Exam 1 Review
 Ordinary Differential Equations

1 Intro to ordinary differential equations

1.4 Solutions to $\dot{x}=A(t) x$ and the transition matrix

- $x\left(t, t_{0}, x_{0}\right)=R\left(t, t_{0}\right) x_{0}$ where

$$
R\left(t, t_{0}\right)=\left[x\left(t, t_{0}, e_{1}\right)|\cdots| x\left(t, t_{0}, e_{n}\right)\right]
$$

and the e_{i} are the standard basis vectors for \mathbb{R}^{n}.
$-\mathrm{So}, D_{x_{0}} x\left(t, t_{0}, x_{0}\right)=R\left(t, t_{0}\right)$.

- If $A(t)$ is actually autonomous, then $R\left(t, t_{0}\right)=R\left(t-t_{0}, 0\right)$.

1.4.1 The Abel-Jacobi - blah blah blah formula

- Theorem 1.27 (Abel-Jacobi-blah blah blah formula) If $A(t) \in \mathbb{R}^{n \times n}$ has continuous trace on an interval I and if $W(t) \in \mathbb{R}^{n \times n}$ defined on I satisfies $\dot{W}(t)=A(t) W(t)$, then

$$
\operatorname{det}(W(t))=\operatorname{det}\left(W\left(t_{0}\right)\right) e^{\int_{t_{0}}^{t} \operatorname{tr}(A(s)) d s} \text { for all } t_{0}, t \in I
$$

If, moreover, $A(t)$ is is continuous on I, then the transition matrix $R\left(t, t_{0}\right)$ of the system $\dot{x}=A(t) x$ satisfies the formula

$$
\operatorname{det}\left(R\left(t, t_{0}\right)\right)=e^{\int_{t_{0}}^{t} \operatorname{tr}(A(s)) d s}
$$

1.4.2 Solutions to $\dot{x}=A x$ and the exponential of a matrix

- Some exponential matrix formulas for common matrices:

$$
\begin{aligned}
& J=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad e^{\alpha t J}=\left[\begin{array}{cc}
e^{\alpha t} & 0 \\
0 & e^{\alpha t}
\end{array}\right] \\
& J=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \quad e^{\alpha t J}=\frac{1}{2}\left[\begin{array}{cc}
e^{-\alpha t}+e^{\alpha t} & e^{\alpha t}-e^{-\alpha t} \\
e^{\alpha t}-e^{-\alpha t} & e^{-\alpha t}+e^{\alpha t}
\end{array}\right] \\
& J=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right], \quad e^{\alpha t J}=\left[\begin{array}{cc}
\cos (\alpha t) & -\sin (\alpha t) \\
\sin (\alpha t) & \cos (\alpha t)
\end{array}\right] \\
& J=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right], \quad e^{\alpha t J}=\left[\begin{array}{cc}
\cos (\alpha t) & \sin (\alpha t) \\
-\sin (\alpha t) & \cos (\alpha t)
\end{array}\right] \\
& J=\left[\begin{array}{cc}
\alpha & 1 \\
0 & \alpha
\end{array}\right], \quad e^{t J}=\left[\begin{array}{cc}
e^{\alpha t} & t e^{\alpha t} \\
0 & e^{\alpha t}
\end{array}\right] .
\end{aligned}
$$

- One way to compute this is to get the matrix A into Jordan canonical form $A=P J P^{-1}$, where P has as its columns the eigenvectors for the eigenvalues of A, written in the order that their corresponding eigenvalues are written in J. If A has distinct eigenvalues λ_{1}, λ_{2}, then J is diagonal, so

$$
e^{t A}=e^{t\left(P J P^{-1}\right)}=P e^{t J} P^{-1}=P\left[\begin{array}{cc}
e^{\lambda_{1} t} & 0 \\
0 & e^{\lambda_{2} t}
\end{array}\right] P^{-1}
$$

If A has a repeated eigenvalue λ then J is upper triangular, so

$$
e^{t A}=e^{t\left(P^{-1} J P\right)}=P e^{t J} P^{-1}=P\left[\begin{array}{cc}
e^{\lambda t} & t e^{\lambda t} \\
0 & e^{\lambda t}
\end{array}\right] P^{-1}
$$

- The theorem below says that for IVPs, we calculate the matrix exponential $e^{\left(t-t_{0}\right) A}$ as opposed to $e^{t A}$; so in all the computations above, just replace t with $\left(t-t_{0}\right)$.
- Theorem 1.32 The solution to the IVP $\dot{x}=A x, x\left(t_{0}\right)=x_{0}$ is

$$
x\left(t, t_{0}, x_{0}\right)=e^{\left(t-t_{0}\right) A} x_{0}
$$

So the transition matrix for the system is $R\left(t, t_{0}\right)=e^{\left(t-t_{0}\right) A}$.

1.5 Solutions to $\dot{x}=A(t) x+b(t)$

- Theorem 1.36 Consider a system of linear, nonhomogeneous, and nonautonomous ODEs in \mathbb{R}^{n}, $\dot{x}=A(t) x+b(t)$, where $A(t) \in \mathbb{R}^{n \times n}$ and $b(t) \in \mathbb{R}^{n}$ are both continuous on an interval I. Let $R(t, s)$ be the transition matrix of the system $\dot{y}=A(t) y$. Then

1. The general solution to the system is

$$
\underbrace{x\left(t, c, v_{c}\right)}_{\begin{array}{c}
\text { genral solution to } \\
\dot{x}=A(t) x+b(t)
\end{array}}=\underbrace{R(t, c) v_{c}}_{\substack{\text { general solution to } \\
\dot{y}=A(t) y}}+\underbrace{\int_{c}^{t} R(t, s) b(s) d s}_{\substack{\text { a particular solution to } \\
\dot{x}=A(t) x+b(t) \text { satisfying } x(c)=0}}
$$

where $c \in I$ and $v_{c} \in \mathbb{R}^{n}$ are free.
2. For $t_{0} \in I$ the solution satisfying the initial condition $x\left(t_{0}\right)=x_{0}$ is

$$
x\left(t, t_{0}, x_{0}\right)=R\left(t, t_{0}\right) x_{0}+\int_{t_{0}}^{t} R(t, s) b(s) d s
$$

1.6 Differentiability of solutions with respect to initial conditions

- Theorem 1.39 Consider $\dot{x}=f(t, x)$. If both f and $D_{x} f$ are continuous, then $x\left(t, t_{0}, x_{0}\right)$ is differentiable with respect to t_{0} and x_{0}. Moreover, the matrix

$$
R\left(t, t_{0}, x_{0}\right):=D_{x_{0}}\left(t, t_{0}, x_{0}\right)
$$

is the solution to the matrix variational equation $\dot{R}=A\left(t, t_{0}, x_{0}\right) R$ with initial conditions $R\left(t_{0}, t_{0}, x_{0}\right)=$ I_{n}.

- Theorem 1.41 Consider $\dot{x}=f(t, x)$. Suppose both f and $D_{x} f$ are continuous on an open set $U \subseteq \mathbb{R}^{n}$, and let $X_{t_{0}} \subset U$ be a set of initial conditions at t_{0} and

$$
X_{t}:=x\left(t, t_{0}, X_{t_{0}}\right)=\left\{x\left(t, t_{0}, x_{0}\right) \mid x_{0} \in X_{t_{0}}\right\} \subset U
$$

then

1. $\operatorname{Vol}\left(X_{t}\right)=\int_{X_{t_{0}}} e^{\int_{t_{0}}^{t} \operatorname{tr}\left(D_{x} f\left(s, x\left(s, t_{0}, x_{0}\right)\right)\right) d s} d x_{0}$
2. If $\operatorname{tr}\left(D_{x} f\left(s, x\left(s, t_{0}, x_{0}\right)\right)\right) \equiv 0$, then $\operatorname{Vol}\left(X_{t}\right)=\operatorname{Vol}\left(X_{t_{0}}\right)$.

1.7 Lyapunov stability

1.7.3 Lyapunov stability for $\dot{x}=A x$

- Theorem 1.53 Consider the IVP $\dot{x}=A x, x\left(t_{0}\right)=x_{0}$. Let $\left\{\lambda_{i}\right\}$ be the eigenvalues of A. Then the solution $x\left(t, t_{0}, x_{0}\right)=e^{\left(t-t_{0}\right) A} x_{0}$ to the IVP is:

1. Lyapunov stable at $\left(t_{0}, x_{0}\right)$ if and only if
(a) $\operatorname{Re}\left(\lambda_{i}\right) \leq 0$ for all i.
(b) If $\operatorname{Re}\left(\lambda_{i}\right)=0$ for some i, then the geometric and algebraic multiplicities of λ_{i} are equal: $g\left(\lambda_{i}\right)=a\left(\lambda_{i}\right)$ (equivalently, if λ_{i} is a multiple eigenvalue with $g\left(\lambda_{i}\right)<a\left(\lambda_{i}\right)$, then $\left.\operatorname{Re}\left(\lambda_{i}\right)<0\right)$.
2. asymptotically Lyapunov stable at $\left(t_{0}, x_{0}\right)$ if and only if $\operatorname{Re}\left(\lambda_{i}\right)<0$ for all i. In this case the matrix A is said to be Hurwitz.

- For $n=2$, let $\delta=\operatorname{det}(A)$ and $\tau=\operatorname{tr}(A)$. Then the solution $x\left(t, t_{0}, x_{0}\right)=e^{\left(t-t_{0}\right) A} x_{0}$ to the IVP is:
- Lyapunov stable at $\left(t_{0}, x_{0}\right)$ if and only if $\delta \geq 0$ and $\tau \leq 0$ with $\delta=\tau=0$ only for the zero matrix.
- asymptotically Lyapunov stable at $\left(t_{0}, x_{0}\right)$ if and only if $\delta>0$ and $\tau<0$.
- Lyapunov unstable at $\left(t_{0}, x_{0}\right)$ otherwise.
1.7.4 Lyapunov stability for $\dot{x}=A(t) x$
- Lemma 1.61(Logarithmic norms) Let $A \in \mathbb{R}^{n \times n}$. Then

$$
\begin{aligned}
& \mu_{1}(A)=\max _{1 \leq j \leq n}\left(a_{j j}+\sum_{\substack{i=1 \\
i \neq j}}^{n}\left|a_{i j}\right|\right) \\
& \mu_{\infty}(A)=\max _{1 \leq i \leq n}\left(a_{i i}+\sum_{\substack{j=1 \\
j \neq i}}^{n}\left|a_{i j}\right|\right) \\
& \mu_{2}(A)=\max _{1 \leq i \leq n} \lambda_{i}(S(A)) \quad \text { where } \quad S(A)=\frac{1}{2}\left(A+A^{T}\right) .
\end{aligned}
$$

- Theorem 1.65 Consider a logarithmic norm $\mu(\cdot)$ and a system $\dot{x}=A(t) x$ with $A(t) \in \mathbb{R}^{n \times n}$ continuous on $\left[t_{0}, \infty\right)$. Suppose $\mu(A(t)) \leq \alpha$ for all $t \in\left[t_{0}, \infty\right)$.
- If $\alpha \leq 0$, then $x\left(t, t_{0}, x_{0}\right)$ is Lyapunov stable at $\left(t_{0}, x_{0}\right)$.
- If $\alpha<0$, then $x\left(t, t_{0}, x_{0}\right)$ is asymptotically Lyapunov stable at $\left(t_{0}, x_{0}\right)$.
1.7.5 Lyapunov stability for $\dot{x}=A(t) x+b(t)$
- Theorem 1.68 Consider a system $\dot{x}=A(t) x+b(t)$, with $A(t) \in \mathbb{R}^{n \times n}$ and $b(t) \in \mathbb{R}^{n}$, both continuous on $\left[t_{0}, \infty\right)$. Then the Lyapunov stability of the solution $x\left(t, t_{0}, x_{0}\right)$ at $\left(t_{0}, x_{0}\right)$ is the same as the stability of the solution $y\left(t, t_{0}, 0\right) \equiv 0$ to the system $\dot{y}=A(t) y$ at $\left(t_{0}, 0\right)$ (whether Lyapunov stable, asymptotically stable, or unstable).
- So basically, the stability of the system $\dot{x}=A(t) x+b(t)$ is the same as the stability of the system $\dot{x}=A(t) x$.
1.7.6 Lyapunov stability for $\dot{x}=f(t, x)$
- Lemma 1.70 Suppose $\mu_{2}\left(D_{x} f(t, x)\right) \leq \alpha$ for all $t \in\left[t_{0}, \infty\right)$.
- If $\alpha \leq 0$, then $x\left(t, t_{0}, x_{0}\right)$ is Lyapunov stable at $\left(t_{0}, x_{0}\right)$.
- If $\alpha<0$, then $x\left(t, t_{0}, x_{0}\right)$ is asymptotically Lyapunov stable at $\left(t_{0}, x_{0}\right)$.

2 Introduction to continuous dynamical systems

2.2 The flow

- Definition 2.2 The flow of $\dot{x}=f(x)$ is a family of maps $\varphi_{t}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ given by $x_{0} \mapsto \varphi_{t}\left(x_{0}\right):=$ $x\left(t, 0, x_{0}\right)$ parametrized by t. For a fixed t, φ_{t} is called the flow map at t.

2.4 Fixed points

- Definition $2.10 x^{*}$ is a fixed point of $\dot{x}=f(x)$ if $f\left(x^{*}\right)=0$.
- Definition 2.12 Let x^{*} be a fixed point of $\dot{x}=f(x)$ and suppose f is differentiable at x^{*}. The linearized system associated to $\dot{x}=f(x)$ is $\dot{y}=D f\left(x^{*}\right)\left(y-x^{*}\right)$.
- Definition 2.14 Let x^{*} be a fixed point of $\dot{x}=f(x)$.
$-x^{*}$ is a sink if $x(t)=x^{*}$ is an asymptotically Lyapunov stable solution to $\dot{x}=f(x)$.
$-x^{*}$ is a source if $x(t)=x^{*}$ is a sink for $\dot{y}=-f(y)$.
- If f is differentiable at x^{*}, then x^{*} is a saddle if there exists distinct eigenvalues λ_{j} and λ_{k} of the matrix $D f\left(x^{*}\right)$ such that $\operatorname{Re}\left(\lambda_{j}\right)<0<\operatorname{Re}\left(\lambda_{k}\right)$.
$-x^{*}$ is a center if there exists a neighborhood U of x^{*} such that the solutions to the system $\dot{x}=f(x)$ in U remain in U and are periodic, except the fixed point solution $x(t)=x^{*}$.
- Theorem 2.15 Let x^{*} be a source fixed point of $\dot{x}=f(x)$. Then $x(t)=x^{*}$ is Lyapunov unstable.
- Definition 2.16 Let x^{*} be a fixed point of $\dot{x}=f(x)$ and suppose f is differentiable at x^{*}.
$-x^{*}$ is a hyperbolic fixed point if $\operatorname{Re}\left(\lambda_{i}\left(D\left(f\left(x^{*}\right)\right)\right) \neq 0\right.$ for all i.
$-x^{*}$ is a nonhyperbolic fixed point if there exists j such that $\operatorname{Re}\left(\lambda_{j}\left(D\left(f\left(x^{*}\right)\right)\right)=0\right.$.

2.4.1 The Hartman-Grobman Theorem

- Theorem 2.17 (Hartman-Grobman) Let x^{*} be a hyperbolic fixed point of $\dot{x}=f(x)$ where f is \mathcal{C}^{1} in a neighborhood of x^{*}. Let φ_{t} be the local flow of $\dot{x}=f(x)$ and let ψ_{t} be the local flow of the associated linearized system. Then there exists a homeomorphism h of a ball $B=B\left(x^{*}, \rho\right)$ such that $h\left(x^{*}\right)=x^{*}$ and for all x_{0} in B, we have $\varphi_{t}\left(x_{0}\right)=\left(h^{-1} \circ \psi_{t} \circ h\right)\left(x_{0}\right)$.
- So basically, if x^{*} is a hyperbolic fixed point of a system $\dot{x}=f(x)$ and f is differentiable at x^{*}, then the linearized system $\dot{y}=D f\left(x^{*}\right)\left(y-x^{*}\right)$ is a good approximation of the original system.

2.4.3 The direct method of Lyapunov

- Definition 2.24 Let x^{*} be a fixed point of $\dot{x}=f(x)$ with f defined on a ball $B=B\left(x^{*}, \rho\right), \rho>0$. Let $V: B \rightarrow \mathbb{R}$ be a \mathcal{C}^{1} function such that

1. $V\left(x^{*}\right)<V(x)$ for all $x \in B$, (so x^{*} is a strict local minimizer for V).
2. $\left(L_{f} V\right)(x):=D V(x) f(x)=\nabla V(x)^{T} f(x) \leq 0$ for all $x \in B$. $\left(L_{f} V\right.$ is the Lie derivative of V in the direction of f.)

Then V is called a weak Lyapunov function (if $\left(L_{f} V\right)(x)<0$, it is a strict Lyapunov function) at x^{*} of $\dot{x}=f(x)$.

- Theorem 2.26 (The direct method of Lyapunov) Let x^{*} be a fixed point of $\dot{x}=f(x)$ with f continuous.

1. If there exists a weak Lyapunov function V at x^{*} of $\dot{x}=f(x)$, then $x(t)=x^{*}$ is Lyapunov stable.
2. If there exists a strict Lyapunov function V at x^{*} of $\dot{x}=f(x)$, then $x(t)=x^{*}$ is asymptotically Lyapunov stable, i.e., x^{*} is a sink.

- Theorem 2.28 Let x^{*} be a fixed point of $\dot{x}=f(x)$ where f is defined on a neighborhood of x^{*} and differentiable at x^{*}.

1. If there exists j such that $\operatorname{Re}\left(\lambda_{j}\left(D f\left(x^{*}\right)\right)\right)>0$, then $x(t)=x^{*}$ is Lyapunov unstable.
2. Equivalently, if $x(t)=x^{*}$ is Lyapunov stable, then $\operatorname{Re}\left(\lambda_{i}\left(D f\left(x^{*}\right)\right)\right) \leq 0$ for all i.

- Theorem 2.29 Let x^{*} be a hyperbolic fixed point of $\dot{x}=f(x)$.

1. $x(t)=x^{*}$ is Lyapunov unstable if and only if there exists j such that $\operatorname{Re}\left(\lambda_{j}\left(D f\left(x^{*}\right)\right)\right)>0$.
2. x^{*} is a sink if and only if $\operatorname{Re}\left(\lambda_{i}\left(D f\left(x^{*}\right)\right)\right)<0$ for all i.
3. x^{*} is a source if and only if $\operatorname{Re}\left(\lambda_{i}\left(D f\left(x^{*}\right)\right)\right)>0$ for all i.
4. x^{*} is either a sink, source, or saddle.

2.4.4 Gradient systems

- Definition 2.32 A gradient system is a system of ODEs of the form $\dot{x}=-\nabla U(x)$.
- Theorem 2.36 Let x^{*} be a fixed point of $\dot{x}=-\nabla U(x)$ (so $U\left(x^{*}\right)=0$) with $U \in \mathcal{C}^{2}$ and suppose the Hessian matrix $\nabla^{2} U\left(x^{*}\right)$ is (strictly) positive definite ($p^{T} \nabla^{2} U\left(x^{*}\right) p>0$ for all $p \in \mathbb{R}^{n} \backslash\{0\}$). Then x^{*} is a sink.
- Lemma 2.37 (Integrability Lemma) Consider a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. Then $f(x)=-\nabla U(x)$ if and only if $D f(x)^{T}=D f(x)$, i.e. $\partial_{x_{i}} f_{j}=\partial_{x_{j}} f_{i}$ for all $i \neq j$.
- If we have a gradient system, we can find the specific $U(x)$ such that $\dot{x}=-\nabla U(x)$ by the formula

$$
U(x)=-\int_{0}^{1} \sum_{i}^{n} x_{i} f_{i}(s x) d s
$$

2.6 Periodic orbits

- Definition 2.45 A point x_{0} is periodic of period $0<T<\infty$ if $\varphi_{T}\left(x_{0}\right)=x_{0}$ and $\varphi_{t}\left(x_{0}\right) \neq x_{0}$ for all $0<t<T$. The solution $x(t)=\varphi_{t}\left(x_{0}\right)$ is called a periodic solution and the set $\Gamma_{x_{0}}=\left\{\varphi_{t}\left(x_{0}\right) \mid 0 \leq\right.$ $t \leq T\}$ is called a periodic orbit.

2.6.1 Existence of periodic orbits in \mathbb{R}^{2}

- Theorem 2.47 (Poincaré - Bendixon) Let $\dot{x}=f(x)$ such that f is \mathcal{C}^{1} on an open set U. If there exists $K \subset U$ compact containing x_{0} such that $\Gamma_{x_{0}}^{+}=\left\{\varphi_{t}\left(x_{0}\right) \mid t \geq 0\right\} \subseteq K$, and K contains no other fixed point of $\dot{x}=f(x)$, then the ω-limit set $\omega\left(x_{0}\right) \subseteq K$ is a periodic orbit. (same is true if we replace $\Gamma_{x_{0}}^{+}$ with $\Gamma_{x_{0}}^{-}$and ω with α).
- Theorem 2.51 (Liénard systems). Consider $\ddot{y}+g(y) \dot{y}+h(y)=0$ or equivalently

$$
\dot{x}=\left[\begin{array}{c}
\dot{x_{1}} \\
\dot{x_{2}}
\end{array}\right]=f(x)=\left[\begin{array}{c}
x_{2} \\
-g\left(x_{1}\right) x_{2}-h\left(x_{1}\right)
\end{array}\right]
$$

for $x_{1}:=y$ and $x_{2}:=\dot{y}$. Suppose the following are satisfied:
$-g, h \in \mathcal{C}^{1}$
$-h$ is odd $(h(-y)=-h(y))$
$-h(y)>0$ for $y>0$
$-g$ is even $(g(-y)=g(y))$
$-G(y):=\int_{0}^{y} g(u) d u(G$ is odd) satisfies

* $G(a)=0$ for some $a>0$;
* $G(y)<0$ for $0<y<a$;
* $G(y)>0$ for $a<y$;
* $G^{\prime}(y)=g(y) \geq 0$ for $a<y$ (i.e., G is nondecreasing for $a<y$);
* $\lim _{y \rightarrow+\infty} G(y)=+\infty$

Then, there exists a unique (thus isolated) periodic orbit Γ and it surrounds the origin in \mathbb{R}^{2}. Moreover, Γ is asymptotically orbitally stable and thus is an ω-limit cycle.

2.6.2 Nonexistence of periodic orbits

- Theorem 2.54 Gradient systems $\dot{x}=-\nabla U(x)$ with $U \in \mathcal{C}^{1}$ have no periodic orbit.
- Theorem 2.55 (Dulac's criterion) Let

$$
\dot{x}=\left[\begin{array}{l}
\dot{x_{1}} \\
\dot{x_{2}}
\end{array}\right]=f(x)=\left[\begin{array}{l}
f_{1}\left(x_{1}, x_{2}\right) \\
f_{2}\left(x_{1}, x_{2}\right)
\end{array}\right]
$$

with f defined on an open set $U \subseteq \mathbb{R}^{2}$ and $f \in \mathcal{C}^{1}$. Let $D \subseteq U$ be simply connected and suppose $B: D \rightarrow \mathbb{R}$ is \mathcal{C}^{1} such that

$$
\operatorname{div}(B(x) f(x))=D_{x_{1}}\left(B\left(x_{1}, x_{2}\right) f_{1}\left(x_{1}, x_{2}\right)\right)+D_{x_{2}}\left(B\left(x_{1}, x_{2}\right) f_{2}\left(x_{1}, x_{2}\right)\right) \neq 0 \text { for all } x \in D
$$

Then D does not contain any periodic orbit.

