Exam 1 Review
Ordinary Differential Equations

1 Intro to ordinary differential equations

1.4 Solutions to & = A(t)r and the transition matrix

o x(t,tg, o) = R(t, to)xo where

R(t7t0) = |: x(t»to,el) ‘ e ‘ m(tvt()ven) :|
and the e; are the standard basis vectors for R™.

— SO, Dmol'(t,to,xo) = R(t, to).
— If A(t) is actually autonomous, then R(t,tq) = R(t — to,0).

1.4.1 The Abel-Jacobi - blah blah blah formula
e Theorem 1.27 (Abel-Jacobi-blah blah blah formula) If A(t) € R™*" has continuous trace on an
interval I and if W(t) € R™™"™ defined on I satisfies W (t) = A(t)W (t), then

det(W (1)) = det(W(to))effO tr(A(s))ds for all to,t € 1.

If, moreover, A(t) is is continuous on I, then the transition matriz R(t,ty) of the system & = A(t)x
satisfies the formula

det(R(t, to)) = o tr(A(s)ds

1.4.2 Solutions to # = Ax and the exponential of a matrix

e Some exponential matrix formulas for common matrices:

[t o wty €0

7= 1o 1]’ T lo e

J 'O 1 at] 1 e—at + eat eat _ e—ozt
- _1 ol € - 2 eat _ e—at e—at + eat

J— 0 -1 atg _ |cos(at) —sin(at)
10 c = sin(at)  cos(at)

s [0 1], o et )

a1 et tet
J__() OJ’ ¢ _[O et |-

e One way to compute this is to get the matrix A into Jordan canonical form A = PJP~!, where P has
as its columns the eigenvectors for the eigenvalues of A, written in the order that their corresponding
eigenvalues are written in J. If A has distinct eigenvalues A1, Ao, then J is diagonal, so

- Art
4 = ¢! (PIP™Y) — pet/p=1 = p {601 e)(\)gt:| Pt

If A has a repeated eigenvalue A then J is upper triangular, so

_ At At
etA — et(P 1JP) — P@tJP_l — P I:eo t:)\t:| P_l.



e The theorem below says that for IVPs, we calculate the matrix exponential e(*~*0)

1.5

1.6

4 as opposed to et4;

so in all the computations above, just replace t with (¢t — tg).
Theorem 1.32 The solution to the IVP & = Ax, x(ty) = x¢ is
a(t,to, o) = 1770 Axg.

So the transition matriz for the system is R(t,ty) = e(t=t0)4,

Solutions to & = A(t)x + b(t)

Theorem 1.36 Consider a system of linear, nonhomogeneous, and nonautonomous ODFEs in R™,
& = A(t)x + b(t), where A(t) € R"™™ and b(t) € R™ are both continuous on an interval I. Let R(t, s)
be the transition matriz of the system §y = A(t)y. Then

1. The general solution to the system is

t
z(t,c,ve) = R(t,cve + / R(t, s)b(s)ds
——— ———— ¢
genral solution to general solution to —
&=A(t)z+b(t) y=A(t)y a particular solution to

z=A(t)z+b(t) satisfying z(c)=0

where ¢ € I and v, € R™ are free.

2. Fortg € I the solution satisfying the initial condition x(ty) = ¢ is
t
2(t, b0, 70) = R(E, to)wo + / R(t, 5)b(s)ds.
to

Differentiability of solutions with respect to initial conditions

Theorem 1.39 Consider @ = f(t,x). If both f and D, f are continuous, then x(t,tg,xo) is differen-
tiable with respect to ty and xg. Moreover, the matrix

R(t, to, .Zo) = on (t, t(), 1’0)

is the solution to the matriz variational equation R = A(t, ty, xo) R with initial conditions R(ty, to, zo) =
I1,.

Theorem 1.41 Consider & = f(t,x). Suppose both f and D, f are continuous on an open set U C R™,
and let Xyy C U be a set of initial conditions at tg and

Xy = a(t,to, X)) = {a(t, to,z0) |20 € X} C U,
then
1. Vol(X;) = thD e tr(sz(S’x(S’tO’IO)))de:vo
2. Iftr(Dyf(s,x(s,t0,20))) =0, then Vol(X;) =Vol(Xy,).



1.7 Lyapunov stability
1.7.3 Lyapunov stability for © = Ax

e Theorem 1.53 Consider the IVP & = Ax, x(to) = xo. Let {\;} be the eigenvalues of A. Then the
solution z(t,tg, xg) = et "t A2 to the IVP is:
1. Lyapunov stable at (to,x0) if and only if
(a) Re(\;) <0 for all i.
(b) If Re(\;) = 0 for some i, then the geometric and algebraic multiplicities of A\; are equal:
g(X;) = a(X;) (equivalently, if N; is a multiple eigenvalue with g(A;) < a(A;), then Re(\;) < 0).
2. asymptotically Lyapunov stable at (to, o) if and only if Re(N\;) < 0 for all i. In this case the
matriz A is said to be Hurwitz.

e For n =2, let § = det(A) and 7 = tr(A). Then the solution z(t, to, zo) = ¢4z, to the IVP is:

— Lyapunov stable at (to, o) if and only if 6 > 0 and 7 < 0 with § = 7 = 0 only for the zero matrix.
— asymptotically Lyapunov stable at (¢g,zo) if and only if § > 0 and 7 < 0.

— Lyapunov unstable at (o, z) otherwise.

1.7.4 Lyapunov stability for ¢ = A(t)x
e Lemma 1.61(Logarithmic norms) Let A € R"*™. Then

n
p1(A) = max | aj; + Z la;]
i—1

1<j<n
i

n
loo(A) = max | a;; + Z lai;]
=1

1<i<n
J#i
1
pa(A) = max. Ai(S(A)) where S(A) = i(A + AT).

e Theorem 1.65 Consider a logarithmic norm u(-) and a system & = A(t)xz with A(t) € R™*™ continuous
on [t,00). Suppose (A(t)) < a for all t € [tg,00).

— If a <0, then x(t,to,x0) is Lyapunov stable at (to,xo).
— If a <0, then z(t, to, o) is asymptotically Lyapunov stable at (to,xo).

1.7.5 Lyapunov stability for & = A(t)x + b(t)

e Theorem 1.68 Consider a system & = A(t)x+b(t), with A(t) € R™*™ and b(t) € R™, both continuous
on [tg,00). Then the Lyapunov stability of the solution x(t,tg, xo) at (to,zq) is the same as the stability
of the solution y(t, ty,0) = 0 to the system y = A(t)y at (to,0) (whether Lyapunov stable, asymptotically
stable, or unstable).

— So basically, the stability of the system & = A(t)x 4 b(¢) is the same as the stability of the system
= A(t)x.
1.7.6 Lyapunov stability for & = f(¢, )
e Lemma 1.70 Suppose (D, f(t,z)) < a for all t € [tg,00).

— If a <0, then x(t, to, zo) is Lyapunov stable at (tg,xo).
— If a <0, then x(t, to, xo) is asymptotically Lyapunov stable at (to,xo).



2 Introduction to continuous dynamical systems

2.2 The flow

e Definition 2.2 The flow of & = f(x) is a family of maps ¢; : R” — R™ given by z¢ — ¢¢(z9) :=
x(t,0, z¢) parametrized by t. For a fixed t, o4 is called the flow map at t.

2.4 Fixed points
e Definition 2.10 z* is a fixed point of & = f(x) if f(z*) =0.
e Definition 2.12 Let z* be a fixed point of & = f(x) and suppose f is differentiable at x*. The
linearized system associated to @ = f(z) is ¢y = D f(z*)(y — z*).
e Definition 2.14 Let z* be a fixed point of & = f(x).
— z* is a sink if z(t) = 2* is an asymptotically Lyapunov stable solution to & = f(z).
— x* is a source if z(t) = z* is a sink for y = — f(y).

— If f is differentiable at z*, then x* is a saddle if there exists distinct eigenvalues A; and Ay of the
matrix D f(z*) such that Re();) < 0 < Re(Ag).

— 2 is a center if there exists a neighborhood U of z* such that the solutions to the system
& = f(z) in U remain in U and are periodic, except the fixed point solution z(t) = z*.

e Theorem 2.15 Let «* be a source fized point of & = f(x). Then x(t) = «* is Lyapunov unstable.
e Definition 2.16 Let z* be a fixed point of & = f(x) and suppose f is differentiable at =*.

— 2% is a hyperbolic fixed point if Re(A;(D(f(z*))) # 0 for all i.
— z* is a nonhyperbolic fixed point if there exists j such that Re(\;(D(f(z*))) = 0.

2.4.1 The Hartman-Grobman Theorem

e Theorem 2.17 (Hartman-Grobman) Let z* be a hyperbolic fized point of @ = f(x) where f is C* in
a neighborhood of x*. Let y; be the local flow of & = f(x) and let ¢y be the local flow of the associated
linearized system. Then there exists a homeomorphism h of a ball B = B(x*, p) such that h(x*) = x*
and for all xg in B, we have ¢i(xg) = (h=! o1y o h)(wp).

— So basically, if 2* is a hyperbolic fixed point of a system & = f(x) and f is differentiable at x*,
then the linearized system y = D f(x*)(y — 2*) is a good approximation of the original system.

2.4.3 The direct method of Lyapunov

e Definition 2.24 Let 2* be a fixed point of © = f(x) with f defined on a ball B = B(z*,p), p > 0.
Let V : B— R be a C! function such that
1. V(z*) < V(x) for all x € B, (so z* is a strict local minimizer for V).
2. (LyV)(x) := DV (z)f(x) = VV(2)T f(x) <0 for all x € B. (L;V is the Lie derivative of V in
the direction of f.)
Then V is called a weak Lyapunov function (if (L;V)(z) < 0, it is a strict Lyapunov function)
at «* of & = f(x).
e Theorem 2.26 (The direct method of Lyapunov) Let 2* be a fized point of & = f(x) with [ continuous.

1. If there exists a weak Lyapunov function V at x* of & = f(x), then x(t) = x* is Lyapunov stable.

2. If there exists a strict Lyapunov function V' at x* of & = f(x), then x(t) = a* is asymptotically
Lyapunov stable, i.e., x* is a sink.



e Theorem 2.28 Let x* be a fized point of & = f(x) where [ is defined on a neighborhood of x* and
differentiable at x*.
1. If there exists j such that Re(A;(Df(z*))) > 0, then x(t) = x* is Lyapunov unstable.
2. Equivalently, if x(t) = ™ is Lyapunov stable, then Re(A;(Df(z*))) <0 for all i.

e Theorem 2.29 Let x* be a hyperbolic fized point of & = f(x).

x(t) = x* is Lyapunov unstable if and only if there exists j such that Re(A;(Df(x*))) > 0.
x* is a sink if and only if Re(A\; (D f(z*))) < 0 for all i.
x* is a source if and only if Re(N;(Df(z*))) > 0 for all i.

*

x* is either a sink, source, or saddle.

Tt v o

2.4.4 Gradient systems
e Definition 2.32 A gradient system is a system of ODEs of the form & = —VU (x).

e Theorem 2.36 Let z* be a fized point of & = —VU (z) (so U(x*) = 0) with U € C? and suppose the
Hessian matriz V2U (z*) is (strictly) positive definite (p? V2U(x*)p > 0 for all p € R™\ {0}). Then

*

z* is a sink.

e Lemma 2.37 (Integrability Lemma) Consider a function f:R™ — R™. Then f(x) = —VU(x) if and
only if Df(x)" = Df(x), i.e. Ou,f;j = 0y, fi for all i # j.

e If we have a gradient system, we can find the specific U(x) such that & = —VU(z) by the formula

1 n
U(z) = _/0 infi(sm)ds.

2.6 Periodic orbits

e Definition 2.45 A point xq is periodic of period 0 < T < oo if w7 (xg) = z¢ and ¢ (xg) # ¢ for all
0 <t < T. The solution x(t) = ¢¢(xo) is called a periodic solution and the set I'y;, = {¢1(zg) | 0 <
t < T} is called a periodic orbit.

2.6.1 Existence of periodic orbits in R?

e Theorem 2.47 (Poincaré - Bendixon) Let & = f(x) such that f is C! on an open set U. If there exists
K C U compact containing o such that T'} = {¢(z¢) |t > 0} € K, and K contains no other fixed
point of & = f(z), then the w-limit set w(zg) C K is a periodic orbit. (same is true if we replace I'},
with ', and w with «).

e Theorem 2.51 (Liénard systems). Consider § + g(y)y + h(y) = 0 or equivalently

T2

i = B;] = f(z) = {_g(xl)xg — h(x1)

for x1 := y and x5 := . Suppose the following are satisfied:

g,hect

his odd (h(—y) = —h(y))

— h(y) >0fory >0

g is even (g(—y) = g(y))

G(y) := [J g(w)du (G is odd) satisfies
* G(a) = 0 for some a > 0;



G(y) <0for 0 <y<a;

G(y) > 0 for a < y;

G'(y) = g(y) > 0 for a < y (i.e., G is nondecreasing for a < y);
limy_, o0 G(y) = +o0

EE

Then, there exists a unique (thus isolated) periodic orbit I" and it surrounds the origin in R%. Moreover,
T' is asymptotically orbitally stable and thus is an w-limit cycle.

2.6.2 Nonexistence of periodic orbits

e Theorem 2.54 Gradient systems @ = —VU (z) with U € C* have no periodic orbit.

e Theorem 2.55 (Dulac’s criterion) Let
T _ [ filz, 22)
v [132} = fl@) = [f?(x17x2):|
with f defined on an open set U C R% and f € C'. Let D C U be simply connected and suppose
B: D — Ris C! such that
div(B(z) f(z)) = Ds, (B(x1, x2) f1(21,22)) + Da, (B(x1, 2) fa(x1,22)) # 0 for all z € D

Then D does not contain any periodic orbit.
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