Engineering Math II - Exam 1 (Quick) Review

Chapters $1 \& 2$

1 Chapter 1 - Basic Graphs

1.1 Explicit

- The equation is given explicitly in terms of y. In other words, y is by itself on one side, and some expression involving x is on the other side. We are familiar with this type of equation from previous math courses.

Examples

- $y=x^{2}, \quad y=3 x+17, \quad y=-4 x^{2}+13 x+95, \quad y=x^{2017}+14 x^{2011}+130 x^{96}-100 x^{2}-15$.

1.2 Implicit

- The equation is given with x and y on the same side, and a number on the other side. Sure, maybe we could solve for y and make it an explicit equation, but sometimes we can't solve for y so we leave it in this form.
- When graphing, we can just pick values of x and solve for y to determine what y is (the same way we are use to with explicit equations).

Examples

- $2 x-3 y=6 \rightarrow$ Line that is perpendicular to the line from $(0,0)$ to $(2,-3)$ and that is "pushed away" from the origin in the direction of $(2,-3)$ by a distance of $\frac{6}{\sqrt{(2)^{2}+(-3)^{2}}}=\frac{6}{\sqrt{13}}$.

- $(x-1)^{2}+(y+2)^{2}=100 \rightarrow$ Circle centered at $(1,-2)$ of radius 10.

1.3 Parametric Equations

- We are use to explicit graphs which have one "input" variable x, and then the "output" variable y is determined by whatever x is. (That's another way to say that x is the "independent" variable because we can "input anything" so it's not dependent on anything; and y is the dependent variable because y is dependent on x). In this way, the x-axis as being the "input axis" and the y-axis as being the "output axis".
- But now, for parametric equations, we have the x and y values both dependent on another variable, t. We don't graph any t values; we still only graph x and y values. But this time, the x and y are both dependent on t and so both x and y are now dependent variables. Now, we view both the x-axis and y-axis are "output axes".
- When graphing, we pick (easy) values for t to find points (x, y) in the graph.

Examples

- $\left\{\begin{array}{ll}x & =3 t+1 \\ y & =-t+2\end{array} . \rightarrow\right.$ Line passing through $(1,2)$ in the direction of the vector $(3,-1)$.
- $\left\{\begin{array}{ll}x & =\cos [t] \\ y & =\sin [t]\end{array} . \rightarrow\right.$ Circle of radius 1.

1.4 Sliding \& Squashing

- Sliding: If we want to slide (i.e. translate) a graph/equation by a in the x direction and by b in the y direction, we replace x with $(x-a)$ and replace y with $(y-b)$.
- Stretching/Squashing: Same idea here, but now we just "replace" by something different. If we want to stretch (i.e. expand) by a in the x direction, we replace x by $\left(\frac{x}{a}\right)$. If we want to squash (i.e. shrink or compress) by b in the x direction, we replace x by $\left(\frac{x}{\frac{1}{b}}\right)=(b x)$. Similarly, if we want to stretch by a in the y direction, we replace y by $\left(\frac{y}{a}\right)$. If we want to squash by b in the y direction, we replace y by $\left(\frac{y}{\frac{1}{b}}\right)=(b y)$.

Examples

- If the equation is $x^{2}+y^{4}=17$, and we want to slide it by -2 in the x direction and slide by 5 in the y direction, we get $(x+2)^{2}+(y-5)^{4}=17$.
- If the equation is $x^{4}+y^{2}=10$, and we want to stretch in the x direction by 3 and squash in the y direction by -4 then we get $\left(\frac{x}{3}\right)^{4}+(-4 y)^{2}=10$.

$$
x^{4}+y^{2}=10
$$

$\left(\frac{x}{3}\right)^{4}+(-4 y)^{2}=10$

Remark: In the last example, squashing by -4 in the y direction flips the graph across the x-axis since -4 is negative. We can't see the flip in the picture above, since the graph is symmetric about the x axis, so here's another example that's more clear: We stretch by 2 in the x direction, and "squash" by -1 in the y direction (Stretching/squashing by 1 or -1 really means that we didn't actually squash or stretch the graph at all!).

If we were to stretch/squash in the x direction by a negative number, we would reflect the graph across the y-axis.

2 Chapter 2 - Vectors

2.2 Sums

- We add (and subtract) two vectors exactly the way we think we should. Just add the like components of the vectors. Geometrically, when we add two vectors A and B with the same tail, we obtain the vector $A+B$ that is the diagonal of the parallelogram created by A and B.

$$
\begin{aligned}
& 1 \\
& 1 \\
& 1 \\
& 1 \\
& 1 \\
& \mathbf{A}+\mathbf{B} \\
& 1 \\
& 1 \\
& 1 \\
& 1
\end{aligned}
$$

Example

$$
\left(\begin{array}{c}
1 \\
-10 \\
14
\end{array}\right)+\left(\begin{array}{c}
4 \\
5 \\
-1
\end{array}\right)=\left(\begin{array}{c}
5 \\
-5 \\
13
\end{array}\right), \quad\left(\begin{array}{c}
1 \\
-10 \\
14
\end{array}\right)-\left(\begin{array}{c}
4 \\
5 \\
-1
\end{array}\right)=\left(\begin{array}{c}
-3 \\
-15 \\
15
\end{array}\right)
$$

2.3 Displacement

- The displacement vector from X to Y is given by $Y-X$. It is the vector that has its tail at X, and its tip at Y.

Examples

- Let $X(1,5,-1)$ and $Y(4,-3,1)$ be vectors.

$$
\begin{array}{ll}
\text { Displacement vector from } X \text { to } Y: & Y-X=\left(\begin{array}{c}
4 \\
-3 \\
1
\end{array}\right)-\left(\begin{array}{c}
1 \\
5 \\
-1
\end{array}\right)=\left(\begin{array}{c}
3 \\
-8 \\
2
\end{array}\right) . \\
\text { Displacement vector from } Y \text { to } X: \quad X-Y=\left(\begin{array}{c}
1 \\
5 \\
-1
\end{array}\right)-\left(\begin{array}{c}
4 \\
-3 \\
1
\end{array}\right)=\left(\begin{array}{c}
-3 \\
8 \\
-2
\end{array}\right) .
\end{array}
$$

Remark: Notice that $X-Y$ is just the negative of $Y-X$, and vice versa. Algebraically,

$$
-(X-Y)=-X+Y=Y-X \quad \text { and } \quad-(Y-X)=-Y+X=X-Y
$$

2.4 Scalar Products

- If c is a number and X is a vector, to compute $c X$, we just multiply each component of X by c. Notice that we do NOT write $c \cdot X$, to make sure not to confuse the scalar product (of a number and a vector) with the dot product (of two vectors).
- When we multiply a vector by a number bigger than 1 , we stretch the vector to make it longer. If we multiply a vector by a number between 0 and 1 , we shrink it.
- If we multiply a vector by a negative number that is less than -1 , then we make the vector longer AND flip its direction. If we multiply a vector by a negative number that is between -1 and 0 , then we shrink the vector AND flip its direction.

Example

- Let $X(1,2,-1)$ and $c=-3$. Then $c X=(-3)\left(\begin{array}{c}1 \\ 2 \\ -1\end{array}\right)=\left(\begin{array}{c}-3 \\ -6 \\ 3\end{array}\right)$.

2.5 Angles \& Projections

- Dot Product: The dot product is one way to "multiply" vectors and get a number. To calculate the dot product, we add the products of like coordinates. In other words, if $X=(a, b, c)$ and $Y=(d, e, f)$ then their dot product is

$$
X \cdot Y=\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \cdot\left(\begin{array}{l}
d \\
e \\
f
\end{array}\right)=a d+b e+c f
$$

The dot product has the following properties:

1. We can do the dot product in any order: $X \cdot Y=Y \cdot X$.
2. The dot product distributes in the same way that we're use to with numbers: $X \cdot(Y+Z)=X \cdot Y+X \cdot Z$.
3. If we multiply the dot product of two vectors by a number c, that's the same as scaling the first vector by c, and its also that same as scaling the second vector by $c: c(X \cdot Y)=(c X) \cdot Y=X \cdot(c Y)$.

- Example Let $X=(1,2,3)$ and $Y=(4,5,6)$. Then

$$
X \cdot Y=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) \cdot\left(\begin{array}{l}
4 \\
5 \\
6
\end{array}\right)=4+10+18=32
$$

- Length: The length (or "magnitude", or "norm") of a vector $X=(a, b, c)$ is given by the formula

$$
|X|=\sqrt{a^{2}+b^{2}+c^{2}}
$$

- Notice that formula for the length of a vector $X=(a, b, c)$ is closely related to the dot product. Since $X \cdot X=a^{2}+b^{2}+c^{2}$, then

$$
|X|=\sqrt{a^{2}+b^{2}+c^{2}}=\sqrt{X \cdot X}
$$

Squaring both sides, we get $|X|^{2}=X \cdot X$.

- Example Let $X=(-1,3,5)$. Then

$$
|X|=\sqrt{(-1)^{2}+(3)^{2}+(5)^{2}}=\sqrt{1+9+25}=\sqrt{30}
$$

- Angle Between Vectors: We have a formula for the angle between two vectors X and Y. The angle θ between X and Y is the number between 0 and π which satisfies the equation

$$
\cos [\theta]=\frac{X \cdot Y}{|X||Y|}
$$

Remark: It's important to note here that the vectors X and Y must have their tails in the same place for this formula to work.

- If the dot product of X and Y is equal to 0 , then X and Y are perpendicular. It's true the other way, too: If X and Y are perpendicular, then the dot product of X and Y is equal to 0 . We can prove this fact by using our formula:

$$
\cos [\theta]=\frac{X \cdot Y}{|X||Y|}=\frac{0}{|X||Y|}=0
$$

When is $\cos [\theta]=0$? Well, when $\theta=\pi / 2$, which is 90°.

- Direction Cosines \& Direction Angles: The direction cosines of a vector X are just the components of the vector $\frac{X}{|X|}$. Once we have this vector, the direction angles of X are found by setting $\cos [\theta]$ equal to each of the direction cosines.
Remark: For any vector X, the vector $\frac{X}{|X|}$ is the vector of length 1 (i.e. unit vector) that points in the same direction as X.
- Examples Let $X=(1,2,3)$. Then

$$
\frac{X}{|X|}=\frac{(1,2,3)}{\sqrt{1^{2}+2^{2}+3^{2}}}=\frac{(1,2,3)}{\sqrt{14}}=\left(\begin{array}{c}
\frac{1}{\sqrt{14}} \\
\frac{2}{\sqrt{14}} \\
\frac{3}{\sqrt{14}}
\end{array}\right) .
$$

So, the direction cosines of X are the numbers $1 / \sqrt{14}, 2 / \sqrt{14}$, and $3 / \sqrt{14}$. The direction angles for X are the numbers

$$
\begin{aligned}
& \alpha_{1}=\arccos \left(\frac{1}{\sqrt{14}}\right), \\
& \alpha_{2}=\arccos \left(\frac{2}{\sqrt{14}}\right), \\
& \alpha_{3}=\arccos \left(\frac{3}{\sqrt{14}}\right) .
\end{aligned}
$$

- Let $X=(\sqrt{3}, 1)$. Then

$$
\frac{X}{|X|}=\frac{(\sqrt{3}, 1)}{\sqrt{(\sqrt{3})^{2}+1^{2}}}=\frac{(\sqrt{3}, 1)}{\sqrt{4}}=\binom{\frac{\sqrt{3}}{2}}{\frac{1}{2}}
$$

So, the direction cosines of X are the numbers $\sqrt{3} / 2$ and $1 / 2$. The direction angles for X are the numbers θ_{1} and θ_{2} satisfying the equations

$$
\cos \left[\theta_{1}\right]=\frac{\sqrt{3}}{2} \quad \text { and } \quad \cos \left[\theta_{2}\right]=\frac{1}{2} .
$$

So $\theta_{1}=\pi / 6$ and $\theta_{2}=\pi / 3$.

As we can see, it's important that we remember the unit circle. Here it is for reference:

- Perpendicular Projection of Vectors: The perpendicular projection of the vector X onto another vector Y is the vector

$$
Z=\left(\frac{X \cdot Y}{Y \cdot Y}\right) Y
$$

The vector Z just a scalar multiple of the vector Y. The displacement from Z to X, $X-Z$, is perpendicular to Y. The vector X is the sum of Z and the displacement vector from Z to $X: X=Z+(X-Z)$.

- Example The perpendicular projection of $A=(4,-2,3)$ onto $B=(3,1,2)$ is the vector

$$
\left(\frac{A \cdot B}{B \cdot B}\right) B=\frac{12-2+6}{9+1+4}\left(\begin{array}{l}
3 \\
1 \\
2
\end{array}\right)=\frac{8}{7}\left(\begin{array}{l}
3 \\
1 \\
2
\end{array}\right)=\left(\begin{array}{c}
\frac{24}{7} \\
\frac{8}{7} \\
\frac{16}{7}
\end{array}\right)
$$

2.6 Cross Product:

- The cross product of two vectors a and b is another way to "multiply" vectors to get a new vector, $a \times b$. The vector $a \times b$ is perpendicular to a and is also perpendicular to b. A neat property of the cross product is that the length of the cross product of a and $b,|a \times b|$, is the area of the parallelogram with sides a and b.

If $a=\left(a_{1}, a_{2}, a_{3}\right)$ and $b=\left(b_{1}, b_{2}, b_{3}\right)$, then the cross product of a and b is

$$
\begin{aligned}
a \times b & =\left|\begin{array}{ccc}
i & j & k \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right| \\
& =i\left(a_{2} b_{3}-a_{3} b_{2}\right)-j\left(a_{1} b_{3}-a_{3} b_{1}\right)+k\left(a_{1} b_{2}-a_{2} b_{1}\right) \\
& =\left(\begin{array}{l}
a_{2} b_{3}-a_{3} b_{2} \\
a_{1} b_{3}-a_{3} b_{1} \\
a_{1} b_{2}-a_{2} b_{1}
\end{array}\right),
\end{aligned}
$$

where $i=(1,0,0), j=(0,1,0)$, and $k=(0,0,1)$.
Remark: It matters in which order we take the cross product! In other words, $X \times Y \neq$ $Y \times X$. However it IS true that $X \times Y=-(Y \times X)$. So if we happen to take the cross product the wrong way, we can just change the signs on all the components of the vector to get the right answer.

- We have the " $B A C-C A B$ " rule which relates the cross product and the dot product:

$$
A \times(B \times C)=(C \cdot A) B-(B \cdot A) C
$$

- Example If $X=(2,-3,5)$ and $Y=(1,-1,1)$, then

$$
\begin{aligned}
X \times Y=\left|\begin{array}{ccc}
i & j & k \\
2 & -3 & 5 \\
1 & -1 & 1
\end{array}\right| & =i(-3-(-5))-j(2-5)+k(-2-(-3)) \\
& =2 i+3 j+k=\left(\begin{array}{l}
2 \\
3 \\
1
\end{array}\right) .
\end{aligned}
$$

So, we know that $Y \times X=-(X \times Y)=\left(\begin{array}{l}-2 \\ -3 \\ -1\end{array}\right)$. We also know that the area of the parallelogram with sides X and Y is $|X \times Y|=\sqrt{2^{2}+3^{2}+1^{2}}=\sqrt{14}$. We can also find the area of this same parallelogram by $|Y \times X|=\sqrt{(-2)^{2}+(-3)^{2}+(-1)^{2}}=\sqrt{14}$. Additionally, if we wanted to find the area of the triangle with sides X, Y, and $Y-X$, then we can just divide the area of the parallelogram by 2 .

