Exam 1 Review Ordinary Differential Equations

1 Intro to ordinary differential equations

1.4 Solutions to $\dot{x} = A(t)x$ and the transition matrix

• $x(t, t_0, x_0) = R(t, t_0)x_0$ where

$$R(t,t_0) = \left[x(t,t_0,e_1) \mid \cdots \mid x(t,t_0,e_n) \right]$$

and the e_i are the standard basis vectors for \mathbb{R}^n .

- So, $D_{x_0}x(t, t_0, x_0) = R(t, t_0)$.
- If A(t) is actually autonomous, then $R(t, t_0) = R(t t_0, 0)$.

1.4.1 The Abel-Jacobi - blah blah blah formula

• Theorem 1.27 (Abel-Jacobi-blah blah formula) If $A(t) \in \mathbb{R}^{n \times n}$ has continuous trace on an interval I and if $W(t) \in \mathbb{R}^{n \times n}$ defined on I satisfies $\dot{W}(t) = A(t)W(t)$, then

$$\det(W(t)) = \det(W(t_0))e^{\int_{t_0}^t tr(A(s))ds} \text{ for all } t_0, t \in I$$

If, moreover, A(t) is is continuous on I, then the transition matrix $R(t,t_0)$ of the system $\dot{x} = A(t)x$ satisfies the formula

$$\det(R(t,t_0)) = e^{\int_{t_0}^t tr(A(s))ds}$$

1.4.2 Solutions to $\dot{x} = Ax$ and the exponential of a matrix

• Some exponential matrix formulas for common matrices:

$$J = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad e^{\alpha t J} = \begin{bmatrix} e^{\alpha t} & 0 \\ 0 & e^{\alpha t} \end{bmatrix}$$
$$J = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad e^{\alpha t J} = \frac{1}{2} \begin{bmatrix} e^{-\alpha t} + e^{\alpha t} & e^{\alpha t} - e^{-\alpha t} \\ e^{\alpha t} - e^{-\alpha t} & e^{-\alpha t} + e^{\alpha t} \end{bmatrix}$$
$$J = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \quad e^{\alpha t J} = \begin{bmatrix} \cos(\alpha t) & -\sin(\alpha t) \\ \sin(\alpha t) & \cos(\alpha t) \end{bmatrix}$$
$$J = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, \quad e^{\alpha t J} = \begin{bmatrix} \cos(\alpha t) & \sin(\alpha t) \\ -\sin(\alpha t) & \cos(\alpha t) \end{bmatrix}$$
$$J = \begin{bmatrix} \alpha & 1 \\ 0 & \alpha \end{bmatrix}, \quad e^{t J} = \begin{bmatrix} e^{\alpha t} & te^{\alpha t} \\ 0 & e^{\alpha t} \end{bmatrix}.$$

• One way to compute this is to get the matrix A into Jordan canonical form $A = PJP^{-1}$, where P has as its columns the eigenvectors for the eigenvalues of A, written in the order that their corresponding eigenvalues are written in J. If A has distinct eigenvalues λ_1, λ_2 , then J is diagonal, so

$$e^{tA} = e^{t(PJP^{-1})} = Pe^{tJ}P^{-1} = P\begin{bmatrix} e^{\lambda_1 t} & 0\\ 0 & e^{\lambda_2 t} \end{bmatrix} P^{-1}.$$

If A has a repeated eigenvalue λ then J is upper triangular, so

$$e^{tA} = e^{t(P^{-1}JP)} = Pe^{tJ}P^{-1} = P\begin{bmatrix} e^{\lambda t} & te^{\lambda t} \\ 0 & e^{\lambda t} \end{bmatrix} P^{-1}.$$

- The theorem below says that for IVPs, we calculate the matrix exponential $e^{(t-t_0)A}$ as opposed to e^{tA} ; so in all the computations above, just replace t with $(t t_0)$.
- **Theorem 1.32** The solution to the IVP $\dot{x} = Ax$, $x(t_0) = x_0$ is

$$x(t, t_0, x_0) = e^{(t-t_0)A} x_0.$$

So the transition matrix for the system is $R(t, t_0) = e^{(t-t_0)A}$.

1.5 Solutions to $\dot{x} = A(t)x + b(t)$

- Theorem 1.36 Consider a system of linear, nonhomogeneous, and nonautonomous ODEs in \mathbb{R}^n , $\dot{x} = A(t)x + b(t)$, where $A(t) \in \mathbb{R}^{n \times n}$ and $b(t) \in \mathbb{R}^n$ are both continuous on an interval I. Let R(t,s) be the transition matrix of the system $\dot{y} = A(t)y$. Then
 - 1. The general solution to the system is

$$\underbrace{x(t,c,v_c)}_{\substack{\text{genral solution to}\\ \dot{x}=A(t)x+b(t)}} = \underbrace{R(t,c)v_c}_{\substack{\text{general solution to}\\ \dot{y}=A(t)y}} + \underbrace{\int_c^t R(t,s)b(s)ds}_{\substack{\text{a particular solution to}\\ \dot{x}=A(t)x+b(t) \text{ satisfying } x(c)=0}}.$$

where $c \in I$ and $v_c \in \mathbb{R}^n$ are free.

2. For $t_0 \in I$ the solution satisfying the initial condition $x(t_0) = x_0$ is

$$x(t,t_0,x_0) = R(t,t_0)x_0 + \int_{t_0}^t R(t,s)b(s)ds.$$

1.6 Differentiability of solutions with respect to initial conditions

• **Theorem 1.39** Consider $\dot{x} = f(t, x)$. If both f and $D_x f$ are continuous, then $x(t, t_0, x_0)$ is differentiable with respect to t_0 and x_0 . Moreover, the matrix

$$R(t, t_0, x_0) := D_{x_0}(t, t_0, x_0)$$

is the solution to the matrix variational equation $\dot{R} = A(t, t_0, x_0)R$ with initial conditions $R(t_0, t_0, x_0) = I_n$.

Theorem 1.41 Consider x
 = f(t, x). Suppose both f and D_xf are continuous on an open set U ⊆ ℝⁿ, and let X_{t0} ⊂ U be a set of initial conditions at t0 and

$$X_t := x(t, t_0, X_{t_0}) = \{ x(t, t_0, x_0) \mid x_0 \in X_{t_0} \} \subset U,$$

then

1.
$$\operatorname{Vol}(X_t) = \int_{X_{t_0}} e^{\int_{t_0}^t tr(D_x f(s, x(s, t_0, x_0))) ds} dx_0$$

2. If $tr(D_x f(s, x(s, t_0, x_0))) \equiv 0$, then $\operatorname{Vol}(X_t) = \operatorname{Vol}(X_{t_0})$.

1.7 Lyapunov stability

1.7.3 Lyapunov stability for $\dot{x} = Ax$

- **Theorem 1.53** Consider the IVP $\dot{x} = Ax$, $x(t_0) = x_0$. Let $\{\lambda_i\}$ be the eigenvalues of A. Then the solution $x(t, t_0, x_0) = e^{(t-t_0)A}x_0$ to the IVP is:
 - 1. Lyapunov stable at (t_0, x_0) if and only if
 - (a) $\operatorname{Re}(\lambda_i) \leq 0$ for all *i*.
 - (b) If $\operatorname{Re}(\lambda_i) = 0$ for some *i*, then the geometric and algebraic multiplicities of λ_i are equal: $g(\lambda_i) = a(\lambda_i)$ (equivalently, if λ_i is a multiple eigenvalue with $g(\lambda_i) < a(\lambda_i)$, then $\operatorname{Re}(\lambda_i) < 0$).
 - 2. asymptotically Lyapunov stable at (t_0, x_0) if and only if $\operatorname{Re}(\lambda_i) < 0$ for all *i*. In this case the matrix A is said to be Hurwitz.
- For n = 2, let $\delta = \det(A)$ and $\tau = \operatorname{tr}(A)$. Then the solution $x(t, t_0, x_0) = e^{(t-t_0)A}x_0$ to the IVP is:
 - Lyapunov stable at (t_0, x_0) if and only if $\delta \ge 0$ and $\tau \le 0$ with $\delta = \tau = 0$ only for the zero matrix.
 - asymptotically Lyapunov stable at (t_0, x_0) if and only if $\delta > 0$ and $\tau < 0$.
 - Lyapunov unstable at (t_0, x_0) otherwise.

1.7.4 Lyapunov stability for $\dot{x} = A(t)x$

• Lemma 1.61(Logarithmic norms) Let $A \in \mathbb{R}^{n \times n}$. Then

$$\mu_1(A) = \max_{1 \le j \le n} \left(a_{jj} + \sum_{\substack{i=1\\i \ne j}}^n |a_{ij}| \right)$$
$$\mu_\infty(A) = \max_{1 \le i \le n} \left(a_{ii} + \sum_{\substack{j=1\\j \ne i}}^n |a_{ij}| \right)$$
$$\mu_2(A) = \max_{1 \le i \le n} \lambda_i(S(A)) \quad where \quad S(A) = \frac{1}{2}(A + A^T).$$

- Theorem 1.65 Consider a logarithmic norm μ(·) and a system ẋ = A(t)x with A(t) ∈ ℝ^{n×n} continuous on [t₀,∞). Suppose μ(A(t)) ≤ α for all t ∈ [t₀,∞).
 - If $\alpha \leq 0$, then $x(t, t_0, x_0)$ is Lyapunov stable at (t_0, x_0) .
 - If $\alpha < 0$, then $x(t, t_0, x_0)$ is asymptotically Lyapunov stable at (t_0, x_0) .

1.7.5 Lyapunov stability for $\dot{x} = A(t)x + b(t)$

- Theorem 1.68 Consider a system $\dot{x} = A(t)x + b(t)$, with $A(t) \in \mathbb{R}^{n \times n}$ and $b(t) \in \mathbb{R}^{n}$, both continuous on $[t_0, \infty)$. Then the Lyapunov stability of the solution $x(t, t_0, x_0)$ at (t_0, x_0) is the same as the stability of the solution $y(t, t_0, 0) \equiv 0$ to the system $\dot{y} = A(t)y$ at $(t_0, 0)$ (whether Lyapunov stable, asymptotically stable, or unstable).
 - So basically, the stability of the system $\dot{x} = A(t)x + b(t)$ is the same as the stability of the system $\dot{x} = A(t)x$.

1.7.6 Lyapunov stability for $\dot{x} = f(t, x)$

- Lemma 1.70 Suppose $\mu_2(D_x f(t, x)) \leq \alpha$ for all $t \in [t_0, \infty)$.
 - If $\alpha \leq 0$, then $x(t, t_0, x_0)$ is Lyapunov stable at (t_0, x_0) .
 - If $\alpha < 0$, then $x(t, t_0, x_0)$ is asymptotically Lyapunov stable at (t_0, x_0) .

2 Introduction to continuous dynamical systems

2.2 The flow

• Definition 2.2 The flow of $\dot{x} = f(x)$ is a family of maps $\varphi_t : \mathbb{R}^n \to \mathbb{R}^n$ given by $x_0 \mapsto \varphi_t(x_0) := x(t, 0, x_0)$ parametrized by t. For a fixed t, φ_t is called the flow map at t.

2.4 Fixed points

- Definition 2.10 x^* is a fixed point of $\dot{x} = f(x)$ if $f(x^*) = 0$.
- Definition 2.12 Let x^* be a fixed point of $\dot{x} = f(x)$ and suppose f is differentiable at x^* . The linearized system associated to $\dot{x} = f(x)$ is $\dot{y} = Df(x^*)(y x^*)$.
- **Definition 2.14** Let x^* be a fixed point of $\dot{x} = f(x)$.
 - $-x^*$ is a sink if $x(t) = x^*$ is an asymptotically Lyapunov stable solution to $\dot{x} = f(x)$.
 - $-x^*$ is a source if $x(t) = x^*$ is a sink for $\dot{y} = -f(y)$.
 - If f is differentiable at x^* , then x^* is a **saddle** if there exists distinct eigenvalues λ_j and λ_k of the matrix $Df(x^*)$ such that $\operatorname{Re}(\lambda_j) < 0 < \operatorname{Re}(\lambda_k)$.
 - $-x^*$ is a **center** if there exists a neighborhood U of x^* such that the solutions to the system $\dot{x} = f(x)$ in U remain in U and are periodic, except the fixed point solution $x(t) = x^*$.
- **Theorem 2.15** Let x^* be a source fixed point of $\dot{x} = f(x)$. Then $x(t) = x^*$ is Lyapunov unstable.
- Definition 2.16 Let x^* be a fixed point of $\dot{x} = f(x)$ and suppose f is differentiable at x^* .
 - $-x^*$ is a hyperbolic fixed point if $\operatorname{Re}(\lambda_i(D(f(x^*))) \neq 0 \text{ for all } i.$
 - $-x^*$ is a **nonhyperbolic** fixed point if there exists j such that $\operatorname{Re}(\lambda_j(D(f(x^*))) = 0)$.

2.4.1 The Hartman-Grobman Theorem

- **Theorem 2.17** (Hartman-Grobman) Let x^* be a hyperbolic fixed point of $\dot{x} = f(x)$ where f is C^1 in a neighborhood of x^* . Let φ_t be the local flow of $\dot{x} = f(x)$ and let ψ_t be the local flow of the associated linearized system. Then there exists a homeomorphism h of a ball $B = B(x^*, \rho)$ such that $h(x^*) = x^*$ and for all x_0 in B, we have $\varphi_t(x_0) = (h^{-1} \circ \psi_t \circ h)(x_0)$.
 - So basically, if x^* is a hyperbolic fixed point of a system $\dot{x} = f(x)$ and f is differentiable at x^* , then the linearized system $\dot{y} = Df(x^*)(y x^*)$ is a good approximation of the original system.

2.4.3 The direct method of Lyapunov

- Definition 2.24 Let x^* be a fixed point of $\dot{x} = f(x)$ with f defined on a ball $B = B(x^*, \rho), \rho > 0$. Let $V : B \to \mathbb{R}$ be a \mathcal{C}^1 function such that
 - 1. $V(x^*) < V(x)$ for all $x \in B$, (so x^* is a strict local minimizer for V).
 - 2. $(L_f V)(x) := DV(x)f(x) = \nabla V(x)^T f(x) \le 0$ for all $x \in B$. $(L_f V)$ is the **Lie derivative** of V in the direction of f.)

Then V is called a weak Lyapunov function (if $(L_f V)(x) < 0$, it is a strict Lyapunov function) at x^* of $\dot{x} = f(x)$.

- **Theorem 2.26** (The direct method of Lyapunov) Let x^* be a fixed point of $\dot{x} = f(x)$ with f continuous.
 - 1. If there exists a weak Lyapunov function V at x^* of $\dot{x} = f(x)$, then $x(t) = x^*$ is Lyapunov stable.
 - 2. If there exists a strict Lyapunov function V at x^* of $\dot{x} = f(x)$, then $x(t) = x^*$ is asymptotically Lyapunov stable, i.e., x^* is a sink.

- **Theorem 2.28** Let x^* be a fixed point of $\dot{x} = f(x)$ where f is defined on a neighborhood of x^* and differentiable at x^* .
 - 1. If there exists j such that $\operatorname{Re}(\lambda_i(Df(x^*))) > 0$, then $x(t) = x^*$ is Lyapunov unstable.
 - 2. Equivalently, if $x(t) = x^*$ is Lyapunov stable, then $\operatorname{Re}(\lambda_i(Df(x^*))) \leq 0$ for all *i*.
- Theorem 2.29 Let x^* be a hyperbolic fixed point of $\dot{x} = f(x)$.
 - 1. $x(t) = x^*$ is Lyapunov unstable if and only if there exists j such that $\operatorname{Re}(\lambda_j(Df(x^*))) > 0$.
 - 2. x^* is a sink if and only if $\operatorname{Re}(\lambda_i(Df(x^*))) < 0$ for all *i*.
 - 3. x^* is a source if and only if $\operatorname{Re}(\lambda_i(Df(x^*))) > 0$ for all *i*.
 - 4. x^* is either a sink, source, or saddle.

2.4.4 Gradient systems

- Definition 2.32 A gradient system is a system of ODEs of the form $\dot{x} = -\nabla U(x)$.
- Theorem 2.36 Let x^* be a fixed point of $\dot{x} = -\nabla U(x)$ (so $U(x^*) = 0$) with $U \in C^2$ and suppose the Hessian matrix $\nabla^2 U(x^*)$ is (strictly) positive definite $(p^T \nabla^2 U(x^*)p > 0 \text{ for all } p \in \mathbb{R}^n \setminus \{0\})$. Then x^* is a sink.
- Lemma 2.37 (Integrability Lemma) Consider a function $f : \mathbb{R}^n \to \mathbb{R}^n$. Then $f(x) = -\nabla U(x)$ if and only if $Df(x)^T = Df(x)$, i.e. $\partial_{x_i} f_j = \partial_{x_j} f_i$ for all $i \neq j$.
- If we have a gradient system, we can find the specific U(x) such that $\dot{x} = -\nabla U(x)$ by the formula

$$U(x) = -\int_0^1 \sum_{i=1}^n x_i f_i(sx) ds.$$

2.6 Periodic orbits

• Definition 2.45 A point x_0 is periodic of period $0 < T < \infty$ if $\varphi_T(x_0) = x_0$ and $\varphi_t(x_0) \neq x_0$ for all 0 < t < T. The solution $x(t) = \varphi_t(x_0)$ is called a **periodic solution** and the set $\Gamma_{x_0} = \{\varphi_t(x_0) \mid 0 \le t \le T\}$ is called a **periodic orbit**.

2.6.1 Existence of periodic orbits in \mathbb{R}^2

- Theorem 2.47 (Poincaré Bendixon) Let $\dot{x} = f(x)$ such that f is \mathcal{C}^1 on an open set U. If there exists $K \subset U$ compact containing x_0 such that $\Gamma_{x_0}^+ = \{\varphi_t(x_0) \mid t \ge 0\} \subseteq K$, and K contains no other fixed point of $\dot{x} = f(x)$, then the ω -limit set $\omega(x_0) \subseteq K$ is a periodic orbit. (same is true if we replace $\Gamma_{x_0}^+$ with $\Gamma_{x_0}^-$ and ω with α).
- Theorem 2.51 (Liénard systems). Consider $\ddot{y} + g(y)\dot{y} + h(y) = 0$ or equivalently

$$\dot{x} = \begin{bmatrix} \dot{x_1} \\ \dot{x_2} \end{bmatrix} = f(x) = \begin{bmatrix} x_2 \\ -g(x_1)x_2 - h(x_1) \end{bmatrix}$$

for $x_1 := y$ and $x_2 := \dot{y}$. Suppose the following are satisfied:

 $-g, h \in C^{1}$ -h is odd (h(-y) = -h(y)) -h(y) > 0 for y > 0 -g is even (g(-y) = g(y)) $-G(y) := \int_{0}^{y} g(u) du \text{ (}G \text{ is odd) satisfies}$ $\begin{array}{l} * \ G(y) < 0 \ {\rm for} \ 0 < y < a; \\ * \ G(y) > 0 \ {\rm for} \ a < y; \\ * \ G'(y) = g(y) \geq 0 \ {\rm for} \ a < y \ ({\rm i.e.}, \ G \ {\rm is \ nondecreasing \ for} \ a < y); \\ * \ \lim_{y \to +\infty} G(y) = +\infty \end{array}$

Then, there exists a unique (thus isolated) periodic orbit Γ and it surrounds the origin in \mathbb{R}^2 . Moreover, Γ is asymptotically orbitally stable and thus is an ω -limit cycle.

2.6.2 Nonexistence of periodic orbits

- Theorem 2.54 Gradient systems $\dot{x} = -\nabla U(x)$ with $U \in C^1$ have no periodic orbit.
- Theorem 2.55 (Dulac's criterion) Let

$$\dot{x} = \begin{bmatrix} \dot{x_1} \\ \dot{x_2} \end{bmatrix} = f(x) = \begin{bmatrix} f_1(x_1, x_2) \\ f_2(x_1, x_2) \end{bmatrix}$$

with f defined on an open set $U \subseteq \mathbb{R}^2$ and $f \in \mathcal{C}^1$. Let $D \subseteq U$ be simply connected and suppose $B: D \to \mathbb{R}$ is \mathcal{C}^1 such that

$$\operatorname{div}(B(x)f(x)) = D_{x_1}(B(x_1, x_2)f_1(x_1, x_2)) + D_{x_2}(B(x_1, x_2)f_2(x_1, x_2)) \neq 0$$
 for all $x \in D$

Then D does not contain any periodic orbit.