
Exam 1 Review
Ordinary Differential Equations

1 Intro to ordinary differential equations

1.4 Solutions to ẋ = A(t)x and the transition matrix

• x(t, t0, x0) = R(t, t0)x0 where

R(t, t0) =
[
x(t, t0, e1) · · · x(t, t0, en)

]
and the ei are the standard basis vectors for Rn.

– So, Dx0x(t, t0, x0) = R(t, t0).

– If A(t) is actually autonomous, then R(t, t0) = R(t− t0, 0).

1.4.1 The Abel-Jacobi - blah blah blah formula

• Theorem 1.27 (Abel-Jacobi-blah blah blah formula) If A(t) ∈ Rn×n has continuous trace on an
interval I and if W (t) ∈ Rn×n defined on I satisfies Ẇ (t) = A(t)W (t), then

det(W (t)) = det(W (t0))e
∫ t
t0
tr(A(s))ds

for all t0, t ∈ I.

If, moreover, A(t) is is continuous on I, then the transition matrix R(t, t0) of the system ẋ = A(t)x
satisfies the formula

det(R(t, t0)) = e
∫ t
t0
tr(A(s))ds

.

1.4.2 Solutions to ẋ = Ax and the exponential of a matrix

• Some exponential matrix formulas for common matrices:

J =

[
1 0
0 1

]
, eαtJ =

[
eαt 0
0 eαt

]
J =

[
0 1
1 0

]
, eαtJ =

1

2

[
e−αt + eαt eαt − e−αt
eαt − e−αt e−αt + eαt

]
J =

[
0 −1
1 0

]
, eαtJ =

[
cos(αt) − sin(αt)
sin(αt) cos(αt)

]
J =

[
0 1
−1 0

]
, eαtJ =

[
cos(αt) sin(αt)
− sin(αt) cos(αt)

]
J =

[
α 1
0 α

]
, etJ =

[
eαt teαt

0 eαt

]
.

• One way to compute this is to get the matrix A into Jordan canonical form A = PJP−1, where P has
as its columns the eigenvectors for the eigenvalues of A, written in the order that their corresponding
eigenvalues are written in J . If A has distinct eigenvalues λ1, λ2, then J is diagonal, so

etA = et(PJP
−1) = PetJP−1 = P

[
eλ1t 0

0 eλ2t

]
P−1.

If A has a repeated eigenvalue λ then J is upper triangular, so

etA = et(P
−1JP ) = PetJP−1 = P

[
eλt teλt

0 eλt

]
P−1.
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• The theorem below says that for IVPs, we calculate the matrix exponential e(t−t0)A as opposed to etA;
so in all the computations above, just replace t with (t− t0).

• Theorem 1.32 The solution to the IVP ẋ = Ax, x(t0) = x0 is

x(t, t0, x0) = e(t−t0)Ax0.

So the transition matrix for the system is R(t, t0) = e(t−t0)A.

1.5 Solutions to ẋ = A(t)x+ b(t)

• Theorem 1.36 Consider a system of linear, nonhomogeneous, and nonautonomous ODEs in Rn,
ẋ = A(t)x + b(t), where A(t) ∈ Rn×n and b(t) ∈ Rn are both continuous on an interval I. Let R(t, s)
be the transition matrix of the system ẏ = A(t)y. Then

1. The general solution to the system is

x(t, c, vc)︸ ︷︷ ︸
genral solution to
ẋ=A(t)x+b(t)

= R(t, c)vc︸ ︷︷ ︸
general solution to

ẏ=A(t)y

+

∫ t

c

R(t, s)b(s)ds︸ ︷︷ ︸
a particular solution to

ẋ=A(t)x+b(t) satisfying x(c)=0

.

where c ∈ I and vc ∈ Rn are free.

2. For t0 ∈ I the solution satisfying the initial condition x(t0) = x0 is

x(t, t0, x0) = R(t, t0)x0 +

∫ t

t0

R(t, s)b(s)ds.

1.6 Differentiability of solutions with respect to initial conditions

• Theorem 1.39 Consider ẋ = f(t, x). If both f and Dxf are continuous, then x(t, t0, x0) is differen-
tiable with respect to t0 and x0. Moreover, the matrix

R(t, t0, x0) := Dx0
(t, t0, x0)

is the solution to the matrix variational equation Ṙ = A(t, t0, x0)R with initial conditions R(t0, t0, x0) =
In.

• Theorem 1.41 Consider ẋ = f(t, x). Suppose both f and Dxf are continuous on an open set U ⊆ Rn,
and let Xt0 ⊂ U be a set of initial conditions at t0 and

Xt := x(t, t0, Xt0) = {x(t, t0, x0) | x0 ∈ Xt0} ⊂ U,

then

1. Vol(Xt) =
∫
Xt0

e
∫ t
t0
tr(Dxf(s,x(s,t0,x0)))dsdx0

2. If tr(Dxf(s, x(s, t0, x0))) ≡ 0, then Vol(Xt) =Vol(Xt0).
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1.7 Lyapunov stability

1.7.3 Lyapunov stability for ẋ = Ax

• Theorem 1.53 Consider the IVP ẋ = Ax, x(t0) = x0. Let {λi} be the eigenvalues of A. Then the
solution x(t, t0, x0) = e(t−t0)Ax0 to the IVP is:

1. Lyapunov stable at (t0, x0) if and only if

(a) Re(λi) ≤ 0 for all i.

(b) If Re(λi) = 0 for some i, then the geometric and algebraic multiplicities of λi are equal:
g(λi) = a(λi) (equivalently, if λi is a multiple eigenvalue with g(λi) < a(λi), then Re(λi) < 0).

2. asymptotically Lyapunov stable at (t0, x0) if and only if Re(λi) < 0 for all i. In this case the
matrix A is said to be Hurwitz.

• For n = 2, let δ = det(A) and τ = tr(A). Then the solution x(t, t0, x0) = e(t−t0)Ax0 to the IVP is:

– Lyapunov stable at (t0, x0) if and only if δ ≥ 0 and τ ≤ 0 with δ = τ = 0 only for the zero matrix.

– asymptotically Lyapunov stable at (t0, x0) if and only if δ > 0 and τ < 0.

– Lyapunov unstable at (t0, x0) otherwise.

1.7.4 Lyapunov stability for ẋ = A(t)x

• Lemma 1.61(Logarithmic norms) Let A ∈ Rn×n. Then

µ1(A) = max
1≤j≤n

ajj +

n∑
i=1
i 6=j

|aij |



µ∞(A) = max
1≤i≤n

aii +

n∑
j=1
j 6=i

|aij |


µ2(A) = max

1≤i≤n
λi(S(A)) where S(A) =

1

2
(A+AT ).

• Theorem 1.65 Consider a logarithmic norm µ(·) and a system ẋ = A(t)x with A(t) ∈ Rn×n continuous
on [t0,∞). Suppose µ(A(t)) ≤ α for all t ∈ [t0,∞).

– If α ≤ 0, then x(t, t0, x0) is Lyapunov stable at (t0, x0).

– If α < 0, then x(t, t0, x0) is asymptotically Lyapunov stable at (t0, x0).

1.7.5 Lyapunov stability for ẋ = A(t)x+ b(t)

• Theorem 1.68 Consider a system ẋ = A(t)x+b(t), with A(t) ∈ Rn×n and b(t) ∈ Rn, both continuous
on [t0,∞). Then the Lyapunov stability of the solution x(t, t0, x0) at (t0, x0) is the same as the stability
of the solution y(t, t0, 0) ≡ 0 to the system ẏ = A(t)y at (t0, 0) (whether Lyapunov stable, asymptotically
stable, or unstable).

– So basically, the stability of the system ẋ = A(t)x+ b(t) is the same as the stability of the system
ẋ = A(t)x.

1.7.6 Lyapunov stability for ẋ = f(t, x)

• Lemma 1.70 Suppose µ2(Dxf(t, x)) ≤ α for all t ∈ [t0,∞).

– If α ≤ 0, then x(t, t0, x0) is Lyapunov stable at (t0, x0).

– If α < 0, then x(t, t0, x0) is asymptotically Lyapunov stable at (t0, x0).
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2 Introduction to continuous dynamical systems

2.2 The flow

• Definition 2.2 The flow of ẋ = f(x) is a family of maps ϕt : Rn → Rn given by x0 7→ ϕt(x0) :=
x(t, 0, x0) parametrized by t. For a fixed t, ϕt is called the flow map at t.

2.4 Fixed points

• Definition 2.10 x∗ is a fixed point of ẋ = f(x) if f(x∗) = 0.

• Definition 2.12 Let x∗ be a fixed point of ẋ = f(x) and suppose f is differentiable at x∗. The
linearized system associated to ẋ = f(x) is ẏ = Df(x∗)(y − x∗).

• Definition 2.14 Let x∗ be a fixed point of ẋ = f(x).

– x∗ is a sink if x(t) = x∗ is an asymptotically Lyapunov stable solution to ẋ = f(x).

– x∗ is a source if x(t) = x∗ is a sink for ẏ = −f(y).

– If f is differentiable at x∗, then x∗ is a saddle if there exists distinct eigenvalues λj and λk of the
matrix Df(x∗) such that Re(λj) < 0 < Re(λk).

– x∗ is a center if there exists a neighborhood U of x∗ such that the solutions to the system
ẋ = f(x) in U remain in U and are periodic, except the fixed point solution x(t) = x∗.

• Theorem 2.15 Let x∗ be a source fixed point of ẋ = f(x). Then x(t) = x∗ is Lyapunov unstable.

• Definition 2.16 Let x∗ be a fixed point of ẋ = f(x) and suppose f is differentiable at x∗.

– x∗ is a hyperbolic fixed point if Re(λi(D(f(x∗))) 6= 0 for all i.

– x∗ is a nonhyperbolic fixed point if there exists j such that Re(λj(D(f(x∗))) = 0.

2.4.1 The Hartman-Grobman Theorem

• Theorem 2.17 (Hartman-Grobman) Let x∗ be a hyperbolic fixed point of ẋ = f(x) where f is C1 in
a neighborhood of x∗. Let ϕt be the local flow of ẋ = f(x) and let ψt be the local flow of the associated
linearized system. Then there exists a homeomorphism h of a ball B = B(x∗, ρ) such that h(x∗) = x∗

and for all x0 in B, we have ϕt(x0) = (h−1 ◦ ψt ◦ h)(x0).

– So basically, if x∗ is a hyperbolic fixed point of a system ẋ = f(x) and f is differentiable at x∗,
then the linearized system ẏ = Df(x∗)(y − x∗) is a good approximation of the original system.

2.4.3 The direct method of Lyapunov

• Definition 2.24 Let x∗ be a fixed point of ẋ = f(x) with f defined on a ball B = B(x∗, ρ), ρ > 0.
Let V : B → R be a C1 function such that

1. V (x∗) < V (x) for all x ∈ B, (so x∗ is a strict local minimizer for V ).

2. (LfV )(x) := DV (x)f(x) = ∇V (x)T f(x) ≤ 0 for all x ∈ B. (LfV is the Lie derivative of V in
the direction of f .)

Then V is called a weak Lyapunov function (if (LfV )(x) < 0, it is a strict Lyapunov function)
at x∗ of ẋ = f(x).

• Theorem 2.26 (The direct method of Lyapunov) Let x∗ be a fixed point of ẋ = f(x) with f continuous.

1. If there exists a weak Lyapunov function V at x∗ of ẋ = f(x), then x(t) = x∗ is Lyapunov stable.

2. If there exists a strict Lyapunov function V at x∗ of ẋ = f(x), then x(t) = x∗ is asymptotically
Lyapunov stable, i.e., x∗ is a sink.
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• Theorem 2.28 Let x∗ be a fixed point of ẋ = f(x) where f is defined on a neighborhood of x∗ and
differentiable at x∗.

1. If there exists j such that Re(λj(Df(x∗))) > 0, then x(t) = x∗ is Lyapunov unstable.

2. Equivalently, if x(t) = x∗ is Lyapunov stable, then Re(λi(Df(x∗))) ≤ 0 for all i.

• Theorem 2.29 Let x∗ be a hyperbolic fixed point of ẋ = f(x).

1. x(t) = x∗ is Lyapunov unstable if and only if there exists j such that Re(λj(Df(x∗))) > 0.

2. x∗ is a sink if and only if Re(λi(Df(x∗))) < 0 for all i.

3. x∗ is a source if and only if Re(λi(Df(x∗))) > 0 for all i.

4. x∗ is either a sink, source, or saddle.

2.4.4 Gradient systems

• Definition 2.32 A gradient system is a system of ODEs of the form ẋ = −∇U(x).

• Theorem 2.36 Let x∗ be a fixed point of ẋ = −∇U(x) (so U(x∗) = 0) with U ∈ C2 and suppose the
Hessian matrix ∇2U(x∗) is (strictly) positive definite (pT∇2U(x∗)p > 0 for all p ∈ Rn \ {0}). Then
x∗ is a sink.

• Lemma 2.37 (Integrability Lemma) Consider a function f : Rn → Rn. Then f(x) = −∇U(x) if and
only if Df(x)T = Df(x), i.e. ∂xi

fj = ∂xj
fi for all i 6= j.

• If we have a gradient system, we can find the specific U(x) such that ẋ = −∇U(x) by the formula

U(x) = −
∫ 1

0

n∑
i

xifi(sx)ds.

2.6 Periodic orbits

• Definition 2.45 A point x0 is periodic of period 0 < T <∞ if ϕT (x0) = x0 and ϕt(x0) 6= x0 for all
0 < t < T . The solution x(t) = ϕt(x0) is called a periodic solution and the set Γx0 = {ϕt(x0) | 0 ≤
t ≤ T} is called a periodic orbit.

2.6.1 Existence of periodic orbits in R2

• Theorem 2.47 (Poincaré - Bendixon) Let ẋ = f(x) such that f is C1 on an open set U . If there exists
K ⊂ U compact containing x0 such that Γ+

x0
= {ϕt(x0) | t ≥ 0} ⊆ K, and K contains no other fixed

point of ẋ = f(x), then the ω-limit set ω(x0) ⊆ K is a periodic orbit. (same is true if we replace Γ+
x0

with Γ−x0
and ω with α).

• Theorem 2.51 (Liénard systems). Consider ÿ + g(y)ẏ + h(y) = 0 or equivalently

ẋ =

[
ẋ1
ẋ2

]
= f(x) =

[
x2

−g(x1)x2 − h(x1)

]
for x1 := y and x2 := ẏ. Suppose the following are satisfied:

– g, h ∈ C1

– h is odd (h(−y) = −h(y))

– h(y) > 0 for y > 0

– g is even (g(−y) = g(y))

– G(y) :=
∫ y
0
g(u)du (G is odd) satisfies

∗ G(a) = 0 for some a > 0;
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∗ G(y) < 0 for 0 < y < a;

∗ G(y) > 0 for a < y;

∗ G′(y) = g(y) ≥ 0 for a < y (i.e., G is nondecreasing for a < y);

∗ limy→+∞G(y) = +∞

Then, there exists a unique (thus isolated) periodic orbit Γ and it surrounds the origin in R2. Moreover,
Γ is asymptotically orbitally stable and thus is an ω-limit cycle.

2.6.2 Nonexistence of periodic orbits

• Theorem 2.54 Gradient systems ẋ = −∇U(x) with U ∈ C1 have no periodic orbit.

• Theorem 2.55 (Dulac’s criterion) Let

ẋ =

[
ẋ1
ẋ2

]
= f(x) =

[
f1(x1, x2)
f2(x1, x2)

]
with f defined on an open set U ⊆ R2 and f ∈ C1. Let D ⊆ U be simply connected and suppose
B : D → R is C1 such that

div(B(x)f(x)) = Dx1
(B(x1, x2)f1(x1, x2)) +Dx2

(B(x1, x2)f2(x1, x2)) 6= 0 for all x ∈ D

Then D does not contain any periodic orbit.
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