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0.3.13 Let n € Z, n > 1, and let a € Z with 1 < a < n. Prove that if a and n are relatively prime,
then there is an integer ¢ such that ac = (mod n).

Proof. Let n € Z, n > 1, and let a € Z with 1 < a < n. Assume a and n are relatively
prime. In other words, there exists integers b and ¢ so that nb + ac = 1. Then, 1 — ac = nb
and so n divides (1 — ac). Thus, ac =1 (mod n). |

1.1.8 Let G = {z € C|z" =1 for some n € Z*}.

(a)

Prove that G is a group under multiplication.

Proof. First, notice that 1 € G as 1' = 1. Since 1 is the identity element of C and
G C C, then 1 is the identity element of G. Similarly, since C is associative, and G C C,
then G is also associative.

To show closure, first assume z,y € GG. Then, there exists n,m € G so that ™ = 1 and
y™ = 1. Notice that 2" = (z™)™ = 1™ = 1 and similarly y" = y™" = (y")" = 1" = 1.
Since z,y € C and C is an abelian group we can compute

Thus, xy € G and hence G is closed under multiplication.

Next, by properties of complex numbers, we know that zz=! = 1, i.e., 27! is the inverse
of z. To see that ! € G, simply observe that (z7')" =z = (2")~! = 17! = 1. Thus,
GG contains inverses. [ |

Prove that G is not a group under addition.

Proof. GG is not a group under addition because there is no identity element. To show
this, we assume that G is a group with identity element e. Let x € G and notice that
by a group axiom, e + x = z. Applying the inverse of x to both sides on the right gives
e=0. But,0"=0foralln € Z* soe & G. =<« [

1.1.19 Let x € G and let a,b € Z"

(a) Prove that 29 = 2%2® and (2%)° = 2%

Proof. 37a+b:xxx:(:cxx)(xxx) — b

\—Y—/ Q ~ RN ~ /

a+b times a times b times
(xa)b:xa,xa,,,xa:(x.l-...x).(x.x...x)...<$.$...x):xab [ ]
%/_/ N v N v
. v N g
b times a times a times a times
-
b times

(b) Prove that (z%)~! = z7%.
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Proof. Since z € G, then z® € G by closure in groups. Thus, (z%)~! € G and
2 (2%) 7 =1 (1)
Then, multiplying both sides of (1) by 7! exactly a-times on the left,

(ot D@ (@) ) = (7t -a:’lzl.

J/ .

Vv vV
a times a times

Then, after we re-associate and write ® as x - x - - -z (exactly a times), we have

(1;71 .xil...xfl.x.x...x)(xa)fl = (xil .xil...xfl).
~ ~~ 7 N -~ z
a times a times a times
Thus,
(z*) =27
|
(c) Establish part (a) for arbitrary integers a and b.
Proof.
Case 1 — a,b € Z* completed in part (a).
Case 2 — a,b € 7~
by Case 1
(i) poth — (x—a—b)—l — (x—b—a)—l = (x—bx—a)—l _ (x—a)—l(x—b)—l _
2%
(i) (29)" = ((2) )" = (g2t 2%)
e —
—b times
-1
=|(z-z--2)(z-x-x) (-2 x) = (z7%)71 = gob
a t?I:leS a t?;nes a t?;nes
—b zi,mes
Case 3 —a€Z,beZ".
(i) e If [b| < a, then a + b > 0. First, notice that
() (27r ™) = 2P P = 2% = 1
Thus, (297)7 = (z7b27%) = (2%2®)~L. Then, since inverses are unique,
:L.aer — Ial'b

e If || > a, then a + b < 0 which implies —b — a > 0. Using the previous
subcase,

l’a+b — (:E_b_a)_l _ (ZL'(_bH_(_a))_l _ (I_bx_a)_l _ (l‘_a)_l(l‘_b)_l — 1%
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e If |b| = a, then a + b= 0. Notice that this implies z* = 7. Then,

(i)
by Case 1
(J}a)b _ ((xa)—b)—l = (J}_ab)_l _ l’ab
Case 4 — a=0,b € Z.
(1) :L,a+b — .I‘Oer — {L’b =1- fL‘b — $0£L‘b — l‘al‘b
(11) (xa)b — (SL’O)b — 1b -1 = xO — x0~b — xab

1.1.25 Prove that if 22 = 1 for all x € G then G is abelian.

Proof. Let * =1 for all z in a group G. Let z,y € G. By closure in groups, (zy) € G and
so (zy)(zy) = 1. Then,

y(Dyxy = yx
(yy)zy = yx
and so G is abelian. [ |

1.2.4 If n = 2k is even and n > 4, show that z = r* is an element of order 2 which commutes with
all elements of D,,. Show that z is the only nonidentity element in D,, which commutes
with all elements in Ds,,.

Proof. Let n = 2k be even with n > 4. Consider the element z = 7% € D,,. Clearly,
22 = r? = " = 1 and so the order of z is 2. Now, we prove that z commutes with all
elements of Dy,. First, we note that z commutes trivially with the identity. Next, we see
that z commutes with all rotations because, for an arbitrary rotation v with 1 < m < n—1,

we have

Finally, we claim that
rks = sr* ()

1

Using the relation s = sr—", we prove (x) by showing that

rks = rre--r(rs) = 7"7“---7“(37“_1) =grr-r(rs)rt=pror(sr )yl = = srk.
—— —— —— ——
k—1 times k—1 times k—2 times k—2 times

Now, notice that since r™ = 1 then r** = 1, which implies 7* = r=*. Then, by (*),

rhs = srF — ks = srk,
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1.3.2

and so ¥ commutes with the reflection s.

Now, to show that z is the only nonidentity element which commutes with all elements in
D, first let r* be an any rotation, ¢t # k. Now, we want to show that r* # r~*. So, assume
that in fact 7t = r=t. This would imply r* = 1 = ™. In other words, 2t = n, and thus t = k,
a contradiction. By () we know that r's = sr~". Since r* # r~*, then r's # sr'. So, r* does
not commute with all elements in D,,. We’ve also show that, the only other nonidentity
element in Dy, s, does not commute with all elements in D,. [ |

g =

113 510)(3 15 8)(4 14 11 7 12 9)

(
7= (114)(29 15 13 4)(3 10)(5 12 7)(8 11)
o2 = (15)(38 15)(4 11 12)(7 9 14)(10 13)
or = (1113)(24)(598 710 15)(13 14)
7o = (14)(29)(3 13 12 15 11 5)(8 10 14)
%0 =(121583414 1112 13 75 10)



Nicholas Camacho Abstract Algebra — Homework 1B August 30, 2016

1.1.22 If x and g are elements of the group G, prove that |x| = |[¢g7'zg|. Deduce that |ab| = |ba| for
all a,b € G.

Proof. Let x,g € G and |g~'xg| = n < co. Then,

(g xg)" = (+)
(9 zg) (g~ zg) - (g7 'wg) =1
9 e(gg (g - x(gg rg =1
g ez - z()x(1)xg =1
g wx--x)g=1
n factors
g latg = (%)
(9)g ' 2"g(g™") = (9)1(g ™)
" =gg”!
" =1

Hence, | zg| = n implies |z| = n. Following the equations in the opposite direction shows
2| =n <= [g7 zg] =n, ie., |z| = |g7"2g|.
Notice that (x) = (*x), which then implies

(9~ zg)" =g ~'a"g
Now, by way of contradiction, suppose |g~'xg| is infinity, but || = n < co. Then,

(g 'zg)" =g la"g =g (N)g=9"'g=1,
a contradiction. Similarly, suppose |z| is infinite, but |g~'xg| = n < co. Then,

1= (g 'zg)" =g 'a"g.

Then,

l=g'a"g = gg'=2" = 1=2",

a contradiction. Thus, |z| is infinite if and only if |g~'zg]| is infinite.
Now, let a,b € G, x = ab, and g = a. Then,
jabl = |z| = |9~ zg] = [(a”")(ab)(a)| = |(a~"a)ba| = |bal
[

1.1.23 Suppose x € G and |z| = n < oco. If n = st for some positive integers s and ¢, prove that
|z®| = t.

Proof. Notice that 1 = 2™ = 2 = (2°)". Hence, |z°| < t. Assume that |2°| = ¢ < ¢. This
implies sq < st =n, and so 1 = (2%)7 = 2%, i.e., |z| = sq¢ < st = n, a contradiction. Thus,
|z°| = t. |
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1.3.10

1.3.11

1.3.16

Prove that if o is the m-cycle (a; as...ay,), then for all i € {1,2,,...,m},c'(ar) = axii,
where k + ¢ is replaced by its least residue mod m when k + i > m. Deduce that |o| = m.

Proof. Let a, € 0. We proceed by induction on ¢. For the base case, let « = 1. By definition
of the function o, we see that o'(ax) = (a1 az...am)(ak) = @kt 4oy, For the inductive
step, assume that 0™ (ay) = agiyn for 1 <n <i. Then,

0" Hax) = (0" 0 0")(ar) = (0")(Ak4i) = Ayt

and so the conclusion holds. Now, we claim |o| = m. That is, 0™ (ax) = a; for 1 < k < m.
By way of contradiction, assume otherwise. That is, 0™ (ax) # ag. So,

Q4m = Um(ak) # aj
This implies k + m # k, which implies m # 0 mod m, a contradiction. Thus, |o|=m. =

Let o be the m-cycle (1,2,...,m). Show that o* is also an m-cycle if and only if 7 is relatively
prime to m.

Proof. First note that since o is an m-cycle, then o(c) = m by the previous exercise. Again
by the previous exercise, o' is an m-cycle if and only if o(c?) = m. By Proposition 5,

m = o(c') = oo) __ m
B ~ ged(m,i)  ged(m, i)
and clearly m = m/ged(m,i) if and only if ged(m,i) = 1, i.e., m and i are relatively
prime. [ |

Show that if n > m, then the number of m-cycles in 5, is given by

nn—1)(Mn-2)---(n—m+1)

Proof. 1f we want to construct an m-cycle in S,,, n > m then we have n choices for the first
element in the cycle, (n — 1) choices for the second element in the cycle, (n — 2) choices for
the third element in the cycle, etc. In general, there are n — ¢ choices for the i + 1 element in
the cycle. Since we want exactly m elements in our cycle, there are (n—(m—1)) = n—m+1
choices for the last element in our cycle. So, there are

nn—1)(n-2)---(n—m+1)

ways to construct an m-cycle. However, since each cycle can be represented in m different
ways, we have over-counted by a factor of m, and so we divide by m to obtain

nn—1)n-2)---(n—m+1)

m-cycles in S,,. [ |
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1.3.17 Show that if n > 4, then the number of permutations in S,, which are the product of two
disjoint 2-cycles is n(n — 1)(n —2)(n — 3)/8.

Proof. Any permutation in S,, that can be written as the product of two disjoint 2-cycles
will look like (gr)(st). In this representation, there are n choices for ¢, (n — 1) choices for r,
(n — 2) choices for s, and finally (n — 3) choices for t. So, we have n(n — 1)(n — 2)(n — 3)
permutations in S,, that can be written this way. However, since there are 2 ways to write
the permutation (gr), 2 ways to write the permutation (st), and 2 ways to write the product
(gr)(st), we must divide by a factor of 2-2-2 = 8. Thus, there are n(n —1)(n —2)(n —3)/8
number of permutations in .S, which are the product of two disjoint 2-cycles.
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1.6.17 Let G be any group. Prove that the map from G to itself defined by g — ¢! is a

1.6.20

2.1.15

homomorphism if and only if G is abelian.

Proof. (=) Suppose ¢ : G — G defined by g — g~' is a homomorphism. Let a,b € G.
Then

ab=p(a™p(b™!) = p(a) e(b) ! = (p(b)p(a)) ™" = p(ba)"t = ((ba) ") = ba

and thus G is abelian.
(<) Suppose G is abelian. Let a,b € G and let the map ¢ : G — G be defined by
g+ g~ 1. Then

pla)pb) =a™'07" = b"'a™" = (ad)™" = p(ab)

and thus ¢ is a homomorphism. [ |
Prove that Aut(G) is a group under function composition.

Proof. We show that Aut(G) is a subgroup of Sg and thus a group. Since S¢ is the
set of all bijections from G to itself, then certainly all of the homomorphic bijections
from G to itself are in S, and thus, Aut(G) C Sg. Notice that Aut(G) # 0 since the
identity map ¢ : G — G defined by g — ¢ is in Aut(G). Now, let ¢, ¢ € Aut(G). Then,
poy™t: G — G isin Aut(G) since isomorphic functions are closed under function
composition. Therefore, Aut(G) is a subgroup of Sg by the Subgroup Test. [

Let Hy < Hy < ... be an ascending chain of subgroups of G. Prove that U*, H; is a
subgroup of G.

Proof. Since 1¢ € H; for all 4, then 1¢ € U, H; and so U2, H; # 0. Let a,b € U H,.
So, there exists j and & so that a € H; and b € Hy. Let m = max{j, k}. So, a,b € H,
and thus ab™' € H,, by closure in groups and so ab™! € U2, H;. Thus, UX H; is a
subgroup of GG by the Subgroup Test. |
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2.5.11 Subgroup lattice of
QD = (o, 7|0® =7* = 1,07 = 70°)

Solution:
QD16
N
(0%, 1) (o) (0%, 07)
ANPZ RN
(027,04> (04,T> (02> (o) (037)
R L
(0%1) (o) (o*T) (T) (o%)
N

3.1.1 Let ¢ : G — H be a homomorphism and let F be a subgroup of H. Prove that

o Y(F) <G (i.e., the preimage or pullback of a subgroup under a homomorphism is a
subgroup). If £ < H prove that ¢ '(E) < G. Deduce that ker p < G.

Proof. Let ¢ : G — H be a homomorphism and let £ < H. We first show that
¢ '(E) < G. First note that ¢ (F) = {g € G|p(g) € E}. Since E < H, 15 € E and
so ¢ 1 (1y) = 1g is in ¢ 1(E). Thus, o~} (E) # 0. Now, let a,b € ¢~ *(F). Then

olab™) = p(a)p(b™") = p(a)p(b)™' € E by closure in E.

Thus, ab™! € p~!(F) and so ¢~ '(E) < G by the Subgroup Test.

Now suppose E < H. Let g € G and let a € ¢ '(E). Then,

e(gag™') = (g)p(a)e(g)™ € E since E < H,

and thus gag™' € p1(E).

Since {15} < H — (hlgh ' = 15 € {1,}Vh € H) — then kerp = p~1(1;) < G by
the previous proof. [ ]
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3.1.29 Let N be a finite subgroup of G and suppose G = (T') and N = (S) for some subsets
S and T of G. Prove that N is normal in G if and only if tSt=* C N for all t € T.

Proof. (=)
NG = t{S'CNWVeT = tSt ' CNWVteT

(<) Suppose tSt~' C N. This implies that (¢tSt~') C N by closure in N. Note that
since the conjugate of a product is the product of conjugates, then for all t € T, we

have ¢(S)t™! = (tSt™1).
tNt ™t =t(S)t ™t = ({tStT') C N

Since N is finite, [tNt!| = |N|, and thus, tNt~! = N for all ¢ € T. This implies T C
Ng(N), and so G = (T) € Ng(N), and then G = Ng(N) which means N < G. |
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2.1.6 Let G be an abelian group. Prove that {g € G ’ lg| < oo} is a subgroup of G (called
the torsion subgroup of GG). Give an explicit example where this set is not a subgroup
when G is non-abelian.

Proof. Let H = {g € G ||g| < co}. Notice that 15 € H since (1g)' = 1. Let z,y €
H. Then 2™ =1 and y™ = 1 for some n,m € Z*. Notice that 2" = (z")" =1" =1
and (y~!)"™ = (y™)™" = 17" = 1. Then, since G is abelian,

(xy—l)nm — wnm(y—l)nm —-1.1=1

and so xy €€ H. Thus H is a subgroup of G by the subgroup test.

Consider the nonabelian group SLs(Z). Notice that

R OIS
)G )=61)

which has infinite order since
1 1\" 1k
01/ \o 1

forall k e Z™.

2.3.26 Let Z, be a cyclic group of order n and for each integer a let
Oo:Zpn — Zy by o4(x)=2a"forall x € Z,.
(a) Prove that o, is an automorphism of Z, if and only if a and n are relatively prime.

Proof. (=) Suppose o, is an automorphism of 7, and let z* € Z, for 1 <k < n.
By surjectivity of o,, there exists 2* € Z, so that ¢,(z%) = 2. Notice that

(xa)ﬁ — (l,é)a — ¢a($£> — Zlfk
Since this is true for each k € {1,...,n— 1}, we have that (x*) = Z,,. This means
that (a,n) =1 by Proposition 6 (2).
(<) Conversely, suppose (a,n) =1 and let x,y € Z,,. Then, as Z, is abelian,
Ga(zy) = (zy)" = 2*Y" = ¢u(x) ()

and so ¢, is a homomorphism. We now show that ¢, is bijective. Note that since
(a,n) = 1, there exists integers w, z so that aw = 1 — zn. Let 2* € Z,. Then,

Bula™) = (24 = (220)F = (20 = (2t (@) ) = 2t

and thus ¢, is surjective. Since we have a surjective map between two groups of
the same cardinality, the map must also be injective. Thus, ¢, is a automorphism
of Z,. |
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(b) Prove that o, = o} if and only if a = b (mod n).

Proof.

O, =0y <= 2% =0,() = op(x) = 2

= 2"'=1
< (a—"b)|n
<= a=b (modn)

(¢) Prove that every automorphism of Z, is equal to o, for some integer a.

Proof. Let ¢ be an automorphism of Z,,. Then, since x generates Z,, we have
¢(z) = 2* for some 0 < k <n — 1. So, for any z* € Z,

o(z") = p(x)" = 2" = 2™ = o (a")
|

(d) Prove that o, o 0, = 04. Deduce that the map @ — o, is an isomorphism of
(Z/nZ)* onto the automorphism group of Z,, (so Aut(Z,) is an abelian group of

order ¢(n)).
Proof. Let 2* € Z, for 0 < k <n — 1. Then,
(04 0 0)(2F) = 0o (z?) = 20 = glab — (56
Thus, we see that the map
¢ : (Z/nZ)* — Aut(Z,)

defined by @ — o, is a homomorphism by what was just shown, an injection by
part (b), and a surjection by part (c). [ |

3.1.14 Consider the additive quotient group Q/Z.

(a) Show that every coset of Z in QQ contains exactly one representative ¢ € Q in the
range 0 < g < 1.

Proof. We first show the existence of such a q. We define the rationals to be
Q ={a/b|a € Zb e Z*}. Given any rational, a/b, then by the Division
Algorithm, there exists m,r € Z,0 < r < b so that a = mb+ r. So,

+7’
= m —
b

(ol i)



Nicholas Camacho Abstract Algebra — Homework 2B September 9, 2016

and thus a/b+ 7Z = r/b+ Z, since a/b and r/b differ by an integer. Since r < b,
then 0 < r/b < 1 and so our representative is ¢ = r/b. That was fun; now onto
uniqueness. Suppose that k +7Z =g+ Z for 0 < k,q < 1. Then

k+Z=q+7 = (k—qQ)+2=7 = (k—q)€Z

Since 0 < k,q < 1 and (k — q) € Z, it must be the case that k —q¢ =0, i.e., k = q.
So, ¢ is unique! [ |

Show that every element of Q/Z has finite order but that there are elements of
arbitrarily large order.

Proof. Given a coset a/b+ Z in Q/Z, the order of this coset is at most b since

(F+2)b=atbtz=a+Z=12

b
Consider the coset 1/n + Z. Since 1/n is in lowest terms, the order of this coset
is n, which can be made arbitrarily large. [ |

Show that Q/Z is the torsion subgroup of R/Z.

Proof. Let H be the torsion subgroup of R/Z. By part (b), we know that Q/Z C
H. To see that Q/Z = H, we prove that all cosets in Q°/Z are not in H. To get
a contradiction, assume there was a i + Z € Q¢/Z so that |i + Z| = n < oo for
some n € Z*. This implies,

(i+Zn=in+nZ=in+7Z = in€Z

So, in = z for some integer z. This implies i = z/n, i.e., ¢ is rational, a contra-
diction. Thus, no such coset exists. Therefore, Q/Z = H. [ |

Prove that Q/Z is isomorphic to the multiplicative group of root of unity in C*.

Proof. We claim that ¢ : Q/Z — Z(C*) defined by (¢ + Z) — ¢*™ is an isomor-
phism. Let ¢ + Z,k + Z € Q/Z. Then,

o((a+2)+ (k+2)) = p((q+ k) + Z) = >0 = 21" = o(q + Z)p(k + Z)
and so ¢ preserves operation. Note that if €™ = 1, then n € Z because

1 = e*™" = cos(27n) + isin(27n) = sin(27n) =0 and cos(27mn) = 1
which occurs only when n € Z. Now, assume ¢(q + Z) = p(k + Z). Then

627rzq _ eQﬂ'zk eZm(qfk) -1

which only occurs when g—k € Z, which means (¢—k)+7Z = Z and so q+Z = k+Z.
Thus, ¢ is injective. Let 2™ € Z(C*). Then, there exists n € Z* so that
1= (627riq)n — e27riqn

which means gn = z € Z and thus, Q > ¢ = z/n. Thus, p(q) = €*™. Therefore,
¢ is an isomorphism. [
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3.1.34 Let D, = (r,s|r™ = s> = 1,7s = sr~!) be the usual presentation of the dihedral group
of order 2n and let k£ be a positive integer dividing n.

(a)

Prove that (r*) is a normal subgroup of Dy,

Proof. Given r* € (r*), and 74 € D,,, notice that

4

rirty=1 = ¢t ¢ (rF)

and
87’6871 — (7!)71 — rnfé c <7’k>

and thus g(r¥)g= C (r*) for all g € Dy, and so (r¥) < D,,.

Prove that Dy, /(r*) & Dy,..

Proof. Note that Dy, = (p,0 | p* =1 =02, po = op~1).

We first show that the quotient group Ds, /(r*) is generated by two elements which
satisfy the same relations as the two generators of Dy,. We claim that these are
r{r*) and s(r*). First notice that the smallest i € Z* so that (r{(r*))! = (rk) is
also the smallest i € Z* so that r* € (r¥). Since (r*) = {1,rk r?* . pmr=1}
(assuming n = mk,k € Z%), then it is clear that i = k. Thus, |r{rf)| = k.
Likewise, (s(r*))® = (r*) when s € (r¥). The smallest ¢ € Z* with such a
property is clearly ¢ = 2. So, |s{r¥)| = 2. Now, notice that

(r{r" ) (s(r®)) = (rs)(r*) = (sr7) (") = s(r¥)r=H(r")

Thus, the generators r(r*) and s(r*) satisfy the same relations as p and o, re-
spectively. Therefore, we define a map 1 : Dy, /(r*) — Doy by

r{rfy s p and s(r*) = o
Let s(rk) ri(rk) € Dy, /(r*). Then,
Y(s ()t () = v (s () = o'p' = p(s (" )w (' (")

and so ¢ preserves operation. If o“1pit = op®2, then s/t = s2r2 and so

O'Kl_ezpil_i2 = 1, which means 51 - EQ =0 and ’il - iz = O, i.e., 61 = 62 and il = iQ.
Thus, 1 is injective. Suppose op’ € Dyj,. Then,

U(sr") = o"p’

and so clearly 1 is surjective. Thus, ¢ is an isomorphism. [ |
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3.1.36 Prove that if G/Z(G) is cyclic then G is abelian.

3.1.38

Proof. Let G be a group and suppose G/Z(G) is cyclic. Let (zZ(G)) = G/Z(G) and
g € G. Then, g € 2*Z(G) for some coset 2*Z(G) € G/Z(G) for a € Z. So, g = xz
for some z; € Z(G). Now, let g1, 92 € G and let

g1 =12 and gy = xsz
for some a,b € Z and z;,z; € Z(G). Then

9192 = (2%2)(a"z;)
= 2z(2x"2")z;

— Zi<l‘a+b)

— Zi(wb—i—a)zj

= z;2%2"2;

= xbzixazj

= xbzizjxa

b a
=T 22X

= (xsz)(xazz‘) = 0201

<j

and thus G is abelian. [ |

Let A be an abelian group and let D be the (diagonal) subgroup {(a,a)la € A} of
A x A. Prove that D is a normal subgroup of A x A and (A x A)/D = A.

Proof. Let (ay,a2) € A x A and (d,d) € D. Then,

(a1,a2)(d,d)(ar,a)™ " = (ard, axd)(a;*, ayt)

aya;d, azay td) (since A is abelian)

and so D < (A x A). Now, define a map ¢ : A — (A x A)/D by a — (a,14)D. Let
a,a’ € A. Then,

p(ad’) = (ad’, 14)D = (a,14)D(d’, 14)D = p(a)p(a’)
and so ¢ is a group homomorphism. Now, suppose ¢(a) = ¢(a’). Then
(a,14)D = (', 14)D = (¢’ ", 14)(a,14) € D
— (¢’ 'a,14) €D

~1
— d a=1y4
— a=2d
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3.1.41

3.2.12

and so ¢ is injective. Now, suppose (a,a’)D € (A x A)/D. Notice that since
-1

(@', a’"") € D then,
(a,d)D = (a,d)(a'",a'"")D = (aa’"",1)D
So,
p(ad™") = (ad~",1)D = (a,d)D
and thus, ¢ is surjective. [
Let G be a group. Prove that N = (x~'y~lay|z,y € G) is a normal subgroup of G

and G/N is abelian (N is called the commutator subgroup of G).

Proof. Claim: If G is a group and H = (S) for some subset S of GG, then H is a normal
subgroup of G if and only if for all ¢ € G and all s € S we have that gsg~! € H.
Proof of Claim: (=) Let G and H be defined as above and suppose H < G. Since
S C @G, then for any s € S we have gsg™' € H.

(<) Now, suppose gsg~! € H for all ¢ € G and s € S. Let S~! be the set of all
inverses for elements in S. Then, for s, 59,53,---€ SUS Y and g € G,

H > (g1~ ) (9539~ )(gs59™") - = g(sys3s5...)g ™" = ghg™
For some h = (s¢sbss3c...) € H. Thus, gHg™' C H for all g € G and so H < G.

Let G be a group and N = (z 7'y lzy|z,y € G). By the claim, N < G. Now, consider
G/N. Let a,b € G. Then,

a'brabe N <= (ba)'ab € N
< abN = baN
<= aNbN = bNaN

and thus, G/N is abelian. [

Let H < G. Prove that the map x — 27! sends each left coset of H in G onto a
right coset of H and gives a bijection between the set of left cosets and the set of right
cosets of H in G (hence the number of left cosets of H in G equals the number of right
cosets).

Proof. Define ¢ : G — G by x + 7. Then, given an element gh € gH, we have

¢(gh) = (gh) ' =h"'g " € Hg!

So, ¢ maps elements in the left coset gH precisely to elements in the right coset
Hg™'. We claim that ¢ gives a bijection between left and right cosets. To see this, let
ghi, gha € gH and suppose ¢ (ght) = ¢(ghs). Then,

e(gh1) = p(ghs) = hi'g™ ' =hy'g" = hi'=hy' = h=h



Nicholas Camacho Abstract Algebra — Homework 3A September 13, 2016

3.3.4

and so ¢ is injective. Now, suppose h1g € Hg. Then, observe that
plg~ ) =hi'(g7) " =Rty

and so each element in Hg can be attained through the map ¢, and so it is surjective.
[ |

Let C' be a normal subgroup of the group A and let D be a normal subgroup of the
group B. Prove that (C'x D) < (A x B) and (A x B)/(C x D)= (A/C) x (B/D).

Proof. We first show that (C' x D) < (A x B). First, notice that since C' and D are
subgroups of A and B, respectively, then 14 € C'and 15 € D and so(14,15) € (C'x D).
Now, let (¢, d'), (¢,d) € (C' x D). Then,

(d,d)(c,d) ™ =(c,d)cd ) =(ctdd)eCxD

because ¢! € C and d'd™' € D by closure in C and D. So, (C'x D) < (A x B).
We now show that (C' x D) < (A x B). Let (¢,d) € (C x D) and (a,b) € (A x B).
Then,

(c,d)(a,b)(c,d)™ = (¢,d)(a,b)(c"',d™") = (cac™*,dbd™") € (C x D)

because cac™! € C and dbd~! € D since C' and D are normal in A and B, respectively.
Thus, (C' x D) < (A x B).

Now, consider the map ¢ : (A x B) — (A/C) x (B/D) defined by (a,b) — (aC,bD).
Suppose (aC,bD) € (A/C) x (B/D). Then clearly ¢ is surjective since ¢((a,b)) =
(aC,bD). Now, we consider ker p:

ker p = {(a,b) € A x B | ¢((a,b)) = (C,D)}
={(a,b) e AxB|laeCandbe D} =(C x D)

We conclude by the First Isomorphism Theorem (A x B)/(C x D) = (A/C) x (B/D).
|
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3.2.9 This exercise outlines a proof for Cauchy’s Theorem. Let G be a finite group and let p be a
prime dividing |G|. Let S denote the set of p-tuples of elements of G' the product of whose
coordinates is 1:

(a)

S ={(x1,29,...,2p) | i € G and xy29-- -1, = 1}
Show that S has |G|P~! elements, hence has order divisible by p.
Proof. For the p-tuple (x1,x,...,x,) to be in S, we must have
(129 Tpy) = :c;l

In other words, we have precisely |G| choices for the first p — 1 elements of the p-tuple,
and 1 choice for the z, term. So, there are |G|P~! elements in S. [

Define the relation ~ on S by letting @ ~ § if § is a cyclic permutation of «.

(b)

Show that a cyclic permutation of an element of S is again an element of S.

Proof. Let (x1,x9,...,x,) € S. Consider the cycle permutation of this element (zy, ..., x,, 21, . ..

Notice that

(.1'1372 .. .Q?p) = ({ﬂl S TR Tg Ty
(T1 - ap—1) (T -y
(2121

(a’/’k PR xp)(xl DY '/'L‘k,’fl

~— — — ~—

So,
(@ @y @per) = (Tn - @) (10 @) = 1

Prove that ~ is an equivalence relation on S.

Proof. Let «, 3, be cycle permutations of elements of S.

Reflexivity: Given a cycle permutation «, the identity cyclic permutation is a permutation
of a, ie., a ~«

Symmetry: Let a ~ 8 and suppose (3 is a k-th cyclic permutation of a;, where 0 < k < p—1.
Then, « is the (p — k)-th cyclic permutation of 5. Hence, a ~ § = S~ «
Transitivity: Let a ~ 8 and 8 ~ 7 and suppose that £ is a k-th cyclic permutation of «,
and v is an /-th cyclic permutation of . Then, 7 is a (k + ¢)-th cyclic permutation of «,
ie,a~fand f~y = a~ 7. [ |

Prove that an equivalence class contains a single element if and only if it is of the form
(x,z,...,r) with 2P = 1.

Proof. Suppose that we have an equivalence class of § with a single element of S, and
let o be the cycle associated with this element. Then each i-th cyclic permutation of «
for all 0 < ¢ < p — 1 is precisely a. This occurs only when z; = x9 = --- = x,,. So, the
element of S associated with « is of the form (z,x, ..., z) with 27 = 1. On the other hand,
suppose an element of S is of the form (z,z...,z) with ¥ = 1. Then, the permutation
associated with this element, o, has the property that every ¢-th cyclic permutation of «
for 0 < i < p—1is precisely «, i.e., the equivalence class associated with a contains a
single element. [

, L.
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(e) Prove that every equivalence class has order 1 or p (this uses the fact that p is a prime).
Deduce that |G|P~! = k+ pd where k is the number of classes of size 1 and d is the number
of classes of size p.

Proof. Suppose the equivalence class of (xy,...,2,) contains more than 1 element. Then
there exist ¢ < j such that z; # x;. We want to show that for all 1 <b < ¢ < p,

(X ooy Ty T1y ey Tp—1) F (T ooy Ty T, ooy Tom1)

Rearranging, this means that for all 2 < a < p, we want to show

(g vey Ty Ty ooy Tam1) F (X1, ooy Tp) (1)

Now, suppose we had equality in (1). Then, let 0 = (1,2,...,p) and p = ¢*. Notice that

(Zp(1), Tp(2)s - - > Tp(p)) = (Tas ooy Tpy Ty ooy Ta—1)

Equality in (1) implies that x; = x,; for 1 <4 < p. Without loss of generality, let i = 1.
So, by our assumption that each equivalence class has more than one element, x; # z;
for 1 < j < p. From Exercise 11 of section 1.3, we know that since (a,p) = 1, then p is a
p-cycle. Since p is a p-cycle, then there exists k € Z* so that p¥(1) = j. So,

L1 = Tpk(1) = L5

a contradiction. So the statement in (1) holds. Therefore, every equivalence class has
order p, or order which divides p. Since p is prime, the equivalence classes have order p or
1. So, if S has k classes of size 1, and d classes of size p, then

S| =GP~ =k +dp
|

(f) Since {(1,1,...,1)} is an equivalence class of size 1, conclude from (e) that there must be
a nonidentity element x in G with 2 = 1, i.e., G contains an element of order p. [Show
p | k and so k > 1].

Proof. Since |G|P~! = k + dp, then k = |G[P~! — dp. Since p divides |G|P~! and dp, then
k is divisible by p and so k > 1. Thus, there must be a nonidentity element in G so that
P = 1. |

3.2.11 Let H < K < G. Prove that [G: H] =[G : K] - [K : H]. (Do not assume G is finite).

Proof. Since the (left) cosets of K in G partition G, then
G=|]9H (2)
lel

where [ is an indexing set so that each g, is a representative from each coset of H in G. In
other words, |I;| = [G : H]. Similarly, we have

K=||kH and G=| |zK

VISP) i€lg
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3.3.2

so that |I| = [K : H] and |I3] = [G : K]. Since the (left) cosets of H partition G' and the (left)
cosets of K partition H, then G can be written as

i€l3 jel2

Written this way, we have G partitioned into |I5] - |I3] pieces. We can also write G as in (2), so

that
L gett = | | | ] ks K 2)
el i€lg jGIQ
and so [G: H| =[G : K| - [K : H]| as desired. |
Prove all parts of the Lattice Isomorphism Theorem.

Let G be a group, let N < G. Define
G={H|N<H<G} and G={H | H<G/N}
Then the map B
J:6—=G
defined by H +— H/N is a bijection. Moreover, define G = G/N. If A,B € G define A =
A/N,B = B/N.
(1) A<B < A<B
Proof. _(:>) Since A, B € G, then they are both groups. We want to show that A< B. Let
alN € éfor a € A. By our assumption a € B, and so aN = bN € B for some b € B. Thus,
aN € B. («) Since A, B € G, then A and B are groups. We want to show that A < B.

Let a € A and consider aN € A. By our assumption, aN € B and so aN = bN for some
b € B. Then,

ab!N=N = ab'eN = ab'=nneN = a=nb

and so a € B since n,b € B. [ |

(2) If A< Bthen [B: Al =[B: A
Proof. Since A < B, then A < B by (1). So, we consider B/A and B/A and define a map
¢:BJ/A— B/A by bA—b A
where b denotes bIN.

@ 1s well-defined: Suppose bjA = by A. This implies by = bea for some a € A. So,

wbiA) =by A=bya A=bya A=by A= p(bA)
@ is injective: Suppose p(b;A) = p(byA). Then, by A = by A which implies f by € A, and
so we have b, 'b, = @ for some a € A. Unraveling the notation, we have (b;'b;)N = aN,

which means (a='b;'b;)N = N and so (a~'by'b;) € N. Now, this implies b;'b; € aN.
Since aN C A, then by 'b; € A and so by A = by A.

¢ is surjective: Let b A € B/A. Then, p(bA) =b A and so ¢ is surjective.

So, ¢ is a bijection and we conclude [B : A] = [B : A]. |
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(3)

(A, B) = (A, B)

Proof. Let © € (A, B). Then, x = yN for some y € (A, B). Then, y = c¢icoc3 ... where
¢; € Aorc € B for all i. So,

x=yN = (c1cac3...)N = c;NcgNesN ...

Since each (¢;N) € A or B for all i, then = € (4, B).
Conversely, suppose = € (A, B). Then,

for some (d;N) € ﬂ r (d;N) € B for all i, which means d; € A or d; € B for all 4. This
means (dydyds...) = z for some z € (A, B). So,

and thus = € (A, B). |

ANB=ANB

Proof. Let x € AN B. Then, x = yN for some y € AN B. Since y € AN B, then y € A
and y € B, and so yN € A and yN € B. Thus, z € AN B.

Conversely, suppose © € AN B. So, x € A and € B, which means 2 = aN € A and
z = bN € B for some a € A and b € B. So, aN = bN, which means b~'a € N, and so
a € bN. Since bN C B, then a € B. Thus,a € AN B, and so z =alN € AN B. [ |

ALG = A<G

Proof. (=) Let a € A and g € G. Since A < G, then o’ = gag™! € A. Let aN € A and
gN € G. Then, -
(gN)(aN)(g~'N) = (gag " )N =d'N € A.
and so A < G. o _
(<) Leta € Aand g € G. Since A < G, then (gN)(aN)(g™'N) = (gag™')N € A. Suppose

(gag™')N = zN for some z € A. This means that z7'gag™ € N. So, gag™' € xN. Since
xN C A, then gag™* € A and thus A < G. [ ]
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3.4.1

3.4.6

3.5.3

Prove that if G is an abelian simple group, then G = Z, for some prime p (do not assume
G is a finite group).

Proof. We claim that if G is an abelian simple group, then |G| = p for some prime p. Then,
every non-identity element of G must have order p, which means every non-identity element
of G generates G. Then G = Z, since every cyclic group of order p is isomorphic to Z,.

To prove the claim, first suppose G is an infinite group and let * € G be a non-identity
element. Remember that every subgroup of an abelian group is normal. If |z| is finite, then
() < G and since G is abelian (z) < G, which means G is not simple. If |z| is infinite,
then (z?) < G, and (2%) < G, which means G is not simple. So, G cannot be infinite. Now,
suppose |G| = ¢ for some composite number ¢. Let p be a prime so that p|c. Then, there
exists x € G with |z| = p by Cauchy’s Theorem. Then, (z) < G and (z) < G, which means
G is not simple, a contradiction. Thus, G must be of prime order. [ |

Prove part (1) of the Jordan-Hélder Theorem by induction on |G]|.

Theorem (Jordan—Holder). Let G be a finite group with G # 1. Then
(1) G has a composition series.

Proof. For the base case, we consider the case when |G| = 2. So, G is simple and so the
composition series is 1 < G and G/1 is trivially simple. Now, suppose that whenever G has
order less than or equal to n, G has a composition series. Let |G| = n + 1. If G is simple,
then we are done (because its composition series is trivial). If G is not simple, then G has
a nontrivial normal subgroup N. Notice that |N| < n which means |G/N| < n. By our
inductive hypothesis, N and G/N have a composition series:

and
1=5/N<S/N<...<d5,/N=G/N

Notice that

Also notice that since S;/N < S;i1/N, then S; < S;i1. So, we construct the following
composition series for G:

Thus, every finite group has a composition series. [ |

Prove that S, is generated by {(: ¢ + 1) | 1 < i < n — 1}. (Consider conjugates, viz.
(23)(12)(23)71)

Proof. Let n € Z™ and o € S,,. We know that o can be written as the product of transpo-
sitions. Given any transposition which is in the product of the transposition decomposition
of o, say (a b), notice that

(ab)=0b-1b)bb+1)...(a+1a+2)(aa+1)(a+1la+2)...(bb+1)(b—1b)
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3.5.4

This implies that ¢ can be expressed as the product of elements in the set
{Gi+1)]1<i<n-—1},

and so S, is generated by this set. [ |

Show that S, = ((12),(12...n)) for all n > 2.

Proof. Let n > 2. Since S, = ({(i i+1) | 1 <i <n—1}) by the previous exercise, we show
(12),(12...n)) = {(ii+1) | 1 <i<n—1}).
First notice that (1,2),(123...n) € S,. Thus, ((12)(12...n)) < S,. Now, let
o=(123...n) and 7= (12).
Let i € {2,3,4,...n —1}. We claim
(ii+1)=0"1ro"
When we prove this claim, we have S,, < ((12)(12...7n)) and so conclude that
S, ={((12)(12...n)).
1-i

To prove the claim, we need to show that o~ '7o1~* obeys the same mapping as (i i + 1).
Namely, the mapping that sends ¢ to ¢ + 1, and 7 + 1 to ¢, and fixes all other points in

{1,2,...,n}.
Let j € {1,2,...,n}. We know from a previous assignment that for any m-cycle p =
(12...m), we have p*(j) = j + a. So, notice

(0" lra' () = ("' 1) (7))
(0" ')(j4+1—1i modn)
= (" NH7(j+1—i modn)

z—17_

At this point, we claim that the number j + 1 —4 (mod n) does not equal 1 nor 2, and so 7
fixesit. If j+1—4 =1 (mod n) then j —i = n. But, the restriction of values on i and j tell
us that |i — j| <n. If j+1—4i=2 mod n then j — (i + 1) = n. But again, the restriction
of values for 7 and j tell us that [j — (i + 1)| < n. So,
("™ H7r(j+1—i modn)=c"1j+1—i modn)

=j+1—i+(i—1) modn

=7 modn

=J

Now, observe that
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and also that

4.1.1 Let G act on the set A. Prove that if a,b € A and b = g-a for some g € G, then G, = ¢G,g~!
(G, is the stabilizer of a). Deduce that if G acts transitively on A then the kernel of the

action is (e 9Gag ™"

Proof. Let a,b € A so that g-a = b for some g € G. We show G, = gG,g™ .

heG, < h-b=b

<~ (h-b)=g-a
<~ g '(h-b)=a
<~ (g'h)-b=a
< g 'hg-a)=a
< (97'hg)-a=a
> (97hg) € G,
= he gG.g "

The kernel of this group action is (), ., G,. If G acts on A transitively, then G, = gGag~!

for all a,b € A. So,

() 9Gag™

geG
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3.4.9 Prove the following special case of part (2) of the Jordan-Ho6lder Theorem: assume the
finite group G has two composition series

1:N0§]N1§]§]NTZG and 1:MQ§]M1§M2:G
Show that » = 2 and that the list of composition factors is the same.

Proof. We first state and prove the following lemma:

Lemma. If A and B are normal subgroups of G, then AB 1 G.

Proof. Let A, B and G be defined as above. Then, for all g € G,
gAg ' =A and ¢gBg'=DB

So,
gABg™' = gABg~' = gAg 'gBg' = AB

and so AB < G. -

Now, we show that » > 2. If r = 0, then G is the trivial group, which cant have a
compositions series. If » = 1, then G does not have any nontrivial normal subgroups,
but M is nontrivial and is normal in G. Thus, r > 2.

Since M; and N,_; are normal in GG, then by the Lemma, M;N,_; < G. Also, notice
that M; N N,_; < G. By the Second Isomorphism Theorem.

G

MiN, 4
/ \
M, Ny
\ /
M; NN,
1

By the composition series, we know that M;/1 = M; is simple. Also, since M1NN,_; <
G, then M7 N N,_; < M;. Thus, either

(1) M1 N Nr—l = M1 or (2) M1 N Nr—l = 1.
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(1) M1 N NT,1 = M1
This implies that M; < N,_;. By the Fourth Isomorphism Theorem, we have

N,_1 /My < G/M;y
Since G /M; is simple, then either
(CL) Nf,afl/Ml = G/M1 or (b) NTfl/Ml = M1

(a) Nrfl/Ml = G/M1
This implies N,_; = G. But from the composition series, N,_; < G, thus,
N,_1 #G.

(b) Nrfl/Ml == M1
This implies N,_; = M;. because M; is simple, we have N,_; = 1, which
implies r = 2.

(2) MiNN,_; =1
This implies that M; < N,_1M;. We know that N,_;M; < G, and since M; 4 G,
then M is a strict normal subgroup of N,_;M;. By the composition series, we

have
NrflMl - G

and from the Fourth Isomorphism Theorem,
N, 1 My/M, = G/M,
Since G /M; is simple, then either
(a) N._yMy/M; =1 or (b) N,_1My/My=G/M —1

(a) N,«_lMl/Ml =1
This implies N,_; = M, but since M is simple, then N,_; =1 or N,_; = M;.
If N._; =1, then G is simple, but that contradicts the fact that M; is a strict
normal subgroup of G. So, N,_; = M; implies N,_s = 1, which implies r = 2.
(b) N,_1My/M; =G/M —1
This implies G = N,_;M;, which means G/M; = N,_;. So, N,_1 = 1, which
means r = 2.

By part 2(a), N,_; = M;, and since r = 2, then N; = M, which means the composition
series is the same. -

4.1.7 Let G be a transitive permutation group on the finite set A. A block is a nonempty
subset B of A such that for all 0 € G either ¢(B) = B or ¢(B) N B = 0 (here
o(B) ={o(b) | b€ B}).

(a) Prove that if B is a block containing the element a of A, then the set G defined
by Gg = {0 € G | o(B) = B} is a subgroup of G containing G,.
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Proof. Let a € A and 0 € G,. Suppose a € B. Then
ola)=a€B = o(B)=B = oce€Gg = G, CGp
Notice that G # ) since 0,4(B) = B and so 0y € Gg. Let 0,7 € Gg. Then
(0o )(B) = o(r'(B)) = o(B) = B
and so, c o7~ ! € Gp, thus Gg < G. -®

Show that if B is a block and o1(B), 02(B), ..., 0,(B) are all the distinct images
of B under the elements of G, then these form a partition of A.

Proof. We show that for ¢,k € {1,2,...n}, either oy(B) Nox(B) =0 or 04(B) =
or(B). Suppose a,(B)Noy(B) # 0 and let x € oo(B) Noy(B). Then, there exists
bi,by € B so that o4(by) = x = 04(b2). Then,
Ug(bl) = O'k(bg) — b1 = Oe_lak(bl)
— 0[1 oo, € B
= (0,'00})(B) =B
— O'k(B) = O'g(B)

Thus, o, and o}, are either the same or disjoint. Now, it is clear that

Let a € A and b € B. Then, since GG acts transitively on A, there exists o, € G
so that o(b) = a. So, a € |J;_, 0,(B) and therefore,

4.1.9 ***(Worked with Meghan Malachi and Anup Poudel)***
Assume G acts transitively on the finite set A and let H be a normal subgroups of G.
Let O1,0,,..., 0, be distinct orbits of H on A.

(a)

i. Prove that G permutes the sets O1,0,,...,0, in the sense that for each
g € G and each i € {1,...,r} there is a j such that ¢O;, = O;, where
g0 ={g-a|aecO} (ie., Oy,...,0, are blocks).

Proof. Recall that H < G. If g € G and a € A, then we can call H - a an
orbit of H on A. So,
g -ay = ap for some ay € A
g-(H-a1)=gH-a,
= Hg-a
=H(g-a1)=H -ay
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ii.

111.

And so, we have g-(H-a;) = H-ay. Which means G permutes Oy, O,, ..., O,.

Ll
-

Prove G is transitive on {Oy,...,O,}.

Proof. We want to show that for all H - a, H - as € {O1,0,,...,0,}, there
exists a g € G so that
g.(H.a1>:H.a2

Let ay,a, € A, then since G acts transitively on A, there exists g € G such
that g - a; = as. So,

H(g-a1) = H - ay
gH a1 = H - ay
gH -ay = H - ay

g(H -a1) = H - as

And so, there exists a g so that

g'(H'al):H'GQ

Deduce that all orbits of H on A have the same cardinality.

Proof. Let ai,ao € A and g -a; = ay for all ¢ € G. Since H < G, then
gH = Hg for all ¢ € G, which means gHg~! = hg for some h,hy € H and
for all g € G. This means that gh = hgg. We define a bijection between the
orbits: Define the map

o:H-a1— H-ay

by h-a; — hqg - as. Because G acts transitively on A, then for all a;,as € A
there exists a ¢ € G such that g - a; = ay. This implies g(H - a;) = ap and
so G acts transitively on each O;. Now, because ¢ - (ha) = g - (hoa1), then
ha; = hgas. So, each O; has the same cardinality. -®

(b) Prove that if a € Oy then |O,| = [H : H N G,] and prove that r = [G : HG,].

Proof. We know that |G - a| = [G : G,], so H-a| = [H : H,|. Therefore,

H,

= HNG,since H <G (and so H C G). Then,

|H-a|=[H:H,)=[H:HNG,

Since G acts transitively, the number of distinct orbits of H on A is

r=H{H-alac A} =[G:GCud

We want to show |G : Gg..] =[G : HG,], i.e., Gy, = HG,.
If g€ Gy, then Hg-a=(gH)-a=g¢g-(H-a)=H. So,g-a=h-afor h € H.
Then, h"}(g-a) =a = (h7'g)-a=a. So, h 'g € G,, which means g € hG,
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and so g € HG,,.
If g€ HG,, then g = hyx for hy € H and x € G,. Then,

g-(H-a)=(9H)-a=hzxH-a=hHr-a=Hhr-a=H -a
which means g € Gy.,. -

4.1.10 ***(Worked with Meghan Malachi and Anup Poudel)***
Let H and K be subgroups of the group G. For each x € G define the HK double
coset of x in G to be the set

HaK = {hzk | h€ H,k € K}

(a) Prove that Hz K is the union of the left cosets 1 K, . . ., 2, K where {m1 K, ..., x, K}
is the orbit containing x Kof H acting by left multiplication on the set of left cosets
of K.

Proof. Let hxk € HxK for x € G. Notice ht K = h(zK) € HxK and hxk €
(hx)K. So,
hzk € U v, K.

z, KeH =K

Now, let y € U x; K. Then, y € z;K for some z; K € H - xK. This implies
x; KeH xK

;K =h-xK = hxK for some h € H, so y € hxK. Then, y = hxky for kg € K.
Thus, y € HxK. So,
HiK = | xK

z, KEH K

(b) Prove that HxK is a union of right cosets of H.

Proof. We want to show
HzK = |J Hb.
HbeH-zK
Let hak € HxK. Notice that Hxk = Hx -k and Hx - k € Hx - K. This implies
hxk € Hx K, and so
heke ) Hb

HbeH-zK

Let g € Upper.or Hb. Then g € Hb for some Hb € Hx - K and Hb = Hx - k for
some k € K. Then, Hb = Hxk, which means Hb € HxK. Thus, g € Hxt K.

(c) Show that HxK and HyK are either the same set or are disjoint for all z,y € G.
Show that the set of HK double cosets partitions G.
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Proof. We claim that G = |JHzK. If z € G then x = 121 € HzK. If x € Hz K
then clearly z € G. Now, we want to show HxK N HyK # () implies Hx K =
HyK. Suppose hixk; = hoyks where hyxk, € Hr K and hoyks € HyK. Then,

zk; = hl_lhgykg — = hl_lhgkak:fl — v € Hyk — HxK C HyK

Similarly,
hoy = hlxklkz_l == y= h;lhlxklkz_l — y€ HtKk — HyK C HxK
Thus, HxK = HyK. L 3

Prove that |HeK| = |K|-[H : HNaKz™ .

Proof. We know that
HxiK = || yK.
yKeH K
Since each yK is disjoint, |yK| = |K|. So,
|HzK| = |K|-|H -zK| = |K|-[H : Hyx]
So, we claim H,x = HNxKx~!, and the conclusion follows. To prove the claim,
observe that

he Hyx < h-(zk)=xk
hxk = xk

t hak =k

v 'he € K
hexKaz?

he HNzKx™!

[

Prove that |HxK| = |H| - [K : K Nz 'Hzx].

Proof. We know that
HzK = || Hy.
HyeH-xk

Since each Hy is disjoint, |Hy| = |K]|. So,

HoK| = [H| - |Ho - K| = [H| - [K : Kp]
As before, we claim Kg, = K Nz 'Hx. Then,

ke Ky, — Hx-k=Hxk=Hzx

We Have that v Kz "H. So,

kcaxz'Hr = k€ Kandkca 'Hx
Now, if k € KNa~'Hx, then zka=! = h for h € H, and so

the '€ H = Hr-k=HzK=Hr — ke Kp,
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4.2.8

3.2.9

Prove that if H has finite index n then there is a normal subgroup K of G with K < H and
G : K] <nl

Proof. Let C = {gH | g € G} be the set of left cosets of H in G. We let G act on C' by left
multiplication. Let my be the associated permutation representation afforded by this action,
ie.,
g G — Sc.
Then, by Theorem 3 (Chapter 4, Dummit and Foote), we know K = kermy < G and
K < H. Now, since [G : H] = n, then S¢ = S,,. Since |S,| = n!, then |S¢| = n! as well. So,
|7r(G)| < n!l. By the First Isomorphism Theorem, G/K = 7y (G). Thus,
n! > [rp(G)| = |G/K| =[G : K]

It

(Cauchy’s Theorem Revisited)
Look again at 3.2.9. Let S = {(x1,...,2,) | ; € G and 21 ---x, = 1}. Let o be the p-cycle
(1,2,...,p)in Sp, and let H = (o). For all 7 € H and all (x;,...,2,) € S, define

721, ., 2p) = (Tr(1)s - - Tr(p))

(i) Show that this defines a left action of H on S.

Proof. Let (x1,...,x,) € S and 0,4 be the identity permutation of H. Then,

Oig-(T1, -, %) = (Toyy(1)s - -+ Taa(p)) = (T1,. .., Tp).

Now, let oy,0% € H,1 < {,k <pand (x,...,7,) € S. By a previous exercise, we know
that for any j € {1,2...,n} and any power of a p-cycle, o/, we have o/(j) = j + £. So,
ol (o (21,... 1) = O'e.(f]:o.k(l), o Tak(p))

=o' (214, ... y Tpik)
= (Tot@k)s - Tt (pik))
= (T14hte; - -5 Tprhte)
= (@orrr(r), -+ s Tohre(p))
=" (2, ..., 2p)
= (c"0").(21,..., 1)
Thus, the given mapping defines a left action of H on S. -

(ii) Show that the H-orbits of this action are precisely the equivalence classes of the equiv-
alence relation defined exercise 3.2.9.

Proof. Let o = (21,...,x,) € S. Then,
Oy ={ra| 7€ H}
={p|B=1a,T€ H}
= {8 = (rq)s-- -+ %r(p)) | T € H}
= {6 = (2rq),--,%r@p)) | T is a power of the p-cycle o}

= {f is cyclic permutation of o}
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And so O, is the set of elements which are cyclic permutations of «, i.e., O, is an

L

equivalence class of the relation defined in 3.2.9. -

(iii) Use the orbit lemma to prove that every H-orbit has order 1 or p (thus giving a shorter
proof of part (e) of 3.2.9).

Proof. Let a € S and note that
Hl _ p

H:H)|=—= )
[ ] Ha |Ha|

Since p is prime, |H,| =1 or |H,| = p. Thus,

[H:Ha]:§:p or [H:Ha]:]g:l.
b

By the Orbit Lemma, |O,| = [H : H,|, which means |O,| =1 or |O,| = p. *®

4.3.29 Let p be a prime and let G be a group of order p®. Prove that G has a subgroup of order p®

4.3.31

for every  with 0 < 5 < a.

Proof. We proceed by induction on a. For the base case, suppose « = 1. Then |G| = p and
G has subgroups {1} and G. Clearly, |[{1g}| = p and |G| = p', and so G has a subgroup
of order p? for each 0 < B < a = 1. For the inductive hypothesis, suppose that for each
1 <a<n-—1,the group G of order p* has a subgroup of order p® for each 0 < 8 < a.

Let G be a group of order p". By Cauchy’s Theorem, there exists g € G with |g| = p. Let
N = (p). So, |G/N| = p"!, and by the induction hypothesis, G/N has subgroups of order
pY for each 0 < <n — 1. By the 4th Isomorphism Theorem, the subgroups of G/N are of
the form H/N where H < G. So for each 0 <y < n — 1, there is a subgroup H < G so that

A _ A _

[H/N|= o=~ =p = [H=p™"
V]

So, G has subgroups of order p?*! for each v € {0,1,...,n — 1}, i.e., G has subgroups of
order p” for each 3 € {1,...,n},. Note that clearly the trivial subgroup of G is of order p°
so G contains a subgroup of order p? for each 0 < 8 < n.

Using the usual generators and relations for the dihedral group Ds,, show that for n = 2k
an even integer, the conjugacy classes in Ds,, are the following:

{1}, {rk}, {ril}, {Tﬂ}, . {ri(k_l)}, {erb |b=1,...,k} and {erb_l |b=1,...,k}

Give the class equation for D,,.

Proof. We know from a previous exercise that Z(Dy,) = {1,7F}. Thus, {1} and {r*} are
conjugacy classes of Dy,. Let 1 <4,/ < k—1and j € {1,2}. Then, any non-identity element
of Dy, can be written as s’r'. Now, we find the conjugacy class of r*:
() (7)™ = () () (')
= gttt (Note that s/ = s77)
¢

= slrts’.
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Recall that srfs = r=f. When j = 1, we have

4 4 14

s'rts) =srts =177,

and when j = 2,

sirtst = 101 = o*.

Thus, {r*‘} are conjugacy classes for each £ € {1,2,...,k — 1}. We now find the conjugacy

class of s:
(Sr)(s)(s7r) ™" = (1) () ('),

Recall that r~'s = sr. When j = 1
(77 (s)(r~'s?) = sr'sr~'s = sr's(sr') = sris*r' = sr¥,
and when j = 2,

(7)) (s)(r~ts7) = risr™t = (sr7 )t = sr7 2 = g2,
Thus, the conjugacy class of s is {sr? | 1 < i < k}. Finally, we find the conjugacy class of
ST

(597 (s1) (7)™ = (577 (sr) )

Then, when 7 =1,
(7Y (sr)(r~"s?) = (sr")(s1)(r "s)

= sri(r~ts)r s
= sr' 1 (sr7")s
= s r's)s

= sr¥i L,

and when j = 2, we have

So, the conjugacy class of sris {sr*~! | 1 <i <k —1}. So, the class equation of Dy, is as
follows:
Doy =1+142+24 - +2+k+k
—_—

(k—1)— summands

4.4.8 Let G be a group with subgroups H and K with H < K.
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(a)

Prove that if H is characteristic in K and K is normal in G, then H is normal in G.

Proof. Let o, € Aut(G) be conjugation by ¢ for each g € G. Since K is normal in G,
then for each o, € Aut(G), we have

0,(K)=gKg' =K.

Therefore, 0, € Aut(K) for each g € G. Since H is characteristic in K, then for each
o4 € Aut(K), we have
H=o0,(H)=gHg "

Thus, H is normal in G. -

Prove that if H is characteristic in K and K is characteristic in G then H is characteristic
in GG. Use this to prove that the Klein 4-group V} is characteristic in Sj.

Proof. Let 0 € Aut(G). Then, as K is characteristic in G,
o(K)=K.

Thus, o € Aut(K). Since H is characteristic in K, then
o(H)=H

and so H is characteristic in G.

To show V} is characteristic in Sy, we first prove the following: If H is a unique subgroup
of a given order in a group G, then H is characteristic in G.

To see this, let 0 € Aut(G). Then, since o is bijective, then the order of the image of
H under o, 0(H), is the order of |H|. Since o is a homomorphism, o(H) is a subgroup
of G. Since H is the only subgroup of order |H|, then o(H) = H, and thus H is
characteristic in G.

Now, since V} is the unique subgroup of A, of order 4, then Vj is characteristic in Ay.
Also, since Ay is the unique subgroup of order 12 in Sy, then Ay is characteristic in Sj.
So, by the result above, we know V} is characteristic in Sjy. -

Give an example to show that if H is normal in K and K is characteristic in G then H
need not be normal in G.
Solution:

We know that since V; = {(), (12)(34), (13)(24), (14)(23)} is abelian, then the subgroup
H ={(),(14)(23)} of V; is normal. So, we know that

H <V, char Aj.

But
(123)(14)(23)(132) = (13)(24) ¢ H,

and so H 4 Ay.
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4.3.17 Let A be a nonempty set and let X be any subset of S4. Let

4.3.19

F(X)={a€A|o(A) =aforalloc € X} — the fized set of X.

Let M(X) = A — F(X) be the elements which are moved by some element of X. Let
D={oce€Sy| |M(c)| < oo}. Prove that D is a normal subgroup of 5.

Proof. We first show that D is a subgroup of S4. Notice that o;y € D since
|M(0iq)| = |[A— F(oia)| = |[A— Al =[0] = 0 < .
Let 0,7 € D. Notice that M(r) = M(7~'). We show that o o 77! € D. Suppose |M(o)| =
s <ooand |M(771)| = |M(7)| =t < co. Notice that
M(ooT)C M(o)U M(1)
and so
|M(ooT)| < |M(o)|+ |M(T)| =5+t < oo.

We now show D <0 Sy. Let 0 € Sa, and 7 € D. We claim that 70! € D, i.e., |[M(o707")| <
oo. If |A| < 0o, then we are done. Suppose |A| = co. We proceed by contradiction. Suppose
|M (0707 1)| = co. Then, there exists an infinite subset B C A so that for all b € B we have

(oro™1)(b) # b.
This implies that for all b € B,
(o (b)) # o' (b).
In other words |M(7)| = oo, a contradiction, as 7 € D. Thus, |M(o70)| < oo, and so

Assume H < G, and K is a conjugacy class of G contained in H and x € K. Prove that K
is a union of k conjugacy classes of equal size in H, where k = [G : HCg(z)]. Deduce that
a conjugacy class in S,, which consists of even permutations is either a single conjugacy class
under the action of A,, or is a union of two classes of the same size in A,,. [Let A = Cg(z) and
B = H so AN B = Cy(x). Draw the lattice diagram associated to the Second Isomorphism
Theorem and interpret the appropriate indices. See also Exercise 9, Section 1.]

Proof. Let H act on K by conjugation. Then, K is the union of H-orbits;
K= U H.x
zek
We claim that the H-orbit has of equal size. Let H.a and H.b be distinct H-orbits (conjugacy
classes of IC in H). Then, as a and b are in the same conjugacy class K, there exists a g € G
so that gag™! = b. We claim |H.a| = |H.b|. Notice
g(H.a)g~" = {g(hah™")g™" | h € H}
— {(gh)algh)™" | h € H}
= {rar™ |z € gH}
={yay™' |y € Hg} (gH = Hg since H < G)
— {(hg)alhg)™ | h € H}
= {h(gag " )h" | h € H}
={hbh™' | h € H}
=Hb
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Thus, H.a and H.b are conjugate and so |H.a| = |H.b|. Suppose z € K. Since all conjugacy
classes in KC have equal size,

K| =Fk-|H.x| for some k € Z*.

We claim that k = [G : HCg(x)]. Since K = G.x is a conjugacy class of G, then G, = Cg(x).
Likewise, as H.x is a conjugacy call of H, then H, = Cy(x). Then by the Orbit-Stabilizer
Theorem,

|G.z| =[G :G,] =[G:Cq(x)] and |Hazx|=[H:H, =[H:Cy(x).
So,

Kl |Gal _ [G: Colw)
|H.x| |Hzx| [H:Cgx(z)]

K| =k-|Hz| =
Since H <4 G and Cg(z) < G, then HCg(z) < G by Corollary 15 of Section 3.2 (D&F). So,

By Exercise 11 of Section 3.2, we have

G : Co(a)] = [G : HCu(x)] - [HCu(x) : Co(2)].

So,

(G : Ca(z)] _ G : HCq(z)] - [HCq(z) : Cg(x)]

[H : Cy(z)] [H : Cy(z)] '
Note that HNCg(z) = Cg(z). Since H 9 G and Cg(x) < G, then by the Second Isomorphism
Theorem,

HCg(z)/H = Ca(z)/HN Cg(z) = Ca(z) /Ch(z).
This means

|HCo(z)| _ |Ca(@)]

[HC¢(z) : H] = [Cg(x) : Cy(x)], which implies i Cn(2)

Rearranging, we get

HCu(a)| _ ||
Ca@)]| ~ Cul)

which implies [HCq(x) : Cg(z)] = [H : Cy(x)].

So,
G : HCg(x)] - [HCg(x) : Cg(x)] _ [G: HCg(x)][H : Cy(x)]
[H : Cy(z)] [H : Cy(z)]
=[G : HCg(x)].

Therefore, k = [G : HCg(x)].
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4.3.23

4.3.24

Now, consider the normal subgroup A, of S,. Suppose K is a conjugacy class of S, and
K C A,. If 0 € K, then by what was just proved, K is a union of distinct conjugacy classes
of A, of equal size. In particular, K is made up of k =[S, : A,Cs, (0)] conjugacy classes of
A,, of equal size. Now, since
An S AnCSn (U) S Sn

and A, is a maximal subgroup of S,,, then either A,,Cs (o) = A,, or A,,Cs, (0) = S,. In the
former case, K is a single conjugacy class under the action of A,. In the latter case, K is the
union of two conjugacy classes of the same size in A,,. =
Recall that a proper subgroup M of G is called mazimal if whenever M < H < G, either
H = M or H = @. Prove that if M is a maximal subgroup of G then either Ng(M) = M
or Ng(M) = G. Deduce that if M is a maximal subgroup of G that is not normal in G then
the number of nonidentity elements of G that are contained in conjugates of M is at most
(1M = 1)[G s M].

Proof. *From Online Solution Manual*

Since M is a subgroup, we have M < Ng(M) < G. Then, Ng(M) = M or Ng(M) = G. If
M is not normal, then Ng(M) = M.

By the Orbit-Stabilizer Theorem, the number of conjugates of M is |G.M| =[G : No(M)] =
|G : M]. Now all conjugates of M have the same cardinality as M, ans we will have the
largest number of nonidentity elements in the conjugates of M precisely when these conjugates
intersect trivially. In this case, the number of nonidentity elements in the conjugates of M is
at most (|M|—1)-[G: M]. ®

Assume H is a proper subgroup of the finite group G. Prove G # Uycq, ie., G is not the
union of the conjugates of any proper subgroup.

Proof. *From Online Solution Manual*
There exists a maximal subgroup M containing H. If M is normal in G, then

UgHg < |JgMg™ =M #G.
geG geG
If M is not normal, we still have

Ugtg < oMy

geG geG

U gMg™

geG

By Exercise 23 above, we know that

contains at most (|M|— 1) - [G : M] nonidentity elements. Thus,

| gHg™

geG
because [G : M| > 2. Since G is finite,

G#|JgHg™

geG

<G - [G: M +1<|G|

Thus, G is not the union of all conjugates of any proper subgroup. =
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4.3.26 Let G be a transitive permutation group on the finite set A with |A| > 1. Show that there is
some ¢ € G such that o(a) # a for all a € A (such an element is called fized point free).

Proof. *From Online Solution Manual*
By way of contradiction, suppose that for all o € G, there exists a € A such that o(a) = a.

Then
U G

acA
Now because this action is transitive, if we fix b € A, then as ¢ ranges over G, ¢ - b is arbitrary

in A. So in fact,
G=JGopy= ] oG
oeG oeG

Now, because the action is transitive, and |A| > 1, we know that G} is a proper subgroup.
Thus, G < 9, is finite. By Exercise 24 above, we have a contradiction. Thus, there exists an
element o € GG that is fixed point free. *®

4.3.27 let g1, go, ..., g, be representatives of the conjugacy classes of the finite group G and assume
these elements pairwise commute. Prove that G is abelian.

Proof. *From Online Solution Manual*
Let G act on itself by conjugation. Not that

91,92, -, 0r € ng
for all k € {1,...,r}. Let x € G. Then,

T = agia_1

for some a € G and g;. Thus, x € aGya™! for each k since g; stabilizes each gi. Moreover,

v € | JaGya™
aeG
for all k. So,
G = U aGg.a™"
a€G

for each k. Since G is finite, then by Exercise 24, G, must not be a proper subgroup, i.e.,
Gy, = G for each gy.

Now, let a,b € G where a = 2g,2~! and b = ygyy~'. Then,

ab = (zgax™") (ygey ")
= zz gagoyy "
= 9vYa
=Yy GpgarT”
= ygy 'wgex"
=ba

Therefore, G is abelian. ®

1



Nicholas Camacho Abstract Algebra — Homework 6A October 11, 2016

4.5.16

4.5.22

5.1.2

Let |G| = pgr where p, ¢, and r are primes with p < ¢ < r. Prove that G has a normal Sylow
subgroup subgroup for either p, ¢, or 7.

Proof. Suppose no Sylow subgroup for either p,q, or r is normal. Then, since n,.|pg then
n, € {p,q,pq}. But since p < ¢ < r, then neither p nor ¢ can be congruent to 1 mod r. So,
n, = pq. Since each Sylow r-subgroup of GG has exactly » — 1 non-identity elements, we have

pq(r —1) = pgr — pq (1)

total non-identity elements of G from the Sylow r-subgroups.
Since ng|pr then ny € {p,r,pr}. But since p < ¢, then p cannot be congruent to 1 mod g.
Thus, ny = r or n, = pr. In either case,

ng(q —1) > plg —1) = pg —p, (2)

i.e., there are more than pg — p non-identity elements from the Sylow ¢- subgroups. Since
ny|qr, then n, € {q,r,qr}. By (1) and (2), G has less than

pqr — ((pqgr —pq) + (pg —p) +1)=p—1

elements left to make up the number of nonidentity elements in the Sylow p-subgroups, which
is impossible since there are at least ¢(p—1) nonidentity elements from the Sylow p-subgroups.
Thus, we have a contradiction. -

Prove that if |G| = 132 then G is not simple.

Proof. Notice that 132 =22 -3-11. Since ny|(3-11) and ny =1 mod 2, then ny € {1,3,11}.
Similarly, since n3|(2% - 11) and n3 =1 mod 3 then nz € {1,4}. And finally, since n;|(2? - 3)
and ny;; =1 mod 11 then ny; € {1,12}. Suppose for contradiction that G is simple. Then,
ns = 4, which means G contains exactly 4(3 — 1) = 8 elements of order 3. Similarly, n;; = 12
which means G contains exactly 12(11 — 1) = 120 elements of order 11 in G. Then there are
132 — 8 — 120 = 4 elements of order G which are not of order 3 nor 11. So, there is space for
exactly 1 Sylow 2-subgroup of order 4, i.e., ny = 1 and so GG contains a normal subgroup of
order 4, a contradiction. Thus G is not simple.

Let G1,G,, ..., G, be groups and let G = G x --- X G,,. Let I be a proper, nonempty subset
of {1,...,n} and let J ={1,...,n} — I. Define G to be the set of elements of G that have
the identity of G in position j for all j € J.

(a) Prove that G is isomorphic to the direct product of the groups G;, i € J,

Proof. We first show that Gy < G. Since (1,1,...,1,1,1) € Gy, then G; # . Let
x,y € Gr. For each i € I, the coordinates z; and y; ' of # and y~! respectively are in
G; and so x;y; ' € G;. For each j € J, we have r; = lg, and y;l = lg, as the j-th
coordinate of x and y, respectively, and so xjyj_l = lg, € G;. Since the k-th coordinate
of the product of zy~! is in G}, for all 1 < k < n, then 2y~ € G;. So, G; < G.
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Let I = {iy,i2,...,ix}. We define a map
@ZG[%GiIXGiQX--'XGik

where the n-tuple x is mapped to the k-tuple y in the following way: The r-th coordinate
of y takes the value corresponding to the coordinate z; of x, where 7, € I.

Giveny € G;, x---x G, , we can choose x € G so that for all 4, € I, the ¢,-th coordinate
of x corresponds to the r-th coordinate of y. Thus, ¢ is surjective. Also, if two elements
x,y € Gy are not equal, then it must be the case that for at least one index ¢, € I, the
coordinates z;, and y;_ of x and y, respectively, are not equal. Thus, by definition of ¢,
we will have p(z) # ¢(y) and so ¢ is injective. Finally, for any x,y € Gy, consider the
coordinates z;, and y;, of x and y, respectively, ¢, € I. Then, the product zy will have
x; ;. as it’s i,-th coordinate. So, ¢(zy) will have z; y;. as it’s r-th coordinate. Then,
¢(x) and ¢(y) will have their r-th coordinates the values z;, and y;., respectively. So,
©(x)p(y) will have as it’s r-th coordinate the value xz; y;,. Thus, p(zy) = ¢(z)p(y). So,
© is an isomorphism. -

(b) Prove that Gy is a normal subgroup of G and G/G; = G .
Proof. Let J ={j1,...,J¢}. Define a map
w G — GJ

where the n tuple z is sent to the /-tuple y in the following way: The ¢-th coordinate of
y takes on the values corresponding to the j;-th coordinate of x.

Given any y € G, we can let « € G be the n-tuple which has z;, as the j,-th coordinate
where z;, equals the ¢-th coordinate of y for all j, € J. Then ¢(z) = y and so ¢
is surjective. By a very similar argument as in part (a), we see that ¢ is a group
homomorphism. Now,

ker() ={x € G | ¢(x) = (1,1,1...,1) = the (-tuple consisting of all identity elements.}
={zeG|z=(1,1,...,1) = the n-tuple consisting of all identity elements.}
= {z € G | z has the identity in the j-th coordinate for all j € J.}
=Gy

By the First Isomorphism Theorem, G; < G and G/G; = G. *
(c) Prove that G = G x G.
Proof. Since G; < G, and G; < G, then G;G; < G. Since Gy NGy =1, then

GillGyl GGyl
|G NGyl 1

G1G,| = =|G|.

So, G = G;G ;. By a similar map as in (b), we get that G; < G and so by Theorem 9,
(pg. 171, D&F), we have G = G x Gg. *

5.4.11 Prove that if G = H K where H and K are characteristic subgroups of G with HNK = 1, then
Aut(G) = Aut(H) x Aut(K). Deduce that if G is an abelian group of finite order then Aut(G)
is isomorphic to the direct product of the automorphism groups of its Sylow subgroups.
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Proof. Define the map
f:Aut(G) — Aut(H) x Aut(K) by o+ (o|g,ol|k).

f is a homomorphism: Let 0,7 € Aut(G). Since H is characteristic in G, o|g(H) = H and
similarly, 7|y (H) = H. So, (6 o7)|g = o|g o T|y. Similarly for K. Then,

floor)=((o07)|m(007)K)
= (olm o7lu, 0|k o 7|K)
= (olm, olx)(7lm, 7lK)
= f(a) o f(7).
f is surjective: Let (a, f) € Aut(H) x Aut(K). We need to find o € Aut(G) so that f(o) =
(cv, B). First, define

6:HxK— HxK, where a(h, k)= (a(h),5(k)).
We claim 6 € Aut(H x K).

e 7 is a group homomorphism:

Let h,h' € H, k, k' € K. Then

((h, k)(W' k') = G((hh',kk'))
(a(hh'), B(KK'))
(a(h)a(h’), B(k)B(K))
(a(h), Bk))(a(P), B(K'))
a((h, K)o ((h', k')

e [ is surjective:
Since «, 8 are surjective, then given h' € H, k' € K, there exists h € H,k € K so that
a(h) = h' and (k) = k'. Thus, 6((h,k)) = (a(h), (k) = (K, K').

e (7 is injective:
If ((h,k)) = a((W'K)), then (a(h),B(k)) = (a(h), 5(K")), which means a(h) = a(h')
and B(k) = B(k'). Since both « and § are injective, h = h' and k = k' which means
(h,k) = (b, k).

Since H and K are characteristic in GG, they are normal subgroups of G. Since H N K =1
and G = HK, then by Theorem 9, (p 171, D& F), G =2 H x K. Now, let

j:G— H x K where hkw— (h,k)

be the canonical isomorphism between G and H x K. Since H N K =1 and HK = G, then
each element g € G can be expressed as a unique product hk for h € H, k € K. Therefore,
5t is well-defined. Then,

j7lo60j:G—-HXxK—-HxK—=G.
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Claim: 0 = j7' o5 0 j gives f(0) = (a, 3) as desired. We show that o|g = a. Let h € H.
Then,

Similarly, we get o|x = . Thus, f(o) = (o|u, Blx) = (o, B) and f is surjective.

f is injective: Let o,7 € Aut(G) and suppose f(o) = f(7). Then (o|y,0|lx) = (7|u, T|K)
and so 0|y = 7|y and o|x = 7|g. Let g € G. We need to show that o(g) = 7(g). Since
G =HK, g = hk for some h € H, k € K. So,

o(g) = a(hk) = a(h)a(k) = 7(h)T(k) = T(hk) = 7(g).

Let G be abelian and |G| = n < oo and let the unique factorization of n into distinct prime
powers be

n=pi'py° ..ot
Since G is abelian, then all of its subgroups are normal subgroups. In particular, every Sylow
pj-subgroup is normal for all 1 < j < k. Let Q; € Syl,, (G) for all 1 < j < k. Since each Q; is
normal in G, each @); is the unique Sylow p;-subgroup of order p?j . Since each @); is normal
in GG, then

@Q1Q2...Qr < G.
For each fixedi € {1,...,k}and j € {1,... k}ifi # jthen Q;NQ; = Land so |Q1Qs ... Qx| =
|G|. Thus, Q1Qs...Qr = G. Therefore, by what was just proved,

Aut(G) = Aut(Q1) x Aut(Qz) X -+ x Aut(Qy).
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4.5.32

4.5.34

4.5.36

Let P be a Sylow p-subgroup of H and let H be a subgroup of K. If P < H and H < K
prove that P is normal in K. Deduce that if P € Syl,(G) and H = Ng(P) then Ng(H) = H.

Proof. Since P < H and P is a Sylow p-subgroup of H, then P is characteristic in H. Since
H < K then conj(k)(H) = kHk™' = H for all k € K. So conj(k) € Aut(H) for all k € K.
Since P is characteristic in H, then

P = conj(k)(P) = kPk™" Vk € K.

Therefore, P 1 K.

Since H = Ng(P) then P < H. Let K = Ng(H). Since H < Ng(H) = K then by what
was just proved, P < K = Ng(H), which implies Ng(H) = Ng(P) = H. -

Let P € Syl,(G) and assume N < G. Use the conjugacy part of Sylow’s Theorem to prove
that PN N is a Sylow p-subgroup of N. Deduce that PN/N is a Sylow p-subgroup of G/N.

Proof. Let Q € Syl,(N). Then there exists g € G so that Q < gPg~'. Since @ < N and
Q < gPg!then Q < gPg !N N. Then,

Q<gPg™'NN
Q< gPg'ngNg (Since N < G)
Q<g(PNN)g™

9'Qg< PNN

Since ¢7'Qg € Syl,(N) then ¢g~'Qg is of maximal prime power order in N. Since PN N is
a subgroup of N with prime order, it must be that PN N = ¢g~'Qg, i.e., PN N € Syl,(N).

Observe that G
G/N :—:pa”g- mimn).
G/N =5 (i)

By the Second Isomorphism Theorem, PN/N > P/P N N. So,

‘P‘ :pa: a—L3
|[PAN| pf ’

|PN/N|=|P/PNN|=

Therefore, PN /N € Syl,(G/N). m
Prove that if N < G then n,(G/N) < n,(G).

Proof. Let |G| = p®-m and |N| = p”-f where m and 7 do not divide p® and p®, respectively.
Note that from the previous exercise, PN/N € Syl,(G/N) for any P € Syl,(G). Define a
map

¢ Syl,(G) = Syl,(G/N) by P+~ PN/N.
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5.1.4

We show that ¢ is surjective so that [Syl,(G)| < [Syl,(G/N)]|, i.e., ny(G/N) < ny(G). Let
Q € Syl,(G/N). By the 4th Isomorphism Theorem, there exists a subgroup ¢ < G so that
N <@ and Q/N = @. Notice

P =10 = /N = [ = 10l =p" 5

Let R € Syl,(Q). Then |R| = p* and so R € Syl,(G). Again by the previous exercise,
RN/N € Syl,(G/N). Notice that R < @ and N < @ so that RN < Q. Then RN /N <
Q/N but

RN /N| = p*# = |Q/N|.
Therefore,

¢(R)=RN/N =Q/N = Q.

Let A and B be finite groups a p be prime. Prove that any Sylow p-subgroup of A x B is of
the form P x @), where P € Syl,(A) and @ € Syl,(B). Prove that n,(A x B) = n,(A)n,(B).
Generalize both of these results to a direct product of any finite number of finite groups (so
that the numbers of Sylow p-subgroups of a direct product is the product of the numbers of
Sylow p-subgroups of the factors).

Proof. First notice that

Naxp(P x Q) = {(a,b) € Ax B | (a,b)(p,q)(a”",07") € PxQ ¥ (p,q) € P x Q}
={(a,b) € Ax B | (apat,bgb™") e PxQ VpeEP, VqxQ}
={acAbeB|apat €Pbgb'cQ VYpeP, VqeQ}
={acA|lapat € P VpePyx{beB|bgh'cqQ VqecQ}
= Na(P) x Np(Q)

Which gives

_ JALIBI_ JAIBI_ |Ax B
INa(P)| - |Np(Q)] |Na(P) x Np(Q)| |[Naxs(P x Q)|

Let |A] = p®-m and |B| = p®-f. Let P € Syl,(A) and Q € Syl,(B). Then, PxQ < Ax B
and |P x Q| = |P| - |Q| = p**# which implies P x Q € Syl,(A x B).

(Couldn’t figure out the opposite direction for this proof. What is left is from the online
solution manual).

Now, let R € Syl,(A x B). Define X = {x € A | (z,y) € Rforsomey € B} and
Y ={ye B | (x,y) € R for some 2z € A}. Then X < A because

ny(A)ny(B) = ny(A x B).

1,22 € X = (21,y1), (z2,92) € R for some y1,y, € B
— (2, y,y, ) €ER
= 11,7,  €X
— X < A.
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Similarly, we get Y < B. Note that if (z,y) € R then |(z,y)| = p”* for some k. We also know
|(z,y)| = lem(|z|, |y|) so that x and y have p-power order. So, X and Y are p-subgroups,
as otherwise some nonidentity element does not have p-power order. By Sylow’s Theorem,
there exist Sylow p-subgroups P and @) of A and B, respectively so that X is contained in
P and Y is contained in @, i.e., X < Pand Y < (@. Then, R< X xY < P x (). But since
|R| = p*™P = |P x Q| implies R = P x Q.

Thus any Sylow p-subgroup of A x B has the form P x @ for some P € Syl,(A) and
Q € Syl,(B).

By induction we can show that the numbers of Sylow p-subgroups of a direct product is the
product of the numbers of Sylow p-subgroups of the factors. The base case is done above.
Suppose for some k > 2, for an arbitrary direct product of groups G = Hle G, every
Sylow p-subgroup of G is a product of Sylow p-subgroups of the G;’s, and vice versa. Let
G = Hf:ll be arbitrary. Then every Sylow p-subgroup of G is of the form P x Py, where
P < Hle G; and Py < Gy are Sylow p-subgroups, and vice versa. By the induction
hypothesis, P = Hle P; for Sylow p-subgroups P; < ;. Thus every Sylow p-subgroup of
G has the form Hle P; for some Sylow p-subgroups P; < G; and vice versa. Also,

n, (H G,-) - H n,(G)
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5.4.15 If A and B are normal subgroups of G such that G / A and G / B are both abelian, prove
that G/(AN B) is abelian.

Proof. Since G/A and G/B are abelian then by Proposition 7, part (4), (D& F,§5.4) ,
G' < Aand G’ < B. Then G’ < AN B. Then by the same proposition, we have AN B I G
and G/(AN B) is abelian. ®

5.5.1 Let H and K be groups, let ¢ be a homomorphism from K into Aut(H) and, as usual,
identify H and K as subgroups of G = Hx K. Prove that Cx(H) = ker ¢.

©
Proof.
kerp ={k € K | ¢(k) = 1awm)}

={ke K |¢(k)h)=h VYhe H}
={keK|k-h=h Yhe H}
={ke K |khk™" =h Vhe H}
={ke K |keCqH)}
=KNCg(H)
= Ck(H)

Alternate proof:
Let (1,k) € Cx(H). Then for all (h,1) € H,

(h, 1) = ((1,k)(h, 1)(1, k7))
k-h k)(1,k™ )
(k)(h), k)(L, k")
(@(k)())k - L kk™")
p(k)(h)p(k)(1),1)
p(k)(h1),1)
p(k)(R),1).

Thus, h = ¢(k)(h), which means ¢(k) = 1lawm. Identifying k as (1,k), we have (1,k) €
ker .

(
= (1k-h,k
= (p(k)(h)
(o (k) (h
= (
= (
= (

=

5.5.2 Let H and K be groups, let ¢ be a homomorphism from K into Aut(H) and, as usual,

identify H and K as subgroups of G = Hx K. Prove that Cy(K) = Ny (K).
©

Proof. Since the centralizer of K is always contained in the normalizer of K, it suffices to
show that Ny (K) < Cyx(K). Let (h,1) € Ny(K). Then for all (1,k) € K, we have

> (h, 1)(1,k) (R 1) = (1 - 1,1k) (R 1)
= (h,k)(h"1,1)
= (hk-h™t k1)
= (hyp(k)(h™"), k).
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6.1.17

But (hp(k)(h™1),k) € K = (hp(k)(h™1),k) = (1,k), or in other words,

(h, 1)(1,k) (R, 1) = (heo(k) (1), k) = (1, k)
so that (h,1) € Cy(K). "
Prove that G is a characteristic subgroup of G for all i.

Proof. We proceed by induction on i. For i = 0, we have G° = G, so trivially, G is
characteristic in G. Now, let ¢ > 1 and suppose G is characteristic in G. Let o € Aut(G).
Notice that if [x,y] € G@, then

oz, y]) = oz y  ay) = o(x) Lo (y) o(x)a(y) = [o(x), 0 (y)]

and so o([z,y]) € G, which means for any commutator [z,y] € ), we have o([z,y]) is
again a commutator of G®. So, o([GW, GY]) = [¢(GW), o (GD)]. Therefore

7(GIH) = o((G,GV) = [o(GD), o(G)] = (67, 6] = GU*D

which completes the induction. L 3
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1. The following exercise classifies all groups of order 231 up to isomorphism: Let G be a group
of order 231.

(a)

Prove that there is a unique P € Syl;(G) and a unique H € Syly;(G) and that H lies
in the center Z(G).

Proof. Let |G| = 231. notice that 231 = 3-7-11. So by Sylow’s Theorem, we get the
following;:

ny=1 mod 7 and n7’3-11 — n; =1,
ny1 =1 mod 11 and n11|3-7 = n;; = 1.

Let H € Syli1(G). Since |H| = 11, then H = Z/11. By Proposition 16 (D& F,§4.4 )
we have Aut(Z/11) = (Z/11Z)*. Thus, Aut(H) = (Z/11Z)* = Z/10. Since H is the
unique Sylow 11-subgroup, H < G, ie., No(H) = G. Recall that Ng(H)/Cq(H) is
isomorphic to a subgroup of Aut(H). Thereore,

G/Cq(H) = Ng(H)/Co(H) = J < Aut(H) = Z/10

for some subgroup J < Aut(H). Since H is cyclic of prime order, it is abelian, which
means H < Cg(H), and so
H<Cq(H) <G.

Since [G : H] = [G : Cg(H)] - [Ca(H) : H], then [G : Cg(H)] divides [G : H] =
|G|/|H| = 21. Since G/Cg(H) = J then |J| divides 21. And since J < Z/10, then |J|
divides 10. But since ged(10,21) = 1, then J is trivial. So, [G : Cg(H)] = 1, which
implies Ce(H) = G and so H < Z(G). ®

Prove that there exist elements z,y € G such that o(z) = 3 and o(y) = 7. Let
K = (z,y). Prove that G = HK and that K is a normal subgroup of G’ which has
trivial intersection with H. Deduce that G is isomorphic to H x K.

Proof. Since 3 and 7 are primes dividing |G|, then there exists x,y € G where |z| = 3
and |y| = 7 by Cauchy’s Theorem. Let K = (z,y). Since H < G and K < G,
then HK < G. Notice that |(z,y)| = [{(z) x (y)| since the map (z*,y7) — z'y’ is an
isomorphism. So, |K| = [{x,y)| = [{(z) x (y)| =3-T.

Since every non-identity element of H and K have order 11 and 3, respectively, then

H N K ={1}. Then by Theorem 9, (D& F, §5.4) we have G = H x K. ®

Show that there are precisely two isomorphism types of groups of order 231 (use our
criterion for semidirect products to describe the two possible isomorphism types of K).
Let H = (z). Give a presentation with generators and relations of the two isomorphism
types of G.

Proof. Since H is cyclic, of prime order, and has one generator, it cannot be broken
down into a direct product or semidirect product. However, we can write K as a
semidirect product. Since (z,y) = (z) X (y), (y) < K and (x) N (y) = {1}, then

K = (z,y) = <y>>j<x>
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where ¢ : (z) — Aut((y)). By the First Isomorphism Theorem, ¢({z)) = (z)/ ker ¢.
Since (z) = Z /3 and ker ¢ < (z), then | ker ¢ is either 3 or 1. If it is 3, then |¢((z))] = 1
which means ¢ is the trivial map. Thus,
()21 {x) = (y) x (z)

and so K = (y) x (z). Now, if | ker | = 1 then |¢((z))| = 3. Since (y) = Z/7, then
Aut((y)) = (Z/72)* = Z/6. Thus Aut((y)) has order 6 and is cyclic. Let o € Aut((y))
be given by the map y — y2. Since |¢((z))| = 3, then ¢((z)) = {id,0,0*}. So, ¢ can
be defined in one of the following ways:

o1 (x) = Aut((y)) by z—o
or
@y 1 {x) = Aut({y)) by z+ o>
We claim that in fact (y)x(z) = (y)x(z). In order to show this, we show that the

©1 P2
following defined an isomorphism between these two semidirect products:

O : (y)X(x) = (y)X(x) by (y* ") — (y*,2).

©1 ©2

® is a homomorphism:

D is ingective:
If ®((c,d)) = P((¢,d")) then (¢,2d) = (¢/,2d’). Then ¢ =¢ mod 7. Likewise, 2d = 2d’
mod 3 = 2(d—d)=0 mod3 = d=4d mod 3. So, (¢,d) = (¢, d).

D is surjective:
Given (c,d) € (y)x(x), then ®((¢,2d)) = (¢,4d) = (¢,d) (since 4d =1 mod 3).
»2
Therefore, the semidirect products induced by ¢, and @y are precisely the same. In
sum, we have the following two possibilities for K:

K= (y)yx(z)=2Z/TxZ/3

" K = (y)X(z) 2 Z/TNZL/3.

Therefore, we get
G=HxK=Z/11xZ]Tx7Z/3 (1)
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or

G:HXK%Z/lle/7;4Z/3. (2)
1
Then, a presentation for G in (1) is:
{a,b,c| a't =b" = c* = 1,ab = ba,bc = cb, ac = ca).
To determine the presentation for G in (2), we identify y, z with r, s, respectively, and

consider what relations the multiplication in the semidirect product (y)x(x) induce on
©

1
r,s through the map (y®, z°) — r%s®. We find that a presentation for G in (2) is
(rys | r"=5%=1,r"s = sr).
®

2. The following exercise uses Sylow’s Theorems to prove that all groups of order 9-49 - 13 are
solvable. Let G be a group of this order. Prove that G has a unique Sylow 13-subgroup G.
Then prove that G / (g1 has a unique Sylow 7-subgroup Y5. Let G5 be the complete preimage
of Y5 in G. Show that

1=Go <G <G <G

is a chain of subgroups of G such that Gy is normal in G5 and G5 is normal in G and such
that the successive quotients are abelian. Conclude that G is solvable.

Proof. Let |G| =9-49-13. Then by Sylow’s Theorem we find that:
ni3=1 mod 13 and ni3|9-49 = 441.

So we consider divisors of 441: 1,3,7,9,21,49,63,147,441, and positive integers which are
congruent to 1 mod 13: 1,14,27,40,53,66,79,92,105,118,131,144,157,..., 429,442, So we see
that n13(G) = 1. Now, let Gy € Syli3(G). Then |G4| =13, G; < G, and |G /G| =9 - 7%
Again by the Sylow Theorems

n7(G/G1) =1 mod7 and n7|9 = ny(G/Gi) = 1.

Let Y5 € Syl7(G/G1). By the 4th Isomorphism Theorem, there exists a subgroup G < G
so that G; < Gy and Gg/Gl ~Y,. Since |Y?| = 72, then

Gol |G
G2/ Gh| = % = ’1—:,3’ — |Gy = 13- 72

Now notice:

e (371 is of prime order and thus, cyclic, so G4 / {1} is abelian.

o (5 / (31 is abelian since |Gy / G4| = 7%, and all groups of order a square of a prime are
abelian.

e (G / G is abelian since |G / G| = 3%, and all groups of order a square of a prime are
abelian.
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5.4.17

0.4.18

and

o (G4 < Gy since Gy <G
e (35 < G since Y; is the unique Sylow 7-subgroup of (G’/Gl) and thus Y, < (G/Gl) and
by the 4th Isomorphism Theorem,
GQ/Gl =Y, G/Gl S G2 <@,
So,
1=Go 4G, 4G, 4G
is a finite chain of subgroups so that Gy < G, G; < G5, and Gy < G and successive quotient

are abelian. So, G is solvable. -

If K is a normal subgroup of G and K is cyclic, prove that G' < Cg(K).

Proof. First note that the automorphism groups an infinite cyclic group is abelian. To see
this, let @ € Aut(Z). Then a(l) = n for some n € Z. Then for some m € Z, we have
a(m) = 1. So,

l=a(m)=a(m-1)=m-a(l) =mn.
So n must be 1 or —1, i.e., there are only 2 automorphisms in Aut(Z) and thus Aut(Z) is

abelian.
Since K is cyclic, Aut(K) is abelian. Since K <4 G, then G = Ng(K). Then

G/Ca(K) = No(K)/Cq(K) = H < Aut(K)
for some subgroup H < Aut(K). Since Aut(K) is abelian, H is abelian, which means
G/Cq(K) is abelian. Then by Proposition 7, Part (4) (D& F, §5.4, G' < Cq(K).
®

Let K1, K>, ..., K, be non-abelian simple groups and let G = K; x Ky X --- x K,,. Prove
that every normal subgroup of G is of the for G for some subset I of {1,2...,n} (where
Gy) is defined in Exercise 2 of section 1.

Proof. Let i € {1,2,...,n} and a; € K; where a; # lg,. Suppose N < G and let z € N
with * = (ay,...,a;...,a,). Since K; is non-abelian then there exists g; € K; such that
gia; # a;g;. Let g; = (1,...,1,¢9;,1...,1) where g; appears in the ith coordinate. Since
r €N LG and g; € G,

Giz 'gie N
and so [g;, z] € N where

1g7é[gi,ZE]:(17...,1,[92‘,0,1‘],]_..‘,1)GN.

Define A; = {h; € K; | (1,...,1,h;;1,...1) € N}. Then A; < K;. Moreover, A; # {l1g,}
because by the previous argument [g;, a;] # 1k, and [g;,a;] € A;. We claim that A, = K.
Since K; is simple, it suffices to show that A; < K. let h; € K; and ¢g; € K;. Then

The latter is true since h; € N and N < G. Let I C {1,2,...,n} where i € I if and only if
A; = K;. Then if j € {1,...n} and there exists v = (ai,...,q;,...,a,) € N with a; # 1.
By the previous argument, K; = A; C N. Therefore N = G. ®
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7.1.7

7.1.17

The center of a ring R is {z € R | zr = rz for all » € R}. Prove that the center of a ring is
a subring that contains the identity. Prove that the center of a division ring is a field.

Proof. Since 1gr = rlg for all » € R then 1p is in the center of R. Let x,y be in center of
R and r € R. Then

(x—y)r=ar—yr=rx—ry=r(r—y) = x —yis in the center of R,
and
(xy)r = z(yr) = z(ry) = (xr)y = (rx)y = r(ry) = xy is in the center of R.

Thus the center of R is a subring of R. Now suppose R is a division ring. If z and y are in
the center of R, then certainly xy = yx so that the center of R is commutative. Since R is
a division ring, there exists z € R so that xz = zo = 1 for # # Og in the center of R. Let
r € R. Then,

zr = z(r - 1g) = zr(xz) = z(zr)z = (zx)rz = (1g)rz =rz,

so z is in the center of R and thus all elements of the center of R not equal to 0 have
multiplicative inverses. Thus the center of R is a field. =

Let R and S be rings. Prove that the direct product R x S is a ring under componentwise
addition and multiplication. Prove that R x S is commutative if and only if both R and
S are commutative. Prove that R x S has an identity if and only if both R and S have
identities.

Proof. We know that (R x S, +) is an abelian group since both R and S are abelian groups.
Let 79,179,790 € R and sq, s9, 83 € S. Observe that

(7"1781)((7“2,32)(7“3,33)) = (7"1,81)(7“27’378283)
= (7”1T27‘3,S18253)
= (r172, $152)(12, 83)
= ((r1, 51)(r2, 52))(r3, 53)

so that - is associative. Also,

(rs1)((r2, 52) + (3, 83)) = (11, 81)(r2 + 73,52 + 53)
= (ri(ro +173), 51(82 + 83))
= (rirg + 1173, 5152 + 5153)
= (r172, 5152) + (1173, 5153)
= (r1,51)(r2, 52) + (71, 81)(73, 83)
so that the left distributive law holds in R x S. Similarly for the right distributive law.
Therefore, R x S is a ring. Now,
R, S commutative rings <= riry = rori, $189 = S281
< (rir2,5182) = (rar1, $281)
<> (r1,81)(ra, 82) = (re, $2)(r1, $1)
<= R x S is a commutative ring.
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Let r € R,s € S. Then

R,Scontainal < rlg=1zgr=r,slg=1gs=s
<= (rlg,slg) = (1gr,1gs) = (r,s)
— <T7 8)(1R7 ]-S) = (1R7 1S>(T7 S) = (TS)
<= R x S contains a 1.

7.3.19 Prove that if I; C I, C ... are ideals of R then |J -, I,, is an ideal of R.

Proof. Since each I,, is a subgroup of (R,+), then | J -, I, is nonempty. Let z,y € J o, I,.
Then x € I,,,y € I, for some I, ,1I,, € UZ; I,. Without loss of generality, assume
ngy < ny so that I, C I, . Then, z,y € I,,, and so v —y € I,,,. Thus, z —y € Uzozl I, so
that |J~, I, < (R,+). Let r € Rand a € |J,, I,,. Then there exists n € N so that a € I,,.

Since I,, is an ideal of R, then ar,ra € I,. So ar,ra € | J. -, I,.

(L

7.3.24 Let ¢ : R — S be a ring homomorphism.

(a)

Prove that if J is an ideal of S then ¢~1(J) is an ideal of R. Apple this to the special
case when R is a subring of S and ¢ is the inclusion homomorphism to deduce that if
J is an ideal of S then J N R is an ideal of R.

Proof. Let J be an ideal of S, z € ¢ !(J) and r € R. Then
plar) = p(x)p(r) € J

because ¢(z) € J,p(r) € S and J is an ideal of S. Thus, zr € ¢~'(J). Similarly, we
get rz € o 1(J). Thus ¢~ !(J) is an ideal of R.

Now suppose R is a subring of S, J is an ideal of S and ¢ is the inclusion ring ho-
momorphism. Then ¢~(J) = J N R, which is an ideal of R by what was proved
above. -

Prove that if ¢ is surjective and I is an ideal of R then () is an ideal of S. Give and
example where this fails if ¢ is not surjective.

Proof. Let y € p(I) and s € S. Since y € (I) there exists x € I so that p(z) = y.
Since ¢ is surjective, there exists r € R so that ¢(r) = s. Since I is an ideal of R, then
xr,rx € I so that

p(ar) = p(2)e(r) = ys € (1)
and similarly we get ¢(rz) € ¢(I). Therefore, p(I) is an ideal of S.

Consider the ring homomorphism ¢ : R — R[z] where ¢ is the inclusion map. This
map is not surjective and the ideal R of R has image ¢(R) = R, which is not an ideal
of R[z] since zr ¢ R[z]. ®
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7.1.14 Let x be a nilpotent element of the commutative ring R. Let m € Z* be the smallest so
that ™ = 0.

(a)

Prove that x is either zero or a zero divisor.

Proof. If m =1, then 0 = 2™ = z. If m > 1 then 0 = 2™ = 2™ ! . 2 so that z is a zero
divisor. -

Prove that rz is nilpotent for all » € R.

Proof. Let r € R. Then (rz)™ = r™a™ since R is commutative and so (rz)"™ = r™-0 =
0. ®

Prove that 1 + z is a unit in R.

Proof. Notice that

(1= (=) (1= (=2) = (P =+ = ()" ) = 1= (—a)" = 1= (~1)a" = 1-0 = 1
m

Deduce that the sum of a nilpotent element and a unit is a unit.

Proof. Let s be a unit in R with st = ts = 1. Then ¢z is nilpotent so that (1 +tz) is a
unit. Since the product of units is a unit, then s(1+4tx) = s+ stx = s+ is a unit.

7.2.6 Let S be a ring with identity 1 # 0. Let n € Z* and let A be an n X n matrix with entries
from S whose i, j entry is a;;/ Let E;; be the element of M, (S) whose 4, j entry is 1 and
whose other entries are all 0.

(a)

()

Prove that F;;A is the matrix whose i row equals the j row of A and all other rows
are zero.

Proof. Let Ei; = (e;;), A = (ai;), and (byg) = EijA. Then (byg) = > p_, €pk@rg- The i

row of (b,,) consists of elements of the form e;zay, for each 1 < k < n. If k # j, then
e = 0 so that by, = egar, = 0. When p # i the p™ row of (b,,) contains all zeros.
When k = j, then by, = elkakq = €;iajq = 1 -a;q = a;q. The collection of all a;, for each

L

1 < q < n is precisely the j* row of A. -

Prove that AFE;; is the matrix whose j column equals the i column of A and all
other columns are zero.

Proof. Let E;; = (e;;), A = (a;;), and (¢p) = AE;;. Then (cpq) = D p_; aprerq- The
4™ column of (c,,) consists of elements of the form ayxey; for each 1 <k < n. If k # 1,
then ej; = 0 so that ¢,, = 0. When ¢ # j the ¢'" column of (c,,) contains all zeroes.
When k = i, then ¢,y = apie;; = ap. The collection of all a,; for each 1 < p < n is

precisely the " column of A. *

Deduce that E,,AE,, is the matrix whose p, s entry is a,. and all other entries are zero.
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Proof. By parts (a), the p™ row of E,,A is the ¢ row of A, and all other entries 0.
Then by part (b), E,,AE,, is the matrix whose s column is the r** column of E,,A,
which is all zeroes except for the p** row, whose entry is the ¢,r entry of A, and all
other entries are zero. Thus the p, s entry of E,,AE,, is ag4. -®

7.2.7 Prove that the center of the ring M, (R) is the set of scalar matrices. [Use the preceding

7.3.21

exercise.]

Proof. We need to show Z(M,(R)) = {rl | r € R}.

“C 7 Suppose A = (a;j) € Z(Myn(R)). By the previous exercise, the p, ¢ entry of E, AFE,,
is agr. If ¢ # r, then a, = 0. Thus, A must be a diagonal matrix. If ¢ = 7, then the p, s
entry of E,sA is a,,. But notice that the p™ row of E,. A is the s row of B so that the p, s
entry of E,sA is ass. Thus, a,y = ass for all ¢ and s. Hence A = al for some a € R. So,
Z(M,(R)) C {rl |r € R}.

“27 Let Be€ My(R), and A =al € {rl | r € R}. Notice that since R is commutative
aB = Ba and al = Ia. Then

AB = (al)B = a(IB) = aB = Ba = (Bl)a = B(Ila) = Bal = BA.

i
-

Prove that every (two-sided) ideal of M, (R) is equal to M, (J) for some (two-sided) ideal J
of R. [Use Exercise 6(c)] of section 2 to show first that the set of entries of matrices in an
ideal of M, (R) form an ideal in R.]

Proof. Let I be an ideal of M, (R) and define J = {a;; | (a;;) € I} be the set containing
entries of matrices of I. We first show that J is an ideal of R and then show I = M, (J).

J 1s an ideal of R:

Since [ is an ideal, then (0;;) € I so that 0 € J. Let (a;;), (b;;) € [ and E,,, E,s € M,(R) be
defined as in exercise 6 of section 7.2. Since [ is an ideal, E,,(a;;)E,s and Ep,(a;;)E,s are in
I. Notice that by exercise 6, section 7.2, the p, s entry of E,,(a;;)Eys is aq. Likewise, the
p, s entry of E,q(bi;)Ers is by. Then,

qu(aij)Ers - qu(bij)Ers (1)

and the p, s entry of (1) is a4 — by, so that J is closed under subtraction. Thus (J,+) <
(R,+). Now, let d € R, a, € J. Then, dZ(a;;) = d(a;;) € I with ¢,r entry dag so that
dag € J, and similarly, a,-d € J. Thus J is an ideal of R.

I=M,(J):

“ C 7 Given any matrix in I, its entries are elements of J so that I C M, (.J).

“D 7 Let (a;j) € M,(J). Then each entry of (a;;) is an element of J. Since J consists of
elements which come from entries of matrices in I, we can find matrices (b;;) in I with at
least one element matching each entry in (a;;), then multiply by E,, and E, on the left and
right of the (b;;’s as needed to write (a;;) as the sum of matrices of the form E,,(b;;)Es.

W

Then, each of these lie in I, so that their sum also does. Hence, (a;;) € I. ®*



Nicholas Camacho Abstract Algebra — Homework 9A November 1, 2016

7.3.34 Let I and J be ideals of R.

(a)

Prove that I 4+ J is the smallest ideal of R containing both I and J.

Proof. We first show that I + J is an ideal of R. Since Or € I, J then Og = 0g +
Opr€l+J,sol+J#0. Let x1,29 € I and y1,y, € J. Then x1+y1, x0+ys € I+J
and

(.I’1—|—y1)—($2+y2>:$1+y1—$1—y2:($1—$2)+(y1—y2)€I+J
since t1 —xo € [ and y; —ys € J. So (I + J,+) < (R, +). Let r € R. Then
r(x1+y1):rx1+ry1€I+J and (x1+y1)r:x1r+y1r€I+J

since rx1, x17 € I and ry,,y1r € J. Hence I 4+ J is an ideal of R.

To see that I + K contains I and K, notice that since Ogp € J, then [ =
I+ 0r C I+ J. Similarly, 0g € I andso J =0g+J C I+ J.

Now suppose K is an ideal of R containing both I and J. Let z; € I and
vy € Jand x1 +y; € [ + J. Since K contains [ and J, then z1,y; € K. So
x1 +y1 € K since K is closed under addition. Thus, I + J C K, so that [ + J is
the smallest ideal of R containing both I and J. ®

Prove that IJ is an ideal contained in I N J.

Proof. Recall that

]J:{Ej%m|n€Zﬂ%€]ﬁk€LV1§k§n}.
k=1

We first show that IJ is an ideal of R. Since Og € I and Or € J then O - 0p =
Or € IJ. Let o, € IJ, where a = ), _, axb, and § = >, cxdi,. Note that
since ¢, € I , and [ is a subgroup, then —¢, € [ for all 1 < k < m. So

o — B = Zakbk + Z(_Ck)dk
k=1 k=1

=aby+ -+ apb, + (—c1)dy + -+ (—ep)dm € 1J

because o — 3 is a finite sum of products of the form ij where ¢ € I, j € J. So
(IJ,+) < (R,+). Let r € R. Note that since [ is an ideal, then r(ax) € I for all
1 < k <n and since J is an ideal, then b,r € J for all 1 < k <n. So

n

ra = Z(mk)bk €lJ and ar = Zak(bkr) elJ
k=1 k=1
Thus, I.J is an ideal of R.

Let a € I.J be defined as before and notice that since I and J are ideals, then
apbr € I and aib, € J forall1 <k <n. Thus,a € INJ. Hence IJ CINJ. =
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7.4.13

(a)

Prove that if P is a prime ideal of S then either ¢~!(P) = R or ¢'(P) is a prime
ideal of R. Apply this to the special case when R is a subring of S and ¢ is the
inclusion homomorphism to deduce that if P is a prime ideal of S then PN R is
either R or a prime ideal of R.

Proof. We know from a previous exercise that since P is an ideal of S, then
¢~ 1(P) is an ideal of R. If ¢~ '(P) = R then ¢ '(P) is not a prime ideal (since
prime ideals must be proper). If ¢~ !'(P) # R, then let ri7y € ¢~ '(P). Then
o(r1)p(r2) = @(rire) € P. Since P is a prime ideal then either ¢(ry) or ¢(r2) € P.
Hence 71 € ¢ '(P) or ry € o~ (P). Therefore, ¢~ !(P) is a prime ideal of R.
Suppose R is a subring of S and let ¢(r) = r for all » € R. Then ¢ '(P) =
P N R. By what was just shown, either P N R = R (which means P C R) or
PN R is a prime ideal of R. -

Prove that if M is a maximal ideal of S and ¢ is surjective then ¢~ '(M) is a
maximal ideal of R. Give and example to show that this need not be the case if
© 1s not surjective.

Proof. We know from a previous exercise that since M is an ideal of S, then
@1 (M) is an ideal of R. Notice that ¢™'(M) # R. Otherwise, since ¢ is surjec-
tive, then p(R) = S and if p~!(M) = R, then S = p(R) = M, which contradicts
the fact that M # S (since M, being a maximal ideal of S, must be a proper
ideal of ).

Let M’ = ¢*(M) and consider the quotient R/M’. We claim R/M’ is a
field so that M’ is maximal in R. Let 7 : S — S/M be the natural projection
homomorphism. Then define

w:Wogp:R—>S/M.

Since both ¢ and 7 are surjective ring homomorphisms, then ¢ is a surjective ring

homomorphism, i.e., Y(R) = S / M. Then
keri = {r € R | (r) = Os/m}
={reR[y(r)=M}
={reR|n(p(r)) =M}

={reR|rey (M)}
={reR|reM}.

By the First [somorphism Theorem,
R/M' = R/kery) = (R) = S/M.

Therefore, R / M’ and S / M are isomorphic as rings. Since M is a maximal
ideal of S, then § / M is a field. We want that R / M’ and S / M are isomorphic
as fields. Then R / M’ is a field, and M’ is maximal in R. In order to check this,
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we need that 1(1z) = 1g/m = 1g + M. Since 7(lg) = 1g + M, we only need to
show that ¢(1r) = 1g. To that end, notice that since ¢ is surjective, there exists
r € R so that ¢(r) = 1g. Then

ls = p(r) = o(r- 1) = p(r)e(1r) = lsp(1r) = ¢(1r)

Let ¢ : Z — Q be the inclusion ring homomorphism. Then {0Og} is maximal
in Q. Then ¢ *({0g}) = 0z, but {0z} is not a maximal in Z. ®

7.4.36 Assume R is commutative. Prove that the set of prime ideals in R has a minimal
element with respect to inclusion (possibly the zero ideal). [Use Zorn’s Lemma. |

Proof. Let S = {P | P is a prime ideal of R}. Since R is a ring with 1 # 0, then R
contains a proper ideal. Since every proper ideal in a ring with 1 # 0 is contained in
a maximal ideal, then R has a maximal ideal. Since maximal ideals are prime ideals,
then § is nonempty. We use as partial order on § inverse inclusion “ D 7. Let B be a
chain in §. Define

U=

JeB

We claim that U is an upper bound of B. Since J D U for all J € B, then if we can
show U € S, then U is an upper bound for B. Then, applying Zorn’s Lemma, we
conclude that S has maximal element with respect to reverse inclusion, i.e., S has a
minimal element with respect to inclusion.

(U,+) < (R,+): Since Og € J for all J € B, then 0g € U and so U # (. Let
a,b e U. Then a,b,a—be J forall J€ Bandsoa—beU.

U is an ideal of R: Let » € R,a € U. Then a,ar,ra € J for all J € B and so
ar,ra € U.

U is a prime ideal of R: Let ab € U. Then ab € J for all J € B. By way of
contradiction, suppose without loss of generality that a € U. So, there exists J, € B
such that a ¢ J'. Since ab € J" and J' is a prime ideal, then b € J'. Then a ¢ K for
all K € B contained in J'. For all such K, b € K since each K is a prime ideal. We

claim that
N K=(/=U

KCJ' ,KeB JeB

Then b € U, and U is a prime ideal of R. Since the LHS is an intersection of a subset
of ideals in B, then the LHS is contained in the RHS. Conversely, given any point
r € U, it is necessarily in all ideals of B. In particular, »r € K for all K C J', K € B.
Therefore, the equality above holds. ®
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7.4.37 A commutative ring R is called a local ring if it has a unique maximal ideal. Prove
that if R is a local ring with maximal ideal M then every element of R — M is a unit.
Prove conversely that if R is a commutative ring with 1 in which the set of nonunits
forms an ideal M, then R is a local ring with unique maximal ideal M.

Proof. Let R is alocal ring with unique maximal ideal M. Let u € R— M and consider
the principal ideal (u). Notice that (u) = R. Otherwise, (u) is a proper ideal of R,
and thus contained in M. Then u € M, which is a contradiction. So, 1 € (u), which
means there exists v € R for which uv = vu = 1. Hence, u is a unit.

Let R be a commutative ring with 1 in which the set of nonunits forms an ideal
M. Suppose [ is an ideal of R containing M. If I contains a unit, then [ = R. If
contains no units, then I C M, and since M C I, then I = M. Therefore, M is a
maximal ideal.

To show uniqueness of M, suppose N is another maximal ideal of R. Since N is
a proper ideal of R, it contains no units and so N C M. If N # M, then N is not
maximal, since it is contained in a proper ideal of R. Therefore N = M. ®
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Let R be a ring with identity 1 # 0

7.6.1 An element e is called an idempotent if e = e. Assume e is an idempotent in R and
er = re for all r € R. Prove that Re and R(1 — e) are two-sided ideals of R and that
R = Re x R(1 —e). Show that e and 1 — e are identities for the subrings Re and
R(1 — e) respectively.

Proof. Re is a two-sided ideal:

0e=0€ Re = Re#0)
If re, se € Re, then re —se = (r —s)e € Re — Re < R
If t € R, then tre,ret = rte € Re = Re is a two-sided ideal of R.

R(1 —e) is a two-sided ideal:

0(l—e)=0€ R(1—e)
— R(l—¢)#0

Ifr(l—e),s(l—e)e R(1—e),
thenr(l1—e)—s(l—e)=(r—s)(l—e) € R(1—e)
= R(l—¢) <R

If t € R, then tr(l —e) € R(1 — e) and
r(l—ejt=r(t—et)=r(t—te)=rt(l—e) € R(1—e¢)
= R(1 —e) is a two-sided ideal of R.

We show that R = Re x R(1 — e) as groups, then show that they are isomorphic
as rings as well. To that end, observe that Re N R(1 — e) = 0 because

r€ReNR(1—e) = re=s(l—e) forsomer,s € R
= re=5—se
= re’ = se — se?
= re=se—se=10
= o =0.

Also observe that for any r € R, we have r = re + r —re = re + r(1 — e). Therefore,
R C Re+ R(1—e). By the previous two observations, we apply the recognition theorem
for direct products of groups (Theorem 9, §5.4, D& F) to conclude that the map

p:Rex R(1—e) = R by p(a,b)=a+b

is in isomorphism between groups. We claim that ¢ is in fact a ring isomorphism as
well. To that end, let (rie,s1(1 — €))(rae,s2(1 —€)) € Re x R(1 —e). Notice that
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(1—e)?=1-2e+e=1—¢csothat 1 — e is idempotent.

o((re, s1(1—e))(re, si(1 —e€))) = p((rire, s152(1 —€)))
= rir9e + s152(1 — €) = ri79e” + s159(1 — €)?
= rierge +r18a(e — €2) +rasi(e — ) 4+ s1(1 — e)sy(1 — e)
= (rie + s1(1 —€))(rze + so(1 — €))
= @((rie;s1(1 —€))) - @((rre, 51(1 —€)).
So R = Re x R(1 — e) as rings.

e and 1 — e are the identities of Re and R(1 — e), respectively:

If re € Re, then ere = re* = re and re? = re

= e is an identity in Re.

—_

= 1 — e is an identity in R(

—e).
®

7.6.3 Let R and S be rings with identities. Prove that every ideal of R x S is of the form
I x J where [ is an ideal of R and J is an ideal of S.

Proof. Let K be an ideal of R x S and define

I={a€ R (a,b) € K for some b € S}
J={be R | (a,b) € K for some a € S}.

We show that [ x J = K and that [ and J are ideals of R and S respectively. To that
end, we certainly have K C I x K by definition of I and J. Then, let a € I and b € J
and (a,b) € I x J. Therefore, there exists b’ € S and a’ € R so that (a,V), (¢’,0) € K.
Since R and S have multiplicative identities, (1g,0), (0,1s) € K. Notice that since K
is closed under multiplication and addition,

(a,b) = (1g,0)(a, ') + (0, 15)(d’,b) € K.

So, K =1 x J. To see that I and J are ideals, first notice that by definition of I, we
have (I,4) < (R,+). Let a; € I. So there exists by € S so that (a1,b1) € K. Let
r € R. Then (r,1g) € K. Then since K is closed under multiplication,

(Tv 15)(a17b1) - (Tal,bl) e K
(a1,b1)(r,1s) = (a1r,by) € K
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so ray,air € I so that [ is an ideal of R. Similarly, we get that J is an ideal of S.
Now, Let I and J be ideals of R and S respectively. We know that the direct
product I x J is a subgroup of R x S. Let (a,b) € I x J and (r,s) € R x S. Then
(a,b)(r,s) = (ar,bs) € I x J
(r,s)(a,b) = (ra,sb) € I x J

because I and J are ideals themselves. Therefore, I x J is an ideal of R x S. -

7.6.5 Let ny,ng,...,n; be integers which are relatively prime in pairs: (n;,n;) = 1 for all
i .

(a) Show the Chinese Reminder Theorem implies that for any ay, ..., a; € Z there is

a solution x € Z to the simultaneous congruences
r=a; mod ny, T =as modnoy, ... ,r = a; mod ny
and the solution x is unique mod n = niny...ny.

Proof. First, notice that since ged(n;,n;) = 1 for all ¢ # j. For any fixed i # j,
there exists integers x,y so that 1 = n;x + n;y. Thus, any element of Z can be
written as a multiple of a linear combination of n; and n;. Therefore, the ideals
(n;) and (n;) are comaximal in Z. Consider the map

0 :Z—7Z/(n)XZ[(na)x -+ xZ[/(ng) by z+ (24 (n1),z+ (n2),...,z+ ().
By the Chinese Remainder Theorem, this map is surjective and
er(g) = (m)(n3) .. (ny).
Then by the First Isomorphism Theorem,
Z/(n1)(n2) ... (nk) 2L/ (n) X L/ (n2) x -+ x L (ng). (1)

Consider the element (a;) = (a; 4 (n1), a2 + (n2), ..., ax + (nx)). Since ¢ is sur-

jective, there exists x € Z so that ¢(x) = (a;). By (1),
r+ (n)(ng) ... (k) = (x4 (n), . + (n2),...,x + (ng)).
So,

(a1 + (1), a2 + (na), ., ar + () = (@)

I

5
8

~—

=z 4 (n1)(ng)...(ng)
(x+ (n1),z+ (na), ...,z + (ng)),

which implies
r=a; mod ny, T =as modnsg, ... ,xr = a; mod ng.

The isomorphism in (1) is in particular injective. Therefore,  is unique mod

Ll

n=nmng...Ng. -
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(b) Let n, = n/n; be the quotient of n by n;, which is relatively prime to n; by
assumption. Let ¢; be the inverse of n; mod n;. Prove that the solution z in (a)
is given by

T = a;tiny + astony, + - - - + agtyny, mod n.

Note that the elements ¢; can be quickly found by the Euclidean Algorithm as
described in Section 2 of the Preliminaries chapter (writing an;+bn; = (n;,n}) =1
gives t; = b) and that these then quickly give the solutions to the system of
congruences above for any choice of ay,as, ..., as.

Proof. We need to show that the definition of x given above is in fact a solution,

i.e., that
k
o) =¢ (Z a;t;n; mod n) = (a;).
i=1
Notice that by definition, n; divides n; = n/n; for all i # j. So the jth coordinate
of () is
artiny + agtony + - - - + agtgny, mod n + (nj) = a;

since t; is the inverse of n; mod n;. So ¢(x) = (a;).
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8.1.4 Let R be a Euclidean Domain.

(a)

Prove that if (a,b) = 1 and a divides dc then a divides ¢. More generally, show

that if a divides bc with nonzero a, b, then e divides c.
ged(a, b)

Proof. Since (a,b) = 1 then there exists z,y € R so that ax + by = 1. Since a
divides bc, there exist z € R so that az = bc. Then

ar+by =1
acx + (be)y = ¢
a(cx +yz) =c = alc.
More generally, if ged(a, b) = d and since a divides be, then there exists x,y, 2z € R

so that ax + by = d and az = be. Moreover, since d divides a there exists m € R
with dm = a. Therefore,

ar +by =d
acz + (be)y = dc
a(cx +yz) =dc
am(cx +yz) = (dm)c
am(cx +yz) = ac
m(cx +yz) = c (Cancellation in R since a # 0.)
= m = a/d divides c.

i
-

Consider the Diophantine Equation ax + by = N where a,b and N are integers
and a, b are nonzero. Suppose xg, Yo is a solution: axy + byg = N. Prove that the
full set of solutions to this equation is given by

a
ged(a,b)’ y=h- mgcd(a, b)

as m ranges over the integers. [If z,y is a solution to ax + by = N, show that
a(x — xo) = b(yo — y) and use (a).]

r=2xy+m

Proof. Suppose x,y is a solution to ax + by = N. Since xg, 3 is also a solution,
then

ax + by = axg + by
ax — axrg = by — by

a(x — xo) = b(yo — y)-
Letting ¢ = (yo — ) in part (a), we have ————— divides yo — y. Hence, there
ged(a, b)
exists m € Z with
a a

mgcd(a,b) “hoy = y:yo_mgcd(a,b)'
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Then
ax + byy —m ab axg + by
ged(a, b)
ab
axr — mgcd(a, D axg

8.1.11 Let R be a commutative ring with 1 and let a and b be nonzero elements of R. A least
common multiple of a and b is an element e of R such that

(i) ale and ble, and

(ii) if ale’ and ble’ then ele’.

(a)

Prove that a least common multiple of @ and b (if such exists) is a generator for
the unique largest principal ideal contained in (a) N (b).

Proof. Suppose e is the least common multiple of a and b. Then a and b both
divide e so that (e) C (a) N (b). Suppose €' € R and (¢') is an ideal for which
(e) C (¢/) C (a) N (b). Thus a and b each divide ¢’. Since e is the least common
multiple of @ and b, then e divides ¢/, which means (¢) C (e), i.e., (e) = (¢’) so that
e is a generator for the unique largest principal ideal contained in (a) N (b).
Deduce that any two nonzero elements in a Euclidean Domain have a least com-
mon multiple which is unique up to multiplication by a unit.

Proof. Suppose e and ¢’ are two least common multiples of @ and b. Then e divides
e’ and € divides e. Then there exists x,y € R with ex = ¢ and €'y = e. So,
(e'y)r =e — yr =1 = =x,y are units. Therefore, least common multiples

L

of a and b are associate. -

Prove that in a Euclidean Domain the least common multiple of a and b is
ab

ged(a,b)
Proof. Let d = ged(a, b) and e = lem(a, b). Notice
ab b ab a
E—a'a and E—ba
so that a and b both divide %’. S0, e divides CLgb(*) Since a divides e, then there

exists x € R so that axz = e. Then abxr = be so that "?b -x = b and thus af divides
b. Similarly, “?f) divides a. Thus, %f’ divides d. Then there exists z € R so that
@ .2 =d. Then 2 -z = e so that % divides e (+*). So by (%) and (xx), we have

Ll

that e = %’. -
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9.1.6

9.1.7

Prove that (x,y) is not a principle ideal in Q[z, y].
Proof. Note that

(z,y) ={x-g(z,y) +y-h(z,y) | g(x,y), M(z,y) € Qz,y]}.

By way of contradiction, suppose (f(z,y)) = (z,y) for some nonzero polynomial
f(z,y) € Q[x,y]. Since f(x,y) € (z,y), then f has no constant term. If f has
any term with the variable x, then the polynomial y & (f(z,y)). Thus, f has no term
with the variable z. Similarly, if f has any term with the variable y, then x & (f(x,y)).
Hence, f has no term with x and no term with y, i.e., f is a constant polynomial. But

I

then f & (z,y), a contradiction. Thus,(z,y) is not a principle ideal in Q[z, y]. *

Let R be a commutative ring with 1. Prove that a polynomial ring in more than one
variable over R is not a Principal Ideal Domain.

Proof. Let R be a commutative ring with 1 and n € Z*,n > 1. Suppose for contra-
diction that R[xq,xs,...,x,] is a Principal Ideal Domain. Since

Rlxy,xo, ... 2y 1][xn] = Rlx1, 22, ..., 2]

then by Corollary 8, (D&F §8.2), R[xy, za, ..., x,_1] is a field, which is a contradiction,

L

since no polynomial ring is a field. -
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8.2.4

8.2.6

Let R be an integral domain. Prove that if the following two conditions hold then
R is a Principle Ideal Domain:

(i) any two nonzero elements a and b in R have a greatest common divisor which
can be written in the form ra + sb for some r, s € R, and

(ii) if a1, a9, as, ... are nonzero elements of R such that a4, }ai for all 7, then there
is a positive integer N such that a,, is a unit time ay for all n > N.

Proof. Let I be a nonzero ideal of R and S = {(x) | € I} be a set ordered by
inclusion. Since Op € I then the ideal {0,} € S, i.e. S # 0. Let C be a chain in
S. We claim that C has a maximal element, and thus has an upper bound in S.!
Suppose there exists no maximal element in C. Let (a1) be an ideal in C. Since (a,)
is not maximal, there exists (ay) € C for which (a;) € (ag). Similarly, there exists

=

(a3) € C for which (a1) € (a2) € (a3). Given a chain of ideals in the chain C,

(a1) G (a2) S (a3) S -+ S (an),

since (a,) is not maximal, there exists (a,11) € C with (a,) € (a,+1). Since C has
no maximal element, this chain will continue indefinitely. So, a;y1|a; for all 7, and
there does not exists an integer N after which (a,) = (ay) for all n > N, which is
a contradiction of (ii). Now, we claim that I is in fact a maximal element of S. Let
(a) be a maximal element of S. Then a € I so that (a) C I. Let b € I. By (i),
ged(a, b) = d exists and d = ra+ sb for some r, s € R. Since a,b € I, then ra,sb € I
and d = ra + sb € I. Since d|a and d|b, then (a) C (d) and (b) C (d). Since (a)
is maximal, then we must have (a) = (d), which means (b) C (d) = (a) and hence
b € (a). Therefore I = (a), which means R is a Principal Ideal Domain. ®

Let R be an integral domain and suppose that every prime ideal in R is principal.
This exercise proves that every ideal of R is principal, i.e., R is a P.I.D.

(a) Assume that the set of ideals of R that are not principal is nonempty and prove
that this set has a maximal element under inclusion (which, by hypothesis, is
not prime). [Use Zorn’s Lemma. |

Proof. Let S ={I | I C R is a nonprincipal ideal} be a set ordered by inclu-
sion. Suppose S is nonempty and let C be a chain in S. Define J = (J . C.
Then J is an upper bound for C. It remains to show that J is an element of
S. Once this is verified, then S contains a maximal element by Zorn’s Lemma.
Since the union of totally ordered ideals is an ideal, then J is an ideal. Sup-
pose for contradiction that J was principal with (j) = J for some j € R. Since
j € J, then j € C; for some C; € C. So (j) € C; and C; C J = (j), which

L

means C; = (j), i.e., C; is principal, a contradiction. Thus J € S. *®

1Since every element in C can be compared, a maximal element in C is an upper bound in C, and in
particular an upper bound in S.
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(b) Let I be an ideal which is maximal with respect to being nonprincipal, and
let a,b € R with ab € I but a ¢ I and b ¢ I. Let I, = (I,a) be the ideal
generated by I and a, let [, = (I,b) be the ideal generated by I and b, and
define J = {r € R | rl, C I}. Prove that I, = (a) and J = () are principal
ideals in R with I C I, C J and [,J = (af) C 1.

Proof.
e [, is principal.
Ifi € I theni € I, and so I C I,. Since a € I, but a € I, then I C I,
which implies [, is a principal ideal since [ is maximal in R with respect
to being nonprincipal.

e J is principal.
Note that J is an ideal. Let ¢ € I. Then il, = I which means 1 € J.
Hence I C J. Notice that since bl = I and ba € I, then sums of elements
in bl with ab lie in I. Hence, bl, = 1. So, b€ J. Since b & I, then I C J,
which means J is principal.

e /IC L, CJand I,J=(aB)C I
Since b € I and b € I,, then I C I,. Moreover, since I C J and b € J,
then I, C J so that

ICI,CJ
Letting I, = («) and J = (B) for «, 8 € R, we have («)(5) = (af), which
gives
I.J = (ap) C I

L
-

(c) If z € I show that x = s« for some s € J. Deduce that I = I,J is principal, a
contradiction, and conclude that R is a P.I.D.

Proof. Let x € I. Since I C I, = («), then x = sa for some s € R. Since
sl, = s(a) = (sa) = (x) C I,

then s € J.So x € I,J, which means I C I,J. Therefore, I = I,J so that I is
a principal ideal, which is a contradiction. Therefore, the set S in part (a) is
empty, which means R is a P.I.D. *
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8.3.5 Let R = Z[/—n] where n is a squarefree integer greater than 3.
(a) Prove that 2,y/—n, and 1 + y/—n are irreducibles in R.

Proof. We use the standard norm of the complex numbers, N(a + by/—n) =
a®+b*n, restricted to R. So, N(a)N(B) = N(af). Weclaim N(z) =1 <= z
is a unit. First suppose z is a unit. Then there exists y € R with xy = 1. Then
N(z)N(y) = N(xy) = N(1) = 1 which implies N(z) and N(y) are both 1.
Conversely, suppose = a +by/—n and N(z) = 1. Then 1 = N(z) = a? + b’n,
and since n > 3, we must have b = 0 and 1 = a2, which means x = £1 and
thus z is a unit.

e 2 is irreducible.
Suppose 2 = aff. Then 4 = N(2) = N(a)N(5). If N(a) = 1 then « is
a unit, and 2 is irreducible. If N(«) = 4 then N(8) = 1 which means
is a unit so that 2 is irreducible. Suppose a = a + by/—n and N(«a) = 2.
So 2 = N(a) = a® + b*n, which implies b = 0 since n > 3. Thus, 2 = a2,
which means a ¢ Z, a contradiction. Thus, N(a) # 2.

e /—n is irreducible.
Suppose /—n = af. Then N(a)N(B8) = N(v/—n) = n. Since n is
squarefree, N(a) # N(5). Without loss of generality, suppose N(a) <
N(B). Let @ = a + by/—n. Since n = N(a)N(3) then

N(a) < Vi < N(B) (+)
If this inequality did not hold, then either

N(a) < N(B) <+v/n or +/n<N(a)<N(B).

In the former case,

N(a) <+y/n and N(B) <+/n = N(a)N(B) <n,
which is a contradiction. In the latter case,

Vvn < N(a) and /n < N(8) = n < N(a)N(B),
which again is a contradiction. So, the inequality in () holds. Therefore,

a® +b’n = N(a) < /n.
Since n > 3, then \/n < n. Hence, b* = 0. Thus N(a) = a? and so
n = N(a)N(B) = a*N(B).

Since n is squarefree, then a® = 1, i.e., N(«) = 1, which means « is a unit.

Therefore, \/—n is irreducible.
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e 1+ +/—n is irreducible.
Suppose 1 ++y/—n = af and a« = a + by/—n and § = ¢+ dv/—n. Then

14+n=N(14+v—n)=N(a)N(B)
= (a* + b*n)(c® + d°n)
= a’c® + (a®d® + b*c®)n + (V¥d*)n?,

which gives the following equalities: a’c® = 1, a?d® + b*c®> = 1, and
b*d? = 0. The first equality gives a,c = 1 which means d? + b*> = 1 and
SO

d?=1-0* bV*(1-b0)=0 = b=0orb==+l.
Then, o = 1 + by/—n and so N(a) = 12 + b*n < 1 + n. Therefore,
l+n=N(@)N(B)<(1+4+n)N(5) = N(f)=1 = [is a unit

and hence 1 4+ v/—n is irreducible.

(b) Prove that R is not a U.F.D. Conclude that the quadratic integer ring O is
not a U.F.D. for D = 2,3 mod 4,D < —3 (so also not Euclidean and not a
P.I.D.) [Show that either v/—n or 1 + \/—n is not prime.]

Proof. We claim n € Z[v/—n] has two distinct factorizations into irreducibles
so that Z[/n] is not a U.F.D. If n is even then n = 2k for some k € Z odd
and also n = (—1)(y/—n)?, and these factorizations are distinct. Now suppose
n is odd. Then n + 1 is even, and n + 1 = (1 + v/—n)(1 — /—n), but also
n + 1 = 2m for some m € 7Z, which gives two distinct factorizations of n + 1.
Hence Z[v/—n] is not a U.F.D. By definition of the quadratic integer ring,

O = Ogyp) = Zlw] = {a+ bw | a,b € Z},

where

VD if D=2,3 mod4
w =
%ﬁ if D=1 mod 4.

Since n > 3, then setting D = —n means D < —3. Suppose D = 2,3 mod 4.

Then
0 = Z1v/D) = ZIV=n

which is not a U.F.D. by the above proof. -
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Let F be a field and z be an indeterminate over F'.

9.2.1

9.2.5

9.4.17

Let f(z) € [ ] be a polynomial of degree n > 1 and let bars denote passage to the quotient
Flz]/(f(x)). Prove that for each g(x) there is a unique polynomial go(z) of degree < n — 1 such

g(x) go().

that g(x)

Proof. Notice that g(x) = go(x) if and only if g(x) — go(x) € (f(z)) if and only if f(z) divides
g(x) — go(z). Since F is a field, F[z] is a Euclidean Domain where the division algorithm in F'[z] yields
unique q(x),r(z) € Fz] such that

g(z) = q(z) f(z) + r(z) with r(x) =0 or degr(z) < degf(x).

Define go(z) := 7(z) so that g(z) — go(x) = q(z)f(x) and thus g(z) = go(x) where deggo(z) <
deg f(z) = n. o

Exhibit all the ideals in the ring F[z]/(p(x)) where p(x) is a polynomial in F[x].

Proof. Since F' is a field, then F[z] is a Euclidean Domain. In particular, F[z] is a UFD. Thus if p(x)
is an irreducible polynomial, then p(x) is prime polynomial so that (p(x)) is a prime ideal. Since F'[z]
is a Euclidean Domain, then in particular F[z] is a PID so that (p(x)) is a maximal ideal since prime
ideals in a PID are also maximal ideals. Therefore, F|x]/(p(x)) is a field which means its only ideals

are (0 + p(x)) and Fz]/ (p(x)).

Now suppose p(z) is reducible. By the 4th Isomorphism Theorem for rings, there is a bijection
between the ideals of F[z] which contain p(z) and the ideals of F[z]/(p(x)). Since F|x] is a PID, then
all of the ideals which contain p(z) are principal. Moreover, if p(z) € (f(z)) for some f(z) € F|[z],
then f(x) divides p(x). So, the ideals of F[z]/p(x) are precisely those of the form (f(z))/(p(x)) where
f(z) € Flx] divides p(x) (and of course the zero ideal). *®

Prove the following version of Eisenstein’s Criterion: Let P be a prime ideal in the UFD R and
let f(z) = apa™ + ap_12" ' + -+ + a12 + ag be a polynomial in R[x] with n > 1. Suppose a,, &
P,a,_1,...,a9 € P and ag ¢ P?. Prove that f(z) is irreducible in F[z], where F is the quotient field
of R.

Proof. Suppose f(x) is reducible in F[z]. Then there exists polynomials
c(z) = cxr® + -+ x4 and d(x) =dyz’ +...dyz +do

in F[z] with ¢, # 0 # di, and 1 < k, £ < n such that f(z) = ¢(z)d(x). Now, we compare the coefficients
of p(z) = ¢(x)d(zx). Since ag = codp and ag € P, then either ¢q or dy is in P. Without loss of generality,
suppose cg € P. Since ag € P?, then dy ¢ P. Then

a; = Cldo + Codl.

Since ¢y € P then cgdy € P. Since a; € P, then c¢;dg € P. But since dy € P, then ¢; € P since P is a
prime ideal. For 1 < i < k < n, we have

a; = ¢ido + ¢i—1dy + -+ - + cody.

By induction, ¢;_1d; + -+ 4+ codp € P. Since a; € P, then ¢;dy € P. But again since dy € P, then
¢; € P since P is a prime ideal. Hence ¢; € P for all 1 < i < k. In particular, ¢, € P, which implies
that cyd, € P. But cxdy = a,, € P, a contradiction. -
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9.3.4 Let R = Z+2Q[z] C Q[z] be the set of polynomials in x with rational coefficients whose constant term
is an integer.

(a)

Prove that R is an integral domain and its units are +1.

Proof. Let f(z),g(x) € R with leading coeflicients a and b, respectively. Then f(x)g(x) = 0 if
and only if ab = 0 if and only if @ = 0 or b = 0 (since Q) is an integral domain) if and only if
f(z) =0 or g(x) = 0. Therefore, R is an integral domain.

Moreover, since R C Q[z], then R* C (Q[z])* = Q*. However, since the constant polynomials
in R are isomorphic to Z, then R* =Z* = {£1}. -

Show that the irreducibles in R are 4p where p is a prime in Z and the polynomials f(z) that are
irreducible in Q[z] and have constant term £1. Prove that these irreducibles are prime in R.

Proof. If f(z) = a € R is a constant polynomial, then a € Z which means f(z) is irreducible if
and only if a is irreducible in Z if and only if a is prime in Z (since Z is a UFD).

Now suppose f(z) = apz"™ + an_12" L+ -+ a1z +ag € R with n > 1 and ag # 0. Then we
can factor f(x) into the product

F(z) = (ao) <“"m" pintgnt By 1> .
ao aon ag

If ag # £1, then f(x) is reducible, since the above factorization exhibits f(x) as the product of
two nonunits in R. Since n > 1, then the second factor of f(z) written above is not a unit in R.
So f(x) is irreducible precisely when ag = £1 and f(xz) is irreducible in Q[z].

Suppose f(x) is irreducible in R. If f is a constant polynomial, then as we stated above,
f(z) = p for some prime in Z. Since Z C R, then f(x) = p is prime in R.

Now suppose f(z) € R is irreducible and not a constant polynomial, and suppose f(z) =
a(x)b(zx) for a(z),b(x) € R. Since Q is a field then Q[z] is a Euclidean Domain, and in particular
Q[z] is a UFD, so that every irreducible polynomial in Q[z] is prime in Q[z]. Therefore, since
f(z) € Q[x] then either f(z)|a(z) or f(z)|b(x). Without loss of generality, suppose f(z)|a(x). So
a(x) = f(x)g(x) for some q(z) € Q[z]. Let ag, go, fo be the constant terms in a(x), g(x), and f(z),
respectively. Since a(z) € R, then ag € Z. Since fo = +1, then ag = +qo, i.e., go € Z. Therefore,
q(z) € R and so f(z) is prime in R. ®
Show that x cannot be written as the product of irreducibles in R (in particular, z is not irre-
ducible) and conclude that R is not a UFD.

Proof. Suppose & = f1(x)fa(x) - - fr(x) where f;(x) € R is irreducible for all 1 < i < k. Then
1 = deg(z) = deg(f1(x) - -+ fr(x)) = deg(fi(2)) + - - + deg(fx(z)),

which means all but one of the factors of z are constant polynomials. Without loss of generality,
suppose f1(x) is the one nonconstant polynomial in the factorization of x. Then fi(x) = a1z +b
for some a; € Q, and b € Z. Since fi(z) is irreducible in R, then and b = 1 by part (b). Let
fi(x) = a; where a; € Z are irreducible for all 2 < i < k. Notice that

x = (a1x = 1)asas - -ax, = (a1as - - ag)x + azas - - - ag.

But since as, as, - - - , a are irreducible, then their product is nonzero, which means x has a nonzero
constant term, a contradiction. Therefore, R is not a UFD, since € R cannot be factored into
a finite product of irreducibles. &

Show that z is not a prime in R and describe the quotient ring R/(z).

Proof. Notice that z is not prime in R since it is not irreducible in R. Therefore R/(z) is not an
integral domain since (z) is not prime. Moreover R/(x) has identity element f(z) + (x) where
f(z) is a polynomial with no constant term and an integer coefficient on its  term. **T couldn’t
figure out how the rest of the cosets looked, so the following is from the online solution manual**:
R/(x)={a+bx+(z) | a€Z,beQbec[0,1)}.

W
-
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9.4.3

9.4.11

Show that the polynomial (z — 1)(z — 2)...(x —n) — 1 is irreducible over Z for all n > 1. [If the
polynomial factors consider the values of the factors at z = 1,2,...,n.]

Proof. Let p(z) = (x — 1)(x — 2)...(x —n) — 1 and suppose p(z) = f(x)g(x) for some polynomials
f(z),g9(z) € Z[z]. Notice that since p(z) has degree n, both f(z) and g(x) have degree less than
n. Without loss of generality suppose deg f(x) < degg(x). Notice that for all 1 < k < n, we have
f(k)g(k) = —1. So, f(k) and g(k) are equal to £1 for all 1 < k < n.

Now, consider the polynomial p(z) + (f(x))2. . Since deg f(z) < degg(z), then deg f(x) < n/2.
Thus deg(f(z))? < n and so deg(p(z) + (f(x))?) = n. Notice that the roots of this polynomial are
ke{l,---,n}. Then

p@) + (f(@)* = (z = (@ —2) - (z —n) = p(z) + 1,

ie., (f(z))> = 1 and so f(x) = £1. Behold! This means f(x) is a unit in Z[z] so that p(x) is

W

irreducible. -
Prove that z? 4+ y* — 1 is irreducible in Q[z,y].

Proof. Since Q[z,y] = Q[z][y], we consider y?+x?—1 as a polynomial in the variable y with coefficients
in Q[z]. Thus 32 + 22 — 1 is a monic polynomial with constant term x? — 1. We claim that = + 1 is a
prime element in Q[z,y]. Once this is verified, then the ideal P = (z + 1) is a prime ideal containing
the constant term (x — 1) — indeed, (x — 1)? = (# + 1)(z — 1) — but the ideal P? = ((z + 1)?) does
not contain the constant term (x — 1)2. Then by Eisenstein’s Criterion, y? + 2% — 1 is irreducible.

Since Q is a UFD, then Q[x][y] is also a UFD, and hence it suffices to show that x + 1 is irreducible
in Q[z][y]. To that end, suppose x + 1 = f(z,y)g(z,y) for some f(x,y),g(x,y) € Qlz][y]. Then

0 = deg(z + 1) = deg(f(z,y)) + deg(g(,y))

which means deg(g(z,y)) = deg(f(x,y)) = 0, i.e., f(x,y),g(x,y) are constant polynomials. Then

v

f(z,y),9(x,y) are both units since Q is a field. Hence, z + 1 is irreducible. *®



