Engineering Math IT — Exam 1 (Quick) Review
Chapters 1 & 2

1 Chapter 1 — Basic Graphs

1.1 Explicit

e The equation is given explicitly in terms of y. In other words, y is by itself on one
side, and some expression involving x is on the other side. We are familiar with this
type of equation from previous math courses.

Examples

o y=2a% y=232+17, y= —42x’+132+95, y= 2?7 +1422011 413026 —1002%—15.

1.2 Implicit

e The equation is given with z and y on the same side, and a number on the other side.
Sure, maybe we could solve for y and make it an explicit equation, but sometimes we
can’t solve for y so we leave it in this form.

e When graphing, we can just pick values of x and solve for y to determine what y is
(the same way we are use to with explicit equations).

Examples

e 2r — 3y = 6 — Line that is perpendicular to the line from (0,0) to (2,—3) and

that is “pushed away” from the origin in the direction of (2,—3) by a distance of
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o (r—1)2+ (y+2)? =100 — Circle centered at (1,—2) of radius 10.
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1.3 Parametric Equations

e We are use to explicit graphs which have one “input” variable x, and then the “output”
variable y is determined by whatever x is. (That’s another way to say that x is the
“independent” variable because we can “input anything” so it’s not dependent on
anything; and y is the dependent variable because y is dependent on z). In this way,
the z-axis as being the“input axis” and the y-axis as being the “output axis”.

e But now, for parametric equations, we have the = and y values both dependent on
another variable, t. We don’t graph any ¢ values; we still only graph = and y values.
But this time, the  and y are both dependent on ¢ and so both = and y are now
dependent variables. Now, we view both the z-axis and y-axis are “output axes”.

e When graphing, we pick (easy) values for ¢ to find points (z,y) in the graph.

Examples

=3t+1
. {x t—:— 5 — Line passing through (1, 2) in the direction of the vector (3, —1).
y ==

ot T c.os[t] . — Circle of radius 1.
y = sinlt]



1.4 Sliding & Squashing

e Sliding: If we want to slide (i.e. translate) a graph/equation by a in the z direction
and by b in the y direction, we replace x with (z — a) and replace y with (y — b).

e Stretching/Squashing: Same idea here, but now we just “replace” by something
different. If we want to stretch (i.e. expand) by a in the = direction, we replace x by
(%) If we want to squash (i.e. shrink or compress) by b in the x direction, we replace

x
x by <1> = (bz). Similarly, if we want to stretch by a in the y direction, we replace
b

y by (%) If we want to squash by b in the y direction, we replace y by (?) = (by).
b

Examples

o If the equation is 22 + y* = 17, and we want to slide it by —2 in the = direction and
slide by 5 in the y direction, we get (z +2)? + (y — 5)* = 17.

e If the equation is 2* 4+ y? = 10, and we want to stretch in the x direction by 3 and
squash in the y direction by —4 then we get (%)4 + (—4y)? = 10.




Remark: In the last example, squashing by —4 in the y direction flips the graph across
the x-azis since —4 is negative. We can’t see the flip in the picture above, since the graph
is symmetric about the x axis, so here’s another example that’s more clear: We stretch by
2 in the = direction, and “squash” by —1 in the y direction (Stretching/squashing by 1 or
—1 really means that we didn’t actually squash or stretch the graph at all!).
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If we were to stretch/squash in the x direction by a negative number, we would reflect
the graph across the y-axis.

2 Chapter 2 — Vectors

2.2 Sums

e We add (and subtract) two vectors exactly the way we think we should. Just add the
like components of the vectors. Geometrically, when we add two vectors A and B with
the same tail, we obtain the vector A + B that is the diagonal of the parallelogram
created by A and B.

Example
1 4 5 1 4 -3
10|+ 5 |=1[-5], -0 -1 5 |=1]-15
14 -1 13 14 -1 15



2.3 Displacement
e The displacement vector from X to Y is given by Y — X. It is the vector that has its
tail at X, and its tip at Y.
Examples

o Let X(1,5,—1) and Y (4, —3,1) be vectors.

4 1 3
Displacement vector from X toY: Y —-X=|-3] - 5 | =[-8
1 -1 2
1 4 -3
Displacement vector from Y to X: X -Y = 5 | —-[-3] = 8
-1 1 -2

Remark: Notice that X —Y is just the negative of Y — X | and vice versa. Algebraically,
- (X-Y)=—X+4Y=Y-X and - (VY-X)=-Y+X=X-Y.

2.4 Scalar Products

e If ¢ is a number and X is a vector, to compute cX, we just multiply each component
of X by c. Notice that we do NOT write ¢+ X, to make sure not to confuse the scalar
product (of a number and a vector) with the dot product (of two vectors).

e When we multiply a vector by a number bigger than 1, we stretch the vector to make
it longer. If we multiply a vector by a number between 0 and 1, we shrink it.

e If we multiply a vector by a negative number that is less than —1, then we make the
vector longer AND flip its direction. If we multiply a vector by a negative number
that is between —1 and 0, then we shrink the vector AND flip its direction.

Example
1 -3
e Let X(1,2,-1)and ¢c=—3. ThencX =(-3)| 2 | = | -6
-1 3

2.5 Angles & Projections

e Dot Product: The dot product is one way to “multiply” vectors and get a number.
To calculate the dot product, we add the products of like coordinates. In other words,
if X =(a,b,¢) and Y = (d,e, f) then their dot product is

a d
X-Y=1b]|-[e]| =ad+ be—+cf.
f

The dot product has the following properties:

1. We can do the dot product in any order: X -Y =Y - X.



2. The dot product distributes in the same way that we’re use to with numbers:
X-Y+2)=X-Y+X-Z.

3. If we multiply the dot product of two vectors by a number ¢, that’s the same as
scaling the first vector by ¢, and its also that same as scaling the second vector
by ¢ ¢(X:Y)=(cX)-Y =X-(cY).

Example Let X =(1,2,3) and Y = (4,5,6). Then

1 4
XY=12]|:-15]=4+10+18=32.
3 6

Length: The length (or “magnitude”, or “norm”) of a vector X = (a,b,c) is given

by the formula
| X| = Va2 + b2+ 2.

Notice that formula for the length of a vector X = (a, b, ¢) is closely related to the dot
product. Since X - X = a2 + b + ¢2, then

I X|=vVa?2+b2+2=vX-X.
Squaring both sides, we get | X|> = X - X.
Example Let X = (—1,3,5). Then

X =v(=1)2+(3)2+(5)2=vV1+9+25 =130

Angle Between Vectors: We have a formula for the angle between two vectors X
and Y. The angle 6 between X and Y is the number between 0 and 7 which satisfies
the equation
XY

(XY

Remark: Tt’s important to note here that the vectors X and Y must have their tails
in the same place for this formula to work.

cosld]

If the dot product of X and Y is equal to 0, then X and Y are perpendicular. It’s
true the other way, too: If X and Y are perpendicular, then the dot product of X and
Y is equal to 0. We can prove this fact by using our formula:

X.Y 0

(XIYT XY

cosld]

When is cos[f] = 07 Well, when § = 7/2, which is 90°.

Direction Cosines & Direction Angles: The direction cosines of a vector X are
just the components of the vector % Once we have this vector, the direction angles

of X are found by setting cos[f] equal to each of the direction cosines.
Remark: For any vector X, the vector % is the vector of length 1 (i.e. unit vector)
that points in the same direction as X.



e Examples Let X = (1,2,3). Then

X (1,2,3) (1,2,3)

X|~ VZ+22+32 V14

e
—~ IS =

So, the direction cosines of X are the numbers 1/v/14,2/+/14, and 3/+/14. The direc-
tion angles for X are the numbers

1
(1 — arccos e 5
! <\/14>
<\/2 >
(9 = arccos e y
2 14

Qi3 = arccos <

i)
e Let X = (v/3,1). Then

V3

X (A1) (B |2

| X (\/5)2 412 \/41 1

So, the direction cosines of X are the numbers v/3/2 and 1/2. The direction angles
for X are the numbers #; and 65 satisfying the equations

1
cos[bh] = ? and cos[fs] = 3

So 6 = 7/6 and 6 = /3.



As we can see, it’s important that we remember the unit circle. Here it is for reference:

Perpendicular Projection of Vectors: The perpendicular projection of the vector
X onto another vector Y is the vector

XY
Z=——=)Y.
( Y : Y )
The vector Z just a scalar multiple of the vector Y. The displacement from Z to X,

X — Z, is perpendicular to Y. The vector X is the sum of Z and the displacement
vector from Z to X: X =Z 4+ (X — 2).

Example The perpendicular projection of A = (4,—2,3) onto B = (3,1,2) is the
vector

24
7
(A-B) _12-2+6 (7 s (%) |8
B-B 0r1+4 5] T 7\, 7
16
-

2.6 Cross Product:

The cross product of two vectors ¢ and b is another way to “multiply” vectors to get
a new vector, a X b. The vector a X b is perpendicular to a and is also perpendicular
to b. A neat property of the cross product is that the length of the cross product of a
and b, |a x b|, is the area of the parallelogram with sides a and b.



A

axb

% |at/
|

If a = (a1, a2,a3) and b = (b1, be, bs), then the cross product of a and b is

axb=l|a1 as a3
by by bs
= i(agbg — agbg) — j(a1b3 — a3b1) + k(a1b2 — (12[)1)
azbs — asbs
= | a1bs —aszby | ,
albg — a2b1

where i = (1,0,0),j = (0,1,0), and k£ = (0,0, 1).

Remark: Tt matters in which order we take the cross product! In other words, X xY #
Y x X. However it IS true that X x Y = —(Y x X). So if we happen to take the
cross product the wrong way, we can just change the signs on all the components of
the vector to get the right answer.

We have the “BAC — C AB” rule which relates the cross product and the dot product:
Ax (BxC)=(C-A)B—-(B-AC

Example If X = (2,-3,5) and Y = (1,—1, 1), then

i § ok
XxY =2 =3 5/=i(=3—(=5))—j(2—5)+ k(-2 — (=3))
1 -1 1
2
=2i+3j+k=|3
1
-2
So, we know that Y x X = —(X xY) = [ =3 |. We also know that the area of the
-1

parallelogram with sides X and Y is | X x Y| = v/22 4 32 + 12 = \/14. We can also find
the area of this same parallelogram by [V x X| = 1/(=2)2 + (=3)2 + (-1)2 = V14.
Additionally, if we wanted to find the area of the triangle with sides X, Y, and Y — X
then we can just divide the area of the parallelogram by 2.
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