x \cdot k$ for some $k \in K$. Then, $H b=H x k$, which means $H b \in H x K$. Thus, $g \in H x K$.
(c) Show that $H x K$ and $H y K$ are either the same set or are disjoint for all $x, y \in G$. Show that the set of $H K$ double cosets partitions G.

Proof. We claim that $G=\bigcup H x K$. If $x \in G$ then $x=1 x 1 \in H x K$. If $x \in H x K$ then clearly $x \in G$. Now, we want to show $H x K \cap H y K \neq \emptyset$ implies $H x K=$ $H y K$. Suppose $h_{1} x k_{1}=h_{2} y k_{2}$ where $h_{1} x k_{1} \in H x K$ and $h_{2} y k_{2} \in H y K$. Then,

$$
x k_{1}=h_{1}^{-1} h_{2} y k_{2} \Longrightarrow x=h_{1}^{-1} h_{2} y k_{2} k_{1}^{-1} \Longrightarrow x \in H y K \Longrightarrow H x K \subseteq H y K
$$

Similarly,

$$
h_{2} y=h_{1} x k_{1} k_{2}^{-1} \Longrightarrow y=h_{2}^{-1} h_{1} x k_{1} k_{2}^{-1} \Longrightarrow y \in H x K \Longrightarrow H y K \subseteq H x K
$$

Thus, $H x K=H y K$.
(d) Prove that $|H x K|=|K| \cdot\left[H: H \cap x K x^{-1}\right]$.

Proof. We know that

$$
H x K=\bigsqcup_{y K \in H \cdot x K} y K .
$$

Since each $y K$ is disjoint, $|y K|=|K|$. So,

$$
|H x K|=|K| \cdot|H \cdot x K|=|K| \cdot\left[H: H_{x K}\right]
$$

So, we claim $H_{x K}=H \cap x K x^{-1}$, and the conclusion follows. To prove the claim, observe that

$$
\begin{aligned}
h \in H_{x K} & \Longleftrightarrow h \cdot(x k)=x k \\
& \Longleftrightarrow h x k=x k \\
& \Longleftrightarrow x^{-1} h x k=k \\
& \Longleftrightarrow x^{-1} h x \in K \\
& \Longleftrightarrow h \in x K x^{-1} \\
& \Longleftrightarrow h \in H \cap x K x^{-1}
\end{aligned}
$$

(e) Prove that $|H x K|=|H| \cdot\left[K: K \cap x^{-1} H x\right]$.

Proof. We know that

$$
H x K=\bigsqcup_{H y \in H \cdot x k} H y
$$

Since each $H y$ is disjoint, $|H y|=|K|$. So,

$$
|H x K|=|H| \cdot|H x \cdot K|=|H| \cdot\left[K: K_{H x}\right]
$$

As before, we claim $K_{H x}=K \cap x^{-1} H x$. Then,

$$
k \in K_{H x} \Longrightarrow H x \cdot k=H x k=H x
$$

We Have that $x K x^{-1}{ }_{1} H$. So,

$$
k \in x^{-1} H x \Longrightarrow k \in K \text { and } k \in x^{-1} H x
$$

Now, if $k \in K \cap x^{-1} H x$, then $x k x^{-1}=h$ for $h \in H$, and so

$$
x h x^{-1} \in H \Longrightarrow H x \cdot k=H x K=H x \Longrightarrow k \in K_{H x}
$$

4.2.8 Prove that if H has finite index n then there is a normal subgroup K of G with $K \leq H$ and $[G: K] \leq n!$.

Proof. Let $\mathcal{C}=\{g H \mid g \in G\}$ be the set of left cosets of H in G. We let G act on C by left multiplication. Let π_{H} be the associated permutation representation afforded by this action, i.e.,

$$
\pi_{H}: G \rightarrow S_{\mathcal{C}}
$$

Then, by Theorem 3 (Chapter 4, Dummit and Foote), we know $K=\operatorname{ker} \pi_{H} \unlhd G$ and $K \leq H$. Now, since $[G: H]=n$, then $S_{\mathcal{C}} \cong S_{n}$. Since $\left|S_{n}\right|=n$!, then $\left|S_{\mathcal{C}}\right|=n$! as well. So, $\left|\pi_{H}(G)\right| \leq n!$. By the First Isomorphism Theorem, $G / K \cong \pi_{H}(G)$. Thus,

$$
n!\geq\left|\pi_{H}(G)\right|=|G / K|=[G: K]
$$

3.2.9 (Cauchy's Theorem Revisited)

Look again at 3.2.9. Let $S=\left\{\left(x_{1}, \ldots, x_{p}\right) \mid x_{i} \in G\right.$ and $\left.x_{1} \cdots x_{p}=1\right\}$. Let σ be the p-cycle $(1,2, \ldots, p)$ in S_{p}, and let $H=\langle\sigma\rangle$. For all $\tau \in H$ and all $\left(x_{i}, \ldots, x_{p}\right) \in S$, define

$$
\tau .\left(x_{1}, \ldots, x_{p}\right)=\left(x_{\tau(1)}, \ldots, x_{\tau(p)}\right)
$$

(i) Show that this defines a left action of H on S.

Proof. Let $\left(x_{1}, \ldots, x_{p}\right) \in S$ and $\sigma_{i d}$ be the identity permutation of H. Then,

$$
\sigma_{i d} \cdot\left(x_{1}, \ldots, x_{p}\right)=\left(x_{\sigma_{i d}(1)}, \ldots, x_{\sigma_{i d}(p)}\right)=\left(x_{1}, \ldots, x_{p}\right)
$$

Now, let $\sigma_{\ell}, \sigma^{k} \in H, 1 \leq \ell, k \leq p$ and $\left(x_{1}, \ldots, x_{p}\right) \in S$. By a previous exercise, we know that for any $j \in\{1,2 \ldots, n\}$ and any power of a p-cycle, σ^{ℓ}, we have $\sigma^{\ell}(j)=j+\ell$. So,

$$
\begin{aligned}
\sigma^{\ell} \cdot\left(\sigma^{k} \cdot\left(x_{1}, \ldots, x_{p}\right)\right. & =\sigma^{\ell} \cdot\left(x_{\sigma^{k}(1)}, \ldots, x_{\sigma^{k}(p)}\right) \\
& =\sigma^{\ell} \cdot\left(x_{1+k}, \ldots, x_{p+k}\right) \\
& =\left(x_{\sigma^{\ell}(1+k)}, \ldots, x_{\sigma^{\ell}(p+k)}\right) \\
& =\left(x_{1+k+\ell}, \ldots, x_{p+k+\ell}\right) \\
& =\left(x_{\sigma^{k+\ell}(1)}, \ldots, x_{\sigma^{k+\ell}(p)}\right) \\
& =\sigma^{k+\ell} \cdot\left(x_{1}, \ldots, x_{p}\right) \\
& =\left(\sigma^{k} \sigma^{\ell}\right) \cdot\left(x_{1}, \ldots, x_{p}\right)
\end{aligned}
$$

Thus, the given mapping defines a left action of H on S.
(ii) Show that the H-orbits of this action are precisely the equivalence classes of the equivalence relation defined exercise 3.2.9.

Proof. Let $\alpha=\left(x_{1}, \ldots, x_{p}\right) \in S$. Then,

$$
\begin{aligned}
\mathcal{O}_{\alpha} & =\{\tau . \alpha \mid \tau \in H\} \\
& =\{\beta \mid \beta=\tau . \alpha, \tau \in H\} \\
& =\left\{\beta=\left(x_{\tau(1)}, \ldots, x_{\tau(p)}\right) \mid \tau \in H\right\} \\
& =\left\{\beta=\left(x_{\tau(1)}, \ldots, x_{\tau(p)}\right) \mid \tau \text { is a power of the } p \text {-cycle } \sigma\right\} \\
& =\{\beta \text { is cyclic permutation of } \alpha\}
\end{aligned}
$$

And so \mathcal{O}_{α} is the set of elements which are cyclic permutations of α, i.e., \mathcal{O}_{α} is an equivalence class of the relation defined in 3.2.9.
(iii) Use the orbit lemma to prove that every H-orbit has order 1 or p (thus giving a shorter proof of part (e) of 3.2.9).

Proof. Let $\alpha \in S$ and note that

$$
\left[H: H_{\alpha}\right]=\frac{|H|}{H_{a}}=\frac{p}{\left|H_{a}\right|}
$$

Since p is prime, $\left|H_{a}\right|=1$ or $\left|H_{a}\right|=p$. Thus,

$$
\left[H: H_{\alpha}\right]=\frac{p}{1}=p \quad \text { or }\left[H: H_{\alpha}\right]=\frac{p}{p}=1
$$

By the Orbit Lemma, $\left|\mathcal{O}_{\alpha}\right|=\left[H: H_{\alpha}\right]$, which means $\left|\mathcal{O}_{\alpha}\right|=1$ or $\left|\mathcal{O}_{\alpha}\right|=p$.
4.3.29 Let p be a prime and let G be a group of order p^{α}. Prove that G has a subgroup of order p^{β} for every β with $0 \leq \beta \leq \alpha$.

Proof. We proceed by induction on α. For the base case, suppose $\alpha=1$. Then $|G|=p$ and G has subgroups $\left\{1_{G}\right\}$ and G. Clearly, $\left|\left\{1_{G}\right\}\right|=p^{0}$ and $|G|=p^{1}$, and so G has a subgroup of order p^{β} for each $0 \leq \beta \leq \alpha=1$. For the inductive hypothesis, suppose that for each $1 \leq \alpha \leq n-1$, the group G of order p^{α} has a subgroup of order p^{β} for each $0 \leq \beta \leq \alpha$.
Let G be a group of order p^{n}. By Cauchy's Theorem, there exists $g \in G$ with $|g|=p$. Let $N=\langle p\rangle$. So, $|G / N|=p^{n-1}$, and by the induction hypothesis, G / N has subgroups of order p^{γ} for each $0 \leq \gamma \leq n-1$. By the 4th Isomorphism Theorem, the subgroups of G / N are of the form H / N where $H \leq G$. So for each $0 \leq \gamma \leq n-1$, there is a subgroup $H \leq G$ so that

$$
|H / N|=\frac{|H|}{|N|}=\frac{|H|}{p}=p^{\gamma} \Longrightarrow|H|=p^{\gamma+1}
$$

So, G has subgroups of order $p^{\gamma+1}$ for each $\gamma \in\{0,1, \ldots, n-1\}$, i.e., G has subgroups of order p^{β} for each $\beta \in\{1, \ldots, n\}$,. Note that clearly the trivial subgroup of G is of order p^{0} so G contains a subgroup of order p^{β} for each $0 \leq \beta \leq n$.
4.3.31 Using the usual generators and relations for the dihedral group $D_{2 n}$, show that for $n=2 k$ an even integer, the conjugacy classes in $D_{2 n}$ are the following:

$$
\{1\},\left\{r^{k}\right\},\left\{r^{ \pm 1}\right\},\left\{r^{ \pm 2}\right\}, \ldots,\left\{r^{ \pm(k-1)}\right\},\left\{s r^{2 b} \mid b=1, \ldots, k\right\} \text { and }\left\{s r^{2 b-1} \mid b=1, \ldots, k\right\}
$$

Give the class equation for $D_{2 n}$.
Proof. We know from a previous exercise that $Z\left(D_{2 n}\right)=\left\{1, r^{k}\right\}$. Thus, $\{1\}$ and $\left\{r^{k}\right\}$ are conjugacy classes of $D_{2 n}$. Let $1 \leq i, \ell \leq k-1$ and $j \in\{1,2\}$. Then, any non-identity element of $D_{2 n}$ can be written as $s^{j} r^{i}$. Now, we find the conjugacy class of r^{ℓ} :

$$
\begin{array}{rlr}
\left(s^{j} r^{i}\right)\left(r^{\ell}\right)\left(s^{j} r^{i}\right)^{-1} & =\left(s^{j} r^{i}\right)\left(r^{\ell}\right)\left(r^{-i} s^{-j}\right) \\
& =s^{j} r^{i+\ell-i} s^{j} \\
& =s^{j} r^{\ell} s^{j} .
\end{array} \quad\left(\text { Note that } s^{j}=s^{-j}\right)
$$

Recall that $s r^{\ell} s=r^{-\ell}$. When $j=1$, we have

$$
s^{j} r^{\ell} s^{j}=s r^{\ell} s=r^{-\ell}
$$

and when $j=2$,

$$
s^{j} r^{\ell} s^{j}=1 r^{\ell} 1=r^{\ell}
$$

Thus, $\left\{r^{ \pm \ell}\right\}$ are conjugacy classes for each $\ell \in\{1,2, \ldots, k-1\}$. We now find the conjugacy class of s :

$$
\left(s^{j} r^{i}\right)(s)\left(s^{j} r^{i}\right)^{-1}=\left(s^{j} r^{i}\right)(s)\left(r^{-i} s^{j}\right) .
$$

Recall that $r^{-i} s=s r^{i}$. When $j=1$

$$
\left(s^{j} r^{i}\right)(s)\left(r^{-i} s^{j}\right)=s r^{i} s r^{-i} s=s r^{i} s\left(s r^{i}\right)=s r^{i} s^{2} r^{i}=s r^{2 i},
$$

and when $j=2$,

$$
\left(s^{j} r^{i}\right)(s)\left(r^{-i} s^{j}\right)=r^{i} s r^{-i}=\left(s r^{-i}\right) r^{-i}=s r^{-2 i}=s r^{-2(n-i)} .
$$

Thus, the conjugacy class of s is $\left\{s r^{2 i} \mid 1 \leq i \leq k\right\}$. Finally, we find the conjugacy class of $s r$:

$$
\left(s^{j} r^{i}\right)(s r)\left(s^{j} r^{i}\right)^{-1}=\left(s^{j} r^{i}\right)(s r)\left(r^{-i} s^{j}\right)
$$

Then, when $j=1$,

$$
\begin{aligned}
\left(s^{j} r^{i}\right)(s r)\left(r^{-i} s^{j}\right) & =\left(s r^{i}\right)(s r)\left(r^{-i} s\right) \\
& =s r^{i}\left(r^{-1} s\right) r^{-i} s \\
& =s r^{i-1}\left(s r^{-i}\right) s \\
& =s r^{i-1}\left(r^{i} s\right) s \\
& =s r^{2 i-1} .
\end{aligned}
$$

and when $j=2$, we have

$$
\begin{aligned}
\left(s^{j} r^{i}\right)(s r)\left(r^{-i} s^{j}\right) & =r^{i}(s r) r^{-i} \\
& =r^{i}\left(r^{-1} s\right) r^{-i} \\
& =\left(r^{i-1} s\right) r^{-i} \\
& =\left(s r^{-i+1}\right) r^{-i} \\
& =s r^{-2 i+1} \\
& =s r^{-2(n-i)+1} .
\end{aligned}
$$

So, the conjugacy class of $s r$ is $\left\{s r^{2 i-1} \mid 1 \leq i \leq k-1\right\}$. So, the class equation of $D_{2 n}$ is as follows:

$$
\left|D_{2 n}\right|=1+1+\underbrace{2+2+\cdots+2}_{(k-1)-\text { summands }}+k+k
$$

4.4.8 Let G be a group with subgroups H and K with $H \leq K$.
(a) Prove that if H is characteristic in K and K is normal in G, then H is normal in G.

Proof. Let $\sigma_{g} \in \operatorname{Aut}(G)$ be conjugation by g for each $g \in G$. Since K is normal in G, then for each $\sigma_{g} \in \operatorname{Aut}(G)$, we have

$$
\sigma_{g}(K)=g K g^{-1}=K
$$

Therefore, $\sigma_{g} \in \operatorname{Aut}(K)$ for each $g \in G$. Since H is characteristic in K, then for each $\sigma_{g} \in \operatorname{Aut}(K)$, we have

$$
H=\sigma_{g}(H)=g H g^{-1}
$$

Thus, H is normal in G.
(b) Prove that if H is characteristic in K and K is characteristic in G then H is characteristic in G. Use this to prove that the Klein 4 -group V_{4} is characteristic in S_{4}.

Proof. Let $\sigma \in \operatorname{Aut}(G)$. Then, as K is characteristic in G,

$$
\sigma(K)=K .
$$

Thus, $\sigma \in \operatorname{Aut}(K)$. Since H is characteristic in K, then

$$
\sigma(H)=H
$$

and so H is characteristic in G.

To show V_{4} is characteristic in S_{4}, we first prove the following: If H is a unique subgroup of a given order in a group G, then H is characteristic in G.
To see this, let $\sigma \in \operatorname{Aut}(G)$. Then, since σ is bijective, then the order of the image of H under $\sigma, \sigma(H)$, is the order of $|H|$. Since σ is a homomorphism, $\sigma(H)$ is a subgroup of G. Since H is the only subgroup of order $|H|$, then $\sigma(H)=H$, and thus H is characteristic in G.
Now, since V_{4} is the unique subgroup of A_{4} of order 4 , then V_{4} is characteristic in A_{4}. Also, since A_{4} is the unique subgroup of order 12 in S_{4}, then A_{4} is characteristic in S_{4}. So, by the result above, we know V_{4} is characteristic in S_{4}.
(c) Give an example to show that if H is normal in K and K is characteristic in G then H need not be normal in G.

Solution:

We know that since $V_{4}=\{(),(12)(34),(13)(24),(14)(23)\}$ is abelian, then the subgroup $H=\{(),(14)(23)\}$ of V_{4} is normal. So, we know that

$$
H \unlhd V_{4} \operatorname{char} A_{4}
$$

But

$$
(123)(14)(23)(132)=(13)(24) \notin H,
$$

and so $H \nsubseteq A_{4}$.
4.3.17 Let A be a nonempty set and let X be any subset of S_{A}. Let

$$
F(X)=\{a \in A \mid \sigma(A)=a \text { for all } \sigma \in X\} \quad \text { - the fixed set of } X
$$

Let $M(X)=A-F(X)$ be the elements which are moved by some element of X. Let $D=\left\{\sigma \in S_{A}| | M(\sigma) \mid<\infty\right\}$. Prove that D is a normal subgroup of S_{A}.

Proof. We first show that D is a subgroup of S_{A}. Notice that $\sigma_{i d} \in D$ since

$$
\left|M\left(\sigma_{i d}\right)\right|=\left|A-F\left(\sigma_{i d}\right)\right|=|A-A|=|\emptyset|=0<\infty .
$$

Let $\sigma, \tau \in D$. Notice that $M(\tau)=M\left(\tau^{-1}\right)$. We show that $\sigma \circ \tau^{-1} \in D$. Suppose $|M(\sigma)|=$ $s<\infty$ and $\left|M\left(\tau^{-1}\right)\right|=|M(\tau)|=t<\infty$. Notice that

$$
M(\sigma \circ \tau) \subseteq M(\sigma) \cup M(\tau)
$$

and so

$$
|M(\sigma \circ \tau)| \leq|M(\sigma)|+|M(\tau)|=s+t<\infty .
$$

We now show $D \unlhd S_{A}$. Let $\sigma \in S_{A}$, and $\tau \in D$. We claim that $\sigma \tau \sigma^{-1} \in D$, i.e., $\left|M\left(\sigma \tau \sigma^{-1}\right)\right|<$ ∞. If $|A|<\infty$, then we are done. Suppose $|A|=\infty$. We proceed by contradiction. Suppose $\left|M\left(\sigma \tau \sigma^{-1}\right)\right|=\infty$. Then, there exists an infinite subset $B \subseteq A$ so that for all $b \in B$ we have

$$
\left(\sigma \tau \sigma^{-1}\right)(b) \neq b
$$

This implies that for all $b \in B$,

$$
\tau\left(\sigma^{-1}(b)\right) \neq \sigma^{-1}(b)
$$

In other words $|M(\tau)|=\infty$, a contradiction, as $\tau \in D$. Thus, $|M(\sigma \tau \sigma)|<\infty$, and so $D \unlhd S_{A}$.
4.3.19 Assume $H \unlhd G$, and \mathcal{K} is a conjugacy class of G contained in H and $x \in \mathcal{K}$. Prove that \mathcal{K} is a union of k conjugacy classes of equal size in H, where $k=\left[G: H C_{G}(x)\right]$. Deduce that a conjugacy class in S_{n} which consists of even permutations is either a single conjugacy class under the action of A_{n} or is a union of two classes of the same size in A_{n}. [Let $A=C_{G}(x)$ and $B=H$ so $A \cap B=C_{H}(x)$. Draw the lattice diagram associated to the Second Isomorphism Theorem and interpret the appropriate indices. See also Exercise 9, Section 1.]

Proof. Let H act on \mathcal{K} by conjugation. Then, \mathcal{K} is the union of H-orbits;

$$
\mathcal{K}=\bigcup_{x \in \mathcal{K}} H \cdot x
$$

We claim that the H-orbit has of equal size. Let $H . a$ and $H . b$ be distinct H-orbits (conjugacy classes of \mathcal{K} in H). Then, as a and b are in the same conjugacy class \mathcal{K}, there exists a $g \in G$ so that gag $^{-1}=b$. We claim $|H . a|=|H . b|$. Notice

$$
\begin{array}{rlr}
g(H . a) g^{-1} & =\left\{g\left(h a h^{-1}\right) g^{-1} \mid h \in H\right\} \\
& =\left\{(g h) a(g h)^{-1} \mid h \in H\right\} \\
& =\left\{x a x^{-1} \mid x \in g H\right\} \\
& =\left\{y a y^{-1} \mid y \in H g\right\} \quad(g H=H g \text { since } H \unlhd G) \\
& =\left\{(h g) a(h g)^{-1} \mid h \in H\right\} \\
& =\left\{h\left(g a g^{-1}\right) h^{-1} \mid h \in H\right\} \\
& =\left\{h b h^{-1} \mid h \in H\right\} \\
& =H . b
\end{array}
$$

Thus, H.a and H.b are conjugate and so $|H . a|=|H . b|$. Suppose $x \in \mathcal{K}$. Since all conjugacy classes in \mathcal{K} have equal size,

$$
|\mathcal{K}|=k \cdot|H . x| \text { for some } k \in \mathbb{Z}^{+}
$$

We claim that $k=\left[G: H C_{G}(x)\right]$. Since $K=G . x$ is a conjugacy class of G, then $G_{x}=C_{G}(x)$. Likewise, as $H . x$ is a conjugacy call of H, then $H_{x}=C_{H}(x)$. Then by the Orbit-Stabilizer Theorem,

$$
|G \cdot x|=\left[G: G_{x}\right]=\left[G: C_{G}(x)\right] \text { and }|H \cdot x|=\left[H: H_{x}\right]=\left[H: C_{H}(x)\right] .
$$

So,

$$
|\mathcal{K}|=k \cdot|H \cdot x| \Longrightarrow \frac{|\mathcal{K}|}{|H \cdot x|}=\frac{|G \cdot x|}{|H \cdot x|}=\frac{\left[G: C_{G}(x)\right]}{\left[H: C_{H}(x)\right]}
$$

Since $H \unlhd G$ and $C_{G}(x) \leq G$, then $H C_{G}(x) \leq G$ by Corollary 15 of Section 3.2 (D\&F). So,

$$
C_{G}(x) \leq H C_{G}(x) \leq G
$$

By Exercise 11 of Section 3.2, we have

$$
\left[G: C_{G}(x)\right]=\left[G: H C_{G}(x)\right] \cdot\left[H C_{G}(x): C_{G}(x)\right] .
$$

So,

$$
\frac{\left[G: C_{G}(x)\right]}{\left[H: C_{H}(x)\right]}=\frac{\left[G: H C_{G}(x)\right] \cdot\left[H C_{G}(x): C_{G}(x)\right]}{\left[H: C_{H}(x)\right]}
$$

Note that $H \cap C_{G}(x)=C_{H}(x)$. Since $H \unlhd G$ and $C_{G}(x) \leq G$, then by the Second Isomorphism Theorem,

$$
H C_{G}(x) / H \cong C_{G}(x) / H \cap C_{G}(x)=C_{G}(x) / C_{H}(x)
$$

This means

$$
\left[H C_{G}(x): H\right]=\left[C_{G}(x): C_{H}(x)\right], \quad \text { which implies } \quad \frac{\left|H C_{G}(x)\right|}{|H|}=\frac{\left|C_{G}(x)\right|}{C_{H}(x)} .
$$

Rearranging, we get

$$
\frac{\left|H C_{G}(x)\right|}{\left|C_{G}(x)\right|}=\frac{|H|}{C_{H}(x)} \quad \text { which implies } \quad\left[H C_{G}(x): C_{G}(x)\right]=\left[H: C_{H}(x)\right]
$$

So,

$$
\begin{aligned}
\frac{\left[G: H C_{G}(x)\right] \cdot\left[H C_{G}(x): C_{G}(x)\right]}{\left[H: C_{H}(x)\right]} & =\frac{\left[G: H C_{G}(x)\right]\left[H: C_{H}(x)\right]}{\left[H: C_{H}(x)\right]} \\
& =\left[G: H C_{G}(x)\right] .
\end{aligned}
$$

Therefore, $k=\left[G: H C_{G}(x)\right]$.

Now, consider the normal subgroup A_{n} of S_{n}. Suppose K is a conjugacy class of S_{n} and $K \subseteq A_{n}$. If $\sigma \in K$, then by what was just proved, K is a union of distinct conjugacy classes of A_{n} of equal size. In particular, K is made up of $k=\left[S_{n}: A_{n} C_{S_{n}}(\sigma)\right]$ conjugacy classes of A_{n} of equal size. Now, since

$$
A_{n} \leq A_{n} C_{S_{n}}(\sigma) \leq S_{n}
$$

and A_{n} is a maximal subgroup of S_{n}, then either $A_{n} C_{S_{n}}(\sigma)=A_{n}$ or $A_{n} C_{S_{n}}(\sigma)=S_{n}$. In the former case, K is a single conjugacy class under the action of A_{n}. In the latter case, K is the union of two conjugacy classes of the same size in A_{n}.
4.3.23 Recall that a proper subgroup M of G is called maximal if whenever $M \leq H \leq G$, either $H=M$ or $H=G$. Prove that if M is a maximal subgroup of G then either $N_{G}(M)=M$ or $N_{G}(M)=G$. Deduce that if M is a maximal subgroup of G that is not normal in G then the number of nonidentity elements of G that are contained in conjugates of M is at most $(|M|-1)[G: M]$.

Proof. *From Online Solution Manual*
Since M is a subgroup, we have $M \leq N_{G}(M) \leq G$. Then, $N_{G}(M)=M$ or $N_{G}(M)=G$. If M is not normal, then $N_{G}(M)=M$.
By the Orbit-Stabilizer Theorem, the number of conjugates of M is $|G \cdot M|=\left[G: N_{G}(M)\right]=$ $[G: M]$. Now all conjugates of M have the same cardinality as M, ans we will have the largest number of nonidentity elements in the conjugates of M precisely when these conjugates intersect trivially. In this case, the number of nonidentity elements in the conjugates of M is at most $(|M|-1) \cdot[G: M]$.
4.3.24 Assume H is a proper subgroup of the finite group G. Prove $G \neq \cup_{g \in G}$, i.e., G is not the union of the conjugates of any proper subgroup.

Proof. *From Online Solution Manual*
There exists a maximal subgroup M containing H. If M is normal in G, then

$$
\bigcup_{g \in G} g H g^{-1} \subseteq \bigcup_{g \in G} g M g^{-1}=M \neq G .
$$

If M is not normal, we still have

$$
\bigcup_{g \in G} g H g^{-1} \subseteq \bigcup_{g \in G} g M g^{-1}
$$

By Exercise 23 above, we know that

$$
\bigcup_{g \in G} g M g^{-1}
$$

contains at most $(|M|-1) \cdot[G: M]$ nonidentity elements. Thus,

$$
\left|\bigcup_{g \in G} g H g^{-1}\right| \leq|G|-[G: M]+1<|G|
$$

because $[G: M] \geq 2$. Since G is finite,

$$
G \neq \bigcup_{g \in G} g H g^{-1}
$$

Thus, G is not the union of all conjugates of any proper subgroup.
4.3.26 Let G be a transitive permutation group on the finite set A with $|A|>1$. Show that there is some $\sigma \in G$ such that $\sigma(a) \neq a$ for all $a \in A$ (such an element is called fixed point free).

Proof. *From Online Solution Manual*
By way of contradiction, suppose that for all $\sigma \in G$, there exists $a \in A$ such that $\sigma(a)=a$. Then

$$
\bigcup_{a \in A} G_{a}
$$

Now because this action is transitive, if we fix $b \in A$, then as σ ranges over $G, \sigma \cdot b$ is arbitrary in A. So in fact,

$$
G=\bigcup_{\sigma \in G} G_{\sigma(b)}=\bigcup_{\sigma \in G} \sigma G_{b} \sigma^{-1}
$$

Now, because the action is transitive, and $|A|>1$, we know that G_{b} is a proper subgroup. Thus, $G \leq S_{a}$ is finite. By Exercise 24 above, we have a contradiction. Thus, there exists an element $\sigma \in G$ that is fixed point free.
4.3.27 let $g_{1}, g_{2}, \ldots, g_{r}$ be representatives of the conjugacy classes of the finite group G and assume these elements pairwise commute. Prove that G is abelian.

Proof. *From Online Solution Manual*
Let G act on itself by conjugation. Not that

$$
g_{1}, g_{2}, \ldots, g_{r} \in G_{g_{k}}
$$

for all $k \in\{1, \ldots, r\}$. Let $x \in G$. Then,

$$
x=a g_{i} a^{-1}
$$

for some $a \in G$ and g_{i}. Thus, $x \in a G_{g_{k}} a^{-1}$ for each k since g_{i} stabilizes each g_{k}. Moreover,

$$
x \in \bigcup_{a \in G} a G_{g_{k}} a^{-1}
$$

for all k. So,

$$
G=\bigcup_{a \in G} a G_{g_{k}} a^{-1}
$$

for each k. Since G is finite, then by Exercise 24, $G_{g_{k}}$ must not be a proper subgroup, i.e., $G_{g_{k}}=G$ for each g_{k}.

Now, let $a, b \in G$ where $a=x g_{a} x^{-1}$ and $b=y g_{b} y^{-1}$. Then,

$$
\begin{aligned}
a b & =\left(x g_{a} x^{-1}\right)\left(y g_{b} y^{-1}\right) \\
& =x x^{-1} g_{a} g_{b} y y^{-1} \\
& =g_{b} g_{a} \\
& =y y^{-1} g_{b} g_{a} x x^{-1} \\
& =y g_{b} y^{-1} x g_{a} x^{-1} \\
& =b a
\end{aligned}
$$

Therefore, G is abelian.
4.5.16 Let $|G|=p q r$ where p, q, and r are primes with $p<q<r$. Prove that G has a normal Sylow subgroup subgroup for either p, q, or r.

Proof. Suppose no Sylow subgroup for either p, q, or r is normal. Then, since $n_{r} \mid p q$ then $n_{r} \in\{p, q, p q\}$. But since $p<q<r$, then neither p nor q can be congruent to $1 \bmod r$. So, $n_{r}=p q$. Since each Sylow r-subgroup of G has exactly $r-1$ non-identity elements, we have

$$
\begin{equation*}
p q(r-1)=p q r-p q \tag{1}
\end{equation*}
$$

total non-identity elements of G from the Sylow r-subgroups.
Since $n_{q} \mid p r$ then $n_{1} \in\{p, r, p r\}$. But since $p<q$, then p cannot be congruent to $1 \bmod q$. Thus, $n_{q}=r$ or $n_{q}=p r$. In either case,

$$
\begin{equation*}
n_{q}(q-1)>p(q-1)=p q-p, \tag{2}
\end{equation*}
$$

i.e., there are more than $p q-p$ non-identity elements from the Sylow q - subgroups. Since $n_{p} \mid q r$, then $n_{p} \in\{q, r, q r\}$. By (1) and (2), G has less than

$$
p q r-((p q r-p q)+(p q-p)+1)=p-1
$$

elements left to make up the number of nonidentity elements in the Sylow p-subgroups, which is impossible since there are at least $q(p-1)$ nonidentity elements from the Sylow p-subgroups. Thus, we have a contradiction.
4.5.22 Prove that if $|G|=132$ then G is not simple.

Proof. Notice that $132=2^{2} \cdot 3 \cdot 11$. Since $n_{2} \mid(3 \cdot 11)$ and $n_{2} \equiv 1 \bmod 2$, then $n_{2} \in\{1,3,11\}$. Similarly, since $n_{3} \mid\left(2^{2} \cdot 11\right)$ and $n_{3} \equiv 1 \bmod 3$ then $n_{3} \in\{1,4\}$. And finally, since $n_{11} \mid\left(2^{2} \cdot 3\right)$ and $n_{11} \equiv 1 \bmod 11$ then $n_{11} \in\{1,12\}$. Suppose for contradiction that G is simple. Then, $n_{3}=4$, which means G contains exactly $4(3-1)=8$ elements of order 3 . Similarly, $n_{11}=12$ which means G contains exactly $12(11-1)=120$ elements of order 11 in G. Then there are $132-8-120=4$ elements of order G which are not of order 3 nor 11 . So, there is space for exactly 1 Sylow 2 -subgroup of order 4 , i.e., $n_{2}=1$ and so G contains a normal subgroup of order 4, a contradiction. Thus G is not simple.
5.1.2 Let $G_{1}, G_{2}, \ldots, G_{n}$ be groups and let $G=G_{1} \times \cdots \times G_{n}$. Let I be a proper, nonempty subset of $\{1, \ldots, n\}$ and let $J=\{1, \ldots, n\}-I$. Define G_{I} to be the set of elements of G that have the identity of G_{j} in position j for all $j \in J$.
(a) Prove that G_{I} is isomorphic to the direct product of the groups $G_{i}, i \in J$,

Proof. We first show that $G_{I} \leq G$. Since $(1,1, \ldots, 1,1,1) \in G_{I}$, then $G_{I} \neq \varnothing$. Let $x, y \in G_{I}$. For each $i \in I$, the coordinates x_{i} and y_{i}^{-1} of x and y^{-1} respectively are in G_{i} and so $x_{i} y_{i}^{-1} \in G_{i}$. For each $j \in J$, we have $x_{j}=1_{G_{j}}$ and $y_{j}^{-1}=1_{G_{j}}$ as the j-th coordinate of x and y, respectively, and so $x_{j} y_{j}^{-1}=1_{G_{j}} \in G_{j}$. Since the k-th coordinate of the product of $x y^{-1}$ is in G_{k} for all $1 \leq k \leq n$, then $x y^{-1} \in G_{I}$. So, $G_{I} \leq G$.

Let $I=\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}$. We define a map

$$
\varphi: G_{I} \rightarrow G_{i_{1}} \times G_{i_{2}} \times \cdots \times G_{i_{k}}
$$

where the n-tuple x is mapped to the k-tuple y in the following way: The r-th coordinate of y takes the value corresponding to the coordinate $x_{i_{r}}$ of x, where $i_{r} \in I$.
Given $y \in G_{i_{1}} \times \cdots \times G_{i_{k}}$, we can choose $x \in G_{I}$ so that for all $i_{r} \in I$, the i_{r}-th coordinate of x corresponds to the r-th coordinate of y. Thus, φ is surjective. Also, if two elements $x, y \in G_{I}$ are not equal, then it must be the case that for at least one index $i_{r} \in I$, the coordinates $x_{i_{r}}$ and $y_{i_{r}}$ of x and y, respectively, are not equal. Thus, by definition of φ, we will have $\varphi(x) \neq \varphi(y)$ and so φ is injective. Finally, for any $x, y \in G_{I}$, consider the coordinates $x_{i_{r}}$ and $y_{i_{r}}$ of x and y, respectively, $i_{r} \in I$. Then, the product $x y$ will have $x_{i_{r}} y_{i_{r}}$ as it's i_{r}-th coordinate. So, $\varphi(x y)$ will have $x_{i_{r}} y_{i_{r}}$ as it's r-th coordinate. Then, $\varphi(x)$ and $\varphi(y)$ will have their r-th coordinates the values $x_{i_{r}}$ and $y_{i_{r}}$, respectively. So, $\varphi(x) \varphi(y)$ will have as it's r-th coordinate the value $x_{i_{r}} y_{i_{r}}$. Thus, $\varphi(x y)=\varphi(x) \varphi(y)$. So, φ is an isomorphism.
(b) Prove that G_{I} is a normal subgroup of G and $G / G_{I} \cong G_{J}$.

Proof. Let $J=\left\{j_{1}, \ldots, j_{\ell}\right\}$. Define a map

$$
\psi: G \rightarrow G_{J}
$$

where the n tuple x is sent to the ℓ-tuple y in the following way: The t-th coordinate of y takes on the values corresponding to the j_{t}-th coordinate of x.
Given any $y \in G_{j}$, we can let $x \in G$ be the n-tuple which has $x_{j_{t}}$ as the j_{t}-th coordinate where $x_{j_{t}}$ equals the t-th coordinate of y for all $j_{t} \in J$. Then $\psi(x)=y$ and so ψ is surjective. By a very similar argument as in part (a), we see that ψ is a group homomorphism. Now,

$$
\begin{aligned}
\operatorname{ker}(\psi) & =\{x \in G \mid \psi(x)=(1,1,1 \ldots, 1)=\text { the } \ell \text {-tuple consisting of all identity elements. }\} \\
& =\{x \in G \mid x=(1,1, \ldots, 1)=\text { the } n \text {-tuple consisting of all identity elements. }\} \\
& =\{x \in G \mid x \text { has the identity in the } j \text {-th coordinate for all } j \in J .\} \\
& =G_{I}
\end{aligned}
$$

By the First Isomorphism Theorem, $G_{I} \unlhd G$ and $G / G_{I} \cong G_{J}$.
(c) Prove that $G \cong G_{I} \times G_{J}$.

Proof. Since $G_{I} \unlhd G$, and $G_{J} \leq G$, then $G_{I} G_{J} \leq G$. Since $G_{I} \cap G_{J}=1$, then

$$
\left|G_{I} G_{J}\right|=\frac{\left|G_{I}\right|\left|G_{J}\right|}{\left|G_{I} \cap G_{J}\right|}=\frac{\left|G_{I}\right|\left|G_{J}\right|}{1}=|G| .
$$

So, $G=G_{I} G_{J}$. By a similar map as in (b), we get that $G_{J} \unlhd G$ and so by Theorem 9 , (pg. 171, D\&F), we have $G \cong G_{I} \times G_{K}$.
5.4.11 Prove that if $G=H K$ where H and K are characteristic subgroups of G with $H \cap K=1$, then $\operatorname{Aut}(G) \cong \operatorname{Aut}(H) \times \operatorname{Aut}(K)$. Deduce that if G is an abelian group of finite order then $\operatorname{Aut}(G)$ is isomorphic to the direct product of the automorphism groups of its Sylow subgroups.

Proof. Define the map

$$
f: \operatorname{Aut}(G) \rightarrow \operatorname{Aut}(H) \times \operatorname{Aut}(K) \text { by } \sigma \mapsto\left(\left.\sigma\right|_{H},\left.\sigma\right|_{K}\right)
$$

f is a homomorphism: Let $\sigma, \tau \in \operatorname{Aut}(G)$. Since H is characteristic in $G,\left.\sigma\right|_{H}(H)=H$ and $\overline{\text { similarly, }\left.\tau\right|_{H}(H)=H}$. So, $\left.(\sigma \circ \tau)\right|_{H}=\left.\left.\sigma\right|_{H} \circ \tau\right|_{H}$. Similarly for K. Then,

$$
\begin{aligned}
f(\sigma \circ \tau) & =\left(\left.(\sigma \circ \tau)\right|_{H},\left.(\sigma \circ \tau)\right|_{K}\right) \\
& =\left(\left.\left.\sigma\right|_{H} \circ \tau\right|_{H},\left.\left.\sigma\right|_{K} \circ \tau\right|_{K}\right) \\
& =\left(\left.\sigma\right|_{H},\left.\sigma\right|_{K}\right)\left(\left.\tau\right|_{H},\left.\tau\right|_{K}\right) \\
& =f(\sigma) \circ f(\tau) .
\end{aligned}
$$

f is surjective: Let $(\alpha, \beta) \in \operatorname{Aut}(H) \times \operatorname{Aut}(K)$. We need to find $\sigma \in \operatorname{Aut}(G)$ so that $f(\sigma)=$ (α, β). First, define

$$
\tilde{\sigma}: H \times K \rightarrow H \times K, \quad \text { where } \quad \tilde{\sigma}(h, k)=(\alpha(h), \beta(k)) .
$$

We claim $\tilde{\sigma} \in \operatorname{Aut}(H \times K)$.

- $\tilde{\sigma}$ is a group homomorphism:

Let $h, h^{\prime} \in H, k, k^{\prime} \in K$. Then

$$
\begin{aligned}
\tilde{\sigma}\left((h, k)\left(h^{\prime}, k^{\prime}\right)\right) & =\tilde{\sigma}\left(\left(h h^{\prime}, k k^{\prime}\right)\right) \\
& =\left(\alpha\left(h h^{\prime}\right), \beta\left(k k^{\prime}\right)\right) \\
& =\left(\alpha(h) \alpha\left(h^{\prime}\right), \beta(k) \beta\left(k^{\prime}\right)\right) \\
& =(\alpha(h), \beta(k))\left(\alpha\left(h^{\prime}\right), \beta\left(k^{\prime}\right)\right) \\
& =\tilde{\sigma}((h, k)) \tilde{\sigma}\left(\left(h^{\prime}, k^{\prime}\right)\right)
\end{aligned}
$$

- $\tilde{\sigma}$ is surjective:

Since α, β are surjective, then given $h^{\prime} \in H, k^{\prime} \in K$, there exists $h \in H, k \in K$ so that $\alpha(h)=h^{\prime}$ and $\beta(k)=k^{\prime}$. Thus, $\tilde{\sigma}((h, k))=(\alpha(h), \beta(k))=\left(h^{\prime}, k^{\prime}\right)$.

- $\tilde{\sigma}$ is injective:

If $\tilde{\sigma}((h, k))=\tilde{\sigma}\left(\left(h^{\prime} k^{\prime}\right)\right)$, then $(\alpha(h), \beta(k))=\left(\alpha\left(h^{\prime}\right), \beta\left(k^{\prime}\right)\right)$, which means $\alpha(h)=\alpha\left(h^{\prime}\right)$ and $\beta(k)=\beta\left(k^{\prime}\right)$. Since both α and β are injective, $h=h^{\prime}$ and $k=k^{\prime}$ which means $(h, k)=\left(h^{\prime}, k^{\prime}\right)$.

Since H and K are characteristic in G, they are normal subgroups of G. Since $H \cap K=1$ and $G=H K$, then by Theorem 9 , (p 171, D\&F), $G \cong H \times K$. Now, let

$$
j: G \rightarrow H \times K \text { where } h k \mapsto(h, k)
$$

be the canonical isomorphism between G and $H \times K$. Since $H \cap K=1$ and $H K=G$, then each element $g \in G$ can be expressed as a unique product $h k$ for $h \in H, k \in K$. Therefore, j^{-1} is well-defined. Then,

$$
j^{-1} \circ \tilde{\sigma} \circ j: G \rightarrow H \times K \rightarrow H \times K \rightarrow G
$$

Claim: $\sigma=j^{-1} \circ \tilde{\sigma} \circ j$ gives $f(\sigma)=(\alpha, \beta)$ as desired. We show that $\left.\sigma\right|_{H}=\alpha$. Let $h \in H$. Then,

$$
\begin{aligned}
\sigma(h) & =\left(j^{-1} \circ \tilde{\sigma} \circ j\right)(h) \\
& =\left(j^{-1} \circ \tilde{\sigma}\right) j(h) \\
& =j^{-1}\left(\tilde{\sigma}\left(h, 1_{G}\right)\right) \\
& =j^{-1}\left(\left(\alpha(h), \beta\left(1_{G}\right)\right)\right) \\
& =j^{-1}\left(\left(\alpha(h), 1_{G}\right)\right) \\
& =\alpha(h) \cdot 1_{G} \\
& =\alpha(h) .
\end{aligned}
$$

Similarly, we get $\left.\sigma\right|_{K}=\beta$. Thus, $f(\sigma)=\left(\left.\sigma\right|_{H},\left.\beta\right|_{K}\right)=(\alpha, \beta)$ and f is surjective.
f is injective: Let $\sigma, \tau \in \operatorname{Aut}(G)$ and suppose $f(\sigma)=f(\tau)$. Then $\left(\left.\sigma\right|_{H},\left.\sigma\right|_{K}\right)=\left(\left.\tau\right|_{H},\left.\tau\right|_{K}\right)$ and so $\left.\sigma\right|_{H}=\left.\tau\right|_{H}$ and $\left.\sigma\right|_{K}=\left.\tau\right|_{K}$. Let $g \in G$. We need to show that $\sigma(g)=\tau(g)$. Since $G=H K, g=h k$ for some $h \in H, k \in K$. So,

$$
\sigma(g)=\sigma(h k)=\sigma(h) \sigma(k)=\tau(h) \tau(k)=\tau(h k)=\tau(g) .
$$

Let G be abelian and $|G|=n<\infty$ and let the unique factorization of n into distinct prime powers be

$$
n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{k}^{\alpha_{k}}
$$

Since G is abelian, then all of its subgroups are normal subgroups. In particular, every Sylow p_{j}-subgroup is normal for all $1 \leq j \leq k$. Let $Q_{j} \in \operatorname{Syl}_{p_{j}}(G)$ for all $1 \leq j \leq k$. Since each Q_{j} is normal in G, each Q_{j} is the unique Sylow p_{j}-subgroup of order $p_{j}^{\alpha_{j}}$. Since each Q_{j} is normal in G, then

$$
Q_{1} Q_{2} \ldots Q_{k} \leq G
$$

For each fixed $i \in\{1, \ldots, k\}$ and $j \in\{1, \ldots, k\}$ if $i \neq j$ then $Q_{i} \cap Q_{j}=1$ and so $\left|Q_{1} Q_{2} \ldots Q_{k}\right|=$ $|G|$. Thus, $Q_{1} Q_{2} \ldots Q_{k}=G$. Therefore, by what was just proved,

$$
\operatorname{Aut}(G) \cong \operatorname{Aut}\left(Q_{1}\right) \times \operatorname{Aut}\left(Q_{2}\right) \times \cdots \times \operatorname{Aut}\left(Q_{k}\right)
$$

4.5.32 Let P be a Sylow p-subgroup of H and let H be a subgroup of K. If $P \unlhd H$ and $H \unlhd K$ prove that P is normal in K. Deduce that if $P \in \operatorname{Syl}_{p}(G)$ and $H=N_{G}(P)$ then $N_{G}(H)=H$.

Proof. Since $P \unlhd H$ and P is a Sylow p-subgroup of H, then P is characteristic in H. Since $H \unlhd K$ then $\operatorname{conj}(k)(H)=k H k^{-1}=H$ for all $k \in K$. So $\operatorname{conj}(k) \in \operatorname{Aut}(H)$ for all $k \in K$. Since P is characteristic in H, then

$$
P=\operatorname{conj}(k)(P)=k P k^{-1} \quad \forall k \in K
$$

Therefore, $P \unlhd K$.

Since $H=N_{G}(P)$ then $P \unlhd H$. Let $K=N_{G}(H)$. Since $H \unlhd N_{G}(H)=K$ then by what was just proved, $P \unlhd K=N_{G}(H)$, which implies $N_{G}(H)=N_{G}(P)=H$.
4.5.34 Let $P \in \operatorname{Syl}_{p}(G)$ and assume $N \unlhd G$. Use the conjugacy part of Sylow's Theorem to prove that $P \cap N$ is a Sylow p-subgroup of N. Deduce that $P N / N$ is a Sylow p-subgroup of G / N.

Proof. Let $Q \in \operatorname{Syl}_{p}(N)$. Then there exists $g \in G$ so that $Q \leq g P g^{-1}$. Since $Q \leq N$ and $Q \leq g P g^{-1}$ then $Q \leq g P g^{-1} \cap N$. Then,

$$
\begin{aligned}
Q & \leq g P g^{-1} \cap N \\
Q & \leq g P g^{-1} \cap g N g^{-1} \\
Q & \leq g(P \cap N) g^{-1} \\
g^{-1} Q g & \leq P \cap N
\end{aligned}
$$

(Since $N \unlhd G$)

Since $g^{-1} Q g \in S y l_{p}(N)$ then $g^{-1} Q g$ is of maximal prime power order in N. Since $P \cap N$ is a subgroup of N with prime order, it must be that $P \cap N=g^{-1} Q g$, i.e., $P \cap N \in \operatorname{Syl}_{p}(N)$.

Observe that

$$
|G / N|=\frac{|G|}{|N|}=p^{\alpha-\beta} \cdot(m \tilde{n})
$$

By the Second Isomorphism Theorem, $P N / N \cong P / P \cap N$. So,

$$
|P N / N|=|P / P \cap N|=\frac{|P|}{|P \cap N|}=\frac{p^{\alpha}}{p^{\beta}}=p^{\alpha-\beta}
$$

Therefore, $P N / N \in \operatorname{Syl}_{p}(G / N)$.
4.5.36 Prove that if $N \unlhd G$ then $n_{p}(G / N) \leq n_{p}(G)$.

Proof. Let $|G|=p^{\alpha} \cdot m$ and $|N|=p^{\beta} \cdot \tilde{n}$ where m and \tilde{n} do not divide p^{α} and p^{β}, respectively. Note that from the previous exercise, $P N / N \in \operatorname{Syl}_{p}(G / N)$ for any $P \in \operatorname{Syl}_{p}(G)$. Define a map

$$
\varphi: \operatorname{Syl}_{p}(G) \rightarrow \operatorname{Syl}_{p}(G / N) \text { by } P \mapsto P N / N
$$

We show that φ is surjective so that $\left|S y l_{p}(G)\right| \leq\left|S y l_{p}(G / N)\right|$, i.e., $n_{p}(G / N) \leq n_{p}(G)$. Let $\bar{Q} \in S y l_{p}(G / N)$. By the 4th Isomorphism Theorem, there exists a $\operatorname{subgroup} Q \leq G$ so that $N \leq Q$ and $Q / N=\bar{Q}$. Notice

$$
p^{\alpha-\beta}=|\bar{Q}|=|Q / N|=\frac{|Q|}{|N|} \Longrightarrow|Q|=p^{\alpha} \cdot \tilde{n}
$$

Let $R \in \operatorname{Syl}_{p}(Q)$. Then $|R|=p^{\alpha}$ and so $R \in \operatorname{Syl}_{p}(G)$. Again by the previous exercise, $R N / N \in \operatorname{Syl}_{p}(G / N)$. Notice that $R \leq Q$ and $N \unlhd Q$ so that $R N \leq Q$. Then $R N / N \leq$ Q / N but

$$
|R N / N|=p^{\alpha-\beta}=|Q / N|
$$

Therefore,

$$
\varphi(R)=R N / N=Q / N=\bar{Q}
$$

5.1.4 Let A and B be finite groups a p be prime. Prove that any Sylow p-subgroup of $A \times B$ is of the form $P \times Q$, where $P \in S y l_{p}(A)$ and $Q \in S y l_{p}(B)$. Prove that $n_{p}(A \times B)=n_{p}(A) n_{p}(B)$. Generalize both of these results to a direct product of any finite number of finite groups (so that the numbers of Sylow p-subgroups of a direct product is the product of the numbers of Sylow p-subgroups of the factors).

Proof. First notice that

$$
\begin{aligned}
N_{A \times B}(P \times Q) & =\left\{(a, b) \in A \times B \mid(a, b)(p, q)\left(a^{-1}, b^{-1}\right) \in P \times Q \quad \forall(p, q) \in P \times Q\right\} \\
& =\left\{(a, b) \in A \times B \mid\left(a p a^{-1}, b q b^{-1}\right) \in P \times Q \quad \forall p \in P, \forall q \times Q\right\} \\
& =\left\{a \in A, b \in B \mid a p a^{-1} \in P, b q b^{-1} \in Q \quad \forall p \in P, \quad \forall q \in Q\right\} \\
& =\left\{a \in A \mid a p a^{-1} \in P \forall p \in P\right\} \times\left\{b \in B \mid b q b^{-1} \in Q \quad \forall q \in Q\right\} \\
& =N_{A}(P) \times N_{B}(Q)
\end{aligned}
$$

Which gives

$$
n_{p}(A) n_{p}(B)=\frac{|A| \cdot|B|}{\left|N_{A}(P)\right| \cdot\left|N_{B}(Q)\right|}=\frac{|A| \cdot|B|}{\left|N_{A}(P) \times N_{B}(Q)\right|}=\frac{|A \times B|}{\left|N_{A \times B}(P \times Q)\right|}=n_{p}(A \times B)
$$

Let $|A|=p^{\alpha} \cdot m$ and $|B|=p^{\beta} \cdot \tilde{n}$. Let $P \in \operatorname{Syl}_{p}(A)$ and $Q \in \operatorname{Syl}_{p}(B)$. Then, $P \times Q \leq A \times B$ and $|P \times Q|=|P| \cdot|Q|=p^{\alpha+\beta}$ which implies $P \times Q \in \operatorname{Syl}_{p}(A \times B)$.
(Couldn't figure out the opposite direction for this proof. What is left is from the online solution manual).
Now, let $R \in \operatorname{Syl}_{p}(A \times B)$. Define $X=\{x \in A \mid(x, y) \in R$ for some $y \in B\}$ and $Y=\{y \in B \mid(x, y) \in R$ for some $x \in A\}$. Then $X \leq A$ because

$$
\begin{aligned}
x_{1}, x_{2} \in X & \Longrightarrow\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in R \text { for some } y_{1}, y_{2} \in B \\
& \Longrightarrow\left(x_{1} x_{2}^{-1}, y_{1}, y_{2}^{-1}\right) \in R \\
& \Longrightarrow x_{1}, x_{2}^{-1} \in X \\
& \Longrightarrow X \leq A
\end{aligned}
$$

Similarly, we get $Y \leq B$. Note that if $(x, y) \in R$ then $|(x, y)|=p^{k}$ for some k. We also know $|(x, y)|=\operatorname{lcm}(|x|,|y|)$ so that x and y have p-power order. So, X and Y are p-subgroups, as otherwise some nonidentity element does not have p-power order. By Sylow's Theorem, there exist Sylow p-subgroups P and Q of A and B, respectively so that X is contained in P and Y is contained in Q, i.e., $X \leq P$ and $Y \leq Q$. Then, $R \leq X \times Y \leq P \times Q$. But since $|R|=p^{\alpha+\beta}=|P \times Q|$ implies $R=P \times Q$.
Thus any Sylow p-subgroup of $A \times B$ has the form $P \times Q$ for some $P \in \operatorname{Syl}_{p}(A)$ and $Q \in \operatorname{Syl}_{p}(B)$.

By induction we can show that the numbers of Sylow p-subgroups of a direct product is the product of the numbers of Sylow p-subgroups of the factors. The base case is done above. Suppose for some $k \geq 2$, for an arbitrary direct product of groups $G=\prod_{i=1}^{k} G_{i}$, every Sylow p-subgroup of G is a product of Sylow p-subgroups of the G_{i} 's, and vice versa. Let $G=\prod_{i=1}^{k+1}$ be arbitrary. Then every Sylow p-subgroup of G is of the form $P \times P_{k+1}$ where $P \leq \prod_{i=1}^{k} G_{i}$ and $P_{k+1} \leq G_{k+1}$ are Sylow p-subgroups, and vice versa. By the induction hypothesis, $P=\prod_{i=1}^{k} P_{i}$ for Sylow p-subgroups $P_{1} \leq G_{i}$. Thus every Sylow p-subgroup of G has the form $\prod_{i=1}^{k} P_{i}$ for some Sylow p-subgroups $P_{i} \leq G_{i}$ and vice versa. Also,

$$
n_{p}\left(\prod_{i=1}^{k} G_{i}\right)=\prod_{i=1}^{k} n_{p}\left(G_{i}\right)
$$

5.4.15 If A and B are normal subgroups of G such that G / A and G / B are both abelian, prove that $G /(A \cap B)$ is abelian.

Proof. Since G / A and G / B are abelian then by Proposition 7, part (4), (D\&F, $\S_{5} .4$), $G^{\prime} \leq A$ and $G^{\prime} \leq B$. Then $G^{\prime} \leq A \cap B$. Then by the same proposition, we have $A \cap B \unlhd G$ and $G /(A \cap B)$ is abelian.
5.5.1 Let H and K be groups, let φ be a homomorphism from K into $\operatorname{Aut}(H)$ and, as usual, identify H and K as subgroups of $G=H \underset{\varphi}{H}$. Prove that $C_{K}(H)=\operatorname{ker} \varphi$.

Proof.

$$
\begin{aligned}
\operatorname{ker} \varphi & =\left\{k \in K \mid \varphi(k)=1_{\operatorname{Aut}(H)}\right\} \\
& =\{k \in K \mid \varphi(k)(h)=h \quad \forall h \in H\} \\
& =\{k \in K \mid k \cdot h=h \quad \forall h \in H\} \\
& =\left\{k \in K \mid k h k^{-1}=h \quad \forall h \in H\right\} \\
& =\left\{k \in K \mid k \in C_{G}(H)\right\} \\
& =K \cap C_{G}(H) \\
& =C_{K}(H)
\end{aligned}
$$

Alternate proof:

Let $(1, k) \in C_{K}(H)$. Then for all $(h, 1) \in H$,

$$
\begin{aligned}
(h, 1) & =\left((1, k)(h, 1)\left(1, k^{-1}\right)\right) \\
& =(1 k \cdot h, k)\left(1, k^{-1}\right) \\
& =(\varphi(k)(h), k)\left(1, k^{-1}\right) \\
& =\left((\varphi(k)(h)) k \cdot 1, k k^{-1}\right) \\
& =(\varphi(k)(h) \varphi(k)(1), 1) \\
& =(\varphi(k)(h 1), 1) \\
& =(\varphi(k)(h), 1) .
\end{aligned}
$$

Thus, $h=\varphi(k)(h)$, which means $\varphi(k)=1_{\text {Aut }(H)}$. Identifying k as $(1, k)$, we have $(1, k) \in$ $\operatorname{ker} \varphi$.
5.5.2 Let H and K be groups, let φ be a homomorphism from K into $\operatorname{Aut}(H)$ and, as usual, identify H and K as subgroups of $G=\underset{\varphi}{\rtimes} K$. Prove that $C_{H}(K)=N_{H}(K)$.

Proof. Since the centralizer of K is always contained in the normalizer of K, it suffices to show that $N_{H}(K) \leq C_{H}(K)$. Let $(h, 1) \in N_{H}(K)$. Then for all $(1, k) \in K$, we have

$$
\begin{aligned}
K \ni(h, 1)(1, k)\left(h^{-1}, 1\right) & =(h 1 \cdot 1,1 k)\left(h^{-1}, 1\right) \\
& =(h, k)\left(h^{-1}, 1\right) \\
& =\left(h k \cdot h^{-1}, k 1\right) \\
& =\left(h \varphi(k)\left(h^{-1}\right), k\right) .
\end{aligned}
$$

But $\left(h \varphi(k)\left(h^{-1}\right), k\right) \in K \Longrightarrow\left(h \varphi(k)\left(h^{-1}\right), k\right)=(1, k)$, or in other words,

$$
(h, 1)(1, k)\left(h^{-1}, 1\right)=\left(h \varphi(k)\left(h^{-1}\right), k\right)=(1, k)
$$

so that $(h, 1) \in C_{H}(K)$.
6.1.17 Prove that $G^{(i)}$ is a characteristic subgroup of G for all i.

Proof. We proceed by induction on i. For $i=0$, we have $G^{0}=G$, so trivially, G is characteristic in G. Now, let $i \geq 1$ and suppose $G^{(i)}$ is characteristic in G. Let $\sigma \in \operatorname{Aut}(G)$. Notice that if $[x, y] \in G^{(i)}$, then

$$
\sigma([x, y])=\sigma\left(x^{-1} y^{-1} x y\right)=\sigma(x)^{-1} \sigma(y)^{-1} \sigma(x) \sigma(y)=[\sigma(x), \sigma(y)]
$$

and so $\sigma([x, y]) \in G^{(i)}$, which means for any commutator $[x, y] \in G^{(i)}$, we have $\sigma([x, y])$ is again a commutator of $G^{(i)}$. So, $\sigma\left(\left[G^{(i)}, G^{(i)}\right]\right)=\left[\sigma\left(G^{(i)}\right), \sigma\left(G^{(i)}\right)\right]$. Therefore,

$$
\sigma\left(G^{(i+1)}\right)=\sigma\left(\left[G^{(i)}, G^{(i)}\right]\right)=\left[\sigma\left(G^{(i)}\right), \sigma\left(G^{(i)}\right)\right]=\left[G^{(i)}, G^{(i)}\right]=G^{(i+1)}
$$

which completes the induction.

1. The following exercise classifies all groups of order 231 up to isomorphism: Let G be a group of order 231.
(a) Prove that there is a unique $P \in \operatorname{Syl}_{7}(G)$ and a unique $H \in S y l_{11}(G)$ and that H lies in the center $Z(G)$.

Proof. Let $|G|=231$. notice that $231=3 \cdot 7 \cdot 11$. So by Sylow's Theorem, we get the following:

$$
\begin{array}{r}
n_{7} \equiv 1 \quad \bmod 7 \text { and } n_{7} \mid 3 \cdot 11 \Longrightarrow n_{7}=1 \\
n_{11} \equiv 1 \quad \bmod 11 \text { and } n_{11} \mid 3 \cdot 7 \Longrightarrow n_{11}=1
\end{array}
$$

Let $H \in \operatorname{Syl}_{11}(G)$. Since $|H|=11$, then $H \cong \mathbb{Z} / 11$. By Proposition 16 (D\&F,§4.4) we have $\operatorname{Aut}(\mathbb{Z} / 11) \cong(\mathbb{Z} / 11 \mathbb{Z})^{\times}$. Thus, $\operatorname{Aut}(H) \cong(\mathbb{Z} / 11 \mathbb{Z})^{\times} \cong \mathbb{Z} / 10$. Since H is the unique Sylow 11-subgroup, $H \unlhd G$, i.e., $N_{G}(H)=G$. Recall that $N_{G}(H) / C_{G}(H)$ is isomorphic to a subgroup of $\operatorname{Aut}(H)$. Thereore,

$$
G / C_{G}(H)=N_{G}(H) / C_{G}(H) \cong J \leq \operatorname{Aut}(H) \cong \mathbb{Z} / 10
$$

for some subgroup $J \leq \operatorname{Aut}(H)$. Since H is cyclic of prime order, it is abelian, which means $H \leq C_{G}(H)$, and so

$$
H \leq C_{G}(H) \leq G
$$

Since $[G: H]=\left[G: C_{G}(H)\right] \cdot\left[C_{G}(H): H\right]$, then $\left[G: C_{G}(H)\right]$ divides $[G: H]=$ $|G| /|H|=21$. Since $G / C_{G}(H) \cong J$ then $|J|$ divides 21 . And since $J \leq \mathbb{Z} / 10$, then $|J|$ divides 10. But since $\operatorname{gcd}(10,21)=1$, then J is trivial. So, $\left[G: C_{G}(H)\right]=1$, which implies $C_{G}(H)=G$ and so $H \leq Z(G)$.
(b) Prove that there exist elements $x, y \in G$ such that $o(x)=3$ and $o(y)=7$. Let $K=\langle x, y\rangle$. Prove that $G=H K$ and that K is a normal subgroup of G which has trivial intersection with H. Deduce that G is isomorphic to $H \times K$.

Proof. Since 3 and 7 are primes dividing $|G|$, then there exists $x, y \in G$ where $|x|=3$ and $|y|=7$ by Cauchy's Theorem. Let $K=\langle x, y\rangle$. Since $H \unlhd G$ and $K \leq G$, then $H K \leq G$. Notice that $|\langle x, y\rangle|=|\langle x\rangle \times\langle y\rangle|$ since the map $\left(x^{i}, y^{j}\right) \mapsto x^{i} y^{j}$ is an isomorphism. So, $|K|=|\langle x, y\rangle|=|\langle x\rangle \times\langle y\rangle|=3 \cdot 7$.
Since every non-identity element of H and K have order 11 and 3, respectively, then $H \cap K=\{1\}$. Then by Theorem $9,(\mathrm{D} \& \mathrm{~F}, \S 5.4)$ we have $G \cong H \times K$.
(c) Show that there are precisely two isomorphism types of groups of order 231 (use our criterion for semidirect products to describe the two possible isomorphism types of K). Let $H=\langle z\rangle$. Give a presentation with generators and relations of the two isomorphism types of G.

Proof. Since H is cyclic, of prime order, and has one generator, it cannot be broken down into a direct product or semidirect product. However, we can write K as a semidirect product. Since $\langle x, y\rangle \cong\langle x\rangle \times\langle y\rangle,\langle y\rangle \unlhd K$ and $\langle x\rangle \cap\langle y\rangle=\{1\}$, then

$$
K=\langle x, y\rangle \cong\langle y\rangle \underset{\varphi}{\rtimes}\langle x\rangle
$$

where $\varphi:\langle x\rangle \rightarrow \operatorname{Aut}(\langle y\rangle)$. By the First Isomorphism Theorem, $\varphi(\langle x\rangle) \cong\langle x\rangle / \operatorname{ker} \varphi$. Since $\langle x\rangle \cong \mathbb{Z} / 3$ and $\operatorname{ker} \varphi \unlhd\langle x\rangle$, then $|\operatorname{ker} \varphi|$ is either 3 or 1 . If it is 3 , then $|\varphi(\langle x\rangle)|=1$ which means φ is the trivial map. Thus,

$$
\langle y\rangle_{\varphi}^{\rtimes}\langle x\rangle \cong\langle y\rangle \times\langle x\rangle
$$

and so $K \cong\langle y\rangle \times\langle x\rangle$. Now, if $|\operatorname{ker} \varphi|=1$ then $|\varphi(\langle x\rangle)|=3$. Since $\langle y\rangle \cong \mathbb{Z} / 7$, then $\operatorname{Aut}(\langle y\rangle) \cong(\mathbb{Z} / 7 \mathbb{Z})^{\times} \cong \mathbb{Z} / 6$. Thus Aut $(\langle y\rangle)$ has order 6 and is cyclic. Let $\sigma \in \operatorname{Aut}(\langle y\rangle)$ be given by the map $y \mapsto y^{2}$. Since $|\varphi(\langle x\rangle)|=3$, then $\varphi(\langle x\rangle)=\left\{i d, \sigma, \sigma^{2}\right\}$. So, φ can be defined in one of the following ways:

$$
\varphi_{1}:\langle x\rangle \rightarrow \operatorname{Aut}(\langle y\rangle) \text { by } x \mapsto \sigma
$$

or

$$
\varphi_{2}:\langle x\rangle \rightarrow \operatorname{Aut}(\langle y\rangle) \text { by } x \mapsto \sigma^{2}
$$

We claim that in fact $\langle y\rangle \underset{\varphi_{1}}{\rtimes}\langle x\rangle \cong\langle y\rangle \underset{\varphi_{2}}{\rtimes}\langle x\rangle$. In order to show this, we show that the following defined an isomorphism between these two semidirect products:

$$
\Phi:\langle y\rangle \underset{\varphi_{1}}{\rtimes}\langle x\rangle \rightarrow\langle y\rangle \underset{\varphi_{2}}{\rtimes\langle x\rangle} \quad \text { by } \quad\left(y^{a}, x^{b}\right) \mapsto\left(y^{a}, x^{2 b}\right)
$$

Φ is a homomorphism:

$$
\begin{aligned}
\Phi\left(\left(y^{a_{1}}, x^{b_{1}}\right)\left(y^{a_{2}}, x^{b_{2}}\right)\right) & \left.=\Phi\left(y^{a_{1}} \varphi_{2}\left(x^{b_{1}}\right)\left(y^{a_{2}}\right), x^{b_{1}+b_{2}}\right)\right) \\
& \left.=\Phi\left(y^{a_{1}} \sigma^{2}\left(x^{b_{1}}\right)\left(y^{a_{2}}\right), x^{b_{1}+b_{2}}\right)\right) \\
& \left.=\Phi\left(y^{a_{1}} \sigma\left(x^{2 b_{1}}\right)\left(y^{a_{2}}\right), x^{b_{1}+b_{2}}\right)\right) \\
& =\left(y^{a_{1}} \sigma\left(x^{2 b_{1}}\right)\left(y^{a_{2}}\right), x^{2\left(b_{1}+b_{2}\right)}\right) \\
& =\left(y^{a_{1}}, x^{2 b_{1}}\right)\left(y^{a_{2}}, x^{2 b_{2}}\right) \\
& =\Phi\left(\left(y^{a_{1}}, x^{b_{1}}\right)\right) \Phi\left(\left(y^{a_{2}}, x^{b_{2}}\right)\right)
\end{aligned}
$$

Φ is injective:
If $\Phi((c, d))=\Phi\left(\left(c^{\prime}, d^{\prime}\right)\right)$ then $(c, 2 d)=\left(c^{\prime}, 2 d^{\prime}\right)$. Then $c=c^{\prime} \bmod 7$. Likewise, $2 d=2 d^{\prime}$ $\bmod 3 \Longrightarrow 2\left(d-d^{\prime}\right)=0 \bmod 3 \Longrightarrow d=d^{\prime} \bmod 3$. So, $(c, d)=\left(c^{\prime}, d^{\prime}\right)$.
Φ is surjective:
Given $(c, d) \in\langle y\rangle \underset{\varphi_{2}}{\rtimes}\langle x\rangle$, then $\Phi((c, 2 d))=(c, 4 d)=(c, d)($ since $4 d=1 \bmod 3)$.
Therefore, the semidirect products induced by φ_{1} and φ_{2} are precisely the same. In sum, we have the following two possibilities for K :

$$
K \cong\langle y\rangle \times\langle x\rangle \cong \mathbb{Z} / 7 \times \mathbb{Z} / 3
$$

or

$$
K \cong\langle y\rangle \underset{\varphi_{1}}{\rtimes}\langle x\rangle \cong \underset{\mathbb{Z}_{1}}{7} \underset{\varphi_{1}}{7 \times} \mathbb{Z} / 3
$$

Therefore, we get

$$
\begin{equation*}
G=H \times K \cong \mathbb{Z} / 11 \times \mathbb{Z} / 7 \times \mathbb{Z} / 3 \tag{1}
\end{equation*}
$$

or

$$
\begin{equation*}
G=H \times K \cong \mathbb{Z} / 11 \times \mathbb{Z} / \underset{\varphi_{1}}{7 \rtimes \mathbb{Z} / 3} \tag{2}
\end{equation*}
$$

Then, a presentation for G in (1) is:

$$
\left\langle a, b, c \mid a^{11}=b^{7}=c^{3}=1, a b=b a, b c=c b, a c=c a\right\rangle .
$$

To determine the presentation for G in (2), we identify y, x with r, s, respectively, and consider what relations the multiplication in the semidirect product $\langle y\rangle \underset{\varphi_{1}}{\rtimes}\langle x\rangle$ induce on r, s through the map $\left(y^{a}, x^{b}\right) \mapsto r^{a} s^{b}$. We find that a presentation for G in (2) is

$$
\left\langle r, s \mid r^{7}=s^{3}=1, r^{2} s=s r\right\rangle .
$$

2. The following exercise uses Sylow's Theorems to prove that all groups of order $9 \cdot 49 \cdot 13$ are solvable. Let G be a group of this order. Prove that G has a unique Sylow 13 -subgroup G_{1}. Then prove that G / G_{1} has a unique Sylow 7 -subgroup Y_{2}. Let G_{2} be the complete preimage of Y_{2} in G. Show that

$$
1=G_{0} \leq G_{1} \leq G_{2} \leq G
$$

is a chain of subgroups of G such that G_{1} is normal in G_{2} and G_{2} is normal in G and such that the successive quotients are abelian. Conclude that G is solvable.

Proof. Let $|G|=9 \cdot 49 \cdot 13$. Then by Sylow's Theorem we find that:

$$
n_{13} \equiv 1 \quad \bmod 13 \text { and } n_{13} \mid 9 \cdot 49=441
$$

So we consider divisors of 441: $1,3,7,9,21,49,63,147,441$, and positive integers which are congruent to $1 \bmod 13: 1,14,27,40,53,66,79,92,105,118,131,144,157, \ldots$, 429,442 . So we see that $n_{13}(G)=1$. Now, let $G_{1} \in \operatorname{Syl}_{13}(G)$. Then $\left|G_{1}\right|=13, G_{1} \unlhd G$, and $\left|G / G_{1}\right|=9 \cdot 7^{2}$. Again by the Sylow Theorems

$$
n_{7}\left(G / G_{1}\right) \equiv 1 \quad \bmod 7 \quad \text { and } n_{7} \mid 9 \Longrightarrow n_{7}\left(G / G_{1}\right)=1
$$

Let $Y_{2} \in \operatorname{Syl7}\left(G / G_{1}\right)$. By the 4th Isomorphism Theorem, there exists a subgroup $G_{2} \leq G$ so that $G_{1} \unlhd G_{2}$ and $G_{2} / G_{1} \cong Y_{2}$. Since $\left|Y^{2}\right|=7^{2}$, then

$$
\left|G_{2} / G_{1}\right|=\frac{\left|G_{2}\right|}{\left|G_{1}\right|}=\frac{\left|G_{2}\right|}{13} \Longrightarrow\left|G_{2}\right|=13 \cdot 7^{2}
$$

Now notice:

- G_{1} is of prime order and thus, cyclic, so $G_{1} /\{1\}$ is abelian.
- G_{2} / G_{1} is abelian since $\left|G_{2} / G_{1}\right|=7^{2}$, and all groups of order a square of a prime are abelian.
- G / G_{2} is abelian since $\left|G / G_{2}\right|=3^{2}$, and all groups of order a square of a prime are abelian.
and
- $G_{1} \unlhd G_{2}$ since $G_{1} \unlhd G$
- $G_{2} \unlhd G$ since Y_{2} is the unique Sylow 7-subgroup of $\left(G / G_{1}\right)$ and thus $Y_{2} \unlhd\left(G / G_{1}\right)$ and by the 4th Isomorphism Theorem,

$$
G_{2} / G_{1} \cong Y_{2} \unlhd G / G_{1} \Longleftrightarrow G_{2} \unlhd G
$$

So,

$$
1=G_{0} \unlhd G_{1} \unlhd G_{2} \unlhd G
$$

is a finite chain of subgroups so that $G_{0} \unlhd G_{1}, G_{1} \unlhd G_{2}$, and $G_{2} \unlhd G$ and successive quotient are abelian. So, G is solvable.
5.4.17 If K is a normal subgroup of G and K is cyclic, prove that $G^{\prime} \leq C_{G}(K)$.

Proof. First note that the automorphism groups an infinite cyclic group is abelian. To see this, let $\alpha \in \operatorname{Aut}(\mathbb{Z})$. Then $\alpha(1)=n$ for some $n \in \mathbb{Z}$. Then for some $m \in \mathbb{Z}$, we have $\alpha(m)=1$. So,

$$
1=\alpha(m)=\alpha(m \cdot 1)=m \cdot \alpha(1)=m n
$$

So n must be 1 or -1 , i.e., there are only 2 automorphisms in $\operatorname{Aut}(\mathbb{Z})$ and thus $\operatorname{Aut}(\mathbb{Z})$ is abelian.
Since K is cyclic, $\operatorname{Aut}(K)$ is abelian. Since $K \unlhd G$, then $G=N_{G}(K)$. Then

$$
G / C_{G}(K)=N_{G}(K) / C_{G}(K) \cong H \leq \operatorname{Aut}(K)
$$

for some subgroup $H \leq \operatorname{Aut}(K)$. Since $\operatorname{Aut}(K)$ is abelian, H is abelian, which means $G / C_{G}(K)$ is abelian. Then by Proposition 7, Part (4) (D\&F, §5.4, $G^{\prime} \leq C_{G}(K)$.
5.4.18 Let $K_{1}, K_{2}, \ldots, K_{n}$ be non-abelian simple groups and let $G=K_{1} \times K_{2} \times \cdots \times K_{n}$. Prove that every normal subgroup of G is of the for G_{I} for some subset I of $\{1,2 \ldots, n\}$ (where $\left.G_{I}\right)$ is defined in Exercise 2 of section 1.

Proof. Let $i \in\{1,2, \ldots, n\}$ and $a_{i} \in K_{i}$ where $a_{i} \neq 1_{K_{i}}$. Suppose $N \unlhd G$ and let $x \in N$ with $x=\left(a_{1}, \ldots, a_{i}, \ldots, a_{n}\right)$. Since K_{i} is non-abelian then there exists $g_{i} \in K_{i}$ such that $g_{i} a_{i} \neq a_{i} g_{i}$. Let $\tilde{g}_{i}=\left(1, \ldots, 1, g_{i}, 1 \ldots, 1\right)$ where g_{i} appears in the i th coordinate. Since $x \in N \unlhd G$ and $\tilde{g}_{i} \in G$,

$$
\tilde{g}_{i} x^{-1} \tilde{g}_{i} \in N
$$

and so $\left[\tilde{g}_{i}, x\right] \in N$ where

$$
1_{g} \neq\left[\tilde{g}_{i}, x\right]=\left(1, \ldots, 1,\left[g_{i}, a_{i}\right], 1 \ldots, 1\right) \in N .
$$

Define $A_{i}=\left\{h_{i} \in K_{i} \mid\left(1, \ldots, 1, h_{i}, 1, \ldots 1\right) \in N\right\}$. Then $A_{i} \leq K_{i}$. Moreover, $A_{i} \neq\left\{1_{K_{i}}\right\}$ because by the previous argument $\left[g_{i}, a_{i}\right] \neq 1_{K_{i}}$ and $\left[g_{i}, a_{i}\right] \in A_{i}$. We claim that $A_{i}=K_{i}$. Since K_{i} is simple, it suffices to show that $A_{i} \unlhd K_{i}$. let $h_{i} \in K_{i}$ and $g_{i} \in K_{i}$. Then

$$
g_{i} h_{i} g_{i}^{-1} \in A_{i} \Longleftrightarrow\left(1, \ldots, 1, g_{i} h_{i} g_{i}^{-1}, 1, \ldots, 1\right) \in N \Longleftrightarrow \tilde{g}_{i} \tilde{h}_{i} \tilde{g}_{i}^{-1} \in N
$$

The latter is true since $\tilde{h}_{i} \in N$ and $N \unlhd G$. Let $I \subseteq\{1,2, \ldots, n\}$ where $i \in I$ if and only if $A_{i}=K_{i}$. Then if $j \in\{1, \ldots n\}$ and there exists $x=\left(a_{1}, \ldots, a_{j}, \ldots, a_{n}\right) \in N$ with $a_{j} \neq 1_{K_{j}}$. By the previous argument, $K_{j}=A_{j} \subseteq N$. Therefore $N=G_{I}$.
7.1.7 The center of a ring R is $\{z \in R \mid z r=r z$ for all $r \in R\}$. Prove that the center of a ring is a subring that contains the identity. Prove that the center of a division ring is a field.

Proof. Since $1_{R} r=r 1_{R}$ for all $r \in R$ then 1_{R} is in the center of R. Let x, y be in center of R and $r \in R$. Then

$$
(x-y) r=x r-y r=r x-r y=r(x-y) \Longrightarrow x-y \text { is in the center of } R,
$$

and

$$
(x y) r=x(y r)=x(r y)=(x r) y=(r x) y=r(x y) \Longrightarrow x y \text { is in the center of } R .
$$

Thus the center of R is a subring of R. Now suppose R is a division ring. If x and y are in the center of R, then certainly $x y=y x$ so that the center of R is commutative. Since R is a division ring, there exists $z \in R$ so that $x z=z x=1$ for $x \neq 0_{R}$ in the center of R. Let $r \in R$. Then,

$$
z r=z\left(r \cdot 1_{R}\right)=z r(x z)=z(x r) z=(z x) r z=\left(1_{R}\right) r z=r z
$$

so z is in the center of R and thus all elements of the center of R not equal to 0 have multiplicative inverses. Thus the center of R is a field.
7.1.17 Let R and S be rings. Prove that the direct product $R \times S$ is a ring under componentwise addition and multiplication. Prove that $R \times S$ is commutative if and only if both R and S are commutative. Prove that $R \times S$ has an identity if and only if both R and S have identities.

Proof. We know that $(R \times S,+)$ is an abelian group since both R and S are abelian groups. Let $r_{2}, r_{2}, r_{2} \in R$ and $s_{1}, s_{2}, s_{3} \in S$. Observe that

$$
\begin{aligned}
\left(r_{1}, s_{1}\right)\left(\left(r_{2}, s_{2}\right)\left(r_{3}, s_{3}\right)\right) & =\left(r_{1}, s_{1}\right)\left(r_{2} r_{3}, s_{2} s_{3}\right) \\
& =\left(r_{1} r_{2} r_{3}, s_{1} s_{2} s_{3}\right) \\
& =\left(r_{1} r_{2}, s_{1} s_{2}\right)\left(r_{2}, s_{3}\right) \\
& =\left(\left(r_{1}, s_{1}\right)\left(r_{2}, s_{2}\right)\right)\left(r_{3}, s_{3}\right)
\end{aligned}
$$

so that • is associative. Also,

$$
\begin{aligned}
\left(r, s_{1}\right)\left(\left(r_{2}, s_{2}\right)+\left(r_{3}, s_{3}\right)\right) & =\left(r_{1}, s_{1}\right)\left(r_{2}+r_{3}, s_{2}+s_{3}\right) \\
& =\left(r_{1}\left(r_{2}+r_{3}\right), s_{1}\left(s_{2}+s_{3}\right)\right) \\
& =\left(r_{1} r_{2}+r_{1} r_{3}, s_{1} s_{2}+s_{1} s_{3}\right) \\
& =\left(r_{1} r_{2}, s_{1} s_{2}\right)+\left(r_{1} r_{3}, s_{1} s_{3}\right) \\
& =\left(r_{1}, s_{1}\right)\left(r_{2}, s_{2}\right)+\left(r_{1}, s_{1}\right)\left(r_{3}, s_{3}\right)
\end{aligned}
$$

so that the left distributive law holds in $R \times S$. Similarly for the right distributive law. Therefore, $R \times S$ is a ring. Now,

$$
\begin{aligned}
R, S \text { commutative rings } & \Longleftrightarrow r_{1} r_{2}=r_{2} r_{1}, s_{1} s_{2}=s_{2} s_{1} \\
& \Longleftrightarrow\left(r_{1} r_{2}, s_{1} s_{2}\right)=\left(r_{2} r_{1}, s_{2} s_{1}\right) \\
& \Longleftrightarrow\left(r_{1}, s_{1}\right)\left(r_{2}, s_{2}\right)=\left(r_{2}, s_{2}\right)\left(r_{1}, s_{1}\right) \\
& \Longleftrightarrow R \times S \text { is a commutative ring. }
\end{aligned}
$$

Let $r \in R, s \in S$. Then

$$
\begin{aligned}
R, S \text { contain a } 1 & \Longleftrightarrow r 1_{R}=1_{R} r=r, s 1_{S}=1_{S} s=s \\
& \Longleftrightarrow\left(r 1_{R}, s 1_{S}\right)=\left(1_{R} r, 1_{S} s\right)=(r, s) \\
& \Longleftrightarrow(r, s)\left(1_{R}, 1_{S}\right)=\left(1_{R}, 1_{S}\right)(r, s)=(r s) \\
& \Longleftrightarrow R \times S \text { contains a } 1 .
\end{aligned}
$$

7.3.19 Prove that if $I_{1} \subseteq I_{2} \subseteq \ldots$ are ideals of R then $\bigcup_{n=1}^{\infty} I_{n}$ is an ideal of R.

Proof. Since each I_{n} is a subgroup of $(R,+)$, then $\bigcup_{n=1}^{\infty} I_{n}$ is nonempty. Let $x, y \in \bigcup_{n=1}^{\infty} I_{n}$. Then $x \in I_{n_{x}}, y \in I_{n_{y}}$ for some $I_{n_{x}}, I_{n_{y}} \in \bigcup_{n=1}^{\infty} I_{n}$. Without loss of generality, assume $n_{x} \leq n_{y}$ so that $I_{n_{x}} \subseteq I_{n_{y}}$. Then, $x, y \in I_{n_{y}}$ and so $x-y \in I_{n_{y}}$. Thus, $x-y \in \bigcup_{n=1}^{\infty} I_{n}$ so that $\bigcup_{n=1}^{\infty} I_{n} \leq(R,+)$. Let $r \in R$ and $a \in \bigcup_{n=1}^{\infty} I_{n}$. Then there exists $n \in \mathbb{N}$ so that $a \in I_{n}$. Since I_{n} is an ideal of R, then ar, $r a \in I_{n}$. So ar, $r a \in \bigcup_{n=1}^{\infty} I_{n}$.
7.3.24 Let $\varphi: R \rightarrow S$ be a ring homomorphism.
(a) Prove that if J is an ideal of S then $\varphi^{-1}(J)$ is an ideal of R. Apple this to the special case when R is a subring of S and φ is the inclusion homomorphism to deduce that if J is an ideal of S then $J \cap R$ is an ideal of R.

Proof. Let J be an ideal of $S, x \in \varphi^{-1}(J)$ and $r \in R$. Then

$$
\varphi(x r)=\varphi(x) \varphi(r) \in J
$$

because $\varphi(x) \in J, \varphi(r) \in S$ and J is an ideal of S. Thus, $x r \in \varphi^{-1}(J)$. Similarly, we get $r x \in \varphi^{-1}(J)$. Thus $\varphi^{-1}(J)$ is an ideal of R.

Now suppose R is a subring of S, J is an ideal of S and φ is the inclusion ring homomorphism. Then $\varphi^{-1}(J)=J \cap R$, which is an ideal of R by what was proved above.
(b) Prove that if φ is surjective and I is an ideal of R then $\varphi(I)$ is an ideal of S. Give and example where this fails if φ is not surjective.

Proof. Let $y \in \varphi(I)$ and $s \in S$. Since $y \in \varphi(I)$ there exists $x \in I$ so that $\varphi(x)=y$. Since φ is surjective, there exists $r \in R$ so that $\varphi(r)=s$. Since I is an ideal of R, then $x r, r x \in I$ so that

$$
\varphi(x r)=\varphi(x) \varphi(r)=y s \in \varphi(I)
$$

and similarly we get $\varphi(r x) \in \varphi(I)$. Therefore, $\varphi(I)$ is an ideal of S.

Consider the ring homomorphism $\varphi: R \rightarrow R[x]$ where φ is the inclusion map. This map is not surjective and the ideal R of R has image $\varphi(R)=R$, which is not an ideal of $R[x]$ since $x r \notin R[x]$.
7.1.14 Let x be a nilpotent element of the commutative ring R. Let $m \in \mathbb{Z}^{+}$be the smallest so that $x^{m}=0$.
(a) Prove that x is either zero or a zero divisor.

Proof. If $m=1$, then $0=x^{m}=x$. If $m>1$ then $0=x^{m}=x^{m-1} \cdot x$ so that x is a zero divisor.
(b) Prove that $r x$ is nilpotent for all $r \in R$.

Proof. Let $r \in R$. Then $(r x)^{m}=r^{m} x^{m}$ since R is commutative and so $(r x)^{m}=r^{m} \cdot 0=$ 0.
(c) Prove that $1+x$ is a unit in R.

Proof. Notice that
$(1-(-x))\left(1-(-x)-(-x)^{2}-\cdots-(-x)^{m-1}\right)=1-(-x)^{m}=1-(-1) x^{m}=1-0=1$.
(d) Deduce that the sum of a nilpotent element and a unit is a unit.

Proof. Let s be a unit in R with $s t=t s=1$. Then $t x$ is nilpotent so that $(1+t x)$ is a unit. Since the product of units is a unit, then $s(1+t x)=s+s t x=s+x$ is a unit.
7.2.6 Let S be a ring with identity $1 \neq 0$. Let $n \in \mathbb{Z}^{+}$and let A be an $n \times n$ matrix with entries from S whose i, j entry is $a_{i j} /$ Let $E_{i j}$ be the element of $M_{n}(S)$ whose i, j entry is 1 and whose other entries are all 0 .
(a) Prove that $E_{i j} A$ is the matrix whose $i^{\text {th }}$ row equals the $j^{\text {th }}$ row of A and all other rows are zero.

Proof. Let $E_{i j}=\left(e_{i j}\right), A=\left(a_{i j}\right)$, and $\left(b_{p q}\right)=E_{i j} A$. Then $\left(b_{p q}\right)=\sum_{k=1}^{n} e_{p k} a_{k q}$. The $i^{\text {th }}$ row of $\left(b_{p q}\right)$ consists of elements of the form $e_{i k} a_{k q}$ for each $1 \leq k \leq n$. If $k \neq j$, then $e_{i k}=0$ so that $b_{p q}=e_{i k} a_{k q}=0$. When $p \neq i$ the $p^{t h}$ row of $\left(b_{p q}\right)$ contains all zeros. When $k=j$, then $b_{p q}=e_{i k} a_{k q}=e_{i j} a_{j q}=1 \cdot a_{j q}=a_{j q}$. The collection of all $a_{j q}$ for each $1 \leq q \leq n$ is precisely the $j^{\text {th }}$ row of A.
(b) Prove that $A E_{i j}$ is the matrix whose $j^{\text {th }}$ column equals the $i^{\text {th }}$ column of A and all other columns are zero.

Proof. Let $E_{i j}=\left(e_{i j}\right), A=\left(a_{i j}\right)$, and $\left(c_{p q}\right)=A E_{i j}$. Then $\left(c_{p q}\right)=\sum_{k=1}^{n} a_{p k} e_{k q}$. The $j^{\text {th }}$ column of $\left(c_{p q}\right)$ consists of elements of the form $a_{p k} e_{k j}$ for each $1 \leq k \leq n$. If $k \neq i$, then $e_{k j}=0$ so that $c_{p q}=0$. When $q \neq j$ the $q^{t h}$ column of $\left(c_{p q}\right)$ contains all zeroes. When $k=i$, then $c_{p q}=a_{p i} e_{i j}=a_{p i}$. The collection of all $a_{p i}$ for each $1 \leq p \leq n$ is precisely the $i^{\text {th }}$ column of A.
(c) Deduce that $E_{p q} A E_{r s}$ is the matrix whose p, s entry is $a_{q r}$ and all other entries are zero.

Proof. By parts (a), the $p^{t h}$ row of $E_{p q} A$ is the $q^{\text {th }}$ row of A, and all other entries 0 . Then by part (b), $E_{p q} A E_{r s}$ is the matrix whose $s^{\text {th }}$ column is the $r^{\text {th }}$ column of $E_{p q} A$, which is all zeroes except for the $p^{t h}$ row, whose entry is the q, r entry of A, and all other entries are zero. Thus the p, s entry of $E_{p q} A E_{r s}$ is $a_{q r}$.
7.2.7 Prove that the center of the ring $M_{n}(R)$ is the set of scalar matrices. [Use the preceding exercise.]

Proof. We need to show $Z\left(M_{n}(R)\right)=\{r I \mid r \in R\}$.
$" \subseteq "$ Suppose $A=\left(a_{i j}\right) \in Z\left(M_{N}(R)\right)$. By the previous exercise, the p, t entry of $E_{p q} A E_{r s}$ is $a_{q r}$. If $q \neq r$, then $a_{q r}=0$. Thus, A must be a diagonal matrix. If $q=r$, then the p, s entry of $E_{p s} A$ is $a_{q q}$. But notice that the $p^{t h}$ row of $E_{p r} A$ is the $s^{t h}$ row of B so that the p, s entry of $E_{p s} A$ is $a_{s s}$. Thus, $a_{q q}=a_{s s}$ for all q and s. Hence $A=a I$ for some $a \in R$. So, $Z\left(M_{n}(R)\right) \subseteq\{r I \mid r \in R\}$.
" \supseteq " Let $B \in M_{n}(R)$, and $A=a I \in\{r I \mid r \in R\}$. Notice that since R is commutative $a B=B a$ and $a I=I a$. Then

$$
A B=(a I) B=a(I B)=a B=B a=(B I) a=B(I a)=B a I=B A
$$

7.3.21 Prove that every (two-sided) ideal of $M_{n}(R)$ is equal to $M_{n}(J)$ for some (two-sided) ideal J of R. [Use Exercise $6(\mathrm{c})$] of section 2 to show first that the set of entries of matrices in an ideal of $M_{n}(R)$ form an ideal in R.]

Proof. Let I be an ideal of $M_{n}(R)$ and define $J=\left\{a_{i j} \mid\left(a_{i j}\right) \in I\right\}$ be the set containing entries of matrices of I. We first show that J is an ideal of R and then show $I=M_{n}(J)$.
J is an ideal of R :
Since I is an ideal, then $\left(0_{i j}\right) \in I$ so that $0 \in J$. Let $\left(a_{i j}\right),\left(b_{i j}\right) \in I$ and $E_{p q}, E_{r s} \in M_{n}(R)$ be defined as in exercise 6 of section 7.2. Since I is an ideal, $E_{p q}\left(a_{i j}\right) E_{r s}$ and $E_{p q}\left(a_{i j}\right) E_{r s}$ are in I. Notice that by exercise 6, section 7.2 , the p, s entry of $E_{p q}\left(a_{i j}\right) E_{r s}$ is $a_{q r}$. Likewise, the p, s entry of $E_{p q}\left(b_{i j}\right) E_{r s}$ is $b_{q r}$. Then,

$$
\begin{equation*}
E_{p q}\left(a_{i j}\right) E_{r s}-E_{p q}\left(b_{i j}\right) E_{r s} \tag{1}
\end{equation*}
$$

and the p, s entry of (1) is $a_{q r}-b_{q r}$ so that J is closed under subtraction. Thus $(J,+) \leq$ $(R,+)$. Now, let $d \in R, a_{q r} \in J$. Then, $d \mathcal{I}\left(a_{i j}\right)=d\left(a_{i j}\right) \in I$ with q, r entry $d a_{q r}$ so that $d a_{q r} \in J$, and similarly, $a_{q r} d \in J$. Thus J is an ideal of R.
$I=M_{n}(J):$
" \subseteq " Given any matrix in I, its entries are elements of J so that $I \subseteq M_{n}(J)$.
" \supseteq " Let $\left(a_{i j}\right) \in M_{n}(J)$. Then each entry of $\left(a_{i j}\right)$ is an element of J. Since J consists of elements which come from entries of matrices in I, we can find matrices $\left(b_{i j}\right)$ in I with at least one element matching each entry in $\left(a_{i j}\right)$, then multiply by $E_{p q}$ and $E_{r s}$ on the left and right of the $\left(b_{i j}\right.$'s as needed to write $\left(a_{i j}\right)$ as the sum of matrices of the form $E_{p q}\left(b_{i j}\right) E_{r s}$. Then, each of these lie in I, so that their sum also does. Hence, $\left(a_{i j}\right) \in I$.
7.3.34 Let I and J be ideals of R.
(a) Prove that $I+J$ is the smallest ideal of R containing both I and J.

Proof. We first show that $I+J$ is an ideal of R. Since $0_{R} \in I, J$ then $0_{R}=0_{R}+$ $0_{R} \in I+J$, so $I+J \neq \emptyset$. Let $x_{1}, x_{2} \in I$ and $y_{1}, y_{2} \in J$. Then $x_{1}+y_{1}, x_{2}+y_{2} \in I+J$ and

$$
\left(x_{1}+y_{1}\right)-\left(x_{2}+y_{2}\right)=x_{1}+y_{1}-x_{1}-y_{2}=\left(x_{1}-x_{2}\right)+\left(y_{1}-y_{2}\right) \in I+J
$$

since $x_{1}-x_{2} \in I$ and $y_{1}-y_{2} \in J$. So $(I+J,+) \leq(R,+)$. Let $r \in R$. Then

$$
r\left(x_{1}+y_{1}\right)=r x_{1}+r y_{1} \in I+J \text { and }\left(x_{1}+y_{1}\right) r=x_{1} r+y_{1} r \in I+J
$$

since $r x_{1}, x_{1} r \in I$ and $r y_{1}, y_{1} r \in J$. Hence $I+J$ is an ideal of R.
To see that $I+K$ contains I and K, notice that since $0_{R} \in J$, then $I=$ $I+0_{R} \subseteq I+J$. Similarly, $0_{R} \in I$ and so $J=0_{R}+J \subseteq I+J$.

Now suppose K is an ideal of R containing both I and J. Let $x_{1} \in I$ and $y_{1} \in J$ and $x_{1}+y_{1} \in I+J$. Since K contains I and J, then $x_{1}, y_{1} \in K$. So $x_{1}+y_{1} \in K$ since K is closed under addition. Thus, $I+J \subseteq K$, so that $I+J$ is the smallest ideal of R containing both I and J.
(b) Prove that $I J$ is an ideal contained in $I \cap J$.

Proof. Recall that

$$
I J=\left\{\sum_{k=1}^{n} a_{k} b_{k} \mid n \in \mathbb{Z}^{+}, a_{k} \in I, b_{k} \in J, \forall 1 \leq k \leq n\right\}
$$

We first show that $I J$ is an ideal of R. Since $0_{R} \in I$ and $0_{R} \in J$ then $0_{R} \cdot 0_{R}=$ $0_{R} \in I J$. Let $\alpha, \beta \in I J$, where $\alpha=\sum_{k=1}^{n} a_{k} b_{k}$ and $\beta=\sum_{k=1}^{m} c_{k} d_{k}$. Note that since $c_{k} \in I$, and I is a subgroup, then $-c_{k} \in I$ for all $1 \leq k \leq m$. So

$$
\begin{aligned}
\alpha-\beta & =\sum_{k=1}^{n} a_{k} b_{k}+\sum_{k=1}^{m}\left(-c_{k}\right) d_{k} \\
& =a_{1} b_{1}+\cdots+a_{n} b_{n}+\left(-c_{1}\right) d_{1}+\cdots+\left(-c_{m}\right) d_{m} \in I J
\end{aligned}
$$

because $\alpha-\beta$ is a finite sum of products of the form $i j$ where $i \in I, j \in J$. So $(I J,+) \leq(R,+)$. Let $r \in R$. Note that since I is an ideal, then $r\left(a_{k}\right) \in I$ for all $1 \leq k \leq n$ and since J is an ideal, then $b_{k} r \in J$ for all $1 \leq k \leq n$. So

$$
r \alpha=\sum_{k=1}^{n}\left(r a_{k}\right) b_{k} \in I J \text { and } \alpha r=\sum_{k=1}^{n} a_{k}\left(b_{k} r\right) \in I J .
$$

Thus, $I J$ is an ideal of R.
Let $\alpha \in I J$ be defined as before and notice that since I and J are ideals, then $a_{k} b_{k} \in I$ and $a_{k} b_{k} \in J$ for all $1 \leq k \leq n$. Thus, $\alpha \in I \cap J$. Hence $I J \subseteq I \cap J$.
7.4.13 (a) Prove that if P is a prime ideal of S then either $\varphi^{-1}(P)=R$ or $\varphi^{-1}(P)$ is a prime ideal of R. Apply this to the special case when R is a subring of S and φ is the inclusion homomorphism to deduce that if P is a prime ideal of S then $P \cap R$ is either R or a prime ideal of R.

Proof. We know from a previous exercise that since P is an ideal of S, then $\varphi^{-1}(P)$ is an ideal of R. If $\varphi^{-1}(P)=R$ then $\varphi^{-1}(P)$ is not a prime ideal (since prime ideals must be proper). If $\varphi^{-1}(P) \neq R$, then let $r_{1} r_{2} \in \varphi^{-1}(P)$. Then $\varphi\left(r_{1}\right) \varphi\left(r_{2}\right)=\varphi\left(r_{1} r_{2}\right) \in P$. Since P is a prime ideal then either $\varphi\left(r_{1}\right)$ or $\varphi\left(r_{2}\right) \in P$. Hence $r_{1} \in \varphi^{-1}(P)$ or $r_{2} \in \varphi^{-1}(P)$. Therefore, $\varphi^{-1}(P)$ is a prime ideal of R.

Suppose R is a subring of S and let $\varphi(r)=r$ for all $r \in R$. Then $\varphi^{-1}(P)=$ $P \cap R$. By what was just shown, either $P \cap R=R$ (which means $P \subseteq R$) or $P \cap R$ is a prime ideal of R.
(b) Prove that if M is a maximal ideal of S and φ is surjective then $\varphi^{-1}(M)$ is a maximal ideal of R. Give and example to show that this need not be the case if φ is not surjective.

Proof. We know from a previous exercise that since M is an ideal of S, then $\varphi^{-1}(M)$ is an ideal of R. Notice that $\varphi^{-1}(M) \neq R$. Otherwise, since φ is surjective, then $\varphi(R)=S$ and if $\varphi^{-1}(M)=R$, then $S=\varphi(R)=M$, which contradicts the fact that $M \neq S$ (since M, being a maximal ideal of S, must be a proper ideal of S).

Let $M^{\prime}=\varphi^{-1}(M)$ and consider the quotient R / M^{\prime}. We claim R / M^{\prime} is a field so that M^{\prime} is maximal in R. Let $\pi: S \rightarrow S / M$ be the natural projection homomorphism. Then define

$$
\psi=\pi \circ \varphi: R \rightarrow S / M
$$

Since both φ and π are surjective ring homomorphisms, then ψ is a surjective ring homomorphism, i.e., $\psi(R)=S / M$. Then

$$
\begin{aligned}
\operatorname{ker} \psi & =\left\{r \in R \mid \psi(r)=0_{S / M}\right\} \\
& =\{r \in R \mid \psi(r)=M\} \\
& =\{r \in R \mid \pi(\varphi(r))=M\} \\
& =\{r \in R \mid \varphi(r) \in M\} \\
& =\left\{r \in R \mid r \in \varphi^{-1}(M)\right\} \\
& =\left\{r \in R \mid r \in M^{\prime}\right\} .
\end{aligned}
$$

By the First Isomorphism Theorem,

$$
R / M^{\prime}=R / \operatorname{ker} \psi \cong \psi(R)=S / M
$$

Therefore, R / M^{\prime} and S / M are isomorphic as rings. Since M is a maximal ideal of S, then S / M is a field. We want that R / M^{\prime} and S / M are isomorphic as fields. Then R / M^{\prime} is a field, and M^{\prime} is maximal in R. In order to check this,
we need that $\psi\left(1_{R}\right)=1_{S / M}=1_{S}+M$. Since $\pi\left(1_{S}\right)=1_{S}+M$, we only need to show that $\varphi\left(1_{R}\right)=1_{S}$. To that end, notice that since φ is surjective, there exists $r \in R$ so that $\varphi(r)=1_{S}$. Then

$$
1_{S}=\varphi(r)=\varphi\left(r \cdot 1_{R}\right)=\varphi(r) \varphi\left(1_{R}\right)=1_{S} \varphi\left(1_{R}\right)=\varphi\left(1_{R}\right)
$$

Let $\varphi: \mathbb{Z} \rightarrow \mathbb{Q}$ be the inclusion ring homomorphism. Then $\left\{0_{\mathbb{Q}}\right\}$ is maximal in \mathbb{Q}. Then $\varphi^{-1}\left(\left\{0_{\mathbb{Q}}\right\}\right)=0_{\mathbb{Z}}$, but $\left\{0_{\mathbb{Z}}\right\}$ is not a maximal in \mathbb{Z}.
7.4.36 Assume R is commutative. Prove that the set of prime ideals in R has a minimal element with respect to inclusion (possibly the zero ideal). [Use Zorn's Lemma.]

Proof. Let $\mathcal{S}=\{P \mid P$ is a prime ideal of $R\}$. Since R is a ring with $1 \neq 0$, then R contains a proper ideal. Since every proper ideal in a ring with $1 \neq 0$ is contained in a maximal ideal, then R has a maximal ideal. Since maximal ideals are prime ideals, then \mathcal{S} is nonempty. We use as partial order on \mathcal{S} inverse inclusion " \supseteq ". Let \mathcal{B} be a chain in \mathcal{S}. Define

$$
U=\bigcap_{J \in \mathcal{B}} J
$$

We claim that U is an upper bound of \mathcal{B}. Since $J \supseteq U$ for all $J \in \mathcal{B}$, then if we can show $U \in \mathcal{S}$, then U is an upper bound for \mathcal{B}. Then, applying Zorn's Lemma, we conclude that \mathcal{S} has maximal element with respect to reverse inclusion, i.e., \mathcal{S} has a minimal element with respect to inclusion.
$(U,+) \leq(R,+)$: Since $0_{R} \in J$ for all $J \in \mathcal{B}$, then $0_{R} \in U$ and so $U \neq \emptyset$. Let $a, b \overline{\in U}$. Then $a, b, a-b \in J$ for all $J \in \mathcal{B}$ and so $a-b \in U$.
\underline{U} is an ideal of R : Let $r \in R, a \in U$. Then $a, a r, r a \in J$ for all $J \in \mathcal{B}$ and so ar, $r a \in U$.
U is a prime ideal of R : Let $a b \in U$. Then $a b \in J$ for all $J \in \mathcal{B}$. By way of contradiction, suppose without loss of generality that $a \notin U$. So, there exists $J_{x} \in \mathcal{B}$ such that $a \notin J^{\prime}$. Since $a b \in J^{\prime}$ and J^{\prime} is a prime ideal, then $b \in J^{\prime}$. Then $a \notin K$ for all $K \in \mathcal{B}$ contained in J^{\prime}. For all such $K, b \in K$ since each K is a prime ideal. We claim that

$$
\bigcap_{K \subseteq J^{\prime}, K \in \mathcal{B}} K=\bigcap_{J \in \mathcal{B}} J=U .
$$

Then $b \in U$, and U is a prime ideal of R. Since the LHS is an intersection of a subset of ideals in \mathcal{B}, then the LHS is contained in the RHS. Conversely, given any point $r \in U$, it is necessarily in all ideals of \mathcal{B}. In particular, $r \in K$ for all $K \subseteq J^{\prime}, K \in \mathcal{B}$. Therefore, the equality above holds.
7.4.37 A commutative ring R is called a local ring if it has a unique maximal ideal. Prove that if R is a local ring with maximal ideal M then every element of $R-M$ is a unit. Prove conversely that if R is a commutative ring with 1 in which the set of nonunits forms an ideal M, then R is a local ring with unique maximal ideal M.

Proof. Let R is a local ring with unique maximal ideal M. Let $u \in R-M$ and consider the principal ideal (u). Notice that $(u)=R$. Otherwise, (u) is a proper ideal of R, and thus contained in M. Then $u \in M$, which is a contradiction. So, $1 \in(u)$, which means there exists $v \in R$ for which $u v=v u=1_{R}$. Hence, u is a unit.

Let R be a commutative ring with 1 in which the set of nonunits forms an ideal M. Suppose I is an ideal of R containing M. If I contains a unit, then $I=R$. If I contains no units, then $I \subseteq M$, and since $M \subseteq I$, then $I=M$. Therefore, M is a maximal ideal.

To show uniqueness of M, suppose N is another maximal ideal of R. Since N is a proper ideal of R, it contains no units and so $N \subseteq M$. If $N \neq M$, then N is not maximal, since it is contained in a proper ideal of R. Therefore $N=M$.

Let R be a ring with identity $1 \neq 0$
7.6.1 An element e is called an idempotent if $e^{2}=e$. Assume e is an idempotent in R and $e r=r e$ for all $r \in R$. Prove that $R e$ and $R(1-e)$ are two-sided ideals of R and that $R \cong R e \times R(1-e)$. Show that e and $1-e$ are identities for the subrings $R e$ and $R(1-e)$ respectively.

Proof. Re is a two-sided ideal:

$$
0 e=0 \in R e \Longrightarrow R e \neq \emptyset
$$

If $r e, s e \in R e$, then $r e-s e=(r-s) e \in R e \Rightarrow R e \leq R$
If $t \in R$, then tre, ret $=r t e \in R e \Longrightarrow R e$ is a two-sided ideal of R.
$R(1-e)$ is a two-sided ideal:

$$
\begin{array}{r}
0(1-e)=0 \in R(1-e) \\
\Longrightarrow R(1-e) \neq \emptyset
\end{array}
$$

$$
\text { If } r(1-e), s(1-e) \in R(1-e)
$$

$$
\text { then } r(1-e)-s(1-e)=(r-s)(1-e) \in R(1-e)
$$

$$
\Longrightarrow R(1-e) \leq R
$$

$$
\begin{array}{r}
\text { If } t \in R, \text { then } \operatorname{tr}(1-e) \in R(1-e) \text { and } \\
r(1-e) t=r(t-e t)=r(t-t e)=r t(1-e) \in R(1-e) \\
\Longrightarrow R(1-e) \text { is a two-sided ideal of } R
\end{array}
$$

We show that $R \cong R e \times R(1-e)$ as groups, then show that they are isomorphic as rings as well. To that end, observe that $R e \cap R(1-e)=0$ because

$$
\begin{aligned}
x \in R e \cap R(1-e) & \Longrightarrow r e=s(1-e) \text { for some } r, s \in R \\
& \Longrightarrow r e=s-s e \\
& \Longrightarrow r e^{2}=s e-s e^{2} \\
& \Longrightarrow r e=s e-s e=0 \\
& \Longrightarrow x=0
\end{aligned}
$$

Also observe that for any $r \in R$, we have $r=r e+r-r e=r e+r(1-e)$. Therefore, $R \subseteq R e+R(1-e)$. By the previous two observations, we apply the recognition theorem for direct products of groups (Theorem $9, \S 5.4, \mathrm{D} \& \mathrm{~F}$) to conclude that the map

$$
\varphi: R e \times R(1-e) \rightarrow R \text { by } \varphi(a, b)=a+b
$$

is in isomorphism between groups. We claim that φ is in fact a ring isomorphism as well. To that end, let $\left(r_{1} e, s_{1}(1-e)\right)\left(r_{2} e, s_{2}(1-e)\right) \in R e \times R(1-e)$. Notice that
$(1-e)^{2}=1-2 e+e=1-e$ so that $1-e$ is idempotent.

$$
\begin{aligned}
\varphi\left(\left(r_{1} e, s_{1}(1-e)\right)\left(r_{1} e, s_{1}(1-e)\right)\right) & =\varphi\left(\left(r_{1} r_{2} e, s_{1} s_{2}(1-e)\right)\right) \\
& =r_{1} r_{2} e+s_{1} s_{2}(1-e)=r_{1} r_{2} e^{2}+s_{1} s_{2}(1-e)^{2} \\
& =r_{1} e r_{2} e+r_{1} s_{2}\left(e-e^{2}\right)+r_{2} s_{1}\left(e-e^{2}\right)+s_{1}(1-e) s_{2}(1-e) \\
& =\left(r_{1} e+s_{1}(1-e)\right)\left(r_{2} e+s_{2}(1-e)\right) \\
& =\varphi\left(\left(r_{1} e, s_{1}(1-e)\right)\right) \cdot \varphi\left(\left(r_{1} e, s_{1}(1-e)\right) .\right.
\end{aligned}
$$

So $R \cong R e \times R(1-e)$ as rings.
e and $1-e$ are the identities of $R e$ and $R(1-e)$, respectively:
If $r e \in R e$, then $e r e=r e^{2}=r e$ and $r e^{2}=r e$ $\Longrightarrow e$ is an identity in $R e$.

$$
\begin{array}{r}
\text { If } r(1-e) \in R(1-e), \\
\text { then }[r(1-e)](1-e)=r(1-e)^{2}=r(1-e) \\
\text { and }(1-e) r(1-e)=(r-e r)(1-e)=r(1-e)^{2}=r(1-e) \\
\Longrightarrow 1-e \text { is an identity in } R(1-e) .
\end{array}
$$

7.6.3 Let R and S be rings with identities. Prove that every ideal of $R \times S$ is of the form $I \times J$ where I is an ideal of R and J is an ideal of S.

Proof. Let K be an ideal of $R \times S$ and define

$$
\begin{gathered}
I=\{a \in R \mid(a, b) \in K \text { for some } b \in S\} \\
J=\{b \in R \mid(a, b) \in K \text { for some } a \in S\} .
\end{gathered}
$$

We show that $I \times J=K$ and that I and J are ideals of R and S respectively. To that end, we certainly have $K \subseteq I \times K$ by definition of I and J. Then, let $a \in I$ and $b \in J$ and $(a, b) \in I \times J$. Therefore, there exists $b^{\prime} \in S$ and $a^{\prime} \in R$ so that $\left(a, b^{\prime}\right),\left(a^{\prime}, b\right) \in K$. Since R and S have multiplicative identities, $\left(1_{R}, 0\right),\left(0,1_{S}\right) \in K$. Notice that since K is closed under multiplication and addition,

$$
(a, b)=\left(1_{R}, 0\right)\left(a, b^{\prime}\right)+\left(0,1_{S}\right)\left(a^{\prime}, b\right) \in K
$$

So, $K=I \times J$. To see that I and J are ideals, first notice that by definition of I, we have $(I,+) \leq(R,+)$. Let $a_{1} \in I$. So there exists $b_{1} \in S$ so that $\left(a_{1}, b_{1}\right) \in K$. Let $r \in R$. Then $\left(r, 1_{S}\right) \in K$. Then since K is closed under multiplication,

$$
\begin{aligned}
\left(r, 1_{S}\right)\left(a_{1}, b_{1}\right) & =\left(r a_{1}, b_{1}\right) \in K \\
\left(a_{1}, b_{1}\right)\left(r, 1_{S}\right) & =\left(a_{1} r, b_{1}\right) \in K
\end{aligned}
$$

so $r a_{1}, a_{1} r \in I$ so that I is an ideal of R. Similarly, we get that J is an ideal of S.
Now, Let I and J be ideals of R and S respectively. We know that the direct product $I \times J$ is a subgroup of $R \times S$. Let $(a, b) \in I \times J$ and $(r, s) \in R \times S$. Then

$$
\begin{aligned}
& (a, b)(r, s)=(a r, b s) \in I \times J \\
& (r, s)(a, b)=(r a, s b) \in I \times J
\end{aligned}
$$

because I and J are ideals themselves. Therefore, $I \times J$ is an ideal of $R \times S$.
7.6.5 Let $n_{1}, n_{2}, \ldots, n_{k}$ be integers which are relatively prime in pairs: $\left(n_{i}, n_{j}\right)=1$ for all $i \neq j$.
(a) Show the Chinese Reminder Theorem implies that for any $a_{1}, \ldots, a_{k} \in \mathbb{Z}$ there is a solution $x \in \mathbb{Z}$ to the simultaneous congruences

$$
x \equiv a_{1} \bmod n_{1}, \quad x \equiv a_{2} \bmod n_{2}, \ldots, x \equiv a_{k} \bmod n_{k}
$$

and the solution x is unique $\bmod n=n_{1} n_{2} \ldots n_{k}$.
Proof. First, notice that since $\operatorname{gcd}\left(n_{i}, n_{j}\right)=1$ for all $i \neq j$. For any fixed $i \neq j$, there exists integers x, y so that $1=n_{i} x+n_{j} y$. Thus, any element of \mathbb{Z} can be written as a multiple of a linear combination of n_{i} and n_{j}. Therefore, the ideals $\left(n_{i}\right)$ and $\left(n_{j}\right)$ are comaximal in \mathbb{Z}. Consider the map
$\varphi: \mathbb{Z} \rightarrow \mathbb{Z} /\left(n_{1}\right) \times \mathbb{Z} /\left(n_{2}\right) \times \cdots \times \mathbb{Z} /\left(n_{k}\right)$ by $z \mapsto\left(z+\left(n_{1}\right), z+\left(n_{2}\right), \ldots, z+\left(n_{k}\right)\right)$.
By the Chinese Remainder Theorem, this map is surjective and

$$
\operatorname{ker}(\varphi)=\left(n_{1}\right)\left(n_{2}\right) \ldots\left(n_{k}\right)
$$

Then by the First Isomorphism Theorem,

$$
\begin{equation*}
\mathbb{Z} /\left(n_{1}\right)\left(n_{2}\right) \ldots\left(n_{k}\right) \cong \mathbb{Z} /\left(n_{1}\right) \times \mathbb{Z} /\left(n_{2}\right) \times \cdots \times \mathbb{Z} /\left(n_{k}\right) \tag{1}
\end{equation*}
$$

Consider the element $\overline{\left(a_{i}\right)}=\left(a_{1}+\left(n_{1}\right), a_{2}+\left(n_{2}\right), \ldots, a_{k}+\left(n_{k}\right)\right)$. Since φ is surjective, there exists $x \in \mathbb{Z}$ so that $\varphi(x)=\overline{\left(a_{i}\right)}$. By (1),

$$
x+\left(n_{1}\right)\left(n_{2}\right) \ldots\left(n_{k}\right)=\left(x+\left(n_{1}\right), x+\left(n_{2}\right), \ldots, x+\left(n_{k}\right)\right) .
$$

So,

$$
\begin{aligned}
\left(a_{1}+\left(n_{1}\right), a_{2}+\left(n_{2}\right), \ldots, a_{k}+\left(n_{k}\right)\right) & =\overline{\left(a_{i}\right)} \\
& =\varphi(x) \\
& =x+\left(n_{1}\right)\left(n_{2}\right) \ldots\left(n_{k}\right) \\
& =\left(x+\left(n_{1}\right), x+\left(n_{2}\right), \ldots, x+\left(n_{k}\right)\right)
\end{aligned}
$$

which implies

$$
x \equiv a_{1} \bmod n_{1}, \quad x \equiv a_{2} \bmod n_{2}, \ldots, x \equiv a_{k} \bmod n_{k}
$$

The isomorphism in (1) is in particular injective. Therefore, x is unique mod $n=n_{1} n_{2} \ldots n_{k}$.
(b) Let $n_{i}^{\prime}=n / n_{i}$ be the quotient of n by n_{i}, which is relatively prime to n_{i} by assumption. Let t_{i} be the inverse of $n_{i}^{\prime} \bmod n_{i}$. Prove that the solution x in (a) is given by

$$
x=a_{1} t_{1} n_{1}^{\prime}+a_{2} t_{2} n_{2}^{\prime}+\cdots+a_{k} t_{k} n_{k}^{\prime} \bmod n .
$$

Note that the elements t_{i} can be quickly found by the Euclidean Algorithm as described in Section 2 of the Preliminaries chapter (writing $a n_{i}+b n_{i}^{\prime}=\left(n_{i}, n_{i}^{\prime}\right)=1$ gives $t_{i}=b$) and that these then quickly give the solutions to the system of congruences above for any choice of $a_{1}, a_{2}, \ldots, a_{k}$.

Proof. We need to show that the definition of x given above is in fact a solution, i.e., that

$$
\varphi(x)=\varphi\left(\begin{array}{ll}
\sum_{i=1}^{k} a_{i} t_{i} n_{i}^{\prime} & \bmod n
\end{array}\right)=\overline{\left(a_{i}\right)} .
$$

Notice that by definition, n_{j} divides $n_{i}^{\prime}=n / n_{i}$ for all $i \neq j$. So the j th coordinate of $\varphi(x)$ is

$$
a_{1} t_{1} n_{1}^{\prime}+a_{2} t_{2} n_{2}^{\prime}+\cdots+a_{k} t_{k} n_{k}^{\prime} \bmod n+\left(n_{j}\right)=a_{j}
$$

since t_{j} is the inverse of $n_{j}^{\prime} \bmod n_{j}$. So $\varphi(x)=\overline{\left(a_{i}\right)}$.
8.1.4 Let R be a Euclidean Domain.
(a) Prove that if $(a, b)=1$ and a divides $d c$ then a divides c. More generally, show that if a divides $b c$ with nonzero a, b, then $\frac{a}{\operatorname{gcd}(a, b)}$ divides c.

Proof. Since $(a, b)=1$ then there exists $x, y \in R$ so that $a x+b y=1$. Since a divides $b c$, there exist $z \in R$ so that $a z=b c$. Then

$$
\begin{aligned}
a x+b y & =1 \\
a c x+(b c) y & =c \\
a(c x+y z) & =c \Longrightarrow a \mid c .
\end{aligned}
$$

More generally, if $\operatorname{gcd}(a, b)=d$ and since a divides $b c$, then there exists $x, y, z \in R$ so that $a x+b y=d$ and $a z=b c$. Moreover, since d divides a there exists $m \in R$ with $d m=a$. Therefore,

$$
\begin{aligned}
& a x+b y=d \\
& a c x+(b c) y=d c \\
& a(c x+y z)=d c \\
& a m(c x+y z)=(d m) c \\
& a m(c x+y z)=a c \\
& m(c x+y z)=c \quad \\
& \Longrightarrow m=a / d \text { divides } c . \\
& \hline m \\
&\hline m \text { (Cancellation in } R \text { since } a \neq 0 .)
\end{aligned}
$$

(b) Consider the Diophantine Equation $a x+b y=N$ where a, b and N are integers and a, b are nonzero. Suppose x_{0}, y_{0} is a solution: $a x_{0}+b y_{0}=N$. Prove that the full set of solutions to this equation is given by

$$
x=x_{0}+m \frac{b}{\operatorname{gcd}(a, b)}, \quad y=y_{0}-m \frac{a}{\operatorname{gcd}(a, b)}
$$

as m ranges over the integers. [If x, y is a solution to $a x+b y=N$, show that $a\left(x-x_{0}\right)=b\left(y_{0}-y\right)$ and use (a).]

Proof. Suppose x, y is a solution to $a x+b y=N$. Since x_{0}, y_{0} is also a solution, then

$$
\begin{aligned}
a x+b y & =a x_{0}+b y_{0} \\
a x-a x_{0} & =b y_{0}-b y \\
a\left(x-x_{0}\right) & =b\left(y_{0}-y\right) .
\end{aligned}
$$

Letting $c=\left(y_{0}-y\right)$ in part (a), we have $\frac{a}{\operatorname{gcd}(a, b)}$ divides $y_{0}-y$. Hence, there exists $m \in \mathbb{Z}$ with

$$
m \frac{a}{\operatorname{gcd}(a, b)}=y_{0}-y \Longrightarrow y=y_{0}-m \frac{a}{\operatorname{gcd}(a, b)}
$$

Then

$$
\begin{aligned}
a x+b y_{0}-m \frac{a b}{\operatorname{gcd}(a, b)} & =a x_{0}+b y_{0} \\
a x-m \frac{a b}{\operatorname{gcd}(a, b)} & =a x_{0} \\
a\left(x-m \frac{b}{\operatorname{gcd}(a, b)}\right) & =a x_{0} \\
x & =x_{0}+m \frac{b}{\operatorname{gcd}(a, b)}
\end{aligned}
$$

8.1.11 Let R be a commutative ring with 1 and let a and b be nonzero elements of R. A least common multiple of a and b is an element e of R such that
(i) $a \mid e$ and $b \mid e$, and
(ii) if $a \mid e^{\prime}$ and $b \mid e^{\prime}$ then $e \mid e^{\prime}$.
(a) Prove that a least common multiple of a and b (if such exists) is a generator for the unique largest principal ideal contained in $(a) \cap(b)$.

Proof. Suppose e is the least common multiple of a and b. Then a and b both divide e so that $(e) \subseteq(a) \cap(b)$. Suppose $e^{\prime} \in R$ and $\left(e^{\prime}\right)$ is an ideal for which $(e) \subseteq\left(e^{\prime}\right) \subseteq(a) \cap(b)$. Thus a and b each divide e^{\prime}. Since e is the least common multiple of a and b, then e divides e^{\prime}, which means $\left(e^{\prime}\right) \subseteq(e)$, i.e., $(e)=\left(e^{\prime}\right)$ so that e is a generator for the unique largest principal ideal contained in $(a) \cap(b)$.
(b) Deduce that any two nonzero elements in a Euclidean Domain have a least common multiple which is unique up to multiplication by a unit.

Proof. Suppose e and e^{\prime} are two least common multiples of a and b. Then e divides e^{\prime} and e^{\prime} divides e. Then there exists $x, y \in R$ with $e x=e^{\prime}$ and $e^{\prime} y=e$. So, $\left(e^{\prime} y\right) x=e \Longrightarrow y x=1 \Longrightarrow x, y$ are units. Therefore, least common multiples of a and b are associate.
(c) Prove that in a Euclidean Domain the least common multiple of a and b is $\frac{a b}{\operatorname{gcd}(a, b)}$.
Proof. Let $d=\operatorname{gcd}(a, b)$ and $e=\operatorname{lcm}(a, b)$. Notice

$$
\frac{a b}{d}=a \cdot \frac{b}{d} \text { and } \frac{a b}{d}=b \cdot \frac{a}{d}
$$

so that a and b both divide $\frac{a b}{d}$. So, e divides $\frac{a b}{d}(*)$. Since a divides e, then there exists $x \in R$ so that $a x=e$. Then $a b x=b e$ so that $\frac{a b}{e} \cdot x=b$ and thus $\frac{a b}{e}$ divides b. Similarly, $\frac{a b}{e}$ divides a. Thus, $\frac{a b}{e}$ divides d. Then there exists $z \in R$ so that $\frac{a b}{e} \cdot z=d$. Then $\frac{a b}{d} \cdot z=e$ so that $\frac{a b}{d}$ divides $e(* *)$. So by $(*)$ and $(* *)$, we have that $e=\frac{a b}{d}$.
9.1.6 Prove that (x, y) is not a principle ideal in $\mathbb{Q}[x, y]$.

Proof. Note that

$$
(x, y)=\{x \cdot g(x, y)+y \cdot h(x, y) \mid g(x, y), h(x, y) \in \mathbb{Q}[x, y]\}
$$

By way of contradiction, suppose $(f(x, y))=(x, y)$ for some nonzero polynomial $f(x, y) \in \mathbb{Q}[x, y]$. Since $f(x, y) \in(x, y)$, then f has no constant term. If f has any term with the variable x, then the polynomial $y \notin(f(x, y))$. Thus, f has no term with the variable x. Similarly, if f has any term with the variable y, then $x \notin(f(x, y))$. Hence, f has no term with x and no term with y, i.e., f is a constant polynomial. But then $f \notin(x, y)$, a contradiction. Thus, (x, y) is not a principle ideal in $\mathbb{Q}[x, y]$.
9.1.7 Let R be a commutative ring with 1 . Prove that a polynomial ring in more than one variable over R is not a Principal Ideal Domain.

Proof. Let R be a commutative ring with 1 and $n \in \mathbb{Z}^{+}, n>1$. Suppose for contradiction that $R\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ is a Principal Ideal Domain. Since

$$
R\left[x_{1}, x_{2}, \ldots, x_{n-1}\right]\left[x_{n}\right]=R\left[x_{1}, x_{2}, \ldots, x_{n}\right]
$$

then by Corollary $8,(\mathrm{D} \& \mathrm{~F} \S 8.2), R\left[x_{1}, x_{2}, \ldots, x_{n-1}\right]$ is a field, which is a contradiction, since no polynomial ring is a field.
8.2.4 Let R be an integral domain. Prove that if the following two conditions hold then R is a Principle Ideal Domain:
(i) any two nonzero elements a and b in R have a greatest common divisor which can be written in the form $r a+s b$ for some $r, s \in R$, and
(ii) if $a_{1}, a_{2}, a_{3}, \ldots$ are nonzero elements of R such that $a_{i+1} \mid a_{i}$ for all i, then there is a positive integer N such that a_{n} is a unit time a_{N} for all $n \geq N$.

Proof. Let I be a nonzero ideal of R and $S=\{(x) \mid x \in I\}$ be a set ordered by inclusion. Since $0_{R} \in I$ then the ideal $\left\{0_{r}\right\} \in S$, i.e. $S \neq \emptyset$. Let \mathcal{C} be a chain in S. We claim that \mathcal{C} has a maximal element, and thus has an upper bound in $S .{ }^{1}$ Suppose there exists no maximal element in \mathcal{C}. Let $\left(a_{1}\right)$ be an ideal in \mathcal{C}. Since $\left(a_{1}\right)$ is not maximal, there exists $\left(a_{2}\right) \in \mathcal{C}$ for which $\left(a_{1}\right) \subsetneq\left(a_{2}\right)$. Similarly, there exists $\left(a_{3}\right) \in \mathcal{C}$ for which $\left(a_{1}\right) \subsetneq\left(a_{2}\right) \subsetneq\left(a_{3}\right)$. Given a chain of ideals in the chain \mathcal{C},

$$
\left(a_{1}\right) \subsetneq\left(a_{2}\right) \subsetneq\left(a_{3}\right) \subsetneq \cdots \subsetneq\left(a_{n}\right),
$$

since $\left(a_{n}\right)$ is not maximal, there exists $\left(a_{n+1}\right) \in \mathcal{C}$ with $\left(a_{n}\right) \subsetneq\left(a_{n+1}\right)$. Since \mathcal{C} has no maximal element, this chain will continue indefinitely. So, $a_{i+1} \mid a_{i}$ for all i, and there does not exists an integer N after which $\left(a_{n}\right)=\left(a_{N}\right)$ for all $n \geq N$, which is a contradiction of (ii). Now, we claim that I is in fact a maximal element of S. Let (a) be a maximal element of S. Then $a \in I$ so that $(a) \subseteq I$. Let $b \in I$. By (i), $\operatorname{gcd}(a, b)=d$ exists and $d=r a+s b$ for some $r, s \in R$. Since $a, b \in I$, then $r a, s b \in I$ and $d=r a+s b \in I$. Since $d \mid a$ and $d \mid b$, then $(a) \subseteq(d)$ and $(b) \subseteq(d)$. Since (a) is maximal, then we must have $(a)=(d)$, which means $(b) \subseteq(d)=(a)$ and hence $b \in(a)$. Therefore $I=(a)$, which means R is a Principal Ideal Domain.
8.2.6 Let R be an integral domain and suppose that every prime ideal in R is principal. This exercise proves that every ideal of R is principal, i.e., R is a P.I.D.
(a) Assume that the set of ideals of R that are not principal is nonempty and prove that this set has a maximal element under inclusion (which, by hypothesis, is not prime). [Use Zorn's Lemma.]

Proof. Let $S=\{I \mid I \subseteq R$ is a nonprincipal ideal $\}$ be a set ordered by inclusion. Suppose S is nonempty and let \mathcal{C} be a chain in S. Define $J=\bigcup_{C \in \mathcal{C}} C$. Then J is an upper bound for \mathcal{C}. It remains to show that J is an element of S. Once this is verified, then S contains a maximal element by Zorn's Lemma. Since the union of totally ordered ideals is an ideal, then J is an ideal. Suppose for contradiction that J was principal with $(j)=J$ for some $j \in R$. Since $j \in J$, then $j \in C_{j}$ for some $C_{j} \in \mathcal{C}$. So $(j) \subseteq C_{j}$ and $C_{j} \subseteq J=(j)$, which means $C_{j}=(j)$, i.e., C_{j} is principal, a contradiction. Thus $J \in S$.

[^0](b) Let I be an ideal which is maximal with respect to being nonprincipal, and let $a, b \in R$ with $a b \in I$ but $a \notin I$ and $b \notin I$. Let $I_{a}=(I, a)$ be the ideal generated by I and a, let $I_{b}=(I, b)$ be the ideal generated by I and b, and define $J=\left\{r \in R \mid r I_{a} \subseteq I\right\}$. Prove that $I_{a}=(\alpha)$ and $J=(\beta)$ are principal ideals in R with $I \subsetneq I_{b} \subseteq J$ and $I_{a} J=(\alpha \beta) \subseteq I$.

Proof.

- I_{a} is principal.

If $i \in I$ then $i \in I_{a}$ and so $I \subseteq I_{a}$. Since $a \in I_{a}$ but $a \notin I$, then $I \subsetneq I_{a}$, which implies I_{a} is a principal ideal since I is maximal in R with respect to being nonprincipal.

- J is principal.

Note that J is an ideal. Let $i \in I$. Then $i I_{a}=I$ which means $i \in J$. Hence $I \subseteq J$. Notice that since $b I=I$ and $b a \in I$, then sums of elements in $b I$ with $a b$ lie in I. Hence, $b I_{a}=I$. So, $b \in J$. Since $b \notin I$, then $I \subsetneq J$, which means J is principal.

- $I \subsetneq I_{b} \subseteq J$ and $I_{a} J=(\alpha \beta) \subseteq I$

Since $b \notin I$ and $b \in I_{b}$, then $I \subsetneq I_{b}$. Moreover, since $I \subseteq J$ and $b \in J$, then $I_{b} \subseteq J$ so that

$$
I \subsetneq I_{b} \subseteq J
$$

Letting $I_{a}=(\alpha)$ and $J=(\beta)$ for $\alpha, \beta \in R$, we have $(\alpha)(\beta)=(\alpha \beta)$, which gives

$$
I_{a} J=(\alpha \beta) \subseteq I
$$

(c) If $x \in I$ show that $x=s \alpha$ for some $s \in J$. Deduce that $I=I_{a} J$ is principal, a contradiction, and conclude that R is a P.I.D.

Proof. Let $x \in I$. Since $I \subsetneq I_{a}=(\alpha)$, then $x=s \alpha$ for some $s \in R$. Since

$$
s I_{a}=s(\alpha)=(s \alpha)=(x) \subseteq I,
$$

then $s \in J$.So $x \in I_{a} J$, which means $I \subseteq I_{a} J$. Therefore, $I=I_{a} J$ so that I is a principal ideal, which is a contradiction. Therefore, the set S in part (a) is empty, which means R is a P.I.D.
8.3.5 Let $R=\mathbb{Z}[\sqrt{-n}]$ where n is a squarefree integer greater than 3 .
(a) Prove that $2, \sqrt{-n}$, and $1+\sqrt{-n}$ are irreducibles in R.

Proof. We use the standard norm of the complex numbers, $N(a+b \sqrt{-n})=$ $a^{2}+b^{2} n$, restricted to R. So, $N(\alpha) N(\beta)=N(\alpha \beta)$. We claim $N(x)=1 \Longleftrightarrow x$ is a unit. First suppose x is a unit. Then there exists $y \in R$ with $x y=1$. Then $N(x) N(y)=N(x y)=N(1)=1$ which implies $N(x)$ and $N(y)$ are both 1. Conversely, suppose $x=a+b \sqrt{-n}$ and $N(x)=1$. Then $1=N(x)=a^{2}+b^{2} n$, and since $n>3$, we must have $b=0$ and $1=a^{2}$, which means $x= \pm 1$ and thus x is a unit.

- 2 is irreducible.

Suppose $2=\alpha \beta$. Then $4=N(2)=N(\alpha) N(\beta)$. If $N(\alpha)=1$ then α is a unit, and 2 is irreducible. If $N(\alpha)=4$ then $N(\beta)=1$ which means β is a unit so that 2 is irreducible. Suppose $\alpha=a+b \sqrt{-n}$ and $N(\alpha)=2$. So $2=N(\alpha)=a^{2}+b^{2} n$, which implies $b=0$ since $n>3$. Thus, $2=a^{2}$, which means $a \notin \mathbb{Z}$, a contradiction. Thus, $N(\alpha) \neq 2$.

- $\underline{\sqrt{-n}}$ is irreducible.

Suppose $\sqrt{-n}=\alpha \beta$. Then $N(\alpha) N(\beta)=N(\sqrt{-n})=n$. Since n is squarefree, $N(\alpha) \neq N(\beta)$. Without loss of generality, suppose $N(\alpha)<$ $N(\beta)$. Let $\alpha=a+b \sqrt{-n}$. Since $n=N(\alpha) N(\beta)$ then

$$
\begin{equation*}
N(\alpha)<\sqrt{n}<N(\beta) \tag{*}
\end{equation*}
$$

If this inequality did not hold, then either

$$
N(\alpha)<N(\beta)<\sqrt{n} \quad \text { or } \quad \sqrt{n}<N(\alpha)<N(\beta) .
$$

In the former case,

$$
N(\alpha)<\sqrt{n} \text { and } N(\beta)<\sqrt{n} \Longrightarrow N(\alpha) N(\beta)<n,
$$

which is a contradiction. In the latter case,

$$
\sqrt{n}<N(\alpha) \text { and } \sqrt{n}<N(\beta) \Longrightarrow n<N(\alpha) N(\beta)
$$

which again is a contradiction. So, the inequality in $(*)$ holds. Therefore,

$$
a^{2}+b^{2} n=N(\alpha)<\sqrt{n}
$$

Since $n>3$, then $\sqrt{n}<n$. Hence, $b^{2}=0$. Thus $N(\alpha)=a^{2}$ and so

$$
n=N(\alpha) N(\beta)=a^{2} N(\beta)
$$

Since n is squarefree, then $a^{2}=1$, i.e., $N(\alpha)=1$, which means α is a unit. Therefore, $\sqrt{-n}$ is irreducible.

- $1+\sqrt{-n}$ is irreducible.

Suppose $1+\sqrt{-n}=\alpha \beta$ and $\alpha=a+b \sqrt{-n}$ and $\beta=c+d \sqrt{-n}$. Then

$$
\begin{aligned}
1+n=N(1+\sqrt{-n}) & =N(\alpha) N(\beta) \\
& =\left(a^{2}+b^{2} n\right)\left(c^{2}+d^{2} n\right) \\
& =a^{2} c^{2}+\left(a^{2} d^{2}+b^{2} c^{2}\right) n+\left(b^{2} d^{2}\right) n^{2}
\end{aligned}
$$

which gives the following equalities: $a^{2} c^{2}=1, a^{2} d^{2}+b^{2} c^{2}=1$, and $b^{2} d^{2}=0$. The first equality gives $a, c= \pm 1$ which means $d^{2}+b^{2}=1$ and so

$$
d^{2}=1-b^{2}, \quad b^{2}\left(1-b^{2}\right)=0 \Longrightarrow b=0 \text { or } b= \pm 1
$$

Then, $\alpha=1+b \sqrt{-n}$ and so $N(\alpha)=1^{2}+b^{2} n \leq 1+n$. Therefore,

$$
1+n=N(\alpha) N(\beta) \leq(1+n) N(\beta) \Longrightarrow N(\beta)=1 \Longrightarrow \beta \text { is a unit }
$$

and hence $1+\sqrt{-n}$ is irreducible.
(b) Prove that R is not a U.F.D. Conclude that the quadratic integer ring \mathcal{O} is not a U.F.D. for $D \equiv 2,3 \bmod 4, D<-3$ (so also not Euclidean and not a P.I.D.) [Show that either $\sqrt{-n}$ or $1+\sqrt{-n}$ is not prime.]

Proof. We claim $n \in \mathbb{Z}[\sqrt{-n}]$ has two distinct factorizations into irreducibles so that $\mathbb{Z}[\sqrt{n}]$ is not a U.F.D. If n is even then $n=2 k$ for some $k \in \mathbb{Z}$ odd and also $n=(-1)(\sqrt{-n})^{2}$, and these factorizations are distinct. Now suppose n is odd. Then $n+1$ is even, and $n+1=(1+\sqrt{-n})(1-\sqrt{-n})$, but also $n+1=2 m$ for some $m \in \mathbb{Z}$, which gives two distinct factorizations of $n+1$. Hence $\mathbb{Z}[\sqrt{-n}]$ is not a U.F.D. By definition of the quadratic integer ring,

$$
\mathcal{O}:=\mathcal{O}_{\mathbb{Q}(\sqrt{D})}=\mathbb{Z}[\omega]=\{a+b \omega \mid a, b \in \mathbb{Z}\}
$$

where

$$
\omega= \begin{cases}\sqrt{D} & \text { if } D \equiv 2,3 \quad \bmod 4 \\ \frac{1+\sqrt{D}}{2} & \text { if } D \equiv 1 \quad \bmod 4\end{cases}
$$

Since $n>3$, then setting $D=-n$ means $D<-3$. Suppose $D \equiv 2,3 \bmod 4$. Then

$$
\mathcal{O}=\mathbb{Z}[\sqrt{D}]=\mathbb{Z}[\sqrt{-n}]
$$

which is not a U.F.D. by the above proof.

Let F be a field and x be an indeterminate over F.
9.2.1 Let $f(x) \in F[x]$ be a polynomial of degree $n \geq 1$ and let bars denote passage to the quotient $F[x] /(f(x))$. Prove that for each $\overline{g(x)}$ there is a unique polynomial $g_{0}(x)$ of degree $\leq n-1$ such that $\overline{g(x)}=\overline{g_{0}(x)}$.

Proof. Notice that $\overline{g(x)}=\overline{g_{0}(x)}$ if and only if $g(x)-g_{0}(x) \in(f(x))$ if and only if $f(x)$ divides $g(x)-g_{0}(x)$. Since F is a field, $F[x]$ is a Euclidean Domain where the division algorithm in $F[x]$ yields unique $q(x), r(x) \in F[x]$ such that

$$
g(x)=q(x) f(x)+r(x) \quad \text { with } \quad r(x)=0 \quad \text { or } \quad \operatorname{deg} r(x)<\operatorname{deg} f(x)
$$

Define $g_{0}(x):=r(x)$ so that $g(x)-g_{0}(x)=q(x) f(x)$ and thus $\overline{g(x)}=\overline{g_{0}(x)}$ where $\operatorname{deg} g_{0}(x)<$ $\operatorname{deg} f(x)=n$.
9.2.5 Exhibit all the ideals in the ring $F[x] /(p(x))$ where $p(x)$ is a polynomial in $F[x]$.

Proof. Since F is a field, then $F[x]$ is a Euclidean Domain. In particular, $F[x]$ is a UFD. Thus if $p(x)$ is an irreducible polynomial, then $p(x)$ is prime polynomial so that $(p(x))$ is a prime ideal. Since $F[x]$ is a Euclidean Domain, then in particular $F[x]$ is a PID so that $(p(x))$ is a maximal ideal since prime ideals in a PID are also maximal ideals. Therefore, $F[x] /(p(x))$ is a field which means its only ideals are $\left(0_{F}+p(x)\right)$ and $F[x] /(p(x))$.

Now suppose $p(x)$ is reducible. By the 4 th Isomorphism Theorem for rings, there is a bijection between the ideals of $F[x]$ which contain $p(x)$ and the ideals of $F[x] /(p(x))$. Since $F[x]$ is a PID, then all of the ideals which contain $p(x)$ are principal. Moreover, if $p(x) \in(f(x))$ for some $f(x) \in F[x]$, then $f(x)$ divides $p(x)$. So, the ideals of $F[x] / p(x)$ are precisely those of the form $(f(x)) /(p(x))$ where $f(x) \in F[x]$ divides $p(x)$ (and of course the zero ideal).
9.4.17 Prove the following version of Eisenstein's Criterion: Let P be a prime ideal in the UFD R and let $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$ be a polynomial in $R[x]$ with $n \geq 1$. Suppose $a_{n} \notin$ $P, a_{n-1}, \ldots, a_{0} \in P$ and $a_{0} \notin P^{2}$. Prove that $f(x)$ is irreducible in $F[x]$, where F is the quotient field of R.

Proof. Suppose $f(x)$ is reducible in $F[x]$. Then there exists polynomials

$$
c(x)=c_{k} x^{k}+\cdots+c_{1} x+c_{0} \quad \text { and } \quad d(x)=d_{\ell} x^{\ell}+\ldots d_{1} x+d_{0}
$$

in $F[x]$ with $c_{k} \neq 0 \neq d_{k}$ and $1 \leq k, \ell<n$ such that $f(x)=c(x) d(x)$. Now, we compare the coefficients of $p(x)=c(x) d(x)$. Since $a_{0}=c_{0} d_{0}$ and $a_{0} \in P$, then either c_{0} or d_{0} is in P. Without loss of generality, suppose $c_{0} \in P$. Since $a_{0} \notin P^{2}$, then $d_{0} \notin P$. Then

$$
a_{1}=c_{1} d_{0}+c_{0} d_{1} .
$$

Since $c_{0} \in P$ then $c_{0} d_{1} \in P$. Since $a_{1} \in P$, then $c_{1} d_{0} \in P$. But since $d_{0} \notin P$, then $c_{1} \in P$ since P is a prime ideal. For $1 \leq i \leq k<n$, we have

$$
a_{i}=c_{i} d_{0}+c_{i-1} d_{1}+\cdots+c_{0} d_{\ell} .
$$

By induction, $c_{i-1} d_{1}+\cdots+c_{0} d_{\ell} \in P$. Since $a_{i} \in P$, then $c_{i} d_{0} \in P$. But again since $d_{0} \notin P$, then $c_{i} \in P$ since P is a prime ideal. Hence $c_{i} \in P$ for all $1 \leq i \leq k$. In particular, $c_{k} \in P$, which implies that $c_{k} d_{\ell} \in P$. But $c_{k} d_{\ell}=a_{n} \notin P$, a contradiction.
9.3.4 Let $R=\mathbb{Z}+x \mathbb{Q}[x] \subset \mathbb{Q}[x]$ be the set of polynomials in x with rational coefficients whose constant term is an integer.
(a) Prove that R is an integral domain and its units are ± 1.

Proof. Let $f(x), g(x) \in R$ with leading coefficients a and b, respectively. Then $f(x) g(x)=0$ if and only if $a b=0$ if and only if $a=0$ or $b=0$ (since \mathbb{Q}) is an integral domain) if and only if $f(x)=0$ or $g(x)=0$. Therefore, R is an integral domain.

Moreover, since $R \subset \mathbb{Q}[x]$, then $R^{\times} \subseteq(\mathbb{Q}[x])^{\times}=\mathbb{Q}^{\times}$. However, since the constant polynomials in R are isomorphic to \mathbb{Z}, then $R^{\times}=\mathbb{Z}^{\times}=\{ \pm 1\}$.
(b) Show that the irreducibles in R are $\pm p$ where p is a prime in \mathbb{Z} and the polynomials $f(x)$ that are irreducible in $\mathbb{Q}[x]$ and have constant term ± 1. Prove that these irreducibles are prime in R.

Proof. If $f(x)=a \in R$ is a constant polynomial, then $a \in \mathbb{Z}$ which means $f(x)$ is irreducible if and only if a is irreducible in \mathbb{Z} if and only if a is prime in \mathbb{Z} (since \mathbb{Z} is a UFD).

Now suppose $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0} \in R$ with $n \geq 1$ and $a_{0} \neq 0$. Then we can factor $f(x)$ into the product

$$
f(x)=\left(a_{0}\right)\left(\frac{a_{n}}{a_{0}} x^{n}+\frac{a_{n-1}}{a_{0}} x^{n-1}+\cdots+\frac{a_{1}}{a_{0}} x+1\right)
$$

If $a_{0} \neq \pm 1$, then $f(x)$ is reducible, since the above factorization exhibits $f(x)$ as the product of two nonunits in R. Since $n \geq 1$, then the second factor of $f(x)$ written above is not a unit in R. So $f(x)$ is irreducible precisely when $a_{0}= \pm 1$ and $f(x)$ is irreducible in $\mathbb{Q}[x]$.

Suppose $f(x)$ is irreducible in R. If f is a constant polynomial, then as we stated above, $f(x)=p$ for some prime in \mathbb{Z}. Since $\mathbb{Z} \subset R$, then $f(x)=p$ is prime in R.

Now suppose $f(x) \in R$ is irreducible and not a constant polynomial, and suppose $f(x)=$ $a(x) b(x)$ for $a(x), b(x) \in R$. Since \mathbb{Q} is a field then $\mathbb{Q}[x]$ is a Euclidean Domain, and in particular $\mathbb{Q}[x]$ is a UFD, so that every irreducible polynomial in $\mathbb{Q}[x]$ is prime in $\mathbb{Q}[x]$. Therefore, since $f(x) \in \mathbb{Q}[x]$ then either $f(x) \mid a(x)$ or $f(x) \mid b(x)$. Without loss of generality, suppose $f(x) \mid a(x)$. So $a(x)=f(x) q(x)$ for some $q(x) \in \mathbb{Q}[x]$. Let a_{0}, q_{0}, f_{0} be the constant terms in $a(x), q(x)$, and $f(x)$, respectively. Since $a(x) \in R$, then $a_{0} \in \mathbb{Z}$. Since $f_{0}= \pm 1$, then $a_{0}= \pm q_{0}$, i.e., $q_{0} \in \mathbb{Z}$. Therefore, $q(x) \in R$ and so $f(x)$ is prime in R.
(c) Show that x cannot be written as the product of irreducibles in R (in particular, x is not irreducible) and conclude that R is not a UFD.
Proof. Suppose $x=f_{1}(x) f_{2}(x) \cdots f_{k}(x)$ where $f_{i}(x) \in R$ is irreducible for all $1 \leq i \leq k$. Then

$$
1=\operatorname{deg}(x)=\operatorname{deg}\left(f_{1}(x) \cdots f_{k}(x)\right)=\operatorname{deg}\left(f_{1}(x)\right)+\cdots+\operatorname{deg}\left(f_{k}(x)\right)
$$

which means all but one of the factors of x are constant polynomials. Without loss of generality, suppose $f_{1}(x)$ is the one nonconstant polynomial in the factorization of x. Then $f_{1}(x)=a_{1} x+b$ for some $a_{1} \in \mathbb{Q}$, and $b \in \mathbb{Z}$. Since $f_{1}(x)$ is irreducible in R, then and $b= \pm 1$ by part (b). Let $f_{i}(x)=a_{i}$ where $a_{i} \in \mathbb{Z}$ are irreducible for all $2 \leq i \leq k$. Notice that

$$
x=\left(a_{1} x \pm 1\right) a_{2} a_{3} \cdots a_{k}=\left(a_{1} a_{2} \cdots a_{k}\right) x \pm a_{2} a_{3} \cdots a_{k}
$$

But since $a_{2}, a_{3}, \cdots, a_{k}$ are irreducible, then their product is nonzero, which means x has a nonzero constant term, a contradiction. Therefore, R is not a UFD, since $x \in R$ cannot be factored into a finite product of irreducibles.
(d) Show that x is not a prime in R and describe the quotient ring $R /(x)$.

Proof. Notice that x is not prime in R since it is not irreducible in R. Therefore $R /(x)$ is not an integral domain since (x) is not prime. Moreover $R /(x)$ has identity element $f(x)+(x)$ where $f(x)$ is a polynomial with no constant term and an integer coefficient on its x term. ${ }^{* *}$ I couldn't figure out how the rest of the cosets looked, so the following is from the online solution manual ${ }^{* *}$: $R /(x)=\{a+b x+(x) \mid a \in \mathbb{Z}, b \in \mathbb{Q}, b \in[0,1)\}$.
9.4.3 Show that the polynomial $(x-1)(x-2) \ldots(x-n)-1$ is irreducible over \mathbb{Z} for all $n \geq 1$. [If the polynomial factors consider the values of the factors at $x=1,2, \ldots, n$.]

Proof. Let $p(x)=(x-1)(x-2) \ldots(x-n)-1$ and suppose $p(x)=f(x) g(x)$ for some polynomials $f(x), g(x) \in \mathbb{Z}[x]$. Notice that since $p(x)$ has degree n, both $f(x)$ and $g(x)$ have degree less than n. Without loss of generality suppose $\operatorname{deg} f(x) \leq \operatorname{deg} g(x)$. Notice that for all $1 \leq k \leq n$, we have $f(k) g(k)=-1$. So, $f(k)$ and $g(k)$ are equal to ± 1 for all $1 \leq k \leq n$.

Now, consider the polynomial $p(x)+(f(x))^{2}$. . Since $\operatorname{deg} f(x) \leq \operatorname{deg} g(x)$, then $\operatorname{deg} f(x) \leq n / 2$. Thus $\operatorname{deg}(f(x))^{2} \leq n$ and so $\operatorname{deg}\left(p(x)+(f(x))^{2}\right)=n$. Notice that the roots of this polynomial are $k \in\{1, \cdots, n\}$. Then

$$
p(x)+(f(x))^{2}=(x-1)(x-2) \cdots(x-n)=p(x)+1,
$$

i.e., $(f(x))^{2}=1$ and so $f(x)= \pm 1$. Behold! This means $f(x)$ is a unit in $\mathbb{Z}[x]$ so that $p(x)$ is irreducible.
9.4.11 Prove that $x^{2}+y^{2}-1$ is irreducible in $\mathbb{Q}[x, y]$.

Proof. Since $\mathbb{Q}[x, y]=\mathbb{Q}[x][y]$, we consider $y^{2}+x^{2}-1$ as a polynomial in the variable y with coefficients in $\mathbb{Q}[x]$. Thus $y^{2}+x^{2}-1$ is a monic polynomial with constant term $x^{2}-1$. We claim that $x+1$ is a prime element in $\mathbb{Q}[x, y]$. Once this is verified, then the ideal $P=(x+1)$ is a prime ideal containing the constant term $(x-1)^{2}$ - indeed, $(x-1)^{2}=(x+1)(x-1)$ - but the ideal $P^{2}=\left((x+1)^{2}\right)$ does not contain the constant term $(x-1)^{2}$. Then by Eisenstein's Criterion, $y^{2}+x^{2}-1$ is irreducible.

Since \mathbb{Q} is a UFD, then $\mathbb{Q}[x][y]$ is also a UFD, and hence it suffices to show that $x+1$ is irreducible in $\mathbb{Q}[x][y]$. To that end, suppose $x+1=f(x, y) g(x, y)$ for some $f(x, y), g(x, y) \in \mathbb{Q}[x][y]$. Then

$$
0=\operatorname{deg}(x+1)=\operatorname{deg}(f(x, y))+\operatorname{deg}(g(x, y))
$$

which means $\operatorname{deg}(g(x, y))=\operatorname{deg}(f(x, y))=0$, i.e., $f(x, y), g(x, y)$ are constant polynomials. Then $f(x, y), g(x, y)$ are both units since \mathbb{Q} is a field. Hence, $x+1$ is irreducible.

[^0]: ${ }^{1}$ Since every element in \mathcal{C} can be compared, a maximal element in \mathcal{C} is an upper bound in \mathcal{C}, and in particular an upper bound in S.

