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Instructions
We will be focusing on previous qualifying exams from various institutions (Texas A& M,
UIUC, Kansas, and others). The questions on these exams will be at the level of what you
are expected to perform We will be making a master file which will contain all problems and
solutions we write this summer. You are expected to write all final solutions in Tex. In the
past, students have been plagued with one problem: how do I come up with this solution
on my own? To address this concern, your solutions will be comprised of two parts: your
previous attempts/rationale this solution; and the finalized solution.

1 How to Use This File

Collaboration is can be hard, especially so when working with a large number of people.
To keep each student’s work simple, I’ve created a master document which will read from
smaller files in which each of you will write your solutions. Since this document will quickly
grow in size, I ask you write your keep your explanations terse. I also want ease readability
of the source documents, which leads to the following guidelines.

1.1 Ground Rules

I ask that you all adhere to the following rules:

1. Close the documents when you have completed your task

2. Test individual files before compiling the master document

3. Save Often

4. Keep a copy of your own work in another directory

1.2 Folder Structure

The Analysis Solutions folder is divided into smaller portions, which I hope are useful for
our purposes. At the top level we have the following files

• Analysis_2017_Solutions.tex, the maser file

• Analysis_2017_Solutions.pdf, your PDF

• CommonFiles, see §1.3

• RealSolutions, files for solutions pertaining to real analysis

• ComplexSolutions see above
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• Images Repository for all images included in this document

• Less important files

The folders RealSolutions and ComplexSolutions each contain several subfolders:

• TAMU

• Kansas

• UIUC

each which finally contain a tex file, e.g. RTAMU.tex. Each file is a standalone document
which can be compiled independently of the master file.

1.3 User Defined Commands

You will come to find every TeX user has a unique style, in particular with creating shortcuts.
Who really wants to write \mathbb{R} when one can use \R? If you have your own shortcuts,
copy and paste these into the file CommonFiles\UserCommands.tex in the following manner:

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Rolando’s Commands

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\newcommand{\C}{\mathbb{C}}

\newcommand{\N}{\mathbb{N}}

\newcommand{\Q}{\mathbb{Q}}

\newcommand{\R}{\mathbb{R}}

\newcommand{\Z}{\mathbb{Z}}

\newcommand{\norm}[1]{\| #1 \|}

\newcommand{\set}[1]{ \left\lbrace #1 \right\rbrace }

\newcommand{\generator}[1]{\langle #1 \rangle}

This labeling will make it easier for me to help debug your code if necessary. Make sure you
save and close this file immediately.

1.4 Your Solutions

You are to write your solutions in the proper file. Are you writing a solution to a real analysis
question from a Texas A & M qualifying exam? Then you best be writing your finalized
solution in RSolutions/TAMU/RTAMU.tex.

To keep a consistent look, I ask you write your solutions in the following manner:

\begin{prob}[Other University, Fall 2016 Q4]

Here is some question

\end{prob}
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\begin{soln}[My Name] $ $\newline

\textbf{Attempt:}\\

I tried nothing... How sad

\noindent\textbf{Solution:}\\

Math!

\end{soln}

This fomula will produce the following output for each problem:

Problem 1.1 (Other University Fall, 2016 Q4). Here is some question

Solution. [My Name]
Attempt:
I tried nothing... How sad
Solution:
Math!

If you apply a theorem from our textbooks to solve your problem, I ask that you include
the theorem name/number and page where it may be found. It is imperative that you
provide your solutions in a timely manner so that they may be made available to all.

1.5 Images

Let’s suppose you’d like to include a picture you’ve made. Scan and save that image (with
a meaningful name) into the Images folder. Once you’ve added your image to the Dropbox
folder, you can embed it into the master document by using the following code:

\begin{figure}[h!]

\includegraphics[scale=.75]{MeanfulPictureTitle.jpeg}

\end{figure}

and adjust the number .75 to be as large or as small as you’d like. Take care to type the file
name and extension exactly as it appears in the folder. If you’d like a professional-looking
document, you may add labels and reference images, but that is not required.

The images in the following section were uploaded using this scheme.

2 Compiling the Document

I’ve designed this file with multiple users in mind. Want to test the look of your work without
affecting the main document? Good news!
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2.1 Compiling Individual Files

The document is formatted in such a way that allows each source file to behave independently.
In essence, you can compile each individual file to check the look of your work. Since my
method isn’t perfect, you need to do the following

If you are testing your work, make sure the top of the file looks like so:

This will ensure you can compile this document without changing the main pdf. Once
you are finished, make sure you comment out the top line so the file looks as follows:

2.2 The Master File

The file joins all our work is Analysis_2017_Solutions.tex which creates the document
which you are currently reading. When you are happy with the look of your work, save the file
you are working on and compile Analysis_2017_Solutions.tex to produce Analysis_2017_Solutions.pdf.
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Part I

Real Analysis

3 Kansas Qual

Problem 3.1 (Kansas, Spring 2004 Q7). Let p ≥ 1 be a real number and let {fn}∞n=1 ⊂
Lp(R, λ) be a sequence with limn→∞ ||fn||p = 0. Prove there exists integers 1 ≤ n1 ≤ n2 ≤ · · ·
such that limk→∞ fnk = 0λ-a.e.

Solution. [Sara Reed] Note the following will be used in the proof:

• Chebyshev’s Inequality (p.80): Let f be a nonnegative measurable function on E.
Then for any λ > 0,

m{x ∈ E| f(x) ≥ λ} ≤ 1

λ

∫
E

f.

• Convergence of p-series: If p > 1,
∑∞

k=1
1
np

converges.

• The Borel-Cantelli Lemma (p. 46): Let {Ek}∞k=1 be a countable collection of measur-
able sets for which

∑∞
k=1m(Ek) <∞. Then almost all x ∈ R belong to at most finitely

many of the Ek’s.

– Note that another way to say this statement is:

m
( ∞⋂
n=1

[ ∞⋃
k=n

Ek

])
= 0.

Also note that an alternate proof can be found as a part of the Riesz-Fischer Theorem on
page 148.

Proof. Let ε > 0. Since limn→∞ ||fn||p = 0, choose {nk}k such that 1 ≤ n1 ≤ n2 ≤ · · · and
||fnk ||p < 1

k2
. Consider the set

E
(ε)
k = {x| |fnk(x)|p ≥ ε} = f−1

nk
(ε

1
p ,∞).

By Chebyshev’s Inequality, we know

λ(E
(ε)
k ) ≤ 1

ε

∫
R
|fnk |pdλ

=
1

ε
||fnk ||pp

≤ 1

ε

1

k2p
.
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It follows that
∞∑
k=1

λ(E
(ε)
k ) ≤

∞∑
k=1

1

ε

1

k2p
=

1

ε

∞∑
k=1

1

k2p
<∞

since 2p ≥ 2 > 1. Since
∑∞

k=1 λ(E
(ε)
k ) <∞, the Borel Cantelli Theorem tells us that

λ
( ∞⋂
n=1

[ ∞⋃
k=n

E
(ε)
k

])
= 0.

This statement holds for all ε > 0. Define εj = 1
j
. Note that limj→∞ εj = 0. Since Lebesgue

measure is countably subadditive (p.34), we have

λ
( ∞⋃
j=1

∞⋂
n=1

∞⋃
k=n

E
(εj)
k

)
≤

∞∑
j=1

λ
( ∞⋂
n=1

∞⋃
k=n

E
(εj)
k

)
= 0

and therefore

λ
( ∞⋃
j=1

∞⋂
n=1

∞⋃
k=n

E
(εj)
k

)
= 0.

Note that the set E =
⋃∞
j=1

⋂∞
n=1

⋃∞
k=nE

(εj)
k can be described in the following way: all

x ∈ R such that there exists εj > 0 such that for all n ≥ 0 there exists k ≥ n satisfying

|fnk(x)| > ε
1
p

j . We can excise this set of measure zero. Then, for x ∈ R ∼ E, we know for all

εj > 0, there exists n ∈ N such that for all k ≥ n, we have |fnk(x)| < ε
1
p

j . Therefore, we can
conclude that limk→∞ fnk(x) = 0 almost everywhere.

Problem 3.2 (Nicholas Camacho, Spring 2009 Q6). Let E be a Lebesgue measurable set in
Rn. Prove that

E = A1 ∪N1 = A2 ∼ N2

where A1 is an Fσ set, A2 is a Gδ set, and m(N1) = m(N2) = 0.

Proof. We claim that in fact there exists a Gδ set G containing E such that m(G ∼ E) = 0,
and hence we can write E = G ∼ (G ∼ E). If we can show this, then since Ec is also
measurable, we can apply this result to Ec to find a Gδ set M containing Ec such that
Ec = M ∼ N where m(N) = 0, and then

E = (Ec)c = (M ∩N c)c = M c ∪N,

and since the complement of a Gδ is an Fσ, we have obtained both desired forms for E.
Hence it remains only to show that such a set G exists.

First suppose that E has finite measure and let ε > 0. Since m is outer regular, there
exists an open set O containing E such that

m(O ∼ E) = m(O)−m(E) < ε. (∗)
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Now, if m(E) = ∞, we can write E as a countable disjoint union of finite measure sets
{Ek}k∈N. Then by (∗), for each n ∈ N, we can choose an open set On containing En such
that m(On ∼ En) < ε/2n. Then O =

⋃
n∈N is open, contains E, and

m(O ∼ E) = m

(⋃
n∈N

On ∼ E

)
≤ m

(⋃
n∈N

On ∼ En

)
≤
∑
n∈N

m(On ∼ En) = ε.

Hence, for each n ∈ N, we can pick an open set On containing E such that m(On ∼ E) <
1/n. Then G =

⋂
n∈N On is a Gδ set containing E, and since G ∼ E ⊆ On ∼ E for each n,

we get
m(G ∼ E) ≤ lim

n→∞
m(On ∼ E) = 0.

Problem 3.3 (Elaina Aceves, August 2008 Q8). Decide which space is bigger, L1([0, 1]) or
L2([0, 1])? Explain why.

Solution.
Attempt:
I looked at Corollary 3 on page 142 to approach this problem, which tells us that Lp2(E) ⊂
Lp1(E) when E is a measurable set of finite measure and 1 ≤ p1 < p2 ≤ ∞. Thus, this
problem is a special case when E = [0, 1], p1 = 1, and p2 = 2.
Solution:
Let f ∈ L2([0, 1]) and let λ denote the Lebesgue measure. Then

∫ 1

0
|f(x)|2dx < ∞. Let

g = χ[0,1]. Then g ∈ L2([0, 1]) because λ([0, 1]) = 1 <∞. We have the following inequalities.∫ 1

0

|f(x)|dx =

∫ 1

0

|f(x)| · g(x) dx

≤ ||f(x)||2 · ||g(x)||2 by Holder Inequality

= ||f(x)||2 ·

√∫ 1

0

|g(x)|2 dx by definition

= ||f(x)||2 · (λ([0, 1])1/2

= ||f(x)||2 <∞ since f ∈ L2([0, 1]).

Hence f ∈ L1([0, 1]).

Example to show strict subset: f ∈ L1([0, 1]) ∼ L2([0, 1]) is f(x) =

{
0 if x = 0

xα if 0 < x ≤ 1

for −1 < α < −1/2 which is given on page 143.

Problem 3.4 (Nicholas Camacho, Fall 2014 Q9). Is it true that every closed and bounded
set in L2([0, 1]) is compact?
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Proof. Attempt: First thought: “Well, what does it mean to be compact in L2([0, 1])? Is it
the standard “Every open cover has a finite subcover”?. And yes, it is. But this may not be
the most helpful definition. And then I remembered: L2([0, 1]) is a metric space! So we have
equivalent notions of compactness. Let’s try one of those: Complete and totally bounded,
or, sequentially compact. So after asking Rolando for help, here’s what we have:

Solution: Consider the closed unit ball in L2([0, 1]),

B := {f ∈ L2([0, 1]) : ||f ||2 ≤ 1}.

Then certainly B is closed and bounded by it’s definition. Now define a sequence of functions
fn(x) = sin(nπx) for all n ∈ N. Then

||fn||22 =

∫ 1

0

| sin(nπx)|2dx =

∫ 1

0

sin2(nπx)dx

=
1

nπ

∫ nπ

0

1− cos 2u

2
du (u = nπx, du = nπdx)

=
1

2
.

and so {fn} ⊂ B. However, for distinct n,m we have

||fn − fm||22 =

∫ 1

0

| sin(nπx)− sin(mπx)|2

=

∫ 1

0

[sin(nπx)− sin(mπx)]2

=

∫ 1

0

sin2(nπx)− 2 sin(nπx) sin(mπx) + sin2(mπx)

=
1

4
− 2

∫ 1

0

sin(nπx) sin(mπx),

=
1

4
− 2

(
1

2

∫ 1

0

cos((n−m)πx)− 1

2

∫ 1

0

cos((n+m)πx)

)
=

1

4
− 1

n−m
[sin((n−m)πx)]10 −

1

n+m
[sin((n+m)πx)]10

=
1

4
.

In other words, the the fn’s do not get close to one another, and so no subsequence of {fn}
converges.

I think it might be good to give another example: Credit this one to Tyler Reynolds.
His idea is to create functions that all have the same “area under the curve”, but are each
nonzero on their own interval.

fn(x) =

{√
2n+1 if x ∈

(
1

2n+1 ,
1

2n

)
0 otherwise.
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Then

||fn||22 =

∫ 1

0

|fn|2 =

∫ 1
2n

1
2n+1

∣∣∣√2n+1

∣∣∣2 = 2n+1

(
1

2n
− 1

2n+1

)
= 1

and so {fn} ⊂ B, but for distinct m,n,

||fn − fm||22 =

∫ 1

0

|fn − fm|2 =

∫ 1
2n

1
2n+1

|fn − fm|2 +

∫ 1
2m

1
2m+1

|fn − fm|2

=

∫ 1
2n

1
2n+1

∣∣∣√2n+1

∣∣∣2 +

∫ 1
2m

1
2m+1

∣∣∣√2m+1

∣∣∣2
= 2,

and so again the fn’s do not get close to one another, and so no subsequence of {fn} converges.
Remark: Similar functions will in fact work in Lp([a, b]) for any 1 ≤ p <∞. Just define

fn(x) =


p

√
2n+1

b− a
if x ∈

(
b− a
2n+1

,
b− a

2n

)
0 otherwise.

Problem 3.5 (Kansas, Spring 2015 Q1). Is there a Borel set A ⊂ R such that 0 < λ(A∩I) <
λ(I) for every interval I ⊂ R

Solution. [Jared Grove]
Attempt:
I initially thought the answer was no, so I tried to disprove it and it obviousy didn’t go so
well. I tried going through each type of Borel set and showing it wouldn’t work, but there
are so many wierd types of sets its almost impossible to test every type of case.
Solution:
The quick answer is yes, but here comes the justification. We need to construct something
like a collection of nowhere dense sets that cover R. I believe a term that some people use
is a fat Cantor set if that means anything to you. We will begin by letting {rn} be an
enumeration of the rational numbers. Next let V1 be a segment of finite length centered at
r1 and Vn be a segment of length λ(Vn−1)

3
centered at rn. Notice that each vn is a third the

length of the previous set and that the collection of Vn will cover R since Q is dense in the
reals. Next we will define the set

Wn = Vn − ∪∞k=1Vn+k

and notice that

λ(Wn) ≥ λ(Vn)−
∞∑
k=1

λ(Vn+k) = λ(Vn)− λ(Vn)
∞∑
k=1

3−k =
λ(Vn)

3
> 0
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For each n choose a Borel set An ⊂ Wn with 0 < λ(An) < λ(Wn). You can do this as
for every set Wn with λ(Wn) > 0 there exists F closed (so Borel) with F ⊂ Wn such that
λ(Wn ∼ F ) > ε. Now define A = ∪∞n=1An. Since An ⊂ Wn and the Wn are disjoint (they
still conver R though) λ(A ∩Wn) = λ(An). Thus

0 < λ(A ∩Wn) = λ(An) < λ(Wn)

for every n. Since every interval will contain at least a part of a Wn we can extend this fact
above to any interval and A is the set we are looking for.

Problem 3.6 (Kansas, Spring 2015 Q3). Compute the following limit and justify your cal-
culation:

lim
n→∞

∫ 1

0

1 + n
2
x

(1 + x)n/2
dx.

Solution. [Michael Kratochvil]
Attempt:
I first thought that I would have to pass the limit under the integral sign somehow, but even
if I were to do that, I would still have to compute the limit of the integrand. Then I realized
that for all n the integral could be computed in its closed form using grade school calculus
techniques, and the limit could be performed after the computation, so that is what I did.
Solution:

Letting p = n
2

(for ease of writing n/2 over and over again) and p > 2, we obtain∫ 1

0

1 + px

(1 + x)p
dx =

∫ 2

1

1 + p(u− 1)

up

=

∫ 2

1

(1− p)u−p + pu1−pdu

=u1−p +
p

2− p
u2−p|21

=21−p − 1 +
p

2− p
(22−p − 1)

=21−n/2 − 1 +
n/2

2− n/2
(22−n/2 − 1).

Thus,

lim
n→∞

∫ 1

0

1 + n
2
x

(1 + x)n/2
dx = lim

n→∞
21−n/2 − 1 +

n/2

2− n/2
(22−n/2 − 1) = 0.
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Problem 3.7 (Kansas, Fall 2011, Q11). Denote by λ1 the Lebesgue measure on R. Let E be
a λ1 set of positive measure. Show that for every α < 1 there is an open interval I = I(α)
such that λ1(E ∩ I) > αλ1(I).

Solution. [W. Tyler Reynolds]
Attempt:
My first attempt was to straightforwardly use the definition of measure and outer approxi-
mation by open sets. This didn’t quite work, but Chapter 2 Theorem 12 of Royden seemed
to suggest that the use of the symmetric difference might help. It did, if one assumed that
E had finite measure. The infinite measure case followed readily from this. To avoid having
to write out the two cases separately, I reduced E to a (possibly smaller) finite measure set
at the outset of the solution.
Solution:
If α ≤ 0, let I be any open interval such that λ1(E ∩ I) > 0 (such an interval exists since
λ1(E) > 0). Then λ1(E ∩ I) > 0 ≥ αλ1(I).

Now let 0 < α < 1. Let F ⊂ E with 0 < λ1(F ) < ∞. Since 0 < (1 − α)λ1(F ) < ∞,

we can find a finite disjoint collection {Ik}nk=1 of open intervals such that if O =
n⋃
k=1

Ik, then

λ1(O \ F ) + λ1(F \ O) < (1− α)λ1(F ). (This is Chapter 2 Theorem 12 of Royden). Notice
that

λ1(F ) = λ1(F ∩O) + λ1(F \O) ≤ λ1(F ∩O) + λ1(F \O) + λ1(O \ F )

< λ1(F ∩O) + (1− α)λ1(F ),

so that λ1(F ) < λ1(F ∩O)/α. Thus,

λ1(O) = λ1(F ∩O) + λ1(O \ F ) < λ1(F ∩O) + (1− α)λ1(F )

< λ1(F ∩O) +
1− α
α

λ1(F ∩O) =
λ1(F ∩O)

α
.

Rewriting this yields

n∑
k=1

λ1(Ik) = λ1(O) <
λ1(F ∩O)

α
=

n∑
k=1

λ1(F ∩ Ik)
α

.

It follows that λ1(Ik) <
λ1(F ∩ Ik)

α
for some k. Letting I = Ik, we obtain αλ1(I) <

λ1(F ∩ I) ≤ λ1(E ∩ I).

Problem 3.8 (Kansas, Fall 2013, Q1). Let {fn} be a sequence of integrable function on

X,M , µ, s.t. fn → f a.e. where f ∈ L1(µ). Prove that

∫
X

|f − fn|dµ → 0 iff

∫
X

|fn|dµ →∫
X

|f |dµ
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Solution. [Yanqing Shen]
Attempt:
Check the theorems about the Lebesgue integral, and how to bound functions with triangular
inequality.
Solution:

1. “=⇒”. We assume

∫
X

|f − fn|dµ→ 0.

Since {fn}, f ∈ L1(µ), hence {|f − fn|}, {|fn| − |f |} ∈ L1(µ).
By reversed triangular inequality

∣∣|x| − |y|∣∣ ≤ |x− y||, hence∣∣|f | − |fn|∣∣ ≤ |f − fn||
Therefore, ∫

X

∣∣|f | − |fn|∣∣dµ ≤ ∫
X

|f − fn|dµ,

since

∫
X

|f − fn|dµ→ 0, and
∣∣∫
X

(|f | − |fn|) dµ
∣∣ ≤ ∫

X

∣∣|f | − |fn|∣∣dµ.
Therefore, ∣∣∫

X

(|f | − |fn|) dµ
∣∣→ 0 =⇒

∫
X

(|f | − |fn|) dµ→ 0,

and ∫
X

(|f | − |fn|) dµ =

∫
X

|f |dµ−
∫
X

|fn|dµ

Thus ∫
X

|fn|dµ→
∫
X

|f |dµ.

2. “⇐=”. We assume

∫
X

|fn|dµ→
∫
X

|f |dµ.

Since fn → f a.e. on X. ∃X0 ⊆ X s.t. fn(x) = f(x), ∀x ∈ X0, µ(X\X0) = 0.
Define |gn| = |f |+ |fn| − |f − fn| on X0, then lim

n→∞
gn(x) = 2|f(x)|, ∀x ∈ X0,

and define g(x) := 2|f(x)| on X.
Then gn → g a.e. on X, since {gn} are nonnegative and integrable functions, by Fatou’s

Lemma, ∫
X

g dµ ≤ lim inf

∫
X

gn dµ.
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This implies

2

∫
X

|f | dµ ≤ lim inf

{∫
X

[
|f |+ |fn| − |f − fn|

]
dµ

}
≤ lim inf

∫
X

|f | dµ+ lim inf

{∫
X

[
|fn| − |f − fn|

]
dµ

}
=

∫
X

|f |dµ+ lim inf

{∫
X

[
|fn| − |f − fn|

]
dµ

}
≤
∫
X

|f |dµ+ lim inf

∫
X

|fn|dµ+ lim inf

{∫
X

−|f − fn|dµ
}

=

∫
X

|f |dµ+

∫
X

|f |dµ− lim sup

{∫
X

|f − fn|dµ
}

= 2

∫
X

|f |dµ− lim sup

{∫
X

|f − fn|dµ
}

Therefore, lim sup

{∫
X

|f − fn|dµ
}
≤ 0.

Given that

∫
X

|f |dµ ≤ ∞,
since

0 ≤ lim inf

{∫
X

|f − fn|dµ
}
≤ lim sup

{∫
X

|f − fn|dµ
}
≤ 0,

thus

lim
n→∞

∫
X

|f − fn|dµ = 0.

Problem 3.9 (Kansas, Spring 2013, Q5). Let g be a bounded Lebesgue measurable function
on R which has the property that limn→∞

∫
I
g(nx)dx = 0 for every interval I ⊂ [0, 1]. Prove

that for every f ∈ L1([0, 1]),

lim
n→∞

∫ 1

0

f(x)g(nx)dx = 0.

Solution. [Alex Bates]
Attempt:
My first attempt, defining gn(x) := g(nx), I tried to use the fact that f ∈ L1([0, 1]) to apply

Hölder’s Inequality to obtain
∫ 1

0
|f(x) · g(nx)|dx ≤ ||f ||1 · ||gn||∞. But getting an esssup on

gn (this is how || · ||∞ is defined) would have been difficult, if not impossible.
Solution:
Let’s first prove the claim under the assumption that f is a simple function, i.e., f =
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∑m
k=1 ck · χIk , where {Ik}mk=1 is a collection of disjoint intervals whose union is [0, 1]. Then:

lim
n→∞

∫ 1

0

f(x)g(nx)dx = lim
n→∞

∫ 1

0

m∑
k=1

(ck · χIk) g(nx)dx

= lim
n→∞

m∑
k=1

ck

∫
Ik

g(nx)dx

=
m∑
k=1

ck lim
n→∞

∫
Ik

g(nx)dx

=
m∑
k=1

ck · 0

= 0.

Let ε > 0. Since g is bounded, there is M > 0 for which |g| ≤ M on all of R. By Problem

4.6.44 of Royden (pg. 95), there is a step function φ defined on [0, 1] for which
∫ 1

0
|f−φ| < ε

2M
.

Further, by the work above let N ∈ N be such that n ≥ N implies
∣∣∣∫ 1

0
φ(x)g(nx)dx

∣∣∣ < ε/2.

Then for any n ≥ N ,∣∣∣∣∫ 1

0

f(x)g(nx)dx

∣∣∣∣ =

∣∣∣∣∫ 1

0

(f(x)− φ(x) + φ(x))g(nx)dx

∣∣∣∣
≤
∣∣∣∣∫ 1

0

(f(x)− φ(x))g(nx)dx

∣∣∣∣+

∣∣∣∣∫ 1

0

φ(x)g(nx)dx

∣∣∣∣
≤
∫ 1

0

|f(x)− φ(x)||g(nx)|dx+

∣∣∣∣∫ 1

0

φ(x)g(nx)dx

∣∣∣∣
≤M ·

∫ 1

0

|f(x)− φ(x)|dx+

∣∣∣∣∫ 1

0

φ(x)g(nx)dx

∣∣∣∣
< M · ε

2M
+
ε

2
= ε,

so that limn→∞
∫ 1

0
f(x)g(nx)dx = 0.

Problem 3.10. , Fall 2014 Q8]
Suppose (X,M, µ) is a measure space, µ a positive measure, fn ∈ Lp(X),∀n ∈ N and

f ∈ Lp(X), where 1 ≤ p <∞. Prove the following;

(i). If ‖fn − f‖p → 0 as n→∞ then ‖fn‖p → ‖f‖p as n→∞.
(ii). If fn → f a.e. and ‖fn‖p → ‖f‖p then ‖fn − f‖p → 0

Solution. This problem is very similar to theorem 7 on page 148. For part (i) I used a similar
proof as in the book, however, proof of (ii) is not the same as what is given in the book.

15



Proof. (i). By Minkowski’s inequality (pg 141)

|‖fn‖p − ‖f‖p| ≤ ‖fn − f‖p ∀n ∈ N

By taking the limit on both sides we get that

lim
n→∞

‖fn‖p = ‖f‖p

(ii). Suppose fn → f a.e. and ‖fn‖p → ‖f‖p. Observe that

|fn − f |p ≤ 2p(|fn|p + |f |p) (1)

=⇒
∫
X

|fn − f |p ≤
∫
X

2p(|fn|p + |f |p) (2)

=⇒ ‖fn − f‖pp ≤ 2p(‖fn‖pp + ‖f‖pp) (3)

=⇒ lim
n→∞

‖fn − f‖pp ≤ 2p
(

lim
n→∞

‖fn‖pp + lim
n→∞

‖f‖pp
)

= 2p
(
‖f‖pp + ‖f‖pp

)
(4)

=⇒ lim
n→∞

∫
X

|fn − f |p = lim
n→∞

‖fn − f‖pp ≤ 2p+1‖f‖pp = 2p+1

∫
X

|f |p (5)

Now let hn = |fn − f |pand gn = 2p(|fn|p + |f |p). Then |hn| ≤ gn and

{hn} → 0, {gn} → 2p+1|f |p pointwise a.e on X. (6)

Since

lim
n→∞

∫
X

gn = 2p+1

∫
X

|f |p <∞

we can apply the generalized Lebesgue dominated convergence theorem (pg 89) to get that

lim
n→∞

∫
X

|fn − f |p = lim
n→∞

∫
X

hn = 0

=⇒ ‖fn − f‖pp → 0

=⇒ ‖fn − f‖p → 0

Problem 3.11 (Kansas, Fall 2014 Q4). Let f be entire and bounded on the strip 0 ≤ Re(z) ≤
1, with the property that

f(z + 1) =
f(z)

2
∀z ∈ C.

Prove that f(z) = a2−z for some a ∈ C.
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Solution. [Sara Reed] Define K to be the strip 0 ≤ Re(z) ≤ 1. Note that |f(z)| ≤M for all
z ∈ K and for some M ∈ R. Let z ∈ C. We will now consider two cases: Re(z) ≥ 0 and
Re(z) < 0.

1. Re(z) ≥ 0: We can write z = x + iy = b∗cx + x∗ + iy where z∗ = x∗ + iy ∈ K. Note
that z∗ + bxc = z. It follows

f(z) = f(z∗ + b∗cx)

=
f(z∗)

2b∗cx

≤ M

2b∗cx

since z∗ ∈ K.

2. Re(z) < 0: We can write z = x + iy = b∗cx + 1 − x∗ + iy where x∗ ∈ [0, 1). Then
z∗ = 1− x∗ + iy ∈ K. Note that z + bxc = z∗ since bxc < 0. It follows

f(z∗) = f(z + (−bxc))

=
f(z)

2−b∗cx
.

Therefore, we have

f(z) = f(z∗)2−b∗cx

≤M2−b∗cx.

since z∗ ∈ K.

Consider g(z) = f(z)2z. Since f is entire, we know g is entire. Again, we consider three
cases. In each case, we will use the following fact:

|2z| = |2x+iy| = |2x||2iy| = |2x||eiy ln(2)| = |2x|

since y ln 2 ∈ R so |eiy ln(2)| = 1.

1. Re(z) ≥ 0:

|g(z)| = |f(z)2z|

≤ M |2z|
|2b∗cx|

= M |2z∗ |
= M |2x∗|
= 2M.

17



2. Re(z) < 0:

|g(z)| = |f(z)2z|
≤M |2−bxc||2z|
= M |2−bxc||2x|
= M |2−bxc+x|
= M |21−x∗|
≤ 2M.

So for all z ∈ C, we have shown |g(z)| ≤ 2M . Therefore, g is an entire bounded function.
By Liouville’s Theorem, we know g is constant. Therefore, there exists a ∈ C such that
g(z) = f(z)2z = a. We conclude f(z) = a2−z as desired.

Problem 3.12 (Elaina Aceves, Fall 2014 Q6). Let (X,M , µ) be a measure space. Suppose
f : X → R and g : X → R are measurable functions. Prove that the sets {x : f(x) < g(x)}
and {x : f(x) = g(x)} are measurable.

Solution.
Attempt:
These are special cases of Theorem 1 and Proposition 6 from p.55-57.
Solution:
Let x ∈ X. If f(x) < g(x), by the density of Q in R, there exists q ∈ Q such that
f(x) < q < g(x). Then

{x : f(x) < g(x)} =
⋃
q∈Q

{x : f(x) < q} ∩ {x : g(x) > q}

Since f is measurable, {x : f(x) < q} is measurable and since g is measurable, {x : g(x) > q}.
Recall that the intersection of two measurable sets is measurable. Thus, {x : f(x) < g(x)}
is measurable as the countable union of measurable sets. Furthermore, {x : f(x) ≤ g(x)}
and {x : f(x) ≥ g(x)} are measurable since {x : f(x) < g(x)} is measurable. Then

{x : f(x) = g(x)} = {x : f(x) ≥ g(x)} ∩ {x : f(x) ≤ g(x)}

Hence {x : f(x) = g(x)} is measurable as the intersection of two measurable sets.
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4 Texas A & M Quals

Problem 4.1 (Nicholas Camacho, Page 1, Q1). Let (X, ρ) be a metric space, E ⊂ X, and
f(x) = infy∈E ρ(x, y). Show that f is continuous on X, and that E = {x ∈ X : f(x) = 0}.

Proof. Attempt:
I recently solved the first part of this problem while studying for the Topology qual. It’s
about understanding basic properties of inf. Namely: the inf is less than or equal to any
member of the set you’re inf-ing over, and, if you find something less than or equal to a
member of the set, (i.e., a lower bound), then the inf will be bigger than or equal to that
thing. The second part is using definitions and showing set inclusion both ways. So, I don’t
have much in the way of an “attempt”, but only the polished solution. This problem wasn’t
too difficult.
Solution:
Define infy∈E ρ(x, y) = dist(x,E). For x1, x2 ∈ X and y ∈ E,

dist(x1, E) ≤ ρ(x1, y) ≤ ρ(x1, x2) + ρ(x2, y)

This gives
dist(x1, E)− ρ(x1, x2) ≤ ρ(x2, y)

and so
dist(x1, E)− ρ(x1, x2) ≤ dist(x2, E),

which yeilds
dist(x1, E)− dist(x2, E) ≤ ρ(x1, x2).

Switching roles of x1 and x2 gives

| dist(x1, E)− dist(x2, E)| ≤ ρ(x1, x2).

So in fact f(x) is Lipschitz, and hence continuous.
Now, let x ∈ E. That is, any neighborhood of x intersects E. If f(x) = dist(x,E) =

ε > 0, let 1/n < ε. Then B(x, 1/n) ∩ E = ∅, a contradiction. Conversely, let f(x) = 0
and suppose x 6∈ E, i.e., there exists a neighborhood U of x not intersecting E. If n
is such that B(x, 1/n) ⊂ U , then we have ρ(x, y) > 1/n for all y ∈ E, which means
0 = f(x) = dist(x,E) ≥ 1/n > 0, a contradiction.

Problem 4.2 (Kaitlin Healy, Page 1 Q4). Let {fn}n≥1 be a sequence of functions in Lp(R, µ)
where 1 < p <∞ and µ is Borel measure on R. Suppose that

sup
n≥1
||fn||p <∞

Show that {fn}n≥1 is ’uniformly integrable’, that is, for all ε > 0 there is a δ > 0 such that
when µ(E) < δ, we have

sup
n≥1

∫
E

|fn|dµ < ε
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Solution.
Attempt:

My initial thought was to try to divide up R into intervals of size slightly less than δ
but could not see where to go past that point. Then, I talked to Rolando and got a good
solution.
Solution:

Let ε > 0. We want to find a δε > 0 that satisfies the definition of uniformly integrable.
To find this δ, notice the following for any n:

∫
E

|fn| =
∫
R
|fn| · χE

≤
(∫

R
|fn|p

)1/p

·
(∫

R
χE

)1/q

by Hölder’s inequality

=

(∫
R
|fn|p

)1/p

·
(∫

E

1

)1/q

= ||fn||p · [µ(E)]1/q

Since supn≥1 ||fn||p <∞, we know that the supremum is finite. Thus, let c = supn≥1 ||fn||p.
This gives us

||fn||p · [µ(E)]1/q ≤ c · [µ(E)]1/q

We need that c · [µ(E)]1/q < ε. This happens when µ(E) < (ε/c)q. Therefore, let
δε = (ε/c)q where q is the conjugate of p. Since the above equalities and inequalities were
true for any n, they must hold for supn≥1

∫
E
|fn|dµ. Hence, we conclude for our δε that

sup
n≥1

∫
E

|fn|dµ < ε

and thus we have that {fn}n≥1 is uniformly integrable.

Problem 4.3 (W. Tyler Reynolds, Texas A&M, Page 2 Q5). Consider the function f :
(0,∞)× (0,∞)→ R defined by

f(x, y) =
∞∑
n=1

1

nx2 + n3x−2y
.

Find the limit g(y) := lim
x→∞

f(x, y) for y > 0, with a proof.

Solution.
Attempt:

20



Solving this problem revolved around the observation that series and integration are closely
related. I realized that I would have exactly what I needed if I could “pass the limit under
the summation sign”. This led to a bit of research in which I discovered that many of our
integration theorems such as Fatou’s Lemma and the Dominated Convergence Theorem have
analogues for series. I believe that this parallel theory could be probably be used for this
problem without too much trouble; however, building the proofs of the required theorems
from scratch would be tedious and take too much time on an exam. Thus, I ended up
looking for a way to change the summations into integrals which would play nicely with the
theorems we all know and love (for better or worse, you do love them). I initially tried to use
the Monotone Convergence Theorem, only to realize that my sequence of functions wasn’t
increasing in the proper sense - it was only intervalwise eventually increasing, meaning that
the index past which the sequence became increasing could vary depending on the interval
under examination. As a workaround, I formulated a very artificial but useful result: the
Measurewise Eventually Monotone Convergence Theorem. While it’s about as overzealous
as using ε

100
instead of ε, it works.

Lemma 4.4 (The Measurewise Eventually Monotone Convergence Theorem). Let {fn} a

sequence of measurable functions on E, where E =
∞⊔
k=1

Ak for Ak ⊂ E such that m(Ak) > 0

for all k. Suppose that {fn} is measurewise eventually nonnegative and increasing in the
following sense: for each k, there is an index Nk such that fn(x) ≥ 0 and fn+1(x) ≥ fn(x)
when x ∈ A and n ≥ Nk. If {fn} → f pointwise on E, then lim

n→∞

∫
E
fn =

∫
E
f .

Proof. Suppose first that {fn} consists of nonnegative functions. By Fatou’s Lemma,
∫
E
f ≤

lim inf
∫
E
fn. Let k ∈ N. Then for n ≥ Nk, fn ≤ f on Ak and hence

∫
Ak
fn ≤

∫
Ak
f . So

0 ≤ lim sup
∫
Ak
fn ≤

∫
Ak
f . Since this holds for each k ∈ N,

lim sup

∫
E

fn = lim sup
∞∑
k=1

∫
Ak

fn ≤
∞∑
k=1

lim sup

∫
Ak

fn ≤
∞∑
k=1

∫
Ak

f =

∫
E

f.

Since lim sup
∫
E
fn ≤

∫
E
f ≤ lim inf

∫
E
fn, we have lim

∫
E
fn =

∫
E
f .

Now for the general case. Let k ∈ N. Then when x ∈ A and n ≥ Nk, we have f+
n (x) =

fn(x) ≥ 0 and f+
n+1(x) = fn+1(x) ≥ fn(x) = f+

n (x), as well as f−n (x) = 0. Thus {f+
n } and

{f−n } both satisfy the previous case. Therefore, lim
n→∞

∫
E
f+
n =

∫
E
f+ =

∫
E
f and lim

n→∞

∫
E
f−n =∫

E
f− = 0. Thus,

lim
n→∞

∫
E

fn = lim
n→∞

∫
E

(f+
n − f−n ) = lim

n→∞

∫
E

f+
n − lim

n→∞

∫
E

f−n =

∫
E

f.

Solution:
We claim that g ≡ 0. First, some bookkeeping. For each x, y > 0 and n ∈ N, let

Sx,y,n =
1

nx2 + n3x−2y
=

x2

nx4 + n3y
,
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so that f(x, y) =
∞∑
n=1

Sx,y,n. Additionally, let Tx,y,n =
1

n2x−4y
. To be thorough, we check

that f and g are both well-defined. Let x, y > 0. Then there is an N > 0 such that when

n ≥ N ,
1

nx2
≤ 1. Thus for n ≥ N ,

Sx,y,n =
1

nx2 + n3x−2y
=

1

(nx2)(1 + n2x−4y)
≤ 1

1 + n2x−4y
<

1

n2x−4y
= Tx,y,n.

Since
∞∑
n=N

Tx,y,n =
x4

y

∞∑
n=N

1

n2
< ∞, it follows that f(x, y) =

∞∑
n=1

Sx,y,n < ∞. So f is well-

defined. Next, note that for for each y > 0 and n ∈ N, Sx,y,n decreases as x → ∞. Hence,

the entire sum f(x, y) =
∞∑
n=1

Sx,y,n decreases as x → ∞. Since f(x, y) is bounded below by

0, it follows that lim
x→∞

f(x, y) exists as a real number and thus that g(y) is well-defined.

Now to business. Fix y > 0. For each k ∈ N, define ϕk : [1,∞) → R by ϕk(t) = Sk,y,n
for t ∈ [n, n + 1). Since for t ∈ [n, n + 1) we have that ϕk(t) = Sk,y,n decreases to 0 as
k → ∞, the sequence {ϕ1 − ϕk} is measurewise eventually nonnegative and increasing.
Additionally, (ϕ1 − ϕk) → ϕ1 since ϕk → 0. Therefore, by the Measurewise Eventually
Monotone Convergence Theorem,∫ ∞

1

ϕ1 − lim
k→∞

ϕk = lim
k→∞

∫ ∞
1

(ϕ1 − ϕk) =

∫ ∞
1

ϕ1. (7)

But ∫ ∞
1

ϕ1 =
∞∑
n=1

∫ n+1

n

ϕ1 =
∞∑
n=1

∫ n+1

n

S1,y,n =
∞∑
n=1

S1,y,n = f(x, y) <∞.

So we can cancel both sides of (7) to obtain lim
k→∞

∫∞
1
ϕk = 0. Finally,

g(y) = lim
x→∞

f(x, y) = lim
k→∞
k∈N

f(k, y) = lim
k→∞
k∈N

∞∑
n=1

Sk,y,n = lim
k→∞
k∈N

∞∑
n=1

∫ n+1

n

Sk,y,n

= lim
k→∞

∞∑
n=1

∫ n+1

n

ϕk = lim
k→∞

∫ ∞
1

ϕk = 0.

Since y was arbitrary, g ≡ 0 as claimed.

Problem 4.5 (Texas A & M, Page 2 Q5). Let f : R → [0,∞] be a Lebesgue measurable
extended real valued function. Define the measure µ by

µ(E) =

∫
E

fdx.

Show that µ is σ-finite iff |f(x)| <∞ Lebesgue a.e.

22



Solution. [Andrew Pensoneault]
Attempt:
Before I started, I needed the definition of σ-finite which according to Chapter 17 in Royden,
a measure space (X,M , µ) is σ-finite if X is the countable union of finite measure sets. In
our case, the measure space is (R,M , µ). I realized in the forward direction, showing that
|f(x)| < ∞ Lebesgue a.e. most likely would involve contradiction. We show somehow
assuming the opposite would result in at least one of the finite measure sets which make
up R having infinite measure. In the backwards direction, we would be most likely doing a
construction proof involving doubly indexed sequence of sets which cover all of R in such a
way that takes advantage of the fact f is a measurable function (and thus sets in the form
{x|f(x) < c} are measurable).
Solution:

Assume that µ is σ-finite, thus R =
⋃∞
n=1En where µ(En) <∞. Assume for contradiction

the set Ẽ = {x|f(x) =∞} is of positive measure. Assume for contradiction, m(Ẽ ∩Ek) = 0

for all k ∈ N. As R =
⋃∞
n=1En, m(Ẽ) = m

(⋃∞
k=1(Ẽ ∩ Ek)

)
=
∑∞

k=1 m(Ek ∩ Ẽ) = 0 which

is a contradiction. Thus there is at least one Ek such that m(Ẽ ∩ Ek) > 0. Now, as µ is
σ-finite, we have µ(Ẽ ∩ Ek) < µ(Ek) <∞. As f(x) is constantly infinite on Ẽ ∩ Ek,

µ(Ẽ ∩ Ek) =

∫
Ẽ∩Ek

f(x)dx =∞.

Also, we have µ(Ẽ ∩ Ek) < µ(Ek), which implies µ(Ek) =∞. This is a contradiction as we
assume µ(Ek) <∞. Thus, |f(x)| <∞ Lebesgue a.e.

Assume |f(x)| <∞ Lebesgue a.e. Now, construct the set Ei,j = {x|f(x) < i}∩ (0, j). As
f is a Lebesgue measurable function, this will be a measurable set. Define V = {x|f(x) =∞}
and notice µ(V ) = 0. By construction, R =

⋃∞
i,j=1Ei,j ∪ V . Also, we have

µ(Ei,j) =

∫
Ei,j

f(x)dx < ij.

As R is the countable collection of finite measure sets, µ is σ-finite.

Problem 4.6 (Texas A & M, Page 2 Q6). For A and B, subsets of R2,define A + B =
{x+ y : x ∈ A and y ∈ B}.
(a) Let A and B be compact subsets of R2. Show that A+B is compact.
(b) Let A and B be closed subsets of R2. Show that A+B is not necessarily closed.

Solution. [Yanqing Shen]

Attempt:
In order to prove the compactness, we could use some techniques like finite open cover(sometimes
together with prove by contradiction) or the equivalent argument of compactness of a metric
space(i.e. complete/totally bounded or sequentially compact arguments). In addition, since
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we are working on a subset of a complete Euclidean space R2, we might have some even
stronger propositions applying here. But my thoughts was still starting with sequences in
our target set A+B.
Solution:

Let {(xk, yk)} be an arbitrary sequence in A + B. By the definition of A + B, we know
that for all k, ∃(ak, bk) ∈ A, (ck, dk) ∈ B such that (xk, yk) can be separated into these two
points (ak, bk) and (ck, dk) (i.e. we have xk = ak + ck and yk = bk + dk for all k).

Thus we get two sequence {(ak, bk)} ⊆ A and {(ck, dk)} ⊆ B respectively. However,
by the compactness of A, we know that ∃ a convergent subsequence of {(ak, bk)} which
convergent to a point in (a, b) ∈ A. Denote this subsequence to be {(aki , bki)}. From this
subsequence if we look to the corresponding subsequence in {(ck, dk)}, which can be denoted
as {(cki , dki)}. Because of the compactness of B, this subsequence {(cki , dki)} will also have
a convergent subsequence {(ckij , dkij )}, call the limit point (c, d) which must in B.

So next, if we retrospect from {(ckij , dkij )} to the corresponding subseqence in {(aki , bki)},to
get {(akij , bkij )}. This {(akij , bkij )} is also a convergent sequences which also convergent to

(a, b). Avoid being lengthy, denote akij as an. Therefore we have two convergent sequences

{(an, bn)} ⊆ A and {(cn, dn)} ⊆ B, with {(an, bn)} → (a, b) and {(cn, dn)} → (c, d), when
n→∞.

In addition, since {(an + cn, bn + dn)} = {(xn, yn)}, then {(xn, yn)} is a subsequence of
{(xk, yk)}.

lim
n→∞

xn = lim
n→∞

(an + cn)

= lim
n→∞

an + lim
n→∞

cn by the fact that both limits exist

= a+ c

Similarly limn→∞ yn = b + d. Therefore {(xn, yn)} is a convergent sequence and the limit
point of this sequence is (a+ b, c+ d). And

(a+ b, c+ d) = (a, b) + (c, d)

with (a, b) ∈ A ,(c, d) ∈ B, thus (a + b, c + d) ∈ A + B. We have {(xn, yn)} converges to a
point in A+B.

So we just showed that for any sequence in A + B, it will have a subsequence that
converges to a point in A + B (i.e. A + B is sequentially compact), therefore A + B is
compact.

For part (b), let A = {x, 1
x
, x > 0}, B = {x,− 1

x
, x > 0}. And A,B are both closed sets

since there is no limit point outside them.
Choosing (a, 1

a
) ∈ A and (a,− 1

a
) ∈ B for some positive a we will get

(a,
1

a
) + (a,−1

a
) = (2a, 0) ∈ A+B, a > 0
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This implies that the set {(x, 0), x > 0} ⊆ A + B. And (0, 0) is a limit point of
{(x, 0), x > 0}, so (0, 0) is a limit point of A + B. While (0, 0) /∈ A + B, hence A + B
is not closed.

Problem 4.7 (Andrew Pensoneault, Spring 2001 Q5). Suppose {an} is a decreasing sequence
of positive numbers and

∑∞
n=0 an <∞. Show limn→∞ nan = 0.

Solution.
Attempt:

I started trying to show that there must exist an index such that for all n > N , an <
1
n

by contradiction, so assuming there was infinitely many indices such that an ≥ 1
n
. Then, I

converted this sum into an integral, and tried to show that this sum was bounded below by
infinity. This was difficult because I was dealing with an arbitrary subsequence.

I next tried to show that a series involving partial sums goes to zero, which could be
converted to nan.
Solution:
Let Sn =

∑n
i=0 an and noticeKn = S2n−Sn =

∑2n
i=n ai <

∑∞
i=n ai, thus we have limn→∞Kn =

0. Since the an are decreasing and convergent, we can find an index N such that if n > N

na2n <
2n∑
i=n

ai = Kn <
ε

2
.

Thus, if n > N ,
2na2n < ε.

Now, define Rn = S2n+1 − Sn =
∑2n+1

i=n ai <
∑∞

i=n ai, so limn→∞Rn = 0. Since the an are
decreasing and convergent, we can find an index N such that if n > N

(n+ 1)a2n+1 <
2n+1∑
i=n

ai = Rn <
ε

2
.

Thus, we have
(2n+ 1)a2n+1 < (2n+ 2)a2n+1 < ε.

Since these two subsequence compose all of {nan}, we have limn→∞ nan = 0.

Problem 4.8 (Kaitlin Healy, Fall 2001 Q7). Suppose {fn} is a sequence of nonnegative
measurable functions on X such that limn→∞ fn(x) = f(x) a.e. and limn→∞

∫
X
fndµ =∫

X
fdµ <∞. Prove that limE fndµ =

∫
E
fdµ for every measurable subset E ⊆ X.

Solution.
Attempt:
I started by writing the integral over E as the integral over X minus the integral over Ec

using additivity over domains. I also knew I would need to use the fact that this sequence
of functions was nonnegative, which led me to think Fatou’s Lemma.
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Solution:
Let E ⊆ X. Since the sequence {fn} is a nonnegative measurable sequence and fn → f
pointwise on E a.e., we can apply Fatou’s Lemma to see∫

E

f ≤ lim inf

∫
E

fn ≤ lim sup

∫
E

fn

Notice the following by properties of liminfs and limsups:

lim sup

∫
E

fn = lim sup

[∫
X

fn −
∫
Ec
fn

]
≤ lim sup

∫
X

fn + lim sup

∫
Ec
−fn

= lim sup

∫
X

fn − lim inf

∫
Ec
fn

Again applying Fatou’s Lemma along with the problem statements, this gives

lim sup

∫
E

fn ≤ lim sup

∫
X

fn − lim inf

∫
Ec
fn

≤
∫
X

f −
∫
Ec
f

=

∫
E

f

This gives us that lim sup
∫
E
fn is both less than or equal to and greater than or equal to∫

E
f . Thus, the two values are equal. Since lim sup fn exists, we can conclude that for any

E ⊆ X,

lim sup

∫
E

fn = lim
n→∞

∫
E

fn =

∫
E

f

Problem 4.9 (Elaina Aceves, 2000 Q7). Prove an orthonormal set in a separable Hilbert
space is at most countable.

Solution.
Attempt:
This is similar to Andrew’s proof from Kansas Fall 2011 problem 5.
Solution:
Let H be the Hilbert space. BWOC, let O be an uncountable orthonormal set in H. Since H
is separable, there exists a countable dense subset of H, call it S. We have that ∀x, y ∈ O,

||x− y||2 =< x− y, x− y >=< x, x > −2 < x, y > + < y, y >=< x, x > + < y, y >= 2

since O is an orthonormal set. Thus, ||x − y|| =
√

2. Therefore, the collection of balls
{B(x,

√
2/3)}x∈O (center x, radius

√
2/3) are disjoint. Since S is dense, there exists yx ∈

B(x,
√

2/3) such that yx ∈ S. Then {yx}x∈O is an uncountable set since O is uncountable, but
{yx}x∈O ⊂ S and S is countable, a contradiction. Hence O must be at most countable.
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Problem 4.10 (W. Tyler Reynolds, Texas A&M, Sep 2002 Q2). Suppose (X,M , µ) is a
measure space, µ a σ-finite measure, and f : X → [0,∞] is measurable. Suppose that∫
A
f dµ = µ(A) for each measurable set A with µ(A) <∞. Prove that f = 1 a.e.

Solution.
Attempt:
On the surface this was a fairly straightforward application of some of the principles we’ve
learned about measure and integration. I had to be careful to qualify my assumptions,
however. It seems feasible that there exists a measure in which some infinite measure set has
no positive-measure, finite-measure subsets. Thus, when my proof called for such subsets
to exist, I had to make sure that this would follow from the σ-finite property of the given
measure. As an additional note, the continuity of measure in a general measure space had
to be checked, and is okay to use by a theorem in Royden.

Lemma 4.11 (The Once Finite Always Finite Lemma). Let (X,M , µ) be a measure space,
where µ is σ- finite. If µ(E) > 0, then there is some A ⊂ E with 0 < µ(A) <∞.

Proof. Since µ is σ-finite, there is a countable collection {An}∞n=1 of finite measure sets such

that X =
∞⋃
n=1

An. If µ(An∩E) = 0 for each n, then we would have µ(E) ≤
∞∑
n=1

µ(An∩E) = 0,

a contradiction. So there is some n with µ(An ∩ E) > 0. Since µ(An) < ∞, we also have
µ(An ∩ E) <∞. So letting A = An ∩ E ⊂ E, we have 0 < µ(A) <∞, as desired.

Solution:
Let E = {x ∈ X|f(x) 6= 1}, F1 = {x ∈ X|f(x) < 1} and F2 = {x ∈ X|f(x) > 1}. Then
E = F1 t F2. Suppose for the sake of contradiction that µ(E) = µ(F1) + µ(F2) > 0. If
µ(F1) > 0, then there must be some 0 ≤ a1 < 1 such that µ{x ∈ X|f(x) < a1} > 0,
since otherwise µ(F1) = lim

a→1−
µ{x ∈ X|f(x) < a} = 0 by continuity of measure (Royden

Chapter 17 Proposition 2). By the Lemma, we can find some A1 ⊂ {x ∈ X|f(x) < a1} with
0 < µ(A1) <∞. Note that ∫

A1

f ≤
∫
A1

a1 = a1µ(A1) < µ(A1).

This is impossible, so we must have µ(F1) = 0 and thus µ(F2) > 0. Thus there must be
some a2 > 1 such that µ{x ∈ X|f(x) > a2} > 0, since otherwise µ(F2) = lim

a→1+
µ{x ∈

X|f(x) > a} = 0 (again by continuity of measure). By the Lemma, we can find some
A2 ⊂ {x ∈ X|f(x) > a2} with 0 < µ(A2) <∞. Note that∫

A2

f ≥
∫
A2

a2 = a2µ(A2) > µ(A2).

This is another impossibility. We can thus conclude that µ(E) = 0. It follows that f = 1
a.e.

27



Problem 4.12 (TAMU, August 2009 Q4). Let (X,Σ, µ) be a measure space with µ(X) <∞.
Given sets Ai ∈ Σ, i ≥ 1 prove that

µ(∩∞i=1Ai) = lim
n→∞

µ(∩ni=1Ai).

Give an example to show that this need not hold when µ(X) =∞.

Solution. [Michael Kratochvil]
Attempt:
The measure of the space being finite reminded me of the proof in Royden for continuity of
measure for intersections of sets, so I restructured the sets to make it look like that. The
example I provided is one we have definitely seen before and I just simply remembered.
Solution:
Define En = X −∩ni=1Ai so that the En’s are ascending. Then by continuity of measure, we
have

µ(∪∞n=1En) = lim
n→∞

µ(En).

But

µ(∪∞n=1En) =µ(∪∞n=1[X − ∩ni=1Ai])

=µ(X − ∩ni=1Ai) by De Morgan’s Identities

=µ(X)− µ(∩∞i=1Ai) by Excision.

And

lim
n→∞

µ(En) =µ(X − ∩ni=1Ai)

= lim
n→∞

[µ(X)− µ(∩ni=1Ai)] by Excision

=µ(X)− lim
n→∞

µ(∩ni=1Ai).

Thus,

µ(X)− µ(∩∞i=1Ai) = µ(X)− lim
n→∞

µ(∩ni=1Ai)

⇒ µ(∩∞i=1Ai) = lim
n→∞

µ(∩ni=1Ai).

As a counterexample, when µ(X) 6<∞, let X = R, µ = λ and Ai = [i,∞). Then ∩∞i=1Ai = ∅
and λ(∅) = 0. But ∩ni=1Ai = An and λ(An) =∞, so limn→∞ λ(An) =∞.

Problem 4.13 (TAMU, August 2009 Q6). Let `2(Z) denote the real Hilbert space of square-
summable functions on the integers. Let xk(≥ 1) be a sequence in `2(Z) that converges
coordinate-wise to zero, ie, such that limk→∞ xk(n) = 0 for all n ∈ Z.

Must xk converge in norm to 0 as k →∞? What about if ||xk|| is assumed to be bounded?
Must xk converge weakly to 0 as k →∞? What about if ||xk|| is assumed to be bounded?
Justify your answers by proof or counter-example.
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Solution. [Amrei Oswald]
Attempt:
A few definitions are helpful for this problem. For x, y ∈ `2 (Z), the norm of x is ||x|| =(∑

k∈Z (x(k))2)1/2
and the inner product of x and y is < x, y >=

∑
k∈Z x(k)y(k). A sequence

{xi} ⊂ `2(Z) converges weakly to x ∈ `2(Z) if for every y ∈ `2(Z), limi→∞ < xi, y >=<
x, y >.
Solution:
Define the sequence of functions xi by

xi(k) =

{
1
k−i |i| 6= k

0 |i| = k
.

Then we have

||xk||2 =
∑
k∈Z

|xi(k)|2 =
∑
k∈Z

1

(k − i)2
=

∞∑
k=i+1

1

(k − i)2
+
−∞∑
k=i−1

1

(k − i)2

∞∑
k=1

1

k2
+
−∞∑
k=−1

1

k2
=
∞∑
k=1

1

k2
+
∞∑
k=1

1

k2
= 2

∞∑
k=1

1

k2
<∞.

The above gives us that xi ∈ `2(Z) and ||xi|| = ||xj|| for every i, j ∈ N. Therefore, ||xi|| is
bounded. Further, we have

lim
i→∞

xi(k) = lim
i→∞

1

i− k
= 0.

However,

lim
i→∞
||xi|| = lim

i→∞

(∑
k∈Z

|xi(k)|2
)1/2

= lim
i→∞

(
2
∞∑
k=1

1

k2

)1/2

=

(
2
∞∑
k=1

1

k2

)1/2

> 0.

Thus, the xi are a bounded sequence of functions in `2(Z) such that limi→∞ xi(k) = 0 for
every k ∈ Z that does not converge to 0 in norm as i→∞.

Define y : Z→ R such that y(k) = 1
k
. Then,∑

k∈Z

(y(k))2 =
∑
k∈Z

1

k2
<∞ =⇒ y ∈ `2(Z).

Then, for every i ∈ N, we have

〈xi, y〉 =
∑
k∈Z

xi(k)y(k) =
∑
k∈Z

1

(k − i)k
=

∞∑
k=i+1

1

(k − i)k
+
−∞∑
k=i−1

1

(k − i)k

=
∞∑
k=1

1

k(k + i)
+
−∞∑
k=−1

1

k(k + i)
=
∞∑
k=1

1

k(k + i)
+
∞∑
k=1

1

k(k − i)
=
∞∑
k=1

2k

(k2 − i2)
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=
i−1∑
k=1

2k

k2 − i2
+

∞∑
k=i+1

2k

k2 − i2
=

i−1∑
k=1

2k

k2 − i2
+
∞∑
k=1

2(k + i)

k(k + 2i)
≥

i−1∑
k=1

2k

k2 − i2
+
∞∑
k=1

1

k
.

Here, the last inequality follows from the fact that k+i
k+2i
≥ 1

2
for every k ∈ N. Since the sum∑∞

k=1
1
k

diverges, the xi do not converge weakly to 0.

Problem 4.14 (TAMU, Sep 2009, Q6). Let λ be Lebesgue measure on R. Is it true that
λ(F\intF ) = 0 for every closed set F ⊆ R?

Solution. [Yanqing Shen]
Attempt:
This problem required us to prove of disprove that a closed set in R has a measure zero
boundary. We already know that the Cantor set C has an empty interior. Thus the boundary
of the Cantor set is itself. However, the measure of the Cantor set is 0 on [0, 1]. A slight
modify is required here.
Solution:
The answer of this argument is NOT true, and below is a counterexample:

Consider the generalized Cantor set, which is constructed in the same manner as the
Cantor set.

The only difference we make for the generalized Cantor set is that each of the intervals
removed at the n-th deletion stage has length α · 3−n, with α ∈ (0, 1) . i.e., every interval we
removed from the Cantor set was timed by a constant α in this case.

Similarly as the Cantor set, we have some same properties for this generalized Cantor
set, denoted as F.

1. F is a closed set.

Since F = ∩Fn, which Fn denotes as the closed set we get after n-th stage.

2. intF = ∅.
BWOC, assume ∃ (a, b) ⊂ F = ∩Fn, this implies (a, b) ⊂ Fn ∀n ∈ N.
And Fn is a disjoint union of 2n closed intervals with same length ln as

ln =
1− α

2n
+

1

3n
,

i.e.,
Fn = t2n

k=1Ek with l(Ek) = ln ∀ k

In addition, lim
n→∞

ln = 0.

However since (a, b) ⊂ Fn ∀n, then ∃ one of these closed intervals Ẽn ⊂ Fn = t2n

k=1Ek,

s.t.
(a, b) ⊂ Ẽn ∀n.
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Since l(Ẽn) = ln ∀n, and lim
n→∞

ln = 0, therefore ∃ a number N, s.t.

lN =
1− α

2N
+

1

3N
< b− a = l(a, b)

i.e., we can not find a closed interval ẼN ⊂ FN such that (a, b) ⊂ ẼN . Hence this is a
contradiction.

Therefore, intF = ∅.

3. λ(F ) = 1− α.
Computer this by consider the set we removed from the [0, 1] and computer its mea-
sure(length).

Denote O = [0, 1] \F and O = tOn with On is the open set consist by 2n−1 open
intervals we delete in n-th stages.

Therefore

λ(F\intF ) = λ(F\∅) = λ(F ) = λ([0, 1] \O) =λ([0, 1])− λ(O)

=1− λ(tOn)

=1−
∑

λ(On)

=1−
∑

l(On)

=1−
∑(

α · 1
3

+ · · ·+ 2n−1 · α · 1
3n

+ · · ·
)

=1−
∞∑
1

α · 2n−1

3n

=1− α ·
∞∑
1

2n−1

3n

=1−
(
α ·

1
3

1−2
3

)
=1− α

And since α ∈ (0, 1), then λ(F ) = 1− α > 0.

By 1, 2, 3, we showed that the generalized Cantor set F has the properties that λ(F\intF ) >
0, and F is a closed set.

Problem 4.15 (TAMU R, January 2010 Q1). Is it possible to find uncountably many disjoint
measurable subsets of R with strictly positive Lebesgue measure?

Solution. [Sara Reed] No. By way of contradiction, assume the collection of disjoint mea-
surable subsets {M}α∈A is uncountable. Note that we can write R as the union of disjoint
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intervals of measure 1 in the following way R = ∪i∈Z[n, n + 1). Let Ii = [i, i + 1). Since
each Mα has strictly positive measure, there exists iα ∈ Z such that m(Mα ∩ Iiα) > 0. Since
there are a countable number of Ii and an uncountable number of Mα, by the Pigeonhole
Principle, there must exist i∗ such that there are an uncountable number of Mββ∈B such that
m(Mβ ∩ Ii∗) > 0. Since {Mβ} are disjoint, we know {Mβ ∩ Ii∗} are disjoint. We also know
∪β∈BMβ ∩ Ii∗ ⊆ Ii∗ . Therefore, by additivity of measure over disjoint sets, we have

m(
⋃
β∈B

Mβ ∩ Ii∗) =
∑
β∈B

m(Mβ ∩ Ii∗) ≤ m(Ii∗) = 1 <∞.

We have shown that
∑

β∈Bm(Mβ ∩ Ii∗) < ∞. Therefore, it must be the case that B is
countable, a contradiction. Therefore, {M}α∈A is countable. We conclude that it is not
possible to find uncountably many disjoint measurable subsets of R with strictly positive
Lebesgue measure.

Problem 4.16 (Texas A& M Real, August 2009 Q3). Let {fn}∞n=1 be a sequence of nonzero
elements of L2[0, 1]. Prove that there exists g ∈ L2[0, 1] such that for all n ≥ 1, we have∫ 1

0
g(x)fn(x)dx 6= 0

Solution. [Jared Grove]
Attempt:
Not really anything. I asked Rolando
Solution:
Gram-Schmidt: When you want to make a system of orthogonal vectors out of a collection
of vectors:

uk = vk −
k−1∑
j=1

projuj(vk)

ek =
uk
||uk||

⇒ Since we don’t have much information about the fn we will consider two cases. The
first being that the fn are othogonal to each other and the second being that they aren’t. If
they are all orthogonal we know that 〈fn, fm〉 = 0 when m 6= n, so define

g =
∞∑
n=1

fn
2n||fn||

Then we will have
∫ 1

0
gfndx = 〈g, fn〉 =

∑∞
n=1

〈fm,fn〉
2m||fm|| = 〈fn,fn〉

2n||fn|| 6= 0 for all n.
Now we will consider the case where they are not orthogonal. We will proceed by making

an orthonormal basis that will span everything that the fn span. This will happen by
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following the Gram-Schmidt process outlined above:

e1 =
f1

||f1||

u2 = f2 −
〈f1, f2〉
||f1||2

f1 = f2 − 〈f2, e1〉e1

e2 =
u2

||u2||
, if u2 6= 0, else ignore.

u3 = f3 − 〈f3, e1〉e1 − 〈f3, e2〉e2

e3 =
u3

||w3||
, if u3 6= 0, else ignore.

uk = fk −
k−1∑
j=1

〈fk, ej〉ej

ek =
uk
||uk||

, if uk 6= 0, else ignore.

Note that we ignore the various ek when wk = 0. This is because when wk = 0 there was
some em with m < k such that fk was othogonal to em. This means that fk is just some
linear multiple of fm and has already been accounted for. Furthermore we have that each
en ∈ L2[0, 1] as they are completely defined based fn ∈ L2[0, 1]. Now we will define

g =
∞∑
n=1

1

2n
en

where the en are all of the ek that were not ignored. Hence we will have g ∈ L2[0, 1] as well.
Next we will seen that we also have

||g||22 =

∫ 1

0

∞∑
n=1

∞∑
m=1

1

2n
1

2m
emen

=
∞∑

n,m=1

1

2n+m

∫ 1

0

enem

=
∞∑

n,m=1

1

2n+m
δn,m

=
∞∑
n=1

1

22n

< ∞

This is because each en is orthogonal by construction and 〈en, em〉 = 0 when n 6= m.
Since each fn is not orthogonal to one of the ek of g we have that (assuming we didn’t throw

out any of the ek for simplicity)
∫ 1

0
g(x)fn(x)dx = 〈g, fn〉 =

∑∞
m=1

〈em,fn〉
2m

= 〈en,fn〉
2n
6= 0 for
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all n ≥ 1. This is because 〈fn, em〉 = 0 for n 6= m. For example: 〈f1, e1〉 = 〈f1,f1〉
||f1|| 6= 0.

But 〈f1, e2〉 =
〈f1,f2〉− 〈f2,f1〉||f1||2

〈f1,f1〉

||u2|| = 〈f1,f2〉−〈f2,f1〉
||u2|| = 0. If you want you can probably make

an induction argument about this process working, but I leave that as an excercise for the
reader.

Problem 4.17 (W. Tyler Reynolds, Texas A&M, Aug 2010 Q2). Let E be a subset of [0, 1]
with positive outer Lebesgue measure, i.e. m∗(E) > 0. Show that for each α ∈ (0, 1) there is
an interval I ⊂ [0, 1] so that

m∗(E ∩ I) ≥ α`(I).

Solution.
Attempt:
My first instinct was to try a constructive proof based around the definition of outer measure.
After not seeing anything promising with this approach, I quickly moved to a proof by
contradiction. The advantage of this approach was that instead of trying to pull together
infinitely many intervals somehow to construct one interval with a particular property, I
could obtain a property that would hold for all of the intervals and then use that to find a
contradiction about the whole structure of the set being measured. (For better or worse, I
also have a much better knack for finding logical errors than for thinking constructively. If
anyone comes up a constructive proof, I’d be happy to see it).
Solution:
Let α ∈ (0, 1) and suppose for the sake of contradiction that for each interval I ⊂ [0, 1] we
have m∗(E ∩ I) < α`(I). Notice that since E ⊂ [0, 1], m∗(E) ≤ 1 < ∞. Let ε > 0. By the

definition of outer measure, we can find a countable collection {Ik}∞k=1 with E ⊂
∞⋃
k=1

Ik such

that
∞∑
k=1

`(Ik) < m∗(E) +
ε

α
. By countable subadditivity of outer measure,

m∗(E) ≤
∞∑
k=1

m∗(E ∩ Ik) ≤ α
∞∑
k=1

`(Ik) < α(m∗(E) +
ε

α
) = αm∗(E) + ε.

Since ε was arbitrary, this implies that m∗(E) ≤ αm∗(E), a contradiction since m∗(E) > 0
and α ∈ (0, 1). It follows that there is some interval I ⊂ [0, 1] with m∗(E ∩ I) ≥ α`(I).

Problem 4.18 (Kansas, Fall 2013, Q1). Let X be Banach space. {xn} be a sequence from
X that converges weakly to 0. Prove that, the sequence {||xn||} is bounded.

Solution. [Yanqing Shen]
Attempt:
For this problem, we might need to apply some fundamental results in functional analysis,
i.e., Principle of Uniformly Boundedness and Banach-Steinhaus Theorem. And after talked
with Rolando about a few concepts in dual space. We can obtain the proof by the following
argument.
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Solution:
A few preliminary concepts in this problem:

1. By the definition of {xn} converges weakly to 0.

We have lim
n→∞

f(xn) = 0, ∀ f ∈ X∗. Note: X∗ is the dual space of X as the collection

of bounded linear functional on X.

i.e., f here is defined by f : X → F and F is some vector space(F could be R or C).

2. Since X∗ is a vector space, therefore we can take its dual again, which is called the
double dual of X, say X∗∗.

And there is a naturally defined continuous linear operator from a normed space to its
double dual

ϕ :X −→ X∗∗

x 7−→ ϕx

such that ϕx(f) = f(x), ∀x ∈ X, ∀ f ∈ X∗.
A few remarks below:

X∗∗ can be described as the set {ϕ : X∗ −→ F, withϕ linear functional} ,
The induced map x 7−→ ϕx is injective,

We regard this map as canonical embedding into the double dual is isometry,

||ϕx|| = ||x|| (by Hahn-Banach Theorem).

And we will introduce this map ϕ in this problem.

3. A consequence of Uniform Boundedness Principle

Theorem[Banach-Steinhaus]:

X be a Banach space, Y a normed linear space, and {Tn : X → Y } a sequence of
continuous linear operators. Suppose that ∀x ∈ X, lim

n→∞
Tn(x) exist in Y.

Then {Tn : X → Y } is uniformly bounded. Furthermore, the operator T : X → Y
defined by T (x) = lim

n→∞
Tn(x), ∀x ∈ X is linear and continuous.

Consider the weakly convergent sequence {xn} in X, and for each xn, ∃ϕxn s.t.

ϕxn(f) = f(xn), ∀ f ∈ X∗.
with {ϕxn} a sequence of continuous linear operators.

And lim
n→∞

ϕxn(f) = lim
n→∞

f(xn) = 0.(by the weakly converges argument at very top).

This implies that the ϕxn(f) exists for all f in X∗,
therefore by the Banach-Steinhaus Theorem, we have {ϕxn} is uniformly bounded.
i.e., ||ϕxn|| ≤M, ∀n, there is a constant M .
In addition, we have ||ϕxn|| = ||xn||, therefore ||xn|| is bounded for all n.
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5 UI Urbana-Champaign Quals

Problem 5.1 (Nicholas Camacho, January 2015 Q5). Assume that f : R → R is nonde-
creasing, ∫

R
f ′dm = 1, lim

x→−∞
f(x) = 0, lim

x→∞
f(x) = 1.

Prove that f is absolutely continuous on any interval [a, b].

Solution.
Attempt:
I first thought about going directly by the definition of absolute continuity to start this
problem. However, the definition we use does not involve integration, nor limits. So of
course, I began thinking about equivalent statements of absolute continuity. In Royden page
124, we have a theorem that says f absolutely continuous on [a, b] =⇒ f differentiable

almost everywhere on (a, b), f ′ is integrable over [a, b], and
∫ b
a
f ′ = f(b)− f(a). Essentially,

an absolutely continuous function satisfies the Fundamental Theorem of Calculus. But I’m
sure you can already see the problem with trying to use this theorem: I want to prove that
f is absolutely continuous, I can’t assume it.

But wait, all hope is not lost. On the very next page, we have a theorem which states f
is absolutely continuous on [a, b] ⇐⇒ it is an indefinite integral over [a, b]; that is

f(x) = f(a) +

∫ x

a

g, for some g ∈ L1([a, b]).

Evaluating at x = b and letting g = f ′ yields
∫ b
a
f ′ = f(b)− f(a). So lets show this!

... Or I could have turned just ONE MORE PAGE, avoided all this nonsense, and used
the Corollary which says: Let f be monotone on [a, b]. Then f is absolutely continuous on

[a, b] iff
∫ b
a
f ′ = f(b)− f(a). So let’s just use this.

Solution:
Since f is nondecreasing, it is increasing and we therefore have1 that∫ b

a

f ′ ≤ f(b)− f(a).

We show the opposite inequality. For appropriate x ∈ R, we have by the same reasoning∫ a

x

f ′ ≤ f(a)− f(x) and

∫ x

b

f ′ ≤ f(x)− f(b),

Then by Additivity over Domains,

1 =

∫
R
f ′ =

∫ ∞
−∞

f ′ =

∫ a

−∞
f ′ +

∫ b

a

f ′ +

∫ ∞
b

f ′ = lim
x→−∞

∫ a

x

f ′ +

∫ b

a

f ′ + lim
x→∞

∫ ∞
b

f ′,

1Corollary 4, page 113 Royden
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and so ∫ b

a

f ′ = 1− lim
x→−∞

∫ a

x

f ′ + lim
x→∞

∫ ∞
b

f ′

≥ 1 + lim
x→−∞

f(x)− f(a) + lim
x→∞

f(b)− f(x)

= 1 + 0− f(a) + f(b)− 1

= f(b)− f(a).

Problem 5.2 (Kaitlin, January 2015 Q6). Let fn be a sequence of Lebesgue measurable
functions on the interval [0, 1]. Assume that fn converges to a function f almost everywhere,
and that ∫

[0,1]

|fn|2dλ ≤ 1

for each n. Prove that fn converges to f in L1.

Solution.
Attempt:
To start, I wrote out all of the definitions or theorems I thought I may need to solve this
problem.

• fn converging to f a.e.: limn→∞ fn(x) = f(x) for all x ∈ [0, 1] \ A where λ(A) = 0.

• fn converging to f in L1: limn→∞ ||f − fn||1 = 0 or limn→∞ fn = f in L1.

• Egoroff’s Theorem: Assume E has finite measure. Let {fn} be a sequence of mea-
surable functions on E that converges pointwise on E to the real-valued function f .
Then for each ε > 0 there is a closed set F contained in E for which

{fn} → f uniformly on F and λ(E \ F ) < ε

Since the convergence is pointwise a.e., there is a set E in [0, 1] such that λ(E) = 1 (we
are looking at the complement of the measure zero set). Now we tried applying Egoroff’s
Theorem which gave us a closed set F ⊆ E such that λ(F ) = 1− ε on which fn converges to
f uniformly. Another way that we could write the uniform convergence is supx∈F |fn(x) −
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f(x)| → 0. Let Mn = supx∈F |fn(x)− f(x)|. This all gave us the following:

||fn − f ||1 =

∫
[0,1]

|fn − f |

=

∫
F

|fn − f |+
∫
F c
|fn − f |

≤
∫
F

Mn +

∫
F c
|fn − f |

= Mn(1− ε) +

∫
F c
|fn − f |

≤Mn +

∫
F c
|fn − f |

This attempt direction/attempt ended up not working because we could not find a bound
for |fn − f | in F c.
Solution:
By the statement of the problem, for every n we have∫

[0,1]

|fn|2 ≤ 1

Now, if we raise both sides of this inequality to the half power, we find

||fn||2 ≤ 1

for every n. This gives us a family of functions in L2([0, 1]) that are bounded. By Corollary
2 on page 142, we can conclude that the collection of fn’s is uniformly integrable over [0, 1].
By definition, this means for every ε > 0, there is a δ > 0 such that for every fn, if A ⊆ E
is measurable and m(A) < δ, then

∫
A
|fn| < ε. Notice the following:∫

[0,1]

|fn| =
∫ δ

0

|fn|+
∫ 2δ

δ

|fn|+ · · ·+
∫ 1

mδ

|fn|

Each of these integrals has length δ so we can use the uniform integrability to say∫
[0,1]

|fn| ≤ (m+ 1)ε

This tells us that each fn is integrable over [0, 1] and thus, {fn} ∈ L1([0, 1]). Now, by the
Vitali Convergence Theorem (page 94), we can conclude that f is integrable over [0, 1] and
limn→∞

∫
[0,1]

fn =
∫

[0,1]
f . This also implies that limn→∞

∫
[0,1]
|fn| =

∫
[0,1]
|f |. Since we now

know that f is integrable over [0, 1], we know f ∈ L1([0, 1]). Applying Theorem 7 (page
148), we conclude that {fn} → f in L1([0, 1]).

Problem 5.3 (Adam Wood, Fall 2015 Q4). Let (X,M , λ) be a finite measure space. Fix
p > 0, and suppose that a sequence En of measurable subsets satisfies

∑∞
n=1(λ(En))p <∞.
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i. Prove that λ(lim sup(En)) = 0 provided p ≤ 1.

ii. Give a counterexample to the statement in part i, when p > 1.

Solution.
Attempt:
Part i. is essentially a generalization of the Borel-Cantelli Lemma and the proof is very
similar to that of the Borel-Cantelli Lemma. For part ii., I thought that since

∑n
i=1

(
1
n

)p
converges for p > 1, that I should find a sequence of measurable sets each with measure 1

n
.

I also thought using something with the generalized Cantor set would be useful.
Solution:
i. Let p ≤ 1. Recall that lim sup(En) =

⋂∞
n=1

⋃∞
k=nEk. Since X has finite measure,

⋂∞
k=1Ek

has finite measure. Note that
⋃∞
k=nEk is a descending sequence of sets. By the continuity

of measure and the countable subadditivity of measure,

λ(lim sup(En)) = λ

(
∞⋂
n=1

∞⋃
k=n

Ek

)
= lim

n→∞
λ

(
∞⋃
k=n

Ek

)
≤ lim

n→∞

∞∑
k=n

λ(Ek). (8)

We must now compute the above limit. Since
∑∞

n=1(λ(En))p < ∞, for every ε > 0, there
exists N so that

∑∞
k=N(λ(Ek))

p < ε. We can choose ε < 1. Then, λ(Ek) < 1 for all k. Since
λ(Ek) ≤ (λ(Ek))

p when λ(Ek) < 1 and p ≥ 1, we can see that

∞∑
k=N

λ(Ek) ≤
∞∑
k=N

(λ(Ek))
p < ε.

Therefore, limn→∞
∑∞

k=n λ(Ek) = 0. By (1), λ(lim sup(En)) = 0.

ii. Let p > 1. We first quote a (modified version of a) lemma from Harmonic Analysis, by
Elias Stein:

Let {En} be a collection of subsets of a fixed compact set with
∑∞

n=1m(En) =∞. Then
there exists a sequence of translates Fj = Ej + xj so that

lim sup(Fj) = [0, 1]

except for a set of measure zero.
Note that

∑∞
n=1 λ([0, 1

n
]) =

∑∞
n=1

1
n

= ∞. By the lemma, there exists a sequence of
translates Fn of [0, 1

n
] so that lim sup(Fn) = [0, 1] except for a set of measure zero. That is,

there exists a sequence of translates Fn and a set of measure zero, G, so that lim sup(Fn)∪G =
[0, 1]. Then,

λ(lim sup(Fn)) = 1− λ(G) = 1,

so that λ(lim sup(En)) 6= 0. Also,
∑∞

n=1(λ(Fn))p =
∑∞

n=1( 1
n
)p < ∞. The collection Fn

provides a counterexample to the statement in part i.
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Now, for a more concrete counterexample. Let x ∈ R ∼ Q. Let En = {bzc | z ∈
[0, 1

n
] + nx}. Then, for all n, λ(En) = λ([0, 1

n
]) = 1

n
. Note that

∞∑
n=1

(λ(En))p =
∞∑
n=1

(
1

n

)p
<∞

since the p-series converges for p > 1. A similar argument to that in the above lemma shows
that, apart from a set of measure zero, lim sup(En) = [0, 1]. So,

λ(lim supEn)) = λ

(
∞⋂
n=1

∞⋃
k=n

Ek

)
= λ([0, 1]) = 1 6= 0

So, this collection of sets provides a counterexample the statement in part i., when p > 1.

Problem 5.4 (Rolando, May 2015 Q3). Suppose that µ is a measure on X with µ(X) <∞
and fn ∈ L(µ) such that fn(x)→ f(x) pointwise a.e. Further suppose there exists p > 1 and
a constant C such that

sup
n∈N

∫
X

|fn|p ≤ C.

Prove fn converges to f in L1(µ)

Solution.
Attempt:
Let’s see how we can simplify this problem. Suppose we had uniform convergence instead
of pointwise. If fn → f uniformly a.e., for a given ϕ > 0 there exists an N ∈ N so that
n ≥ N implies |fn(x) − f(x)| < ε for almost every x ∈ X. This is equivalent to saying
ess sup {|fn(x)− f(x)|} := normfn − f∞ < ϕ. Now if n ≥ N it follows∫

X

|fn − f | ≤
∫
X

ε < εµ(X), (9)

which can be made arbitrarily smaller.
While we may not have uniform continuity, Egoroff’s Theorem says we are not too far

away from it. Solution:
Let fn → f pointwise a.e on X and let ε > 0. Then there exists F ⊂ X closed such that

1. fn → f uniformly on F , and

2. µ(F c) < ε (we will revise this estimate, if necessary).

Now partitioning X = F t F c, we have∫
X

|fn − f | =
∫
F

|f − fn|+
∫
F c
|fn − f | (10)
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Now since fn → f uniformly on F , Equation (9) implies there exists an N ∈ N such that if
n ≥ N , the first integral in Equation (10) has the estimate∫

F

|fn − f | < ε. (11)

Now to estimate the second integral in Equation (10), we use the triangle inequality and
Fatou’s Lemma to obtain∫

F c
|fn − f | ≤

∫
F c
|fn|+

∫
F c
|f | ≤

∫
F c
|fn|+ lim inf

∫
F c
|fn|. (12)

Since everything is it terms of fn, we estimate only the first part of Equation (12). Let q be
the Hölder conjugate of p. From Hölder’s Inequality, we have∫

F c
|fn| =

∫
F c
|fn| · 1 ≤ ‖fn‖p‖1‖q ≤ C‖1‖q = C

(∫
Fc

1q
)1/q

= Cµ(F c)1/q (13)

which means need to assume µ(F c) < εq/C. Note this changes nothing else. Also notice we
have the same bound on lim inf

∫
Fc
|fn|. Combining Equations (11) and (13) with(10), we

now obtain that for ε > 0 and n ≥ N∫
X

|fn − f | < 3ε,

or synonymously, ‖fn − f‖1 → 0.

Problem 5.5 (Elaina Aceves, January 2015 Q1). For each statment, give a counterexample
or a short proof/explanation.
a. If f ′(x) = 0 a.e. on R, then f is constant on R.
b. If f ′(x) = 0 a.e. on R and f is absolutely continuous on R, then f is constant on R.

Solution.
Attempt:
For part (a), I immediately started looking for a counterexample. I first considered the
Dirichlet function, but this is not differentiable. Then I realized a step function will do the
trick.

For part (b), my intuition was that I would need to prove the statement. However, to
use absolute continuity, we need to restrict ourselves to closed intervals in R. Thus, I would
prove the statement first on any arbitrary closed interval in R to prove the statement on all
of R (after excising the set of measure 0 where f ′(x) 6= 0). Also, to use absolute continuity, I
would need a finite disjoint collection of open intervals. Two sections before the definition of
absolute continuity in Royden is the Vitali Covering Lemma which gives us an appropriate
collection of intervals, but I need a collection of intervals that cover in the sense of Vitali.
Thus, I knew I would need to create such a collection using the only property that I had,
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the fact that f ′(x) = 0 a.e. on R. This method of reasoning gives the proof that I gave in
class, which is correct but very lengthy. However, Rolando drew my attention to another
result that says that f is absolute continuous if and only if f is an indefinite integral over
the closed interval which gives us the result much faster. That solution is given below.
Solution:

a. Let f(x) =

{
0 if x ≤ 0

1 if x > 0
Then f ′(x) = 0 a.e. on R and f is not constant on R.

b. We will prove that f is constant on [a, b] for any closed interval in R. We have that f
is absolutely continuous on [a, b] if and only if f(x) = f(a) +

∫ x
a
f ′ for x ∈ (a, b] (Theorem 11

on p.125 in Royden). Since f ′(x) = 0 a.e. on R, we have that
∫ x
a
f ′ = 0. Hence f(x) = f(a)

for all x ∈ (a, b]. Thus f is constant on [a, b] for any closed interval in R, and must be
constant on R.

Problem 5.6 (UI Urbana-Champaign, August 2015 Q3). Suppose that f is a continuous
function on R, with period 1. Prove that

lim
N→∞

1

N

N∑
n=1

f(nθ) =

∫ 1

0

f(t)dt (#)

for every irrational number θ ∈ R.

Solution. [Qing Zou] Before proving the statement, we need to introduce the following claim
first.

Claim: If f is continuous, with period 1. Then for every ε > 0, there is a trigonometric
polynomial g such that

|f(t)− g(t)| < ε

for every real t.
One can find the proof of this claim in Rudin’s book “Real and Complex Analysis”

(Page 91, Theorem 4.25). We will use the claim later.
Now, let us consider the function w(t) = e2πikt, k ∈ Z.
It is clear that w(t) satisfies (#) when k = 0.
If k 6= 0, then e2πiknθ 6= 0 since θ is irrational. Thus, we can get

1

N

N∑
n=1

e2πiknθ =
1

N

e2πikθ(e2πikNθ − 1)

e2πikθ − 1
.

This is because the sequence {e2πiknθ} is a geometric sequence with ratio e2πikθ. Therefore,
we have ∣∣∣∣∣ 1

N

N∑
n=1

e2πiknθ

∣∣∣∣∣ =
1

N
·
∣∣e2πikθ

∣∣ · ∣∣∣∣e2πikNθ − 1

e2πikθ − 1

∣∣∣∣
≤ 1

N

2

|e2πikθ − 1|
→ 0 (N →∞).
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So,

lim
N→∞

1

N

N∑
n=1

e2πiknθ = 0. (k 6= 0)

Also, ∫ 1

0

e2πiktdt =
1

2πik
e2πikt

∣∣∣∣1
0

= 0 (k 6= 0).

To conclude, for all k ∈ Z, we have

lim
N→∞

1

N

N∑
n=1

e2πiknθ =

∫ 1

0

e2πiktdt.

Let g(t) =
∑M

k=−M cke
2πikt, then by the aforementioned analysis, we can obtain that

lim
N→∞

1

N

N∑
n=1

g(nθ) =

∫ 1

0

g(t)dt.

So, by the claim, we know that ∀ε > 0, ∃g =
∑M

k=−M cke
2πikt such that |f−g| < ε. Thus,

with h = f − g, we have∣∣∣∣∣ 1

N

N∑
n=1

f(nθ)−
∫ 1

0

f(t)dt

∣∣∣∣∣
=

∣∣∣∣∣ 1

N

N∑
n=1

[h(nθ) + g(nθ)]−
∫ 1

0

(h(t) + g(t))dt

∣∣∣∣∣
=

∣∣∣∣∣ 1

N

N∑
n=1

h(nθ) +
1

N

N∑
n=1

g(nθ)−
∫ 1

0

h(t)dt−
∫ 1

0

g(t)dt

∣∣∣∣∣
≤

∣∣∣∣∣ 1

N

N∑
n=1

h(nθ)−
∫ 1

0

h(t)dt

∣∣∣∣∣+

∣∣∣∣∣ 1

N

N∑
n=1

g(nθ)−
∫ 1

0

g(t)dt

∣∣∣∣∣
≤ 1

N

n∑
n=1

|h(nθ)|+
∫ 1

0

|h(t)|dt+

∣∣∣∣∣ 1

N

N∑
n=1

g(nθ)−
∫ 1

0

g(t)dt

∣∣∣∣∣
≤ε+ ε+

∣∣∣∣∣ 1

N

N∑
n=1

g(nθ)−
∫ 1

0

g(t)dt

∣∣∣∣∣ .
Since

lim
N→∞

1

N

N∑
n=1

g(nθ) =

∫ 1

0

g(t)dt,
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then for the ε above, ∃M > 0 and when N > M , we have∣∣∣∣∣ 1

N

N∑
n=1

g(nθ)−
∫ 1

0

g(t)dt

∣∣∣∣∣ < ε.

Therefore, for ε > 0, ∃M > 0 such that when N > M , we have∣∣∣∣∣ 1

N

∑
n=1

Nf(nθ)−
∫ 1

0

f(t)dt

∣∣∣∣∣ < 3ε,

which means

lim
N→∞

1

N

N∑
n=1

f(nθ) =

∫ 1

0

f(t)dt.

This completes the proof.

Problem 5.7 (Kaitlin Healy, January 2016 Q2). Let f be a Lebesgue measurable function
on the closed interval [0, 1]. Prove that

(a) limp→∞ ||f ||p = ||f ||∞
(b) Give a counterexample to show that (a) fails when [0, 1] is replaced by R.

Solution.
Attempt:
Kind of figured this out first try.
Solution:
(a) Let M = ||f ||∞. By definition we know |f(x)| ≤ M for almost every x ∈ [0, 1]. This
gives us the following

||f ||p =

[∫ 1

0

|f(x)|pdx
]1/p

≤
[∫ 1

0

Mpdx

]1/p

= M · λ([0, 1])1/p

= M

Taking a limit as p→∞ on both sides of this inequality, we have

lim
p→∞
||f ||p ≤M

Let ε > 0. Since M is the essential supremum of f by definition, we know there exists
an f(x) such that |f(x)| ≥M − ε. Define E = {x ∈ [0, 1] | |f(x)| ≥M − ε}. We know from
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the previous statement that this set is nonempty and thus λ(E) > 0. Notice the following

||f ||p =

[∫ 1

0

|f(x)|pdx
]1/p

≥
[∫

E

|f(x)|pdx
]1/p

≥
[∫

E

(M − ε)pdx
]1/p

= (M − ε)λ(E)1/p

Since ε was arbitrary, we can take it to zero and thus, we have

||f ||p ≥Mλ(E)1/p

Taking a limit as p→∞ on each side, we have

lim
p→∞
||f ||p ≥M

Combining this inequality with the one from above, we can conclude

lim
p→∞
||f ||p = M = ||f ||∞

(b) I think for a counterexample, we can use

f =

{
1 x ∈ Z
0 otherwise

This would give us

lim
p→∞
||f ||p = lim

p→∞

[∫
R
|f |p
]1/p

= lim
p→∞

[0]1/p

= lim
p→∞

0

= 0

However, since ||f ||∞ is the essential supremum of f over R, we have ||f ||∞ = 1. Since 1 6= 0,
we have our contradiction.

Problem 5.8 (Andrew Pensoneault, May 2016, Q6). TO FINISH

Attempt:
TO FINISH
Solution:
TO FINISH
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Problem 5.9 (UI Urbana-Champaign, Fall 2016 Q4).
Fix 1 ≤ p <∞.
i) Assume that f is absolutely continuous on every compact interval, and f ′ ∈ Lp(R,m).
Prove that ∑

n∈Z

|f(n+ 1)− f(n)|p <∞.

ii) Prove or give a counterexample: The statement above remains valid if we instead assume
that f is continuous, of bounded variation on every compact interval, and f ′ ∈ Lp(R,m).

Solution. [Alex Bates]
Attempt:
i) At first, I had no clue how to do this problem. Until I looked at Theorem 10 of §6.5 of
Royden (pg. 124) and had Equation 14 below. But I kept trying to estimate:

∑
n∈Z

|f(n+ 1)− f(n)|p =
∑
n∈Z

∣∣∣∣∫ n+1

n

f ′
∣∣∣∣p ≤∑

n∈Z

(∫ n+1

n

|f ′|
)p

, (Equation 14)

and got stuck. I could be done if I could move the p inside the integral; that’s where
Rolando pointed my attention to Jensen’s Inequality. Since xp is convex (on (0,∞)), Jensen’s
Inequality allows me to move the p inside the integral. However, I got stuck again when
I realized that I needed (by Jensen’s Inequality) a function that was not only convex over
(0,∞) but over (−∞,∞) = R. I was able to define a better function (see my solution below)
and the proof went through.

ii) My first instinct was to use f being continuous and of bounded variation to prove
that it was absolutely continuous. However, this is false. It is impossible to prove the claim
given; it is another instance where the Cantor(-Lebesgue) function comes in handy.
Solution:
i) First, define φ : R→ R by:

φ(x) =

{
0 if x ≤ 0

xp if x > 0.

Fix n ∈ Z. By hypothesis, since the closed and bounded interval [n, n + 1] is compact, f
is absolutely continous on [n, n + 1]. By Theorem 10 of §6.5 of Royden (pg. 124), f ′ is
integrable over [n, n+ 1] and we have:∫ n+1

n

f ′ = f(n+ 1)− f(n) <∞. (14)

Note that, by definition, f ′ being integrable over [n, n+ 1] means that |f ′| is integrable over
[n, n+ 1]. Also, χ[n,n+1] · |f ′|p ≤ |f ′|p on R and so by monotonicity of integration,∫ n+1

n

|f ′|p =

∫
R
χ[n,n+1] · |f ′|p ≤

∫
R
|f ′|p <∞, (f ′ ∈ Lp(R,m))
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which tells us that |f ′|p is integrable on [n, n + 1]. (We need this for our application of
Jensen’s Inequality later.)

Now, define φ : R→ R by:

φ(x) =

{
0 if x ≤ 0

xp if x > 0,

and observe that |f ′|p = φ(|f ′|). Since φ can be shown to be convex, by application of
Jensen’s Inequality of §6.6 of Royden (pg. 133) we see that:(∫ n+1

n

|f ′|
)p

= φ

(∫ n+1

n

|f ′|
)
≤
∫ n+1

n

φ(|f ′|) =

∫ n+1

n

|f ′|p. (15)

But now: ∑
n∈Z

|f(n+ 1)− f(n)|p =
∑
n∈Z

∣∣∣∣∫ n+1

n

f ′
∣∣∣∣p (Equation 14)

≤
∑
n∈Z

(∫ n+1

n

|f ′|
)p

≤
∑
n∈Z

∫ n+1

n

|f ′|p (Equation 15)

=

∫
R
|f ′|p

<∞. (f ′ ∈ Lp(R,m))

4
ii) Consider the Cantor(-Lebesgue) function φ : [0, 1]→ [0, 1] whose graph is given below:

Observe that the Cantor function is constant on O := [0, 1] \C, the relative complement
of the Cantor Set C in [0, 1], and m(C) = 0. Furthermore, φ(1) = 1 and φ(0) = 0 so that
φ(1)−φ(0) = 1. Now define f : R→ R by f(x) = φ(x−bxc)+bxc, and observe that for any

n ∈ Z, [n, n + 1) 3 x φ7−→ φ(x − n) + n. We’ll show briefly that this function is continuous

47



and of bounded variation on every compact interval and f ′ ∈ Lp(R,m) so that it satisfies
the hypotheses of the claim but not the conclusion.

First thing’s first: continuity. Since f mimics φ’s behavior on [0, 1) on every interval
[n, n+ 1), where n ∈ Z, it can be shown that f agrees on the endpoints of each interval, i.e.,
for any n ∈ Z, limx→n− f(x) = f(n).

Second, to bounded variation! Let [a, b] ⊂ R be compact with a < b.2 Set c := bac and
d := dbe. Then [a, b] ⊂ [c, d], where c, d ∈ Z. But then:

TV (f |[a,b]) ≤ TV (f |[c,d]) (“Linearity” of TV )

= f(d)− f(c) (Monotonicity of f)

= d− c
<∞,

so that f is of bounded variation on [a, b], hence for any compact interval.
Third: the Lp condition. Observe that φ is constant a.e. on [0, 1] and has derivative

φ′(x) = 0 for x ∈ O = [0, 1]\C. Then:
∫

[0,1]
|φ′|pdm =

∫
O
|φ′|pdm+

∫
C
|φ′|pdm =

∫
O
|φ′|pdm =∫

O
|0|pdm =

∫
O

0dm = 0. Hence,∫
R
|f ′|pdm =

∑
n∈Z

∫
[n,n+1]

|f ′|pdm

=
∑
n∈Z

∫
[0,1]+n

|(φ(x− n) + n)′|pdm

=
∑
n∈Z

∫
[0,1]+n

|φ′(x− n)|pdm

=
∑
n∈Z

∫
[0,1]

|φ′(x)|pdm

=
∑
n∈Z

0

= 0,

which implies that f ′ ∈ Lp(R,m). But lastly,∑
n∈Z

|f(n+ 1)− f(n)|p =
∑
n∈Z

|n+ 1− n|p =
∑
n∈Z

1p =∞.

Problem 5.10 (Nicholas Camacho, May 2017 Q1). Let (X,M , µ) be a finite measure space
(i.e., µ(X) <∞), let α > 0, and let (An)n∈N ⊆M be such that µ(An) ≥ α for each n ∈ N.
Put

A := {x ∈ X : ∃∞n x ∈ An},
2We’re assuming the interval [a, b] is nondegerate, otherwise TV (f |[a,b]) = TV (f |{a}) = 0, which is no

fun.
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where ∃∞ means “for infinitely many n ∈ N”.

(a) Show that A ∈M .

(b) Prove that µ(A) ≥ α.

(c) Give an example of a measure space (X,M , µ) with µ(X) = ∞ and a sequence
(An)n∈N ⊆M such that µ(An) ≥ 1 for each n ∈ N, But A = ∅

Proof. If x ∈ A then no matter how large an N we pick, we can always find a set in (An)n∈N
of index larger than N containing x. Formally,

A = {x ∈ X : ∀n ∈ N,∃k ≥ n s.t. x ∈ Ak} =
∞⋂
n=1

∞⋃
k=n

Ak.

Since M is a σ-algebra, we have A ∈M . This proves (a).
Notice that

⋃∞
k=nAk ⊇

⋃∞
k=n+1 Ak for all n ∈ N and hence {

⋃∞
k=nAk}n∈N is a descending

sequence of sets in M such that µ (
⋃∞
k=1 Ak) <∞, since X is a finite measure space. Hence

by the Continuity of Measure,

µ(A) = µ

(
∞⋂
n=1

∞⋃
k=n

Ak

)
= lim

n→∞
µ

(
∞⋃
k=n

Ak

)
(∗)
≥ lim

n→∞
µ(An) ≥ α,

where (∗) follows from the fact that An ⊆
⋃∞
k=nAk for all n, and the Monotonicity of

Measure. This proves (b).
For (c), consider X = R and µ = λ, Lebesgue Measure. The sets An = [n − 1, n] for

n ∈ N all have measure 1 and the set A is empty. Indeed, if x ∈ R, then x is an element of
at most 2 sets among (An)n∈N.

Problem 5.11 (Kaitlin Healy, May 2017 Q2). Compute

lim
k→∞

∫ ∞
−∞

1

1 + e−kx
1

1 + x2
dx

Justify your computation.

Solution.
Attempt:
At first, I didn’t think I could assume measurability or integrability. To try to get around
this, I tried breaking R into intervals of the form (n, n+ 1]. This however proved to be more
difficult as now I would have to take limits through infinite sums by using additivity over
domains. Once I heard that I could assume measurability and integrability, I knew I would
just have to apply some theorem that would pass the limit under the integral.
Solution:
Let fk = 1

1+e−kx
1

1+x2
for all k. Notice that as k →∞, fk converges to f = 1

1+x2
pointwise on

R. We can assume from the problem that the sequence {fk} is measurable on R. For every
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value of k, we can see that |fk| ≤ 1. Let g = 1. Since g is integrable over R and dominates
{fk} for all k, we apply Lebesgue dominated convergence theorem. This tells us that f is
integrable over R and

lim
k→∞

∫
R
fk =

∫
R
f

Taking the integral of f , we have∫
R

1

1 + x2
dx =

∫ ∞
−∞

1

1 + x2
dx

= lim
t→∞

∫ t

−t

1

1 + x2
dx

= lim
t→∞

arctan(x)
∣∣t
−t

= lim
t→∞

arctan(t)− arctan(−t)

= lim
t→∞

2 arctan(t)

= 2
(π

2

)
= π

Therefore, we conclude that

lim
k→∞

∫ ∞
−∞

1

1 + e−kx
1

1 + x2
dx = π

Problem 5.12 (Andrew Pensoneault, May 2017, Q4). Let {fn} ⊂ L1(X,M , µ). Assume
{fn} converges in measure to f , that {fn} is uniformly absolutely continuous in L1 and that
{fn} vanishes uniformly at ∞ in L1. Prove that {fn} converges to f in L1.

Definition: Let (x,M , µ) be a measure space and let {fn} be a sequence of measurable
functions on it. We call {fn} Uniformly Absolutely Continuous in L1 if for every ε > 0
there exists a δ > 0 such that for all A ∈M , if µ(A) ≤ δ, then

∫
A
|fn| dµ < ε for all n ∈ N.

We say {fn} Vanishes Uniformly at ∞ in L1 if for all ε > 0, there exists a measurable
A ⊂ X where m(A) <∞ such that for all n ∈ N,

∫
Ac
|fn|dµ < ε.

Attempt:
There were a lot of assumptions I was given, and ultimately, I saw we needed to find way to
make ∫

X

|f − fn|dµ < ε.

Uniform vanishing gives us the ability to bound the behavior on the complement of some
finite set (and thus most of X if X is infinite measure). There was a relevant corollary in
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the book (Corollary 5, Chapter 5.2), that allows us (once we show tight over A and uniform
integrability) to remove the remaining portion, and this follows almost immediately from
uniformly absolutely continuity in L1.

Solution:
Fix ε > 0, and by the definition of uniformly vanishing at ∞ in L1, let A ⊂ X such that∫ c

A

|fn|dµ <
ε

2

for all n ∈ N. By Riesz Theorem, we can find a subsequence fnk which converges pointwise
almost everywhere on Ac, thus by Fatou’s Lemma,∫

X

|fn − f |dµ =

∫ c

A

|fn − f |dµ+

∫
A

|fn − f |dµ

≤
∫
Ac
|fn|dµ+

∫
Ac
|f |dµ+

∫
A

|fn − f |dµ

≤ ε

3
+ lim

k→∞

∫
Ac
|fnk |dµ+

∫
A

gndµ

≤ 2ε

3
+

∫
A

gndµ

defining gn = |fn − f |. Notice gn → 0 in measure, and thus if we can show on A, {gn} is
uniformly integrable and tight, we can find an N ∈ N such that if n > N∫

A

gndµ <
ε

3
.

So, from uniformly absolutely continuity in L1, we can find a δ > 0 (since µ(A) = M <∞),
such that for some R ⊂ A, M − δ ≤ m(R) ≤M (so µ(A ∼ R) < δ) and then we have (using
Riesz and Fatou’s lemma to pass to a convergent subsequence)∫

A∼R
gndµ =

∫
A∼R
|fn − f |dµ ≤

∫
A∼R
|fn|+ lim

k→∞

∫
A∼R
|fnk |dµ ≤ ε.

Thus we have proven gn is tight over A. Now, to show uniform integrability, let δ > 0
correspond to the ε challenge in uniformly absolutely continuity in L1, then let m(B) < δ,
we have ∫

B

gndµ =

∫
B

|fn − f |dµ ≤
∫
B

|fn|+ lim
k→∞

∫
B

|fnk |dµ ≤ ε.

Thus we have shown uniform integrability. Thus by corollary 5, we can find an index N such
that ∫

A

gndµ ≤
ε

3
,

and thus if we pick n > N , ∫
X

|fn − f |dµ < ε

so we have shown convergence in L1.
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6 IU Bloomington

Problem 6.1 (Indiana Real Analysis, August 2007). Define a sequence {an} by setting
a1 = 1

2
and an+1 =

√
1− an for n ≥ 2. Does the sequence an converge? If so, what is the

limit?

Solution. [Meghan Malachi]
Attempt:
Initially, I wanted to show that the sequence is bounded and monotone so that I could apply
the Monotone Convergence Theorem to conclude that the sequence is convergent. After
inspection, the sequence turned out to not be monotone, however, so decomposing the se-
quence into two convergent monotone sequences with the same limit was the way to go.

Solution:
First we show that {an} is bounded.
Recall: a sequence {an} is bounded provided there exists a c ≥ 0 such that |an| ≤ c for all
n ∈ N. We know that an > 0 for all n, otherwise our sequence would be undefined for such
n. We will now show that an < 1.

Observe that a1 = 1
2
< 1.

Now assume that |an| < 1. Then we have:

an+1 =
√

1− an (16)

⇒ |an+1| = |
√

1− an| (17)

< |1| = 1 (18)

Therefore, {an} is bounded so that an ∈ (0, 1) for all n ∈ N.

Now we show that {an} is not monotone.
Observe that a1 = 1

2
< 1√

2
= a2. Now suppose that an+1 > an. Then we see that

an+1 > an ⇔ a2
n+1 > a2

n (19)

⇔ 1− an > 1− an−1 (20)

⇔ an−1 > an (21)

Therefore, our sequence is not monotone and actually ”looks” something like:

a1 < a2 > a3 < a4 > ...

So we will take two subsequences of {an}, the terms of odd indices and the terms of even
indices.
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Let bn = a2n for all n ≥ 1, and let cn = a2n−1 for all n ≥ 1. Since a2n =
√

1− a2n−1 =√
1−
√

1− a2n−2, we have that bn = a2n =
√

1−
√

1− bn−1.

Observe that b2 < b1. Now assume that bn < bn−1. We can see that:

0 < bn+1 < bn < 1⇔ 0 < b2
n+1 < b2

n < 1 (22)

⇔ 1− bn−1 < 1− bn (23)

⇔ bn < bn−1. (24)

So bn+1 < bn ⇔ bn < bn−1. Therefore, {bn} is strictly decreasing. Similarly, {cn} is strictly
increasing.

So by the Monotone Convergence Theorem, bn and cn are convergent, so {bn} converges to
b and {cn} converges to c for some b, c ∈ [0, 1].

Since bn =
√

1−
√

1− bn−1, we actually have that bn =
√

1− cn. Therefore, taking

limits of both sides we have that

limn→∞ bn = limn→∞
√

1− cn

Then for large enough N , we have that b =
√

1− c, and similarly (by definition of {cn})
we’ll have that c =

√
1− b. Therefore, we’ve established the following relationship between

b and c :

b = 1− c2 (25)

c = 1− b2 (26)

By plugging in 1− c2 for b in the second equation, and solving for c, we have:

c = 1− (1− c2)2 (27)

⇒ 2c2 − c4 − c = 0 (28)

⇒ c(c− 1)(c2 + c− 1) = 0 (29)

⇒ c ∈ {0, 1, −1 +
√

5

2
} (30)

By plugging in 1− b2 for c in the second equation, and solving for b, we have:
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b = 1− (1− b2)2 (31)

⇒ 2b2 − b4 − b = 0 (32)

⇒ b(b− 1)(b2 + b− 1) = 0 (33)

⇒ b ∈ {0, 1, −1 +
√

5

2
} (34)

However, {bn} converges to b, but this sequence is monotone decreasing, so b 6= 1. There-
fore,

b ∈ {0, −1+
√

5
2
}

And since {cn} converges to c and is monotone increasing, c 6= 0. Therefore,

c ∈ {0, −1+
√

5
2
}

In order to show that b = c = −1+
√

5
2

, we will find a positive number α such that bn > α
for all n so that b 6= 0.

Observe that b1 >
−1+

√
5

2
. Now assume that bn >

−1+
√

5
2

. Let β = −1+
√

5
2

. Then

bn+1 = 1−
√

1− bn > β2 (35)

⇔ 1− β2 >
√

1− bn (36)

⇔ (1− β2)2 > 1− bn (37)

⇔ bn > 1− (1− β2)2 ≥ β (38)

(39)

We know have that bn > β for all n, so b = c = −1+
√

5
2

.

Therefore, the sequence {an} converges, and it converges to −1+
√

5
2

.

Problem 6.2 (Indiana, August 2007 Q1). Define f : R2 → R by setting f(x, y) = x3+y3

x2+y2
for

(x, y) 6= (0, 0) and f(0, 0) = 0. Show that f is differentiable at all points (x, y) ∈ R2 except
(0, 0). Show that f is not differentiable at (0, 0).

Solution. [Michael Kratochvil]
Attempt:
I first attempted this problem by looking at Royden’s definition of differentiablity and noticed
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an immediate problem: we would be dividing something that is real-valued by something
that is vector-valued. UH OH!!! To rectify this, I realized there would need to be a different
definition of differentiability in order to even attempt this problem. I appealed to the Internet
and eventually baby Rudin’s chapter on differentiability for the answer. Even better, within
that chapter, I found the Theorem needed to do the first part of the problem. For the second
part, I remembered from complex that we considered all kinds of paths to zero to disprove
differentiability, so picking a couple intuitive one, the result was straightforward.
Solution:

First, recall the following definitions/theorem (found in Principles of Mathematical Anal-
ysis (baby Rudin)):

Definition (Rudin P.212): Suppose E is an open set in Rn, f maps E into Rm, and
x ∈ E. If there exists a linear transformation A of Rn into Rm such that

lim
h→0

|f(x+ h)− f(x)− Ah|
|h|

= 0,

then we say that f is differentiable at x, and we write

f ′(x) = A.

If f is differentiable at every x ∈ E, we say that f is differentiable in E.

Definition (Rudin P. 215): Consider f that maps an open set E ⊂ Rn into Rm. Let
{e1, . . . , en} and {u1, . . . , un} be the standard bases of Rn and Rm. The components of f
are the real functions f1, . . . , fm defined by

f(x) =
m∑
i=1

fi(x)ui, x ∈ E,

or, equivalently, by fi(x) = f(x)u̇i, 1 ≤ i ≤ m. For x ∈ E, 1 ≤ i ≤ m, 1 ≤ j ≤ n, we define

(Djfi)(x) = lim
t→0

fi(x+ tej)− fi(x)

t
,

provided the limit exists. Djfi is called a partial derivative.

Theorem (Rudin P. 219): Suppose f maps an open set E ⊂ Rn into Rm. Then f is
continuously differentiable if and only if the partial derivatives Djfi exist and are continuous
on E for 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Now we can proceed to the proof of this problem.
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Proof: First note that for (x, y) 6= (0, 0) we see that f has the following partial
derivatives:

Dxf(x, y) =
x4 + 3x2y2 − 2xy3

(x2 + y2)2

Dyf(x, y) =
y4 + 3x2y2 − 2x3y

(x2 + y2)2
.

which is clearly continuous for (x, y) 6= (0, 0).
Notice that for all x 6= 0 Dx(x, 0) = 1 and for all y 6= 0 Dy(0, y) = 1. So by the definition of
partial derivative Dx(0, 0) = Dy(0, 0) = 1, so that the partial derivatives of f exist at (0, 0).
However, it is not the case, that f is differentiable at (0, 0). To show this, let A = [1 1].
Then for h = (t, 0) we have

lim
h→0

|f(0 + t, 0)− f(0, 0)− Ah|
|h|

= lim
t→0

|t− 0− t|
|t|

= lim
t→0

0

|t|
= 0.

Setting h = (0, t) we obtain the same result. But looking at the path h = (t, t) we obtain

lim
h→0

|f(0 + t, 0 + t)− f(0, 0)− Ah|
|h|

= lim
t→0

|t− 0− 2t|√
2|t|

=
1√
2
6= 0.

Thus f is not differentiable at (0, 0).

Problem 6.3 (Indiana Real, Jan 2008 Q1). Give an example a function f : [0,∞) → R
that satisfies the three conditions:

i. f(x) ≥ 0 for all x ≥ 0,

ii.For every M > 0, supx>Mf(x) =∞,

iii.
∫∞

0
f(x)dx <∞.

or prove that no such f exists.

Solution. [Noah Kaufmann]
Attempt:
My first thought was that having a nonnegative, unbounded function with a finite integral
shouldn’t work out. But then I realized this was Analysis, so my intuition had to be wrong.
I noticed that there was no mention of continuity, so that we could get all sorts of crazy
functions. However, you can actually find a continuous function which works for this, and
even C∞ functions that work.
Solution:
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Define f(x) as follows:

f(x) =

{
x for x ∈ N
0 otherwise

}
So with this function f it is very easy to see that it satisfies the three requirements:

i. Clearly f(x) ≥ 0 for all x.

ii. f(x) is unbounded, so this condition is also satisfied.

iii. Since f = 0 almost everywhere, the integral of f (both Riemann and Lebesgue, as the
problem does not specify) is 0, and 0 <∞.

Therefore f is the desired function.

For an example of a continuous function which satisfies the above properties, consider
the function defined by the following graph:

For this g, the value is 0 outside of the triangles, and each triangle Tn has height n and
area 1

2n
.

So g is nonnegative, unbounded, and the integral of g is the sum
∑∞

0 Area(Tn) = 1 <∞,
since Area(Tn) = 1

2n
.

Therefore g is a continuous function which satisfies the three original conditions. It is
also possible to construct a C∞ function by considering a function similar to g with bump
functions instead of triangles.

Problem 6.4 (Indiana, January 2008 Q3). Let S be a closed, nonempty, convex subset of
Rn. Given any point p in Rn − S, let

m = infq∈S ‖p− q‖
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where ‖ • ‖ is the Euclidean norm. Prove that there exists exactly one point q ∈ S that
achieves this infimum.

Solution. [Shawn]

First we need to show that m is attained. Since Sc is open and p ∈ Sc, ∃δ > 0 such that
B(p, δ) ∈ Sc so m > δ > 0. Choosing any q ∈ S gives that m ≤ ‖p − q‖ < ∞, so we are
taking the infimum over a set of positive finite numbers. Thus m exists and is finite. Now
choosing any q ∈ S, since S is closed, if ‖p−q‖ = ε, we have that S∩B(p, ε+1) is closed and
bounded, hence compact. We have shown elsewhere that the distance function infq∈S ‖p−q‖
is continuous, and we know that a continuous function attains its minimum on a compact
set. Thus there exists at least one point q ∈ S∩B(p, ε+1) at which the infimum m is attained.

It remains to show that q is unique, so assume to the contrary that ∃q1, q2 with q1 6= q2

such that ‖p − q1‖ = ‖p − q2‖ = m. Then for q3 := q1+q2
2

, we have an isosceles triangle
p, q1, q2 containing a right triangle p, q2, q3. Note that, since S is convex, q3 ∈ S. By the
Euclidean Pythagorean Theorem (since we are using the Euclidean norm) we have that
‖p− q3‖2 +‖q3− q2‖2 = ‖p− q2‖2. Since these are all positive numbers, ‖p− q3‖2 < ‖p− q2‖2

and thus ‖p− q3‖ < ‖p− q2‖, which contradicts that q2 is the infimum of such distances.

Problem 6.5 (Indiana, January 2008 Q6). Let f be a continuous function on [0,∞) such
that 0 ≤ f(x) ≤ Cx−1−ρ for all x > 0 and for some constants C, ρ > 0. Let fk(x) = kf(kx).

(i) Show that limk→∞ fk(x) = 0 for any x > 0 and that the convergence is uniform on
[r,∞) for any r > 0.

(ii) Show that fk does not converge to zero uniformly on (0,∞), unless f is identically 0.

Solution. [Amrei Oswald]

(i) From the definition of fk we have

0 ≤ f(x) ≤ C

x1+ρ
=⇒ 0 ≤ kf(kx) ≤ kC

(kx)1+ρ
=⇒ 0 ≤ fk(x) ≤ C

kρ(x)1+ρ
.

Since ρ > 0, taking the limit as k →∞ on the right hand side above gives us

0 ≤ lim
k→∞

fk(x) ≤ lim
k→∞

C

kρ(x)1+ρ
= 0 =⇒ lim

k→∞
fk(x) = 0.

Note that since 1 + ρ > 1, we have that r1+ρ ≤ x1+ρ for x ∈ [r,∞). Therefore, on
[r,∞) we have

0 ≤ fk(x) ≤ C

kρ(x)1+ρ
≤ C

kρ(r)1+ρ
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=⇒ 0 ≤ lim
k→∞

fk(x) ≤ lim
k→∞

C

kρ(r)1+ρ
= 0.

Since the right hand term C
kρ(r)1+ρ

above does not depend on x, fk converges uniformly

to 0 on [r,∞).

(ii) Say that fk converges to zero uniformly on (0,∞). Then, for every ε > 0 there exists
an N ∈ N such that

|kf(kx)| = |fk(x)| < ε for every k > N, x ∈ (0,∞)

=⇒ |f(kx)| < ε

k
for every k > N, x ∈ (0,∞).

Since (k · 0, k · ∞) = (0,∞), this gives us that

|f(x)| ≤ ε

k
for every k > N, x ∈ (0,∞) =⇒ f(x) = 0.

Problem 6.6 (Indiana, January 2008 Q8). Let f : [0, 1] → R be a differentiable function
such that |f ′(x)| 6M for every x ∈ (0, 1)
Show that for any positive integer n,

|
∫ 1

0
f(x) dx − 1

n

∑n
k=1 f(k−1

n
) | 6 M

n

Solution. [Violet Tiema] Because f : [0, 1]→ R is a differentiable function, we can see that f
is continuous on [0, 1] and therefore f is Riemann Intergrable and thus we can conclude that∫ 1

0
f(x) dx = limn→∞

1
n

∑n
k=1 f(k−1

n
)

Notice that the interval [ 1
n
, n−1

n
] is a partition of (0, 1) and thus we have∫ 1

0
f(x) dx =

∑n−1
k=0

∫ k+1
n

k
n

f(x) dx
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|
∫ 1

0

f(x) dx − 1

n

n∑
k=1

f(
k − 1

n
) | = |

n−1∑
k=0

∫ k+1
n

k
n

f(x) dx− 1

n

n−1∑
k=0

f(
k − 1

n
) |

= |
n−1∑
k=0

{
∫ k+1

n

k
n

f(x) dx− 1

n
f(
k − 1

n
) }|

= |
n−1∑
k=0

{
∫ k+1

n

k
n

f(x) dx−
∫ k+1

n

k
n

f(
k

n
) dx }|

= |
n−1∑
k=0

∫ k+1
n

k
n

{f(x) − f(
k

n
) } dx|

≤
n−1∑
k=0

|
∫ k+1

n

k
n

{ f(x) dx− f(
k

n
) } dx|

≤
n−1∑
k=0

∫ k+1
n

k
n

|{ f(x) − f(
k

n
)| |dx|

Recall the Mean Value Theorem that states that

|f(a)−f(b)
a−b | ≤ |f ′(c)| ≤ M

Therefore

|f(a)− f(b)| ≤ M |a− b|

So for every x ∈ [ k
n
, k+1

n
], we see that |f(x)− f( k

n
)| ≤ M |x− k

n
| = M · 1

n

Therefore,

n−1∑
k=0

∫ k+1
n

k
n

|{ f(x) − f(
k

n
)| |dx| =

n−1∑
k=0

∫ k+1
n

k
n

M |x− k

n
| dx (40)

=
n−1∑
k=0

∫ k+1
n

k
n

{M · 1

n
} dx (41)

≤M · 1

n

n−1∑
k=0

∫ k+1
n

k
n

dx (42)

≤M · 1

n
(43)

≤ M

n
(44)
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Problem 6.7 (W. Tyler Reynolds, Indiana, January 2013 Q3). Determine all real x for
which the following series converges:

∞∑
k=1

kk

k!
xk.

You may use the fact that

lim
k→∞

k!√
2πk(k/e)k

= 1.

Solution.
Attempt:
My first approach was to try to compute lim sup k

√
ak or lim |ak/ak+1| directly to find the

radius of convergence. I assumed that the fact given in the problem statement (called
Stirling’s approximation) would show up somehow after taking limits. After a finite sequence
of failed efforts, I realized that Stirling’s approximation was the first thing I should be using.
For the formal proof, I had to start with the limits we wanted to end up with, then show
that these were equal to the lim sup we wanted to take. Once the radius of convergence
was found, the convergence on the boundary could be determined by more applications of
Stirling’s formula, along with old convergence tests from Calculus II.
Solution:
By L’Hôpital’s Rule,

lim
k→∞

ln 2πk

2k
= lim

k→∞

1

2k
= 0.

Therefore,
lim
k→∞

2k
√

2πk = e0 = 1.

Since lim
k→∞

k! = lim
k→∞

√
2πk(k/e)k, we have lim

k→∞
k
√
k! = lim

k→∞
2k
√

2πk(k/e). Therefore,

e = lim
k→∞

k

(k/e)( 2k
√

2πk)
= lim

k→∞

k
k
√
k!

= lim
k→∞

k

√
kk

k!
.

So by definition, the radius of convergence of the series
∞∑
k=1

kk

k!
xk is 1/e.

Note that the series
∞∑
k=1

kk√
2πk(k/e)k

(1/e)k =
∞∑
k=1

1√
2πk

diverges by the p-series test (with p = 1/2). On the other hand, the series

∞∑
k=1

kk√
2πk(k/e)k

(−1/e)k =
∞∑
k=1

(−1)k√
2πk
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converges by the alternating series test, since
1√
2πk

decreases to 0 in the limit. Since

lim
k→∞

k! = lim
k→∞

√
2πk(k/e)k, it follows that the series

∞∑
k=1

kk

k!
(1/e)k diverges, while the series

∞∑
k=1

kk

k!
(−1/e)k converges.

In conclusion, the series
∞∑
k=1

kk

k!
xk converges precisely when x ∈ [−1/e, 1/e).

Problem 6.8 (W. Tyler Reynolds, Indiana, January 2013 Q4).
(a) Prove that for all a ∈ R, ∣∣∣∣∣

∞∑
n=1

a

n2 + a2

∣∣∣∣∣ < π

2
.

(b) Determine the least upper bound of the set of numbers{∣∣∣∣∣
∞∑
n=1

a

n2 + a2

∣∣∣∣∣ : a ∈ R

}
.

Solution.
Attempt:
My first try at this problem involved trying to simply get good bounds on the given series by
arguments along the lines of straight inequalities, without bringing in any extra machinery.
Having failed this, I eventually found a way to relate this problem to integration. The key to
using integrals as bounds is the monotonicity of the series’ terms. For an alternate approach
and a fun digression that relates to complex analysis, you can do a bit of research and try

to figure out why I can factually assert that
∞∑
k=1

a

n2 + a2
=
πa coth(πa)− 1

2a
.

Solution:
(a) If a = 0, we are done. Suppose a > 0. Since

a

x2 + a2
decreases with increasing x ∈ (0,∞),

we have

∞∑
n=1

a

n2 + a2
<
∞∑
n=1

n∫
n−1

a

x2 + a2
dx =

∫ ∞
0

a

x2 + a2
dx = lim

x→∞
tan−1(x/a)− tan−1(0)

=
π

2
.

It follows that if a < 0, ∣∣∣∣∣
∞∑
n=1

a

n2 + a2

∣∣∣∣∣ ≤
∞∑
n=1

|a|
n2 + |a|2

<
π

2
.
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(b) Again since
a

x2 + a2
decreases with increasing x ∈ (0,∞), we have

∞∑
n=1

a

n2 + a2
>

∞∑
n=1

∫ n+1

n

a

x2 + a2
dx =

∞∫
1

a

x2 + a2
= lim

x→∞
tan−1(x/a)− tan−1(1/a)

=
π

2
− tan−1(1/a).

Thus

lim
a→∞

∞∑
n=1

a

n2 + a2
≥ lim

a→∞

(π
2
− tan−1(1/a)

)
=
π

2
.

Since
∞∑
n=1

a

n2 + a2
<
π

2
for all a, it follows that the sup

{∣∣∣∣ ∞∑
n=1

a

n2 + a2

∣∣∣∣ : a ∈ R
}

=
π

2
.

Problem 6.9 (W. Tyler Reynolds, Indiana, January 2013 Q5). Let f(x) be continuous in
the interval I = (0, 1). Define

D+f(x0) = lim
h→0+

inf
f(x0 + h)− f(x0)

h
.

Put
S = {x ∈ I : D+f(x) < 0}.

Suppose that the set f(I \ S) does not contain any non-empty open intervals. Prove that
f(x) is non-increasing on I.

Solution.
Attempt:
There wasn’t any prior attempt here; we saw similar problems on differentiation during our
first semester. In the immortal words of Yoda: “Do or do not; there is no try.” Realistically,
I followed my intuition and it rewarded me, fickle thing that it is.
Solution:
If f is constant, then I = S and f(I \S) = ∅ does not contain any non-empty open intervals,
but f(x) is increasing on I in the non-strict sense. We therefore must set out to prove that
f(x) is never strictly increasing on I.

Suppose for the sake of contradiction that f(x) is strictly increasing on some open interval

(a, b) ⊂ I. Then for x ∈ (a, b),
f(x+ h)− f(x)

h
> 0 for 0 < h < 1−b, and hence D+f(x) ≥ 0.

So (a, b) ⊂ I \ S. Since f is strictly increasing and the continuous image of a connected set
is connected, we have f(a, b) = (f(a), f(b)) ⊂ f(I \ S). This is a contradiction. It follows
that f(x) is never strictly increasing on I.

Problem 6.10 (Indiana Aug 2015, Problem 4). Let f : R → R be differentiable with f ’
uniformly continuous. Suppose limx→∞ f(x) = L. Does limx→∞ f

′(x) exist?
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Solution. [Noah Kaufmann]
Attempt:

Intuitively, we know that if this limit exists, it must be equal to 0. In general, the limit
of f’ need not exist, but the condition of uniform continuity gives us exactly what we need
to show that the limit does exist.
Solution:

We proceed by contradiction. Suppose limx→∞ f(x) does not converge to 0. Looking
at the definition a limit converging, we have that there exists an ε > 0 and a sequence xn
such that limn→∞ xn = ∞, and |f ′(xn)| > ε for all n. Now we make a couple of simplifying
assumptions. We can assume L = 0, and we can assume that f ′(xn) > ε by picking a subse-
quence of xn and renaming it, by considering f - L and -f respectively.

Now let δ be as in the definition of uniform continuity for f’. Then for any x ∈
[xn − δ

2
, xn + δ

2
], f ′(x) > ε

2
for every n.

Since f converges to 0 at infinity, we can choose any sequence yn which goes to infinity,
and f(yn) will go to 0. Choose yn to contain only points of the form xn − δ

2
and xn + δ

2
,

ordered so that xn − δ
2

appears directly before xn + δ
2

for every n, and these terms show up
in the same order as the original xn’s. Note that this is valid because the xn’s go to infinity.

Now, since f(yn) goes to 0, we can choose an N so that |f(yn)| < δε
4

for every n ≥ N.
Then choose an m ≥ N such that ym = xk − δ

2
. This means that ym+1 = xk + δ

2
, and we

should have that both ym and ym+1 are less than δε
4

. However, since f ′ > ε
2

on the interval
(of length δ) between ym and ym+1, we have (using the fundamental theorem of calculus)
that ym+1 > ym + δε

2
. Since |ym| < δε

4
, this forces ym+1 >

δε
4

. This contradicts the definition
of convergence, so our assumption that f ′ did not converge to 0 must be false. Therefore
limx→∞ f

′(x) exists and is equal to 0.

Note: This proof gets kind of flooded with ε′s and δ′s at the end. The main idea is that if
f ′ does not go to 0, there is some subsequence that stays positive. Then uniform continuity
gives that there must be a sequence of intervals with f ′ positive, so that f cannot go to 0.

Problem 6.11 (Indiana, August 2015 Q5). Let E ⊂ R such that any countable closed cover
of E contains a finite subcover. Show that E is a finite set of points.

Solution. [Shawn]
Attempt:
BWOC, assume that E has a countably infinite subset {xn}N. It suffices to show that we can
construct a countable closed cover of E with no finite subcover. We begin with the countable
collection of point sets {xn}N. To this collection we add all sets of the form [xα + 1

n
, xβ − 1

n
]

for n ∈ N where xα and xβ are any two elements of {xn}N which have no other element of
{xn}N between them. Finally we include the sets (−∞, inf{xn}N] and [sup{xn}N,∞). The
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countable union of these closed sets covers all of R, so it certainly covers E. However, the
only sets in this cover of E that contain the points {xn}N are the point sets {xn}N themselves
(except perhaps for the infinite sets if the sup or inf of E are elements of {xn}N). Thus no
finite subcollection of this cover can cover the points {xn}N in E, so no finite subcover exists.
The issue with this is that {xn}N could be dense so that the intervals between the points
can’t be formed.

Solution:
Assume E is not finite but still every countable closed cover contains a finite subcover. If
E were countable with elements xn for n ∈ N, then {xn}N is a closed cover with no finite
subcover, so E must be uncountable. An uncountable subset of R must be uncountable on
some closed interval (since otherwise E = ∪En for n ∈ Z where En = [n, n + 1] ∩ E, so E
would be a countable union of countable sets). WLOG assume E is uncountable on [0, 1].
Define the first element of a closed cover by E0 = (−∞, 0] ∪ [1,∞). Now express [0, 1] as
the union [0, a] ∪ [a, 1] for some a ∈ (0, 1). We can choose a so that one of the intervals has
uncountably many elements of E while the other contains at least one element of E. Let U1

be the set with uncountably many elements of E and call the other E1. We then repeat the
process on U1, letting E2 contain at least one element of E while U2 contains uncountably
many. Continuing in this way, {En}N ∪ E0 gives a countable closed cover of E. However,
since the elements of the cover intersect in only countably many points (their endpoints)
while every set in {En}N contains points in E, no finite subcollection can cover E. By this
contradiction E can not be uncountable, and since we know it can’t be countably infinite,
it must be finite.

Problem 6.12 (Indiana Real, August 2016 Q4). Using only the definitions of continuity
and (sequential) compactness, prove that if K ⊂ R is (sequentially) compact and f : K → R
is continuous, then f is uniformly continuous, that is, for all ε > 0, there exists δ > 0 such
that if |x− y| < δ then |f(x)− f(y)| < ε.

Continuous Function: A real valued function f is continuous iff when {xn} → x, then
{f(xn)} → f(x) for every x in the domain of f .
Sequenctial Compactness: A metric space is sequentially compact provided every se-
quence X has a subsequence that converges to a point in X.

Solution. [Jared Grove]
Attempt:
My first attempt was to show it directly, but I ran into some problems. Take x, y ∈ K,
since K is compact there exists some sequences {xn} and {yn} that converge to x and y
respectively. Because f is continuous let ε > 0 then there exists δ > 0 such that when
|xn − x| < δ and |yn − y| < δ then |f(x)− f(xn)| < ε and |f(y)− f(yn)| < ε. Then look at
|f(x) − f(y)| = |f(x) − f(xn) + f(xn) − f(y) + f(yn) − f(yn)| ≤ |f(x) − f(xn)| + |f(yn) −
f(y)| + |f(xn) − f(yn)| < 2ε + |f(xn) − f(yn)|. I didn’t know how to deal with that last
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term so after beating my head against a wall trying to make this work Alex pointed me in
a different direction.
Solution:
Assume for contradiction that we don’t have uniform continuity. That is for some ε > 0
for every δ > 0 there exists xδ, yδ ∈ K such that when |xδ − yδ| < δ, |f(x) − f(y)| ≥ ε.
Let {xn}, {yn} be sequences of these points and δn = 1

n
. Thus when |xn − yn| < 1

n
then

|f(xn)− f(yn)| ≥ ε. Since K is sequentially compact there exists subsequences of {xn} and
{yn} that converge to some x, y ∈ K. We will denote the subsequences {xk} and {yk}. Now
look at:

|yk − x| = |yk − xk + xk − x| ≤ |yk − xk|+ |xk − x| <
1

k
+ δ

Thus {yk} converges to x as well. Essentially the two sequences are converging to the same
point. From here I will present two ways of approachng this

1 Since |xk − yk| < 1
k
, we have that limk→∞ |xm − ym| = |x− y| ≤ 0. Thus x = y. Since

|x− y| < δ for any δ, then |f(x)− f(y)| ≥ ε, but as x = y, f(x)− f(y) = 0 and we have a
contradiction. Thus f must be uniformly continuous.

2
|f(yk − f(x)| ≤ |f(ym)− f(xm)|+ |f(xm)− f(x)| < 2ε′

Because f is continuous and both {yk} and {xk} converge to x. Either way contradiction
and we have uniform continuity.

Problem 6.13 (Indiana, August 2016 Q5). Show that if {xn}∞n=1 is a sequence of real
numbers such that lim

n→∞
(xn+1 − xn) = 0, then the set of limit points of {xn} is connected,

that is, either empty, a single point, or an interval.

Solution. [Michael Kratochvil]
Attempt:
The heart of the problem was pretty much immediate: either there are at least two limit
points or there are zero or one, so that it boiled down to just proving an arbitrary point
between any two limit points is also a limit point. Early attempts tried to make use of
convergent subsequences and convexity, but that ”quickly” led nowhere. What helped the
most was drawing a picture of the interval between the two limit points and realizing that
the sequence would ultimately be oscillating back and forth between the two limit points
with very small steps. That intuition led to the following proof.
Solution:

Suppose the set of limit points has at least two distinct elements, say x and y with x < y.
Let z ∈ (x, y) and let ε ∈ (0, x+y

2
). We want to show that there is an xn ∈ B(z, ε). Note that
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there is an N ∈ N such that |xn+1 − xn| < 2ε for all n ≥ N . Define

δ1 = min{|x− x1|, |x− x2|, . . . , |x− xN |, ε,
y − x

2
},

δ2 = min{|y − x1|, |y − x2|, . . . , |y − xN |, ε,
y − x

2
},

and let m, k ≥ N such that xm ∈ B(x, δ1), xk ∈ B(x, δ2) (without loss of generality assume
m < k). I claim B(z, ε)∩{xn}kn=m 6= ∅. To show this assume xm 6∈ B(z, ε) (if this is the case,
the proof is trivially complete). Let xl be the last element of {xn}kn=m such that xn ≤ z − ε
(this must occur since by construction xm < z− ε < xk). Then since xl+1−xl < 2ε, we have
xl+1 < xl + 2ε ≤ z + ε. Further, xl+1 > z − ε by assumption. Thus xl ∈ B(z, ε). Since ε was
arbitrarily chosen, we have that z is a limit point. This shows that all real numbers between
two distinct limits points are themselves limit points, showing that the set of limit points is
an interval.

Problem 6.14 (Nicholas Camacho, Jan 2017 Q9). A continuously differentiable function
f : [0, 1]→ [0, 1] has the properties

(a) f(0) = f(1) = 0

(b) f ′(x) is a non-increasing function of x.

Prove that the arclength of the graph of f does not exceed 3.

Proof.
Attempt: I first assumed that arclength and Total Variation are the same thing, but they
are not. It turns out that they are the same only when f is absolutely continuous. So,
instead I used the Calculus definition of arclength and the associated Riemann Sum.

Solution: By (a), the Mean Value Theorem gives us c ∈ (0, 1) such that f ′(c) = 0. Since
f ′ is non-increasing (i.e., f ′ is decreasing) then

f ′(x) =

{
≥ 0 if x ∈ [0, c]

≤ 0 if x ∈ [c, 1]
,

or in other words, f(x) is increasing on [0, c] and decreasing on [c, 1]. So if P = {x0, . . . , xn}
is any partition of [0, 1], let Pc = {x0, . . . , xk = c, . . . xn}. Then V (f, P ) ≤ V (f, Pc), and

V (f, Pc) =
n∑
i=1

|f(xi)− f(xi−1)| =
k∑
i=1

|f(xi)− f(xi−1)|+
n∑

i=k+1

|f(xi)− f(xi−1)|

=
k∑
i=1

f(xi)− f(xi−1) +
n∑

i=k+1

f(xi−1)− f(xi)

= −f(0) + f(c) + f(c)− f(1)

= 2f(c)

≤ 2
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So if ||P || = 1/n, (i.e., the distance between consecutive points in the partition is 1/n). Then

by the Mean Value Theorem, we can pick x∗i ∈ (xi−1, xi) such that f ′(x∗i ) = f(xi)−f(xi−1)
xi−xi−1

=

n(f(xi)− f(xi−1)). Now, here’s an obnoxious string of equalities/inequalities:

n∑
i=1

(xi − xi−1)
√

1 + (f ′(x∗i ))
2 =

n∑
i=1

1

n

√
1 + n2(f(xi)− f(xi−1))2

=
n∑
i=1

√
1

n2
+ (f(xi)− f(xi−1))2

=
n∑
i=1

√
|xi − xi−1|2 + (f(xi)− f(xi−1))2

≤
n∑
i=1

|xi − xi−1|+ (f(xi)− f(xi−1))

=
n∑
i=1

1

n
+ (f(xi)− f(xi−1))

= 1 +
n∑
i=1

(f(xi)− f(xi−1))

≤ 3

Recall that the arclength of f is ∫ 1

0

√
1 + (f ′(x))2 dx,

and so by definition of the Riemann integral, we have∫ 1

0

√
1 + f ′(x)2 dx = lim

n→∞

n∑
i=1

(xi − xi−1)
√

1 + (f ′(x∗i ))
2 ≤ 3.

Problem 6.15 (Indiana, August 2016 Q9). Define d : Rn × Rn → R by

d(x, y) =
||x− y||

||x||2 + ||y||2 + 1

where ||x||2 = x2
1 + · · · + x2

n. Let A ⊂ Rn be such that there exists ε > 0 so that if a, b ∈ A
with a 6= b, then d(a, b) ≥ ε. Show that A is finite.

Solution. [Sara Reed] We will consider two cases: A = ∅ and A 6= ∅. If A = ∅, A is finite.
Now, consider A 6= ∅. Let a ∈ A. Now, consider A′ = {x ∈ Rn : x + a ∈ A}. Note that
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0 ∈ A′. If we can show A′ is finite, then we can conclude A is finite. Note that we still have
the property that there exists ε > 0 so that if c, d ∈ A′ with c 6= d, then d(c, d) ≥ ε. Consider
x ∈ Rn such that ||x|| > 1

ε
. Then we know

d(x, 0) =
||x||

||x||2 + 1
<
||x||
||x||2

=
1

||x||
< ε.

Therefore, x /∈ A′ when ||x|| > 1
ε
. So A′ ⊂ [−1

ε
, 1
ε
] and therefore A′ is bounded. Now we

want to show A′ is closed. Let a∗ be a limit point of A′. By way of contradiction, assume
a∗ /∈ A′. By definition of a limit point, there exists x ∈ A′ such that δ = d(a∗, x) ≤ ε.
Similarly, there exists y ∈ A′ such that σ = d(a∗, y) ≤ δ

2
. Again, there exists z ∈ A′ such

that d(a∗, z) ≤ σ
2
< δ

2
. Note that y 6= z. Then

d(y, z) ≤ d(y, a∗) + d(a∗, z)

<
δ

2
+
δ

2
= δ

≤ ε.

We have reached a contradiction since y, z cannot both be in A′ since d(y, z) < ε. Therefore,
a∗ ∈ A′ and A′ is closed. Since A′ is closed and bounded, we have that A′ is compact.
Therefore, A′ is sequentially compact. Finally, by way of contradiction, assume A is not finite.
Take a sequence {xn}n ⊂ A′. Since A′ is sequentially compact, there exists a subsequence
{xnk}k that converges to x∗ ∈ A′. By the definition of A′, we know B(x∗, ε

2
) ∩ A′ = ∅. This

is a contradiction of x∗ being a limit point of {xnk}k. Therefore, we conclude A′ is finite
which implies A is finite as desired.

Problem 6.16 (Elaina Aceves, Jan 2017 Q7). Let fn(x) and f(x) be continuous functions
on [0, 1] such that limn→∞ fn(x) = f(x) for all x ∈ [0, 1].

(a) Can we conclude that limn→∞
∫ 1

0
fn(x)dx =

∫ 1

0
f(x)dx?

(b) If in addition we assume |fn(x)| ≤ 2017 for all n and for all x ∈ [0, 1], can we conclude

that limn→∞
∫ 1

0
fn(x))dx =

∫ 1

0
f(x)dx?

Solution.
Attempt:
For part (a), I immediately started looking for a counterexample and for part (b), the
Bounded Convergence Theorem sprang to mind. Part (b) is actually a special case of BCT
and a counterexample for part (a) is given in the textbook immediately before the BCT.
Solution:
(a) Define fn : [0, 1]→ R such that

fn(x) =


0 if x = 0, x ≥ 2/n

n if x = 1/n

linear if x ∈ [0, 1/n] or x ∈ [1/n, 2/n]
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To clarify, fn(x) is the line that joins 0 and 1/n for x ∈ [0, 1/n] and similarly, fn(x) is the
line that joins 1/n and 2/n for x ∈ [1/n, 2/n] which makes a ‘triangle’ of height n and width
2/n. Then fn is continuous for all n and for all x ∈ [0, 1]. Also,∫ 1

0

fn(x)dx =

∫ 2/n

0

fn(x)dx+

∫ 1

2/n

0 dx

=
(2/n)(n)

2
+ 0 = 1

for all n/ Also, fn → f where f ≡ 0 and we know that
∫ 1

0
0 dx = 0. Thus,

lim
n→∞

∫ 1

0

fn(x)dx = 1 6= 0 =

∫ 1

0

f(x)dx

(b) Recall that every continuous, real-valued function defined on a measurable subset of
R is measurable. Then by the Bounded Convergence Theorem (p. 78) with E = [0, 1] and
M = 2017, we have the result.

Problem 6.17 (Indiana, January 2017 Q2). Prove that the sequence

a1 = 1, a2 =
√

7, a3 =

√
7
√

7, a4 =

√
7

√
7
√

7, a5 =

√
7

√
7

√
7
√

7...

converges, and find its limit.

Solution. [Rajinda Wickrama]

Proof. Observe that we can write the above sequence recursively as given below

a1 = 1, an+1 =
√

7an ∀n ∈ N

Now, let us prove that {an} is increasing. This can be done inductively.
When n = 1, observe that a2 =

√
7 > 1 = a1. Now suppose that for some k ∈ N, ak ≥ ak−1.

Then, ak+1 =
√

7ak ≥
√

7ak−1 = ak. Therefore an+1 ≥ an ∀n ∈ N.

Similarly, we can show that this sequence is bounded above by 7. When n = 1, a1 < 7. Now
suppose ak ≤ 7 for some k ∈ N. Then, ak+1 =

√
7ak ≤

√
7 · 7 = 7 =⇒ an ≤ 7 ∀n ∈ N.

Therefore, {an} converges.

Now suppose lim
n→∞

an = L. Then,

L = lim
n→∞

an+1 = lim
n→∞

√
7an =

√
7L =⇒ L2 = 7L =⇒ L = 0 or 7

Since the sequence is always positive and increasing L = 7.
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Problem 6.18 (Indiana, August 201, 1.). Let f(x) be a continuous function on (0, 1] and

lim inf
x→0+

f(x) = α, lim sup
x→0+

f(x) = β.

Prove that for any ξ ∈ [α, β], there exists {xn ∈ (0, 1] | n = 1, 2, . . . } such that

lim
n→∞

f(xn) = ξ.

Solution. [Adam Wood]

Proof. Let ξ ∈ [α, β]. Since lim infx→0+ f(x) = α, limx→0+ (inf{f(t) | 0 < t < x}) = α. That
is, for every n ∈ N, there exists δ1 > 0 so that if 0 < x < δn,

|inf{f(t) | 0 < t < x} − α| < 1

2n
.

Similarly, since lim supx→0+ f(x) = β, limx→0+ (sup{f(t) | 0 < t < x}) = β. That is, for
every n ∈ NN, there exists δ2 > 0 so that if 0 < x < δ2,

|sup{f(t) | 0 < t < x} − β| < 1

2n
.

Let δn = min{δ1, δ2}, suppose x < δn, let an = inf{f(t) | 0 < t < x}, and let bn = sup{f(t) |
0 < t < x}. By definition of the infimum and the supremum, for every n ∈ N, there exists
t1, t2 ∈ (0, x) so that f(t1)− an < 1

2n
and bn − f(t2) < 1

2n
. Then,

|f(t1)− α| = |f(t1)− an + an − α| ≤ |f(t1)− an|+ |an − α| <
1

2n
+

1

2n
=

1

n

and

|f(t2)− β| = |f(t2)− bn + bn − β| ≤ |f(t2)− bn|+ |bn − β| <
1

2n
+

1

2n
=

1

n
.

Note that f(t1) < f(t2) since f(t1) is close to the infimum and f(t2) is close to the supremum.
Let t∗ = min{t1, t2} and let t∗ = max{t1, t2}. Choose c ∈ [f(t1), f(t2)] so that |c − ξ| < 1

n
.

We can make such a choice since ξ ∈ [α, β] and since f(t1) and f(t2) are at most 1
n

away from
α and β, respectively. Then, since f is continuous on (0, 1], f is in particular continuous on
[t∗, t

∗]. By the intermediate value theorem, since c ∈ [f(t1), f(t2)], there exists xn ∈ [t∗, t
∗]

so that f(xn) = c. That is, |f(xn)− ξ| < 1
n
. Letting n→∞, we have that

lim
n→∞

f(xn) = ξ.
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7 Additional Practice

7.1 Group Work I

Problem 7.1 (Group Work 1 Real, Number 1). Let `2(N) be the collection of all square
sumable sequences in R. Prove that the closed unit ball is not compact.

Solution. [Jared Grove, Meghan Malachi, Alex Bates]
Attempt:
Some of the ideas we had were to make a sequence which wouldn’t converge (the right way we
just didn’t come up with one) or show that it is infinitely dimensional (this would contradict
Riesz’s Theorem p261). In order to do that you need to show that there are two norms on
this space which are not equivalent.
Solution:
First note that `2(N) is a normed linear space with the norm: ||{an}||2 =

∑∞
n=1 |an|2. The

unit ball in this space is B = {{xn} :
∑∞

n=1 |xn|2 ≤ 1}. Let’s assume Ab Absurdo that B
is compact. Then we can also say that B is sequentially compact and every sequence in B
must have a subsequence that converges to a point in B. Consider the sequences:

a1 = (1, 0, 0, 0, 0, 0, 0, . . .)

a2 = (0, 1, 0, 0, 0, 0, 0, . . .)

a3 = (0, 0, 1, 0, 0, 0, 0, . . .)
...

where for {an} the n-th element in the sequence will be 1 while every other element in 0.
Clearly {an} ∈ B for all n ∈ N as

∑∞
k=1 |ank |2 = 1 (Here ank denotes the kth element in the

sequence an). However, limn→∞{an} does not exist.
If it did exist then there exists some f ∈ B such that limn→∞ ||f − an||2 = 0. If there

exists some N s.t. ||f − aN ||2 = 0, then fN = 1 and fk = 0 for all k 6= N . However,
||f − an||2 = |fn − ann|2 + |fN − anN |2 = |0 − 1|2 + |1 − 0|2 = 2 6= 0 for all n 6= N .
Thus limn→∞ ||f − an||2 = 2 if ||f − aN ||2 = 0. If ||f − an||2 6= 0 for all n ∈ N then∑

k=1 |fk−ank |2 6= 0 while limn→∞
∑

k=1 |fk−ank |2 = limn→∞ |fn−ann|2+
∑

k=1,k 6=n |fk|2 = 0.
In order for this to be possible we would need to have that fn → 1 = ann and fn → 0 as
n→∞. Since it can’t do both at once the limit must not exist.

Now consider M an infinite subset of N. Define {am} the same as {an} so that {am} is
any subsequence of {an}. Clearly limm→∞{am} does not exists for any M ⊂ N by the same
arguments as above. Thus the sequence of {{an}}∞n=1 has no convergent subsequence and is
therefore not sequentially compact and also not compact.

Problem 7.2 (Group Work I, Real, Number 3). Suppose {fα}α∈A is a family of continuous
real-valued functions such that supα∈A |fα(x)| is finite for each x ∈ R. Prove there exists a
non-empty open interval I ⊂ R such that supx∈I supα∈A |fα∈A| <∞.
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Solution. [Michael Kratochvil, Amrei Oswald, Yanqing Shen]
Attempt:
We initially tried to prove this by contradiction. We assumed that no such interval exists
and then defined In = (x′ − 1

n
, x′ + 1

n
) for some x′ ∈ R. Then we have

sup
x∈In

sup
α∈A
|fα(x)| =∞ ∀ n ∈ N

=⇒ ∞ = lim
n→∞

sup
x∈In

sup
α∈A
|fα(x)| = sup

α∈A
|fα(x)|.

This would be a contradiction. However, it turns out that the equality on the right above is
not correct. We actually only have

lim
n→∞

sup
x∈In

sup
α∈A
|fα(x)| ≥ sup

α∈A
|fα(x)|.

Rolando suggested using the Baire Category Theorem instead.
Solution:
Define g(x) = supα∈A |fα(x)| and En = {x ∈ R|g(x) ≤ n}. Note that

En =
⋂
α∈A

{x ∈ R|fα(x) ≤ n} =
⋂
α∈A

f−1
α ([−n, n]).

Since fα is continuous for every α ∈ A, the pre-image of the closed set [−n, n] under fα is
closed. As such, each En is an intersection of closed sets and is therefore closed.

Further, since g(x) is finite for each x ∈ R,
⋃∞
n=1En = R. By Corollary 4 (Royden, p

212), at least one of the En’s has a nonempty interior, say EN . Then intEN is a nonempty
open set =⇒ intEN =

⋃
Ik where {Ik} is a collection of nonempty, open intervals. Choose

I1 = I. Then we have
sup
x∈I

sup
α∈A
|fα∈A| = sup

x∈I
g(x) ≤ N <∞.

Problem 7.3 (Group Work I Real, Number 5). Let {fn}n∈N, f : E → R be a family of
measurable real-valued functions which converge to a measurable function f in measure.
Prove the existence of a subsequence fnk which converges to f pointwise almost everywhere.
Provide an example of a sequence of measurable functions which convergence in measure but
not pointwise almost everywhere.

Solution. [Kaitlin Healy, Sara Reed, W. Tyler Reynolds, Adam Wood]
Attempt:
The key idea here was to pick a subsequence so that some collection of sets would have a finite
sum of measures, allowing us to use the Borel-Cantelli Lemma and thus obtain a property
implicit in those sets (in this case, pointwise convergence) which holds almost everywhere.
I can’t recall if we had any other promising ideas before arriving at this one; but once we
were there, it was just a matter of fleshing it out. This proof can also be found in Royden
(Section 5.2 Theorem 4, pages 100-101).
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Solution:
By definition of convergence in measure, for each η > 0 we have lim

n→∞
µ({x ∈ E : |f(x) −

fn(x)| > η}) = 0. For each k, let Ek = {x ∈ E : |f(x) − fnk(x)| > 1/k}. We may pick a
subsequence {nk} so that m({x ∈ E : |f(x) − fnk(x)| > 1/k}) < 1/2k for each k. For each
k, let Ek = {x ∈ E : |f(x)− fnk(x)| > 1/k}. By the countable subadditivity of measure,

m(
∞⋃
k=1

Ek) ≤
∞∑
k=1

m(Ek) ≤
∞∑
k=1

1

2k
= 1 <∞.

By the Borel-Cantelli Lemma, there is a set E0 ⊂ E with m(E \ E0) = 0 such that each
x ∈ E0 belongs to only finitely many of the Ek’s. Given x ∈ E0 and ε > 0, let K be such
that 1/K < ε and x /∈ Ek for k ≥ K. Then for k ≥ K,

|f(x)− fnk(x)| ≤ 1

K
< ε.

Hence fnk → f pointwise on E0, and thus pointwise a.e. on E.
For an example of a sequence of measurable functions which converge pointwise in mea-

sure but not pointwise a.e., let E = [0, 1] and consider the sets A1 = [0, 1], A2 = [0, 1/2],
A3 = [1/2, 1], A4 = [0, 1/3], A5 = [1/3, 2/3], A6 = [2/3, 1], and so on. For each k, let
fk = χAk . Given η > 0, we can find a K so that 1/k < η for k ≥ K; since m(Ak) < 1/k < η
for k ≥ K, it follows that fk → 0 in measure on R. However, for every x ∈ [0, 1], x belongs
to infinitely many of the Ak’s and thus fk(x) = 1 for infinitely many k. Thus fk does not
converge to f pointwise on [0, 1].

7.2 Group Work II

7.3 Practice Exam I

7.4 Practice Exam II
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Part II

Complex Analysis

8 Kansas Qual

Problem 8.1 (Kansas Spring, 2004 Q3). Compute
∫∞

0
dx

1+x7
.

Hint: For (large) R > 1, use the boundary of the circular sector

CR = {reiθ : 0 < r < R, 0 < θ <
2π

7
}.

Solution. [Michael Kratochvil]
Attempt:
We have seen similar problems in the form of

∫∞
0

dx
1+xn

for n ∈ N − {1} for various values
of n in class, and the procedure for this one is the same as those. The curve we need to
integrate on is the ”pizza slice.” The only part of evaluation that I had difficulty with was
the part that maps from the top of the curve back to the origin in a straight line fashion.
Once I realized that I could just work in polar coordinates and integrate with respect to the
size of the radius, the rest was pretty straightforward. I should also note that this problem
generalizes for any n ∈ N− {1}. The proof is identical to what I have below, just replace 7
with n, basically.
Solution:
Let γ1, γ2, γ3 be defined from the picture below.
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Define f(z) = 1
1+z7

and ω = eiπ/7. Then we have∫
∂CR

f(z)dz =

∫
γ1

f(z)dz +

∫
γ2

f(z)dz +

∫
γ3

f(z)dz (45)

=

∫ R

0

dx

1 + x7
+

∫ 2π
7

0

Reiθ

1 +R7e7iθ
dθ +

∫ 0

R

ω2dy

1 + (ω2y)7
. (46)

Now the last term in (2) becomes∫ 0

R

ω2dy

1 + (ω2y)7
= −ω2

∫ R

0

dy

1 + y7
, (47)

since ω14 = ei2π = 1.
Now, since f has a simple pole at ω ∈ CR, the Residue Theorem gives∫

∂CR

f(z)dz = 2πiRes(f(z);ω). (48)

But since the pole at ω is order 1, we have

Res(f(z);ω) = lim
z→ω

f(z)(z − ω)

= lim
z→ω

z − ω
1 + z7

= lim
z→ω

1

7z6
(by L’Hopital’s Rule)

=
1

7ω6

= −ω
7
,

since ω6 = ω7ω−1 = −ω−1. Finally, by the triangle inequality we have∣∣∣∣∣
∫
γ2

f(z)dz

∣∣∣∣∣ ≤
∫
γ2

|dz|
|1−R7|

≤ 2π|R|
7|1−R7|

→ 0 (49)

as R→∞. Thus, combining (2), (3), and (4) and letting R→∞, we get

(1− ω2)

∫ ∞
0

dx

1 + x7
= −2πiω

7

⇒
∫ ∞

0

dx

1 + x7
= − 2πiω

7(1− ω2
=
π

7

2i

ω − ω−1
=
π

7

2i

e
iπ
7 − e−iπ7

=
π

7 sin(π/7)
.
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Problem 8.2 (Kansas, Spring 2004, Q4). Let f : [0,∞) → C be a Lebesgue measurable
function. Assume there exist real numbers a, k > 0 such that

|f(x)| ≤ ae−kx,∀ x ≥ 0.

Consider the half-plane H = {z ∈ C|Imz > k}.

(i) Prove that, for every z ∈ H, the function g : [0,∞) → C, t 7→ eitzf(t) is Lebesgue
integrable.

(ii) Prove that the function F : H → C, z 7→
∫∞

0
eitzf(t)dt is holomorphic.

Solution. [Amrei Oswald]
Attempt:
My first step was to figure out how to handle Lebesgue integrals of complex valued function.
For a complex valued function f(x+ iy) = u(x, y) + iv(x, y) the Lebesgue integral is defined
as ∫

f(x+ iy) =

∫
u(x, y) + i

∫
v(x, y),

and f is integrable if and only if
∫
|f | <∞. From here, the problem is quite straightforward.

Also, there is likely a typo in the statement of the problem. LettingH = {z ∈ C|Imz > −k}
still allows us to bound the integral of |g| by a

∫∞
0
e−t giving us a bound of a rather than

a/2k.
Solution:

(i) Note that g is Lebesgue integrable if and only if |g| is Lebesgue integrable. Fix z ∈ H.
Since Imz > k, we have∫ ∞

0

|g| =
∫ ∞

0

∣∣eitzf(t)
∣∣ ≤ ∫ ∞

0

∣∣eitz∣∣ ∣∣ae−kt∣∣ = a

∫ ∞
0

e−t(Imz+k)

≤ a

∫ ∞
0

e−2kt = a

(
lim
t→∞

e−2kt

−2k
− 1

−2k

)
=

a

2k
.

Therefore, |g| is Lebesgue integrable =⇒ g is Lebesgue integrable.

(ii) Let T be any triangular path in H. Then, from the bound we found for g(t) above, we
have ∣∣∣∣∫

T

Fdz

∣∣∣∣ ≤ ∫
T

|F | dz =

∫
T

∣∣∣∣∫ ∞
0

eitzf(t)dt

∣∣∣∣ dz =

∫
T

∣∣∣∣∫ ∞
0

g(t)dt

∣∣∣∣ dz
≤
∫
T

∫ ∞
0

|g(t)| dtdz ≤
∫
T

a

2k
dz = 0.

The last equality follows since a
2k

is a constant function and therefore entire, so its
integral over any closed path is 0.

The above shows that
∣∣∫
T
Fdz

∣∣ = 0 =⇒
∫
T
Fdz = 0 over any triangular path T . By

Morera’s Theorem, F is holomorphic.
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Problem 8.3. [Shrey Sanadhya, Spring 2004, Q8] Let f : C→ C be a holomorphic function
with the property: f(z +m+mi) = f(z),∀z ∈ C,m, n ∈ Z. Prove that f is constant.

Proof. Let I = [0, 1]2 be a unit square in C. Since I is compact set and f is continuous f |I
is bounded (say f |I ≤M)
Given f(z +m+mi) = f(z),∀z ∈ C,m, n ∈ Z
We can write z = x+ iy and x = bxc+ r and y = byc+ s for some r, s ∈ I
Thus |f(z)| = |f(x+ iy)| = |f(r + is+ bxc+ ibyc)| = |f(r + is)| ≤M
Thus f(z) is bounded entire function. Hence constant by Liouville theorem

Problem 8.4 (Kansas, Jan 2007 Q6). Evaluate∫ ∞
0

log(x)

x4 + 1
dx

Solution. [Rajinda Wickrama]

Define a branch of the logarithm such that `(z) = log |z|+ iθ where θ ∈ [−π/2, 3π/2]. Define

f(z) =
`(z)

z4 + 1
.

Let 0 < r < R and let γ be the same curve as in Example 2.7 (Conway 115). Then f has
two simple poles, eiπ/4 and e3iπ/4 inside γ. By the residue theorem;∫

γ
f = 2πi (Res(f, eiπ/4)+Res(f, e3iπ/4))...(1)

Res(f, eiπ/4)= lim
z→eiπ/4

(z − eiπ/4)f(z) =
iπ/4

(eiπ/4 − e3iπ/4)(eiπ/4 − e5iπ/4)(eiπ/4 − e7iπ/4)

After simplifying we get that

Res(f, eiπ/4)= π√
2

(
1
16
− i

16

)
Similarly,

Res(f, e3iπ/4)= π√
2

(
3
16

+ 3i
16

)
Therefore, by applying these values to (1) we get that∫

γ

f =

∫
γ

`(z)

z4 + 1
dz =

√
2π2i

4
−
√

2π2

8
...(2)

Further, by parametrizing all the curves we get the following;
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∫
γ

`(z)

z4 + 1
dz =

∫ R

r

log x

1 + x4
dx+iR

∫ π

0

logR + iθ

1 +R4e4iθ
e4iθdθ+ir

∫ 0

π

log r + iθ

1 + r4e4iθ
e4iθdθ+

∫ −r
−R

log |x|+ iπ

1 + x4
dx...(3)

Also, ∫ R

r

log x

1 + x4
dx+

∫ −r
−R

log |x|+ iπ

1 + x4
dx = 2

∫ R

r

log x

1 + x4
dx+ iπ

∫ R

r

1

1 + x4
dx

Now let’s prove that ∫ ∞
0

1

1 + x4
dx =

π

2
√

2
...(4)

In order to do this we use the path γ in Example 2.5 (Conway: pg 113/114). First define a
function

g(z) =
1

1 + z4

Observe that, as R→∞∣∣∣∣∫
γR

1

z4 + 1
dz

∣∣∣∣ ≤ ∫
γR

1

|z4 + 1|
|dz| = πR

|R4 − 1|
→ 0

Also, g has two simple poles, eiπ/4 and e3iπ/4 inside γ. By the residue theorem,

∫
γ

1

z4 + 1
dz = 2πi(Res(g, eiπ/4) +Res(g, e3iπ/4)) =

π√
2

=

∫
γR

1

z4 + 1
dz +

∫ R

−R

1

x4 + 1
dx

As R→∞, ∫ ∞
−∞

1

x4 + 1
dx =

π√
2

Since 1
x4+1

is symmetric about the y axis,∫ ∞
0

1

x4 + 1
dx =

1

2

∫ ∞
−∞

1

x4 + 1
dx =

π

2
√

2

Now let us show that iR
∫ π

0
logR+iθ
1+R4e4iθ

e4iθdθ → 0 as R→∞. So, as R→∞, observe that,∣∣∣∣iR ∫ π

0

logR + iθ

1 +R4e4iθ
e4iθdθ

∣∣∣∣ ≤ R

∫ π

0

| logR|+ θ

|1−R4|
dθ =

R| logR|π
|1−R4|

+
Rπ2

2|1−R4|
→ 0
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Similarly, as r → 0+,
∣∣∣ir ∫ π0 log r+iθ

1+r4e4iθ
e4iθdθ

∣∣∣→ 0.

Therefore, as R → ∞, r → 0+ in equation (3),and also using results from (2) and (4), we
get that ∫ ∞

0

log x

1 + x4
dx =

−π2

8
√

2

Problem 8.5 (Elaina Aceves, January 2007 Q8). Find a conformal map from the strip
{z : 0 < Re(z) < 1} onto the half disk {z : Im(z) > 0, 0 < |z| < 1}.

Solution.
Attempt:
My first idea was to use Mobius transformations to get from the vertical strip to the half
disk. So, I began with using the map z → iz to get the vertical strip to the horizontal
strip and then using the exponential to get the right half plane. Then I can use the map
z → z−1

z+1
to get from the right half plane to the unit disk. Unfortunately, I did not know of

any conformal maps from the unit disk to the half disk. This is when I turned to the list of
maps that Rolando provided. There is a map that is from half of a horizontal strip to the
half disk, but I wasn’t sure how to map into half of a horizontal strip. However, there was a
map from the half disk onto a horizontal strip of width π. The inverse of that map (which
we can use because conformal maps are bijective) is what I used in the solution.
Solution:
We will define three maps to create a conformal map from the vertical strip {z : 0 < Re(z) <
1} to the half disk {z : Im(z) > 0, 0 < |z| < 1} . Let f1 be the map that sends z → iz.
This will take the vertical strip to the horizontal strip {z : 0 < Im(z) < 1}. Let f2 be the
map that sends z → πz, which will send the horizontal strip {z : 0 < Im(z) < 1} to the
horizontal strip {z : 0 < Im(z) < π}. Finally, let f3 be the map z → log( z−1

z+1
) which maps

the half disk {z : Im(z) > 0, 0 < |z| < 1} onto the horizontal strip {z : 0 < Im(z) < π}.
Then if we let f = f−1

3 ◦ f2 ◦ f1, f is a conformal map from the vertical strip to the half
disk.

Problem 8.6 (Kansas, August 2008 Q2). (a) Let M and R be positive numbers and f be
a holomorphic function in RD and bounded by M . Show that |f(w) − f(0)| ≤ 2MR−1|w|
w ∈ RD. Hint: apply Schwarz’s Lemma to an appropriate function.
(b) If F is holomorphic and bounded in C, use (a) to infer (Liouville’s Theorem) that F is
constant.

Solution. [Sara Reed] Note the following will be used in the proof:

• Schwarz’s Lemma (p. 130): Let D = {z : |z| < 1} and suppose f is analytic on D with
(a) |f(z)| ≤ 1 for z in D
(b) f(0)=0.
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Then |f ′(0)| ≤ 1 and |f(z)| ≤ |z| for all z in the disk D. Moreover if |f ′(0)| = 1 or if
|f(z)| = z for some z 6= 0 then there is a constant c, |c| = 1, such that f(w) = cw for
all w in D.

(a):

Proof. Define g(z) := f(Rz)− f(0) where z ∈ D and therefore w = Rz ∈ RD. It follows

|g(z)| = |f(Rz)− f(0)| ≤ |f(Rz)|+ |f(0)| ≤ 2M.

Thus g : D → 2MD and g is analytic. Define h(z) := g(z)
2M

. Thus, h : D → D, h is analytic
and

h(0) =
g(0)

2M
=
f(0)− f(0)

2M
= 0.

Therefore, by Schwarz’s Lemma,

|h(z)| ≤ |z|∣∣∣g(z)

2M

∣∣∣ ≤ |z|
|f(Rz)− f(0)| ≤ 2M |z|
|f(w)− f(0)| ≤ 2MR−1|w|

for w = Rz ∈ RD as desired.

(b):

Proof. Let F : C → C be holomorphic and |F (z)| ≤ M for all z ∈ C. Let w ∈ C. Choose
R > 0 such that w ∈ RD. By part a: |F (w)−F (0)| ≤ 2MR−1|w| for w ∈ RD. Let R→∞.
Then we have |F (w) − F (0)| ≤ 0 which implies |F (w) − F (0)| = 0. Thus, F (w) = F (0).
This conclusion holds for all w ∈ C. So F (w) = F (0) for all w ∈ C. Therefore, we conclude
F is constant.

Problem 8.7 (Kansas-Aug 2008 Q4: Shrey Sanadhya). Calculate

∫ ∞
−∞

cosx

(x2 + α2)

Proof. Recall that cosx = Re (eix), so

∫ ∞
−∞

cosx

(x2 + α2)
= Re

(∫∞
−∞

eix

(x2+α2)

)
.

So let f(z) =
eiz

(z2 + α2)
=

eiz

(z − iα)(z + iα)
, and notice that this function has poles of order 1

at iα and−iα. Now consider a semicircle contour of radius R centered at the origin. Only one
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pole iα lie in the contour: Using the Residue Theorem, we know that

∫
γ

f(z) = 2πiResiαf .

Resiαf = lim
z→iα

[
(z − iα)

eiz

(z − iα)(z + iα)

]
= lim

z→iα

[
eiz

(z + iα)

]
= − i

2αeα

Now we have that

∫
γ

f(z) =

∫ R

−R
f(z) dz +

∫
CR

f(z) dz = 2πiResiαf =
π

αeα
.
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Parameterizing CR as Reit for t ∈ [0, π], we bound

∫
CR

f(z) and show that this integral goes

to 0 as R→∞:

∣∣∣∣∫
CR

eiz

(z2 + α2)

∣∣∣∣ ≤ ∫ π

0

∣∣∣∣∣iR eiRe
it

(R2e2it + α2)

∣∣∣∣∣ dt (50)

≤
∫ π

0

∣∣∣∣iR e−R

(R2 − α2)

∣∣∣∣ dt (51)

The inequality in line (2) above comes from the fact that t only takes values between 0 and
π, so at “best”, the numerator will be eiR(i) and the denominator will be −R2 + α2 (which
has the same norm as R2 − α2). Now as R→∞, we see that

∫
CR
f(z)→ 0.

Returning to the residue theorem, we have that

∫
γ

f(z) =

∫ ∞
−∞

f(z)dz+

∫
CR

f(z) =

∫ ∞
−∞

f(z)dz =∫ ∞
−∞

cos z

(z2 + α2)
+ i

∫ ∞
−∞

sinx

(z2 + α2)
=

π

αeα
.

Since the real and imaginary parts above must be equal, we get that

∫ ∞
−∞

sinx

(z2 + α2)
= 0 and∫ ∞

−∞

cosx

(z2 + 4)2
=

π

αeα
.

Problem 8.8 (Kansas, August 2008 Q5). Let K be a compact set of an open connected set
Ω ⊂ C. Let u : Ω→ C be harmonic, c ∈ R and u ≤ c on Ω−K. Prove that u ≤ c on Ω.

Solution. [Rajinda Wickrama]
There is an entire chapter on harmonic function in Conway (Chapter X) and I have used
some results from this chapter in my proof.

Proof. By the maximum modulus theorem for harmonic functions (Conway: 1.6-page 253) u
attains its maximum on the boundary of K. Suppose the maximum is attained at a ∈ ∂K.
Then

∀z ∈ K, u(z) ≤ u(a) (52)

Observe that a is a limit point of Ω −K. Let {zn} be a sequence in Ω −K that converges
to a. Therefore,

u(a) = u
(

lim
n→∞

zn

)
= lim

n→∞
u(zn) ≤ c (53)

By combining the results in (1) and (2) we get that u ≤ c on Ω.
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Problem 8.9 (Kaitlin Healy, Fall 2011 Q4). Use the Residue Theorem to integrate the
rational function

R(z) =
z2 − z + 2

z4 + 10z2 + 9

over R.

Solution.
Attempt:
Got this on the first attempt!
Solution:
We want to calculate ∫ ∞

−∞

x2 − x+ 2

x4 + 10x2 + 9
dx

Notice that R(z) can be rewritten as

R(z) =
z2 − z + 2

(z + 3i)(z − 3i)(z + i)(z − i)

This tells us that R(z) has poles at i,−i, 3i,−3i each with multiplicity one. Thus, we will
use the following contour to integrate over:

Call this path σ = α∪ γ, where α is the part of the curve on the real axis and γ is the curve
γ = Reiθ for θ ∈ [0, π] and R > 3. This gives us∫

σ

R(z)dz =

∫
α

R(x)dx+

∫
γ

R(z)dz

Let’s first look at
∫
σ
R(z)dz. We know from the residue theorem that

∫
σ
R(z)dz = 2πi(Res(R(z), i)+
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Res(R(z), 3i)). We can calculate each of those residues in the following way:

Res(R(z), i) = g(i)

= (z − i)R(z)

=
i2 − i+ 2

(i+ 3i)(i− 3i)(i+ i)

=
1− i
16i

=
3− 3i

48i
Res(R(z), 3i) = h(i)

= (z − 3i)R(z)

=
(3i)2 − 3i+ 2

(3i+ 3i)(3i+ i)(3i− i)

=
−7− 3i

−48i

=
7 + 3i

48i

This gives us ∫
σ

R(z)dz = 2πi

(
3− 3i

48i
+

7 + 3i

48i

)
= 2πi

(
5

24i

)
=

5π

12

Now we must work with the integrals over each individual part of our path. Notice that the
integral over α is the integral we want to calculate as R→∞. Thus, we only need to work
with the integral over γ. Notice the following:∫

γ

R(z)dz =

∫
γ

z2 − z + 2

z4 + 10z2 + 9
dz

=

∫
γ

z2 − z + 2

(z2 + 9)(z2 + 1)
dz

=

∫ π

0

R2e2iθ −Reiθ + 2

(R2e2iθ + 9)(R2e2iθ + 1)
iReiθdθ
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Taking an absolute value, we have∣∣∣∣∫
γ

R(z)dz

∣∣∣∣ =

∣∣∣∣∫ π

0

R2e2iθ −Reiθ + 2

(R2e2iθ + 9)(R2e2iθ + 1)
iReiθdθ

∣∣∣∣
≤
∫ π

0

|R2e2iθ −Reiθ + 2|
|R2e2iθ + 9||R2e2iθ + 1|

|iReiθ||dθ|

= R

∫ π

0

|R2e2iθ −Reiθ + 2|
|R2e2iθ + 9||R2e2iθ + 1|

dθ

≤ R

∫ π

0

|R2e2iθ|+ |Reiθ|+ 2

(R2 − 9)(R2 − 1)
dθ

= R

∫ π

0

R2 +R + 2

(R2 − 9)(R2 − 1)
dθ

= πR
R2 +R + 2

(R2 − 9)(R2 − 1)

As R → ∞, this will go to zero. Thus, the integral over γ will go to zero as R → ∞.
Therefore, combining all of our parts, we have∫ ∞

−∞

x2 − x+ 2

x4 + 10x2 + 9
dx =

5π

12

Problem 8.10 (Kansas, Spring 2013 Q3). For some α > 0, S =: {reiθ : r > 0, 0 < θ < α}.
f ∈ H(S) is bounded. Show that

lim
r→∞

f ′(reiθ) = 0

for each 0 < θ < α.

Solution. [Qing Zou]

Define fr(z) = f(rz) for r > 0. Since f is holomorphic on S and bounded, we know that
there exists M > 0 such that |f | ≤M . Then fr is also holomorphic on S and |fr| ≤M .
Let θ ∈ (0, α). Then there exists R > 0 such that B(eiθ, R) ⊂ S and on B(eiθ, R), f is
analytic and |fr| ≤M . So by Cauchy’s Estimate,

|f ′r(eiθ)| ≤
M

R
.

Since
f ′r(z) = [f(rz)]′ = r · f ′(rz).

Then

|f ′r(eiθ)| = |r · f ′(reiθ)| ≤
M

R
,
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which implies

|f ′(reiθ)| ≤ M

rR
→ 0, (r →∞).

Therefore,
lim
r→∞

f ′(reiθ) = 0

for each 0 < θ < α.

Problem 8.11 (Kansas, Spring 2015 Q7). Let f : C → C be an entire, non-constant
function. Show that f(C) is dense in C.

Solution. [Amrei Oswald]
Say that f(C) is not dense in C. Then there exists a z0 ∈ C and an ε > 0 such that
f(C) ∩ B(z0, ε) = ∅. Then if f1(z) = f(z) − z0, f1 is entire and f1(C) ∩ B(0, ε) = ∅. Let
f2(z) = 1

ε
f1(z). Then f2 is entire and f2(C) ∩B(0, 1) = ∅.

Finally, if f3(z) = 1/f2(z), f3 is entire and |f3(z)| ≤ 1 for every z ∈ C. Therefore, by
Liouville’s Theorem, f3 is constant, say f3 ≡ c for c ∈ C. Then we have,

f3(z) =
ε

(f(z)− z0)
= c =⇒ f(z) =

ε

c
+ z0,

and f is constant. However, this contradicts our assumption about f . Therefore, we cannot
have that f(C) is not dense in C.

Problem 8.12 (Adam Wood, Fall 2013, 4.). Given ε > 0, find a compact set K ⊂ [0, 1] that
contains no rationals and satisfies m(K) > 1− ε.

Solution.
Attempt:
None.
Solution:

Proof. Let ε > 0. Note that a compact set contained in [0, 1] is equivalent to a closed
set contained in [0, 1] since the compact sets in R are the closed and bounded sets. Let
I = [0, 1] and consider I ∼ (Q ∩ I). Since m(Q) = 0, m(Q ∩ I) = 0, so m(I ∼ (Q ∩ I)) =
m(I)−m(Q∩I) = 1. By the approximation properties of Lebesgue measure, since I ∼ (Q∩I)
is measurable, there exists a closed set K ⊆ I ∼ (Q∩ I) so that m((I ∼ (Q∩ I)) ∼ K) < ε.
That is, m(K) > 1− ε.

Problem 8.13 (Elaina Aceves, Spring 2009 Q1). P is a polynomial of degree at most n ∈ N
and sup{|P (u) : u ∈ T} = 1. Show that |P (z)| ≤ |z|n for all z ∈ C \ D and determine for
what P equality holds.
Note that T = {z ∈ C : |z| = 1} and D = {z ∈ C : |z| < 1}.
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Solution.
Attempt:
Since we want to show that |P (z)| ≤ |z|n, it made sense to consider the function f(z) =
P (z)/zn and show that |P (z)/zn| ≤ 1. To show this the Maximum Modulus Theorem can
be applied. However, I could not find a bound for |f(z)| for all of z ∈ C \D. Thus, I needed
to introduce the sets GR = {z ∈ C : 1 ≤ |z| ≤ R} for R > 1 which allow me to find a bound
and as R→∞, we have that GR → C \ D.
Solution:
Define f : C \ {0} → C by f(z) = P (z)/zn. Then f is analytic on C − {0}. Notice that if
P (z) = anz

n + an−1z
n−1 + · · ·+ a0, then

f(z) =
P (z)

zn
=
a0

zn
+

a1

zn−1
+ · · ·+ an.

By the Maximum Modulus Theorem, since |P (z)| ≤ 1 on T by assumption, we have that
|P (z)| ≤ 1 on D. By Cauchy’s Estimate, since |P (z)| ≤ 1 on D, we have that |P (m)(0)| ≤
m!·1
1m

= m! for all 0 ≤ m ≤ n. Then

|am| =
1

m!
|P (m)(0)| ≤ m!

m!
= 1 for all 0 ≤ m ≤ n.

Consider the set GR = {z ∈ C : 1 ≤ |z| ≤ R}. The boundary of GR is T∪{z ∈ C : |z| = R}.
On T, we have that |z| = 1 and |P (z)| ≤ 1 by the Maximum Modulus Theorem, so

|f(z)| = |P (z)|
|z|n

= |P (z)| ≤ 1.

So we have a bound for that section of the boundary. On {z ∈ C : |z| = R}, via the triangle
inequality and |am| ≤ 1 for all 0 ≤ m ≤ n, we obtain

|f(z)| ≤ |a0|
|z|n

+
|a1|
|z|n−1

+ · · ·+ |an| ≤
1

Rn
+

1

Rn−1
+ · · ·+ 1 (∗)

Hence on the boundary of GR, we have the bound |f(z)| ≤ 1
Rn

+ 1
Rn−1 + · · ·+ 1. Then by the

Maximum Modulus Theorem, we have that |f(z)| ≤ 1
Rn

+ 1
Rn−1 + · · · + 1 for all z ∈ GR. If

we let R→∞, we have that |f(z)| ≤ 1 for all z ∈ C\D. Hence |P (z)| ≤ |z|n for all z ∈ C\D.

Now, we need to determine for what P equality holds. If |P (z)| = |z|n, then |f(z)| = 1 and
inequality (∗) becomes equality throughout when we let R→∞. This forces |am| = 1 for all
0 ≤ m ≤ n. Thus, P (z) = anz

n + an−1z
n−1 + · · ·+ a0 where |am| = 1 for all 0 ≤ m ≤ n.

Problem 1. Kansas, Spring 2013 Q1
(i) Show that each f ∈ H(D) satisfies

f(z)− f(0) =
∫ 1

0
zf ′(tz) dt
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for every z ∈ D
Hint: Is there a derivative with respect to t present?
(ii) If F ∈ H(Ω) and F ′ = 0, show that F is constant.
Hint: Fixing z0 ∈ Ω , use (i) to show that {z ∈ Ω : F (z) = F (z0)} is open.

Proof. [Violet Tiema]
Notice that d

dt
f(tz) = zf ′(tz). Therefore,

∫ 1

0

z f ′(tz) dt =

∫ 1

0

d

dt
f(tz) dt

= f(tz)

∣∣∣∣1
0

= f(z)− f(0)

Now for (ii). Since F is analytic in Ω . Pick z0 ∈ Ω and since Ω is open, ∃ε > 0 such that
B(z0,

ε
2
) ⊂ Ω. Since F is analytic on B(z0,

ε
2
) then we can write F(z) as

F (z) =
∑

an(z − z0)n where an =
F n(z0)

n!

But since F ′ = 0, It then follows that an = 0 ,∀n ≥ 1. Therefore, F (z) = F (z0) ,∀z ∈
B(z0,

ε
2
). Now define a function g : Ω→ C such that g(z) = F (z)− F (z0) is analytic. Then

gn(z0) = 0 ,∀n ≥ 0 Thus g ≡ 0 by theorem 3.7 page 78 (Conway) Therefore F (z)−F (z0) ≡ 0
which implies F (z) = F (z0) ,∀z ∈ Ω. Since Ω is open, by the identity theorem we can
conclude that F is constant.
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9 Texas A & M Quals

Problem 9.1 (Texas A& M Complex, August 2009 Q8). Find the function w(z) that maps
Ω = {Im(z) > 0} ∼ [0, i] conformally into D which satisfies w(5i

4
) = 0 and w(i) = −i.

Solution. [Jared Grove]
Attempt:
Nothing of value, just know how z2 and

√
z work and it is much more obvious.

Solution:
We will define the following functions:

f1(z) = z2

f2(z) = z + 1

f3(z) =
√
z = e

1
2

log(z)

f4(z) =
z − 3i

4

z + 3i
4

f5(z) = ei
π
2

for f3 we will say log(z) = ln|z| + i arg(z) using the branch cut obtained by removing the
positive reals. Then say

w(z) = f5 ◦ f4 ◦ f3 ◦ f2 ◦ f1

this will be the function we want. To get an idea of what is happening

f1(Ω) = C ∼ [−1,∞] = Ω1, f1(5i
4

) = −25
16
, f1(i) = −1

f2(Ω2) = C ∼ [0,∞] = Ω3, f2(−25
16

) = −9
16
, f2(−1) = 0

f3(Ω3) = {z : Im(z) > 0} = Ω4, f3(−9
16

) = 3i
4
, f3(0) = 0

f4(Ω4) = D = Ω5, f4(3i
4

) = 0, f3(0) = −1

f5(Ω5) = D, f5(0) = 0, f3(−1) = −i

Notice Ω2 is the Complex plane minus the real line and the bit from 0 to −1, Ω3 is the
Complex plane minus the positive reals, and Ω4 is the upper half plane (the positive reals
got mapped to the entire real line).

Problem 9.2 (TAMU, January 2010 Q6). Let f be a function holomorphic in the unit disk
D and continuous in the closure D.
a) Show that if Rf = 0 on ∂D then f is a constant.
b) Show that the previous statement is false if ∂D is replaced with a proper subarc of ∂D.

Solution. [Michael Kratochvil]
Attempt:
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Each part had completely different approaches. The forthcoming lemma was shown to me by
Alex Bates, and the proof of the first part immediately followed. The second part requires
extra knowledge of transformations, as well as some algebraic manipulation.
Solution:
Lemma: Let g be analytic on D and continuous on D such that g does not vanish on D and
|g| ≡ 1 on ∂D. Then g is constant.

Proof: The Maximium Modulus Theorem (MMT) immediately tells us that |g(z)| ≤ 1
for all z ∈ D. Define h(z) = 1

g(z)
. Then h is analytic on D (since g(z) 6= 0) and h is contin-

uous on D. Further |h(z)| = 1/|g(z)| = 1 on ∂D which implies |h(z)| ≤ 1 on D (by MMT).
This implies |g(z)| ≥ 1 on D and therefore |g(z)| = 1. So g maps the unit disk to the unit
circle. But a quick exercise with angles and conformal maps (one we did for homework) tells
us that g must be constant.

(a) Setting p(z) = ef(z) we immediately have that p(z) 6= 0 on D and |p(z)| ≡ 1 on ∂D.
So by the lemma above, f is constant.
(b) For Γ a proper subarc of ∂D and ΓH the lower half circle, let ϕ : D → D be a Mobius
transformation with ϕ(Γ) = ΓH . The function

ζ(w) =

(
1 + w

1− w

)2

maps the upper half disk onto the upper half plane. Further

η(ζ) =
ζ − i
ζ + i

maps the upper half plane onto the unit disk. Thus for φ = η ◦ ζ

φ(w) =
(1 + w)2 − i(1− w)2

(1 + w)2 + i(1− w)2

maps the upper half unit disk onto D. In particular φ maps the interval [−1, 1] onto ΓH .
Thus

i(φ−1 ◦ ϕ)(z)

maps Γ to [−i, i]. satisfying the counterexample.

Problem 9.3 (TAMU, January 2010 Q7). Let entire functions f and g satisfy ef + eg ≡ 1.
Prove that then both are constants.

Solution. [Amrei Oswald]
Attempt:
I tried bounding various combinations of f and g with other entire functions and showing
that the image of either f or g wasn’t dense in C, but I couldn’t get any of these approaches

91



to work. Rolando pointed me to Picard’s Little Theorem, which states that if f is a non-
constant entire function on C, then image of f is either all of C or C minus a single point.
Solution:
Since f is entire, ef is entire. Note that if f(z) = 0 for some z ∈ C, we have e0 + eg(z) =
1 =⇒ eg(z) = 0 which is a contradiction. Therefore, f(z) 6= 0 for any z ∈ C which means
that ef(z) 6= 1 for any z ∈ C. Since ef(z) 6= 0 for any z ∈ C, ef is an entire function whose
range omits at least two points in the complex plane. By Picard’s Little Theorem, we must
have that ef(z) is constant which implies that f is constant. Then, eg = 1 − ef is constant,
so that g is also constant.

Problem 9.4 (TAMU C, January 2010 Q8). Find a general formula for all functions w(z)
that map the domain Ω = {|z| < 1} ∼ [1/2, 1] conformally onto the domain {|Im(z)| < 1}.

Solution. [Sara Reed] We will construct a sequence of conformal maps and define w(z) to be
the composition of these maps. We begin with Ω = {|z| < 1} ∼ [1/2, 1].

1. We will map Ω = {|z| < 1} ∼ [1/2, 1] to {|z| < 1} ∼ [0, 1] with the following mobius
transformation:

ϕ 1
2
(a) =

z − 1
2

1− 1
2
z
.

2. We will map {|z| < 1} ∼ [0, 1] to H ∼ {Re(z) = 0 and Im(z) ≥ 1} with the inverse of
the map that sends the upper half plane to the disk:

T1(z) =
i(z + 1)

−z + 1
.

Note that [0, 1]→ {Re(z) = 0&Im ≥ 1}.

3. We will map H ∼ {Re(z) = 0 and Im(z) ≥ 1} to C ∼ {−1 ≤ Re(z) ≤ 0 and Im(z) =
0} by

T2(z) = z2.

Note that {Re(z) = 0 and Im ≥ 1} gets mapped to {−1 ≤ Re(z) ≤ 0 and Im(z) = 0}.

4. We will map C ∼ {−1 ≤ Re(z) ≤ 0 and Im(z) = 0} to C ∼ {Re(z) ≤ 0 and Im(z) =
0} by

T3(z) =
z

z + 1
.

5. Let the negative real axis be our branch cut. Choose the branch of the logarithm on
this branch cut.

T4(z) = log(z)

will map C ∼ {Re(z) ≤ 0 and Im(z) = 0} to {0 < Im(z) < 2πi}.
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6. We will use the following dilation:

T5(z) =
z

π

and then the translation
T6(z) = z − i

to finally map to {|Im(z)| < 1}.

Therefore, our map will be the following:

f(z) = (T6 ◦ T5 ◦ T4 ◦ T3 ◦ T2 ◦ T1 ◦ ϕ 1
2
)(z).

Problem 9.5 (TAMU, August 2011 Q4). Suppose f is a continuous function on {z ∈ C :
|z| ≤ 1}, the closed unit disk, and f is holomorphic on the open unit disk. Prove that if f(z)
is real when |z| = 1, then f is a constant function.

Solution. [Rajinda Wickrama]

Proof. Let f = u + iv. Since f : D → C is analytic, u and v and harmonic conjugates.
Observe that v(z) = 0 when |z| = 1 since f(z) is real when |z| = 1. By the maximum
modulus principle for harmonic functions (Pg 253), v attains its maximum on the boundary
of D. However, since v(z) = 0 when |z| = 1, we get that v ≡ 0 on {z ∈ C : |z| ≤ 1}.
Therefore, f is real on {z ∈ C : |z| ≤ 1}.

Finally, we need to show that f is constant. Since f is analytic on the unit disk, u, v satisfy
the Cauchy-Riemann equations. Hence,

ux = vy = 0 and uy = −vx = 0 =⇒ u is constant on D

Therefore, f is constant on D. Since, f is continuous on {z ∈ C : |z| ≤ 1}, f is constant on
{z ∈ C : |z| ≤ 1}.

Problem 9.6 (Texas A& M Complex, January 2013, 3.). Suppose that a0 > a1 > · · · >
aN > 0. Prove that

∑N
n=0 anz

n 6= 0 when |z| ≤ 1.

Problem 9.7 (Elaina Aceves, Aug 2011 Q6). Use the residue theorem to prove that
∫∞

0
x2

1+x5
dx =

π/5
sin(2π/5)

.
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Solution.
Attempt:
I adopted Michael’s approach from his solution (Kansas Sp 04 Q3) where he used the contour
formed by the line from the origin to R along the x-axis, the arc from R to ω2R where ω is
eπi/5, and the line from ω2R back to the origin. If we use this ‘pizza slice’, then only ω is
contained in the contour to help simplify calculations of the integral.
Solution:
Let f(z) = z2

1+z5
and ω = eπi/5. Let γ1 be the line from the origin to R along the x-axis,

let γ2 be the arc from R to ω2R, and let γ3 be the line from ω2R back to the origin. Let
CR = γ1 + γ2 + γ3 oriented counterclockwise. Michael provides a picture of this contour in
Kansas Sp 04 Q3. For γ2, we have the parametrization z → Reiθ where dz = Rieiθ and γ3,
we have the parametrization z → ω2y where dz = ω2dy. Then we have that∫

∂CR

f(z)dz =

∫
γ1

f(z)dz +

∫
γ2

f(z)dz +

∫
γ3

f(z)dz

=

∫ R

0

x2

1 + x5
dx+

∫ 2π/5

0

(Reiθ)2Rieiθ

1 + (Reiθ)5
dθ +

∫ 0

R

(ω2y)2ω2

1 + (ω2y)5
dy

=

∫ R

0

x2

1 + x5
dx+ i

∫ 2π/5

0

R3e3iθ

1 +R5e5iθ
dθ − ω6

∫ R

0

y2

1 + ω10y5
dy (∗)

We can further simplify the third integral in (∗).

−ω6

∫ R

0

y2

1 + ω10y5
dy = ω

∫ R

0

y2

1 + ω10y5
dy since ω5 = −1

= ω

∫ R

0

y2

1 + y5
dy since ω10 = (ω5)2 = (−1)2 = 1

We will show that the second integral from (∗) vanishes as R→∞.∣∣∣∣∣i
∫ 2π/5

0

R3e3iθ

1 +R5e5iθ
dθ

∣∣∣∣∣ ≤
∫ 2π/5

0

|R3e3iθ|
|1 +R5e5iθ|

|dθ|

≤
∫ 2π/5

0

|R3|
|1−R5|

|dθ|

≤ 2π|R|3

5|1−R5|
→ 0 as R→∞

By the Residue Theorem since f has a simple pole at ω ∈ CR, we have that∫
CR

f(z)dz = 2πiRes(f, ω)
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where

Res(f, ω) = lim
z→ω

f(z)(z − ω) = lim
z→ω

z2(z − ω)

1 + z5
= lim

z→ω

z3 − z2ω

1 + z5

= lim
z→ω

3z2 − 2zω

5z4
by L’Hospital’s Rule

=
ω2

5ω4
=

1

5ω2

Thus, after combining all of our results and letting R→∞, we obtain

(1 + ω)

∫ ∞
0

x2

1 + x5
dx = 2πi

(
1

5ω2

)
Finally,∫ ∞

0

x2

1 + x5
dx = 2πi

(
1

5ω2

)(
1

1 + ω

)
=
π

5

(
2i

ω2 + ω3

)
=
π

5

(
2i

ω2 + ω−2

)
=

π/5

sin(2π/5)

Problem 9.8 (Andrew Pensoneault, May 2012, Q4). Find∫ ∞
−∞

cos(x)

(x2 + 1)(x2 + 4)
dx

Attempt:
I initially forgot cos(z) is infinite as |r| → ∞, so we cannot just use a semicircle construction
directly on cos(z). However, if we split it into (eiz + e−iz)/2 and split the integral, we can

reduce the problem into finding the integral of eiz

(x2+1)(x2+4)

Solution:

First, notice∫ ∞
−∞

cos(x)

(x2 + 1)(x2 + 4)
dx =

∫ ∞
−∞

eix + e−ix

2(x2 + 1)(x2 + 4)
dx

=

∫ ∞
−∞

eix

2(x2 + 1)(x2 + 4)
dx+

∫ ∞
−∞

e−ix

2(x2 + 1)(x2 + 4)
dx

=

∫ ∞
−∞

eix

2(x2 + 1)(x2 + 4)
dx−

∫ −∞
∞

eix

2(x2 + 1)(x2 + 4)
dx

=

∫ ∞
−∞

eix

(x2 + 1)(x2 + 4)
dx

By the Residue theorem (using an increasing counterclockwise half-circle in the upper-
halfplane):∫ ∞
−∞

eix

(x2 + 1)(x2 + 4)
dx+ lim

R→∞

∫ π

0

iReixeRie
ix

(R2e2ix + 1)(e2ix + 4)
dx = 2πi(Res(f, i) + Res(f, 2i))
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Res(f, i) = lim
z→i

(z − i)eiz

(z2 + 1)(z2 + 4)
=

1

6ie

Res(f, 2i) = lim
z→2i

(z − 2i)eiz

(z2 + 1)(z2 + 4)
=

1

−12ie2

Thus ∫ ∞
−∞

eix

(x2 + 1)(x2 + 4)
dx+ lim

R→∞

∫ π

0

iReixeRie
ix

(R2e2ix + 1)(R2e2ix + 4)
dx =

π(2e−1 − e−2)

6

Now looking at∣∣∣ ∫ π

0

iReixeRie
ix

(R2e2ix + 1)(R2e2ix + 4)
dx
∣∣∣ ≤ ∫ π

0

∣∣∣ iReixeRie
ix

(R2e2ix + 1)(R2e2ix + 4)

∣∣∣|dx|
≤
∫ π

0

|ReRieix|
|R2e2ix + 1||R2e2ix + 4|

|dx|

≤
∫ π

0

Re−Im(Reix)

|R2 − 1||R2 − 4|
|dx|

≤ π
Re−R

|R2 − 1||R2 − 4|

If we take the limit as R→∞, this

lim
R→∞

∫ π

0

iReixeRie
ix

(R2e2ix + 1)(R2e2ix + 4)
dx = 0

Thus we have ∫ ∞
−∞

cos(x)

(x2 + 1)(x2 + 4)
dx =

π(2e−1 − e−2)

6

Problem 9.9 (Texas A& M Complex, August 2014 Q6). Prove that if 0 < |z| < 1 then

1

4
|z| < |1− ez| < 7

4
|z|.

Solution. [Jared Grove]
Attempt:
I tried to use all sorts of stuff to get the bottom bound. I had |1−ez| =

√
1− ex cos(y) + e2x

and did the calc three find a minimizer (fxxfyy − f 2
xy), but that didn’t work out. I had the

hardest time accounting for the min occuring at z = 0 and not knowing how to work around
that when |z| > 0. In the end Rolando saved the day and reminded me that alternating
series are things.
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Solution:
We will start with the bound on the right.

|1− ez| = |1−
∞∑
n=0

zk

k!
|

= |1− (1 +
z

1
+
z2

2!
+ · · · )|

= |z
∞∑
k=0

zk

(k + 1)!
|

= |z||
∞∑
k=0

zk

(k + 1)!
|

≤ |z|(
∞∑
k=0

|z|k

(k + 1)!
)

≤ |z|(
∞∑
k=0

1

(k + 1)!
)

= |z|(1 +
1

2
+

1

6
+

1

24
+ · · · )

< |z|(1 +
3

7
+ (

3

7
)2 + (

3

7
)3 + · · · )

= |z|(
∞∑
k=0

(
3

7
)k)

=
7

4
|z|

Notice that
∑∞

k=0(3
7
)k) converges because it is a geometric series. If you need convincing of

the < inequality in work do out a few terms in both series. You will notice that the (k+ 1)!
gets much larger much quicker and thus the fraction will become much smaller at the end.

Now for the other direction:

|1− ez| = |z||
∞∑
k=0

zk

(k + 1)!
|

≥ |z|(
∞∑
k=0

(−1)k

(k + 1)!
)

= |z|(1− 1

2
+

1

6
− 1

24
+

1

120
· · · )

≈ |z|( 76

120
)

>
1

4
|z|
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The approximate solution comes from doing adding the terms I already have listed out
and realizing that the remaining terms will have negligable impact on making the sum get
anywhere near a quarter.

Problem 9.10 (Texas A& M Complex, August 2014 Q7). Prove that the equation

az3 − z + b = e−z(z + 2)

has two solutions in the right half-plane {Rz > 0} when a > 0, b > 2.

Solution. [Michael Kratochvil]
Attempt:
This immediately appeared to be an application of Roche’s Theorem. Originally I wanted
the function to be az3 + b since it is easy to show that there are two roots with positive real
part, but on the right half circle, on the imaginary access the necessary inequality does not
always hold. So I picked az3 − z + b which was a bit of a pain computationally to verify the
desired location of roots, but at least the bounding was relatively straightforward.
Solution:
Consider g(z) = az3− z+ b. I claim this function has one negative real-valued root and two
roots with positive real part. To prove the first claim, note that for x ∈ R, g(x) = ax3−ax+b
has critical points (± 1√

3a
, b∓ 2

3
√

3a
).. Since a positive local maximum is achieved at a negative

critical value, g(0) = b > 0 and a local minimum occurs when x > 0, this implies that g has
only one real negative root.
To prove the second claim, note that if b < 2

3
√

3a
, the local minimum of g is less than zero,

implying that g has two positive real roots. If b = 2
3
√

3a
, the local minimum of g is zero,

implying g has one positive real root with multiplicity 2.
If b > 2

3
√

3a
, the remaining roots are complex, so letting z = x+ iy, x, y ∈ R, y 6= 0 we have

g(z) = (ax3 − 3axy2 − x+ b) + i(3ax2y − ay3 − y) = 0

so the imaginary and real parts are zero. ax3 − 3axy2 − x+ b = 0⇒ y2 = ax3−x+b
3ax

, so

I g(z) = 3ax2y − a(
ax3 − x+ b

3ax
)y − y = y(8ax3 − 2x− b) = 0

⇒ 8ax3 − 2x− b = 0.

But h(x) = 8ax3−2x−b has h(0) = −b < 0 and only negative critical points (since b > 2
3
√

3a

by assumption), which implies the only real root x∗ > 0. Thus, the remaining roots of g
have real part greater than zero and the claim is proven.

Now defining f(z) = −(az3 − z + b) + e−z(z + 2), fixing R > 0, and defining

γ1 = {z ∈ C|z = Reiθ, θ ∈ (−π, π)}
γ2 = {iy|y ∈ [−R,R]}.
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If we can show that for sufficiently large R that on γ = γ1 ∪ γ2, |f(z) + g(z)| < |g(z)|, then
by Rouche’s Theorem, we are done.
Fixing R > b,

√
2/a, and R larger than the roots of g in modulus, we have on γ1

|f(z) + g(z)| = |e−z(z + 2)| ≤ |z + 2| ≤ R + 2,

|g(z)| = |az3 − z + b| ≥ ||az3| − | − z + b|| ≥ aR3 −R + b.

But

R >

√
2

a
⇒ R2 >

2

a

⇒ aR2 > 2

⇒ aR2 − 1 > 1

⇒ aR3 −R > R

⇒ aR3 −R + b > R + 2.

Hence, |f(z) + g(z)| < |g(z)| on γ1.
On gamma2 z = iy so

|f(z) + g(z)| = |e−iy(iy + 2)| = y2 + 4.

But

|g(z)| = | − aiy3 − iy + b| = (ay3 + y)2 + b2 > y2 + 4 = |f(z) + g(z)|.

Thus the claim holds on γ2, as well and the proof is complete.

Problem 9.11 (TAMU, August 2014 Q9). Let fn : D → D be a sequence of holomorphic
functions in the unit disk D. Suppose that fn(z0) → 1 for some z0 ∈ D. Prove that then fn
converges to 1 normally in D.

Solution. [Amrei Oswald]
Attempt:
Since normal convergence is not defined in our textbook, I had to search the internet for
a definition. There are a few different ones, but the one that made the most sense in this
context is the following. The sequence {fn} converges normally to 1 in D if {fn} converges
to 1 uniformly on any compact subset of D.
Solution:
Note that |fn(x)| ≤ 1 for every n ∈ N =⇒ {fn} is bounded on D and is therefore locally
bounded on D. By Montel’s Theorem, {fn} is normal. Then, by the Arzela-Ascoli Theorem,
the set {fn} is equicontinuous at every z ∈ D.

Fix ε > 0. Since {fn} is equicontinuous at z0, there exists a δ > 0 such that d(fn(z), fn(z0)) <
ε/2 for every n ∈ N and z ∈ B(z0, δ). Since fn(z0) → 1, there exists an N ∈ N such that
d(fn(z0), 1) < ε/2 for every n > N . Thus, by the triangle inequality, we have

d(fn(z), 1) ≤ d(fn(z), fn(z0)) + d(fn(z0), 1) < ε for every n > N, z ∈ B(z0, δ)
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=⇒ fn(z)→ 1 for every z ∈ B(z0, δ).

Then, by the same argument as above, for every z ∈ B(z0, δ) ∃ δz > 0 such that f → 1
uniformly on B(z, δz). By continuing this procedure, we can cover D in sets {B(z, δz)}z∈D
such that f → 1 uniformly on B(z, δz).

Let K ⊂ D be a compact set. Then K ⊂
⋃
z∈DB(z, δz). Since K is compact, there exists

a finite subcover {Bi}mi=1 ⊂ {B(z, δz)} ,m ∈ Z+.
Let η > 0. Then, fn → 1 uniformly on B1, ..., Bm =⇒ there exist N1, ..., Nm such that

d(fn(z), 1) < η for n > Ni, z ∈ Bi, 1 ≤ i ≤ m. Let N0 = max {N1, ..., Nm}. Then,

d(fn(z), 1) < η for every n > N0, z ∈ K,

and {fn} converges normally to 1 on D.

Solution. [Adam Wood]
Attempt:
I initially tried looking at the modulus of the expression and using that a0 was the largest
coefficient to get a bound on the modulus. Then, I tried using Rouche’s Theorem. I tried
f = the whole sum and g = anz

n and I tried f = anz
n and g = the whole sum. I also tried

using induction, but kept on running into the problem that the triangle inequality didn’t
give me what I wanted. After looking a some proofs of the fundamental theorem of algebra
and techniques for dealing with polynomials, I tried looking (1 − z)f(z), which worked. I
was trying to use contradiction the whole time, but just needed to look at the “correct”
polynomial.
Solution:

Proof. Let f(z) =
∑N

n=0 anz
n and consider the function g(z) = (1− z)f(z). Then,

g(z) = a0 +
N∑
n=1

(ai − ai−1)zi − aNzN+1.

Suppose, for the sake of contradiction, that f(z0) = 0 for some z0 with |z0| < 1. By definition
of g(z), we also have that g(z0) = 0. Therefore,

a0 +
N∑
n=1

(ai − ai−1)zi0 − aNzN+1
0 = 0.

Since ai < ai−1 for all 1 ≤ i ≤ N , ai − ai−1 < 0. So, the statement above is equivalent to

a0 =
N∑
n=1

(ai−1 − ai)zi0 + aNz
N+1
0 .
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Then,

|a0| =

∣∣∣∣∣
N∑
n=1

(ai−1 − ai)zi0 + aNz
N+1
0

∣∣∣∣∣ ≤
N∑
n=1

(ai−1−ai)|z0|i+aN |z0|N+1 <
N∑
i=1

(ai−1−ai)+aN = a0,

which is a contradiction. Thus, f has no zeros z0 with |z0| < 1. It remains to show that
f(z0) 6= 0 if |z0| = 1. If f(z0) = 0 for some z0 with |z0| = 1, then by the Maximum Modulus
Theorem, f attains its maximum modulus over the unit disk on the boundary of the unit
disk. Therefore, f(z) = 0 for all z with |z| ≤ 1, which is a contradiction, since f has no
zeros within the unit disk. Thus, f(z) 6= 0 when |z| ≤ 1.

Problem 9.12 (TAMU, August 2014 Q2). a) Find and classify all isolated singularities of

f(z) =
z2(z − π)

sin2 z
and g(z) = (z2 − 1) cos

1

z − 1
.

b) Find the residue of f at z = 2π and the residue of g at z = 1.

Solution. [Sara Reed] We will be using the following Theorems and definitions to classify
singularities: Part a: Consider f(z). We know the singularities occur when sin2 z = 0 which
happens when z = nπ for all n ∈ Z. When n = 0, there is a removable singularity as shown
using L’Hospital’s Rule:

lim
z→0

zz2(z − π)

sin2 z
= lim

z→0

4z3 − 3πz2

2 sin z cos z
= lim

z→0

12z2 − 6πz

−2 sin2 z + 2 cos2 z
= 0.

Note that

lim
z→nπ

∣∣∣z2(z − π)

sin2 z

∣∣∣ =∞

for n ∈ Z ∼ {0}. Therefore, there is a pole at z = nπ for n ∈ Z ∼ {0}. We may want to
take special attention to when n = 1 but note that using L’Hospital’s Rule, we find:

lim
z→π

∣∣∣z2(z − π)

sin2 z

∣∣∣ = lim
z→π

∣∣∣ 3z2 − 2πz

2 sin z cos z

∣∣∣ =∞.

Now, we look to find the order of the pole. We want to find the smallest m such that
f(z)(z−a)m has a removable singularity at z = a. So we want to findm such that limz→nπ(z−
a)m+1f(z) = 0 for n ∈ Z ∼ {0}. It follows using L’Hospital’s Rule:

lim
z→nπ

(z − nπ)m+1z2(z − π)

sin2 z
= lim

z→nπ

(z − nπ)m+1(z3 − πz2)

sin2 z

= lim
z→nπ

(m+ 1)(z − nπ)m(z3 − πz2) + (z − nπ)m+1(3z2 − 2πz)

2 sin z cos z

= lim
z→nπ

m(m+ 1)(z − nπ)m−1(z3 − πz2) + (m+ 1)(z − nπ)m(3z2 − 2πz)

−2 sin2 z + 2 cos2 z

+
(m+ 1)(z − nπ)m(3z2 − 2πz) + (z − nπ)m+1(6z − 2π)

−2 sin2 z + 2 cos2 z

= 0
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which implies that m − 1 > 0 and therefore m = 2. Note that in the case that n = 1, we
would follow a similar argument to show the pole is of order m = 1.
Now consider g(z). We know a singularity occurs at z = 1 so we will work to write g(z) as
a power series around 1.

g(z) =(z2 − 1) cos
1

z − 1

=(z + 1)(z − 1)
(

1− 1

2!(z − 1)2
+

1

4!(z − 1)4
− 1

6!(z − 1)6
+ · · ·

)
=(z − 1 + 2)

(
(z − 1)− 1

2!(z − 1)
+

1

4!(z − 1)3
− 1

6!(z − 1)5
+ · · ·

)
=(z − 1)

(
(z − 1)− 1

2!(z − 1)
+

1

4!(z − 1)3
− 1

6!(z − 1)5
+ · · ·

)
+ 2
(

(z − 1)− 1

2!(z − 1)
+

1

4!(z − 1)3
− 1

6!(z − 1)5
+ · · ·

)
=
(

(z − 1)2 − 1

2!
+

1

4!(z − 1)2
− 1

6!(z − 1)4
+ · · ·

)
+
(

2(z − 1)− 1

(z − 1)
+

2

4!(z − 1)3
− 2

6!(z − 1)5
+ · · ·

)
.

Since an 6= 0 for infinitely many negative integers n, z = 1 is an essential singularity of g.

Part b: We want to find Res(f ; 2π). From part a, we know 2π is a pole of order 2. Let
g(z) = (z − 2π)2f(z). We can simplify using the power expansion of sine around z = 2π as
follows:

g(z) = (z − 2π)2f(z)

=
(z − 2π)2z2(z − π)(

(z − 2π)− (z−2π)3

3!
+ (z−2π)5

5!
− · · ·

)2

=
(z − 2π)2z2(z − π)

(z − 2π)2
(

1− (z−2π)2

3!
+ (z−2π)4

5!
− · · ·

)2

=
z3 − πz2(

1− (z−2π)2

3!
+ (z−2π)4

5!
− · · ·

)2 .
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Then it follows

g′(z) =

(
1− (z−2π)2

3!
+ (z−2π)4

5!
− · · ·

)2

(3z2 − 2πz)(
1− (z−2π)2

3!
+ (z−2π)4

5!
− · · ·

)4

−
2(z3 − πz2)

(
1− (z−2π)2

3!
+ (z−2π)4

5!
− · · ·

)(
2(z−2π)

3!
+ 4(z−2π)3

5!
− · · ·

)
(

1− (z−2π)2

3!
+ (z−2π)4

5!
− · · ·

)4

It follows from Proposition 2.4:

Res(f ; 2π) = g′(2π) = 8π2.

Next, we want to find Res(g; 1) = a−1 = −1 which can be seen by the expansion of g in
part a.

Problem 9.13 (Texas A& M Complex, January 2015 Q1). Prove that if z ∈ C and k ∈ Z+

then
|Im(zk)| ≤ k|Im(z)||z|k−1.

Solution. [Jared Grove]
Attempt:
First I tried doing cases and was able to show it worked when x = 0 or y = 0 for z = x+ iy,
but not for any other cases.
Solution:
Trig Identities:

sin(a+ b) = sin(a) cos(b) + cos(a) sin(b)

sin(2a) = 2 sin(a) cos(a)

⇒ We will begin with the polar representation of a complex number z = reit for 0 ≤ t ≤
2π. Then looking at the different parts of the inequality:

|Im(zk)| = |Im(rkeikt)| = rk| sin(kt)|

k|Im(z)||z|k−1 = k|r sin(t)||reit|k−1 = kr| sin(t)|rk−1 = krk|sin(t)|

Since these equations both have rk in common we only need to show that |sin(kt)| ≤
k| sin(t)|.

If k = 1, | sin(t)| ≤ | sin(t)|
If k = 2, | sin(2t)| = |2 sin(t) cos(t)| ≤ 2| sin(t)|

If k = 3, | sin(3t)| = | sin(2t+ t)| = | sin(2t) cos(t) + cos(2t) sin(t)| ≤ | sin(2t)|+ | sin(t)|
≤ 2| sin(t)|+ | sin(t)| = 3| sin(t)|
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Now we notice the beginning of an induction argument. So assume that | sin(kt)| ≤ k| sin(t)|
up to k and we only need to show it for k + 1.

For k + 1, | sin((k + 1)t)| = | sin(kt+ t)| = | sin(kt) cos(t) + cos(kt) sin(t)| ≤ | sin(kt)|+ | sin(t)|
≤ k| sin(t)|+ | sin(t)| = (k + 1)| sin(t)|

Since we were able to show that this inequality holds it must be the case that:

|Im(zk)| ≤ k|Im(z)||z|k−1

Problem 9.14 (TAMU, January 2015 Q4). Prove the following: If f is a holomorphic
function that maps the open unit disk into itself, and if z1 and z2 are two zeroes of f in the
unit disk, then

|f(z)| ≤
∣∣∣ (z − z1)(z − z2)

(1− z1z)(1− z2z)

∣∣∣ when |z| < 1.

Solution. [Michael Kratochvil]
Attempt:
I immediately realized that f is supposed to be bounded by the product of ϕz1 and ϕz2 so
I tried to solve by bounding by one of these functions first. I tried to directly reapply the
proof of Schwarz’s lemma, but that did not work. I finally realized that using a composition,
I can apply Schwarz’s lemma (and not reprove it). From there the rest followed pretty easily.
Solution: Define h(w) = (f ◦ ϕ−1

z1
)(w). Then h is analytic on D, h(0) = 0 and |h(w)| ≤ 1

for all w ∈ D. So by Schwarz’s Lemma, |h(w)| ≤ |w| for all w. In particular for w = ϕz1(z)
for z ∈ D, we have

|h(ϕz1(z)| = |f(z)| ≤ |ϕz1(z)|.

Now let g(z) = f(z)
ϕz1 (z)

for z 6= 0 and g(0) = (1− |a|2)f ′(0) so that g is analytic on D. Define

m(w) = (g ◦ ϕ−1
z2

)(w) for w ∈ D. Then by similar argument as above we have

|g(z)| ≤ |ϕz2(z)|.

It immediately follows that

|f(z)| ≤ |ϕz1(z)||̇ϕz2(z)| =
∣∣∣ (z − z1)(z − z2)

(1− z1z)(1− z2z)

∣∣∣.

Problem 9.15 (TAMU, January 2015 Q5). Suppose f is an entire function such that the
product |Re(f)| |Im(f)| is bounded. Prove that f must be a constant function.
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Solution. [Amrei Oswald]
Attempt:
This proof is motivated by a picture of the image of f . Say that M is the bound on
|Re(f)| |Im(f)|. Then consider the graph of |Im (f)| ≤ M

Re(f)
in the imaginary plane or

equivalently, the graph of |y| ≤ M
|x| in the x − y plane. From here, its fairly straigtforward

to identify a ball in the first quadrant that does not intersect the image, shift the center of
this ball to the origin and invert to get a bounded entire function.
Solution:
Since |Re(f)| |Im(f)| is bounded, there exists a M > 0 such that |Re(f)| |Im(f)| < M . Let
R > 1 and z0 = (1 + 2R) + (M + 2R)i. Consider B = B(z0;R). Say that x+ iy ∈ B ∩ f(C).
Then, we have

|x| |y| ≥ (1 + 2R−R)(M + 2R−R) = (1 +R)(M +R) > M

which is a contradiction. Therefore, B ∩ f(C) = ∅. Then we have that |f(z)− z0| ≥ R for
every z ∈ C and the function g(z) = 1

f(z)−z0 is entire. Then for every z ∈ C we have

|g(z)| = 1

|f(z)− z0|
≤ 1

R
.

By Liouville’s theorem, g(z) is constant. Say that g(z) = c ∈ C. Then,

1

f(z)− z0

= c =⇒ f(z) =
1

c
+ z0

so f is constant.
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10 UI Urbana-Champaign Quals

Problem 10.1. Let m be Lebesgue measure on R. Suppose that Integral
∫
R
|f |dm = c ∈

(0,∞) and α ∈ (0, 1)
Show that

limn→∞
∫
R
nlog(1 + (|f |/n)α)dm =∞

Proof. We first consider

lim
n→∞

∫
R

nlog(1 + (|f |/n)α)dm = =

∫
R

lim
n→∞

nlog(1 + (|f |/n)α)dm

= lim
n→∞

log(1 + ( |f |
n

)α)
1
n

=
0

0

= lim
n→∞

1

1+(
|f |
n

)α
−|f |α
n(α+1

−1
n2

dm (by L’Hospital’s Rule)

= lim
n→∞

n2|f |α

1 + ( |f |
n

)α(nα + 1)

=
∞
1

=∞

since
∫
R
|f |dm = c ∈ (0,∞) we have a non-negative sequence of measurable functions

and thus we have point-wise convergence. Therefore, by Fatous Lemma∫
R

lim
n→∞

fn =

∫
R

f =∞ 6 lim inf

∫
R

fn = lim
n→∞

∫
R

fn

Problem 10.2. Find the radius of convergence for the following power series

∞∑
k=1

(
1 +

1

k

)k3
zk

2
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Solution. Notice:

∞∑
k=1

(
1 +

1

k

)k3
zk

2

= 2z +
(3

2

)8

z4 +
(4

3

)2

7z9 +
(5

4

)6

5z16 + ... (54)

= 2z + 0z2 + 0z3 +
(3

2

)
z4 + 0z5 + ... (55)

Therefore, we can write:

∞∑
k=1

(
1 +

1

k

)k3
zk

2

=
∞∑
n=1

anz
n,

where

We know that given a power series
∑∞

k=1 an(z−z0)n, its radius of convergence R is defined
to be:

1
R

= lim sup |an|
1
n

Therefore, we wish to show that the limit below is equal to 1 so that limk→∞

(
1+ 1

k

)k
= e.

limk→∞ ln

((
1 + 1

k

)k)
Using L’Hopital’s Rule, we can compute the limit:

lim
k→∞

ln

((
1 +

1

k

)k)
= lim

k→∞
k ln

(
1 +

1

k

)
(56)

= lim
k→∞

ln
(

1 + 1
k

)
1
k

(57)

= 1 (58)

Therefore, limk→∞

(
1 + 1

k

)k
= e, so R = 1

e
.

Problem 10.3 (UI Urbana-Champaign, January 2016-Q1).
a) Is there a Mobius Transformation w = T(z) that maps i to -i, -1 to -2i and sends real
numbers to real numbers?

b) Find the Mobius Transformation w = T (z) that maps i to ∞, 1− i to i and 2 to 1− i.
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Solution. [Shawn]

a) No, by the Symmetry Principle. If z1, z2 and z3 are distinct points lying on a circle, z and
w are said to be symmetric about that circle if (z, z1, z2, z3) = (w, z1, z2, z3). The Principle
states that points symmetric about a circle are mapped to points symmetric about the image
of that circle under a Mobius transformation. Since a line is a circle in C, symmetry about
a line means equidistant on a perpendicular. In our case, the hypothetical T (z) would map
i and −i, which are symmetric about the real line, to points −i and −2i, which are not
symmetric about the image of the real line (which is itself.)

b) While there are many approaches to this problem, the no-brainer is to use the given
conditions to set up and solve a system of equations. We know that a Mobius Transformation
has the form T (z) = az+b

cz+d
with ad 6= bc, and if T (i) = ∞, the denominator must take the

form c(z− i). We can absorb the constant c into the numerator’s coefficients to see that our
map must take the form T (z) = az+b

z−i . We now have two coefficients to find, and we have
two other conditions to use, so we solve the system of equations given by T (1 − i) = i and

T (2) = 1− i. After some careful arithmetic, we can find in this case that T (z) = (−5−31)z+12
2z−2i

.

Problem 10.4 (UI Urbana-Champaign, January 2016-Q3). Evaluate
∫∞

0
x1/2

1+x2
dx.

Solution. [Noah Kaufmann]
Attempt:
This is exactly what you expect when you see an integral in the Complex section: an ap-
plication of the Residue Theorem. See Conway Chapter V, Section 2 for details on residues
and the Residue Theorem.
Solution:
Since the integral has only nonnegative values of x, no one stops us from making the substi-
tution x = t2. This changes the integral to∫∞

0
2t2

1+t4
dt

Using the fact that the integrand is even lets us replace the above integral with∫∞
−∞

t2

1+t4
dt

(Note: Once we have the integral in this form, this is exactly example 2.5 on page 113
of Conway. Feel free to read the solution there instead of here.)

Now we will take the path defined by the upper semicircle centered at 0 of radius R>1,
oriented counterclockwise. Call this path γ. Let f(z) = z2

1+z4

We know from the Residue Theorem that
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∫
γ
f(z)= 2πi

∑
j Res(f ; aj)

Where the aj’s are the poles of f(z) that lie inside γ.

In this case, the poles of f(z) are exactly the fourth roots of -1, which are e
πi
4 , e

3πi
4 , e

5πi
4 ,

and e
7πi
4 . Since we chose γ to be the upper semicircular path, only e

πi
4 and e

3πi
4 are inside of

γ.
We have that Res(f ; e

πi
4 ) is given by

lim
z→e

πi
4

(z − e
πi
4 )f(z)

And similarly, Res(f ; e
3πi
4 ) is given by

lim
z→e

3πi
4

(z − e
3πi
4 )f(z)

Evaluating these limits and summing gives that∫
γ
f(z)= 2πi

∑
j Res(f ; aj) = 2πi( −i

2
√

2
) = π√

2
.

Now we look at
∫
γ
f(z). This integral can be split into two distinct parts, one of which

is the integral we are looking for.∫
γ
f(z) =

∫ R
−R

z2

1+z4
dz +

∫ π
0

R3e3it

1+R4e4it
dt

Because e4it has modulus 1, we have that |1 + R4e4it| > R4 − 1 and |R3e3it| ≤ R3 which
gives us the bound∫ π

0
R3e3it

1+R4e4it
dt ≤ πR3

R4−1

This tells us that as we let R go to ∞,
∫ π

0
R3e3it

1+R4e4it
dt goes to 0. Looking at our previous

equations, we have that∫ R
−R

z2

1+z4
dz +

∫ π
0

R3e3it

1+R4e4it
dt = π√

2

for any R. Letting R go to ∞ on both sides gives us the final answer, that∫∞
0

x1/2

1+x2
dx =

∫∞
−∞

z2

1+z4
dz = π√

2
.

Problem 10.5 (UI Urbana-Champaign, January 2016-Q3). Use residues to evaluate the
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following definite integral: ∫ 2π

0

dθ

5 + 4 sin(θ)
.

Solution. [Jared Grove]
Attempt:
When making the function for the residue be careful when canceling terms out. Notice that:

g(z) = (z − (
−i
2

)f(z) = (z +
i

2
)

1

2(z + i
2
)(z + 2i)

=
1

2(z + 2i)
.

I missed a small part on this:

g(z) = (z − (
−i
2

)f(z) = (z +
i

2
)

1

(2z + i)(z + 2i)
6= 1

(z + 2i)
.

Using the second will give a final answer of 4π
3

, which while close is still wrong.
Solution:
First we will define some important stuff: z = eiθ with 0 ≤ θ ≤ 2π and γ = |z| = 1. Next
we will make a change of variabe so we can work with z instead of θ:

5 + 4 sin(θ) = 5 + 4[
1

2i
(eiθ − e−iθ)]

= 5 +
2

i
(z − 1

z
)

=
5iz

iz
+

2z2 − 2

iz

=
2z2 + 5iz − 2

iz
.

Now that we know how it will substitute in we can make our subtitutions:∫ 2π

0

dθ

5 + 4 sin(θ)
=

∫
γ

iz

2z2 + 5iz − 2
(

1

iz
)dz

=

∫
γ

dz

(2z + i)(z + 2i)
.

From here we will say that f(z) = 1
(2z+i)(z+2i)

. Here note that there are poles of order m = 1

at both z = −i
2

and z = −2i. Since f(z) is anaytic in C, except for at the two poles listed
above, and γ is a closed recticfiable curve in C that doesn’t pass through either singularity
and γ ≈ 0 in C we can use the Residue Theorem (p112) to say that:∫ 2π

0

dθ

5 + 4 sin(θ)
=

∫
γ

dz

(2z + i)(z + 2i)

= 2πi[η(γ,
−i
2

)Res(f,
−i
2

) + η(γ,−2i)Res(f,−2i)]

= 2πi[(1)Res(f,
−i
2

) + (0)Res(f,−2i)]

= (2πi)Res(f,
−i
2

).
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Note that η(γ,−2i) = 0 as | − 2i| > 1. Now we need to calculate the residue around −i
2

.
Since this is a pole we are able to use Proposition 2.4 from page 113. First we need to find
our function:

g(z) = (z − (
−i
2

)f(z) = (z +
i

2
)

1

2(z + i
2
)(z + 2i)

=
1

2(z + 2i)
.

Thus the residue will be:

Res(f,
−i
2

) =
1

0!
g(0)(
−i
2

)

=
1

2(−i
2

+ 2i)
=

1

3i
.

After that we are finally ready to finish our calculation:∫ 2π

0

dθ

5 + 4 sin(θ)
= (2πi)Res(f,

−i
2

)

= (2πi)
1

3i

=
2π

3
.

Problem 10.6 (UI Urbana-Champaign, May 2015-Q5). Let F be a family of all analytic
functions satisfying the inequality:

|f(z)| ≤ 1

(1− |z|)2015

for all z ∈ D. Prove F is normal.

Solution. [Andrew Pensoneault]
Attempt:
As the problem asks first for the statement of Montel’s theorem, I first thought it would be
best to show that the family is locally bounded, which turned out to be the correct approach.
I initially drew the picture as seen below and thought we would be splitting the problem into
two cases, the set of points inside of a disk in D, and the set of points outside of that disk.
This approach allows us to find a uniform bound

(
|f(z)| ≤ 1

(1−|R|)2015 for |a− z| < (R − r)
)

for all points inside of the inner disk, however, it turns out this is unnecessary, as local
boundedness is a pointwise property.

Solution:

Let a ∈ D. As D is open, there exists a r > 0 such that B(a, r) ⊂ D, and therefore we have
B(a, r

2
) ⊂ D. Define g̃ : D→ R such that g̃(z) = (1− |z|)2015. This is a continuous function
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which does not vanish in D, thus the function g(z) = 1
g̃(z)

is continuous. As B(a, r
2
) is a

compact set, by the Extreme Value Theorem, g obtains a maximum value M on B(a, r
2
),

and thus g(z) ≤ M on |z − a| < r
2
. Now, by definition, if f ∈ F , then |f(z)| ≤ |g(z)| ≤ M

on |z − a| < r
2
, and as our choice of a was arbitrary, we have shown F is locally bounded.

By Montel’s Theorem, F is normal.

Problem 10.7 (UI Urbana-Champaign, May 2015-Q6). Let f be an entire function such
that

|f(z)| ≤ 5|z|3/2 for all z ∈ C, |z| ≥ 1.

Prove that f(z) = az + b for some a, b ∈ C with |a|+ |b| ≤ 5.

Solution. [W. Tyler Reynolds]
Attempt:
My initial approach to the first part of the problem was to use Mobius transformations to
create a new function which satisfied the hypotheses of Schwarz’s Lemma. The Maximum
Modulus Theorem was helpful in exhibiting that these conditions could in fact be satisfied.
My hope was that the implications of Schwarz’s Lemma would yield some useful information
about the original function. However, the resulting inequalities proved to be of little use.
Next, I tried the power series approach with Cauchy’s Estimate, and it worked! In hindsight,
this approach is more straightforward because it directly utilizes the fact the f is entire. For
the second part of the problem, I tried working with Cauchy’s Representation Theorem,
Mobius transformations, and plain inequalities to get adequate estimates on |a| and |b|. The
best I could say at first was that |a| ≤ 5, |b| ≤ 5, and |a + b| ≤ 5. If only the triangle
inequality could be reversed! While this can’t happen in general, the geometry of the plane
does allow for the triangle inequality to become equality, namely when either |a| or |b| is
zero, or when a and b point in the same direction (i.e., when arg a = arg b). When two
vectors don’t point the same direction, you can of course rotate them so that they do!
Solution:

Since f is entire, f has a power series about 0 defined on all of C, say f(z) =
∞∑
n=0

anz
n.

We wish to show that an = 0 for n ≥ 2. To this end, let n ≥ 2 and let R ≥ 1. By
assumption, |f(z)| ≤ 5R3/2 for |z| = R; it follows from the Maximum Modulus Theorem
that |f(z)| ≤ 5R3/2 for |z| ≤ R. Thus, we can differentiate the power series and apply

Cauchy’s Estimate to obtain |an| = n! · |f (n)(0)| ≤ n! · 5R3/2

Rn
. Since n > 3

2
, letting R → ∞

yields |an| = 0.
Letting a = a0 and b = a1, we now have f(z) = az + b. If a = 0 or b = 0, then

|f(1)| = |a + b| = |a| + |b| ≤ 5. Otherwise, there is some c ∈ C with |c| = 1 such that
arg ca = arg b. In this case,

|a|+ |b| = |ca|+ |b| = |ca+ b| = |f(c)| ≤ 5.
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Problem 10.8 (UI Urbana-Champaign, January 2017-Q2). Prove that the equation

z sin z = 1, z ∈ C

has only real roots.

Solution. [Qing Zou]
Attempt:
I know the proof of this problem relies on Rouché’s theorem, which is on page 125 of our
textbook (Theorem 3.8). While I failed because I cannot prove that |z sin z| > 1 on a chosen
circle. But when I tried to prove that |z sin z| > 1 on a chosen circle, I found that I can
prove that |z sin z| > 1 on a chosen square box. Then I decided to use the general form of
Rouché’s theore, which allows us to use the square box rather than a circle.
Solution:
Theorem (General form of Rouché’s theorem, Rudin, “Real and Complex Analysis”, Page
229) Let Ω be the interior of a compact set K in the plane. Suppose f and g are continuous
on K and holomorphic in Ω, and |f(z)− g(z)| < |f(z)| for z ∈ K − Ω. Then f and g have
the same number of zeros in Ω, where each zero is counted as many times as its muliplicity.

Consider

R = {z = x+ iy : −(n+
1

2
)π < x < (n+

1

2
)π, −(n+

1

2
)π < y < (n+

1

2
)π, n ∈ N}.

Then R̄ is a compact set and R is the interior of R̄.
Let f(z) = z sin z and g(z) = z sin z − 1.
First, we show that |f(z)| > 1 on the square box ∂R.
Since on ∂R,

|z sin z| = |z| · | sin z| > | sin z|.

Then in order to show |f(z)| > 1 on ∂R, it suffices to show that | sin z| ≥ 1, which is
equivalent to show that | sin z|2 ≥ 1.

Note that we have

| sin z|2 = | sin(x+ iy)|2 = cosh2 y − cos2 x.

(This is not something easy to obtain, one can try it as an exercise).

• If x = (n + 1
2
)π or x = −(n + 1

2
)π, then cos2 x = 0 and since cosh y is always greater

than or equal to 1. So we can get that | sin z|2 ≥ 1 in this case.

• If y = (n + 1
2
)π or y = −(n + 1

2
)π, then cosh2 y > 4 (Since as n increases, cosh y also

increases. Then cosh2 y > 4 because cosh(π
2
) ≈ 2.509). So we can get that in this case,

cosh2 y − cos2 x > 1, i.e. | sin z|2 > 1.

To sum up, we can get that on ∂R, |f(z)| > 1.
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Then we know that on ∂R,

1 = |f(z)− g(z)| < |f(z)|.

So, by the general form of Rouché’s theorem, we know that f(z) and g(z) have the same
number of zeros in R.

Now, let us consider the roots of z sin z in R. If

z sin z = 0⇔

{
z = 0

sin z = 0
⇔

{
z = 0

z = nπ n ∈ Z
.

Note that z = 0 is a zero of muliplicity 2 since z = 0 is also included in z = nπ. Thus,
the number of roots (count muliplicity) of z sin z is 2n+ 2. Therefore, we know that g(z) =
z sin z − 1 has 2n+ 2 roots in R.

From the graph, we can find 2n + 2 real roots for g(z) in R, then we know that all the
roots of g(z) are real in R. This conclusion holds for all n ∈ N.

If we let n→∞, then R becomes the whole plane and then we can say that the equation

z sin z = 1, z ∈ C

has only real roots.

Problem 10.9 (UI Urbana-Champaign, January 2017-Q3). Fix R > 0, show that there

exists 0 < n ∈ N such that for all m ≥ n the polynomial fm(z) =
∑m

k=0
zk

k!
has no roots w

with |w| < R.

Solution. [Jared Grove]
Attempt:
None, I nailed it the first time. Solution:
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Notice that limm→∞ fm(z) =
∑∞

k=0
zk

k!
= ez. We know that ez 6= 0 for all z ∈ C, thus for

any R > 0, ez 6= 0 for all |z| = R. Since B̄(0, R) ⊂ C, {fm} ∈ H(G) and limm→∞ fm = ez,
Hurwitz’s Theorem (p152) tells us that there exists some N ∈ N such that for all m ≥ N ,
fm(z) and ez have the same number of zeros in |z| < R, namely 0.

Problem 10.10 (UI Urbana-Champaign, January 2017 Q4).
Use residues to calculate: ∫ π

0

dθ

(a+ cos θ)2
,

where a > 1.

Solution. [Alex Bates]
Solution:
For any θ ∈ R, z = eiθ lies on the unit circle and as such is nonzero. Now,

cos θ =
1

2
(eiθ + e−iθ) =

1

2

(
z +

1

z

)
=
z2 + 1

2z
.

Then:

1

(a+ cos θ)2
=

1(
a+ z2+1

2z

)2 =
1(

z2+2az+1
2z

)2 =
4z2

(z2 + 2az + 1)2
. (59)

By application of the quadratic formula, we find that the roots of z2 + 2az + 1 are α =
−a+

√
a2 − 1 and β = −a−

√
a2 − 1. Hence, Equation59 becomes:

4z2

(z2 + 2az + 1)2
=

4z2

((z − α)(z − β))2
=

4z2

(z − α)2(z − β)2
. (60)

By manipulating trig identities and clever calculus, one can easily establish3 that:∫ π

0

dθ

(a+ cos θ)2
=

1

2

∫ 2π

0

dθ

(a+ cos θ)2
. (61)

Define γ(θ) = eiθ, where 0 ≤ θ ≤ 2π. Now actually performing the substitution z = eiθ we

3Rewrite
∫ π
0

dθ
(a+cos θ)2 = 1

2

∫ π
0

dθ
(a+cos θ)2 + 1

2

∫ π
0

dx
(a+cos x)2 and show that

∫ π
0

dx
(a+cos x)2 =

∫ 2π

π
dθ

(a+cos θ)2 via

the substitution x = −θ + 2π.
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obtain dθ = −idz
z

. Hence,

1

2

∫ 2π

0

dθ

(a+ cos θ)2
=

1

2

∫
γ

4z2

(z2 + 2az + 1)2

(
−idz

z

)
(Equation 59)

= −i1
2

∫
γ

4z2

(z − α)2(z − β)2

(
dz

z

)
(Equation 60)

=
1

2i

∫
γ

4z

(z − α)2(z − β)2︸ ︷︷ ︸
=:f(z)

dz

=
1

2i

∫
γ

f(z)dz. (62)

Since a > 0, |β| > 1 and |α| < 1, so α lies inside γ, which winds around α precisely once.
The Residue Theorem then tells us that 1

2πi

∫
γ
f(z)dz = Res(f, α), that is,

1

2i

∫
γ

f(z)dz = πRes(f, α). (63)

Define g(z) = (z − α)2f(z) = 4z
(z−β)2

. By application of the quotient rule, g′(z) = −4(z+β)
(z−β)3

.
We then have that:

Res(f, α) = g′(α)

=
−4(α + β)

(α− β)3

=
−4(−2a)

(2
√
a2 − 1)3

=
a

(a2 − 1)
3
2

. (64)

Therefore, by combining Equations 61, 62, 63 and 64, we obtain:∫ π

0

dθ

(a+ cos θ)2
=

πa

(a2 − 1)
3
2

.
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11 Additional Practice

11.1 Group Work I

Problem 11.1 (Group Work I Complex, Number 1).
Let F be the collection of all holomorphic mappings from Q = {z : <(z) > 0,=(z) > 0}
to D. What is supf∈F |f ′(1 + i)|? Find a bijective map h from Q onto the unit disc with
h(1 + i) = 1/2.

Solution. [Alex Bates, Jared Grove, Meghan Malachi]
Solution:
Let f ∈ F and define a := f(1 + i) ∈ D. Since |a| < 1 may select a modular map
φa : D → D defined by φa(z) = z−a

1−āz so that φa(a) = φa(f + i) = 0. Now, notice that the

function z 7→ z2 maps Q conformally onto the upper half plane H. The map z 7→ z−i
z+i

maps

H conformally onto the unit disc D.4 Define their composition by φ(z) = z2−i
z2+i

. Since this

map is conformal, there exists an analytic inverse φ−1 : D→ Q so that, given φ(1 + i) = 1
3
,

we have φ−1(1
3
) = 1 + i. Let φ− 1

3
: D → D be the modular map defined by φ− 1

3
(z) =

z+ 1
3

1+ 1
3
z

and observe that φ− 1
3
(0) = 1

3
.

What does all that get us? Observe that by the following diagram,

D
φ− 1

3−−→ D φ−1

−−→ Q
f−→ D φa−→ D

the composition ψ := φa ◦ f ◦ φ−1 ◦ φ− 1
3

: D → D is a well-defined analytic map with the

property that ψ(0) = 0. Schwarz’s Lemma then guarantees us that |ψ′(0)| ≤ 1. We use this
fact to obtain an upper bound for |f ′(1 + i)|. Now,

ψ′(0) = (φa ◦ f ◦ φ−1 ◦ φ− 1
3
)′(0)

= [φ′a(a)] · [f ′(1 + i)] · [(φ−1)′(1/3)] · [φ′− 1
3
(0)], (65)

so let’s tackle this piece-by-piece. Since |1/3| < 1, we’re told from Proposition VI.2.2 of
Conway (pg. 131) that

φ′− 1
3
(0) = 1− |1/3|2 = 1− 1/9 = 8/9. (66)

While we’re at it, this Proposition also tells us that

φ′a(a) =
1

1− |a|2
. (67)

By Corollary IV.7.6 of Conway (pg. 99), (φ−1)′(1/3) = 1
φ′(φ−1(1/3))

. By the chain rule,

φ′(z) = 4iz
(z2+i)2

so that φ′(φ−1(1/3)) = φ′(1 + i) = 4i(1+i)
((1+i)2+i)2

= 4−4i
9

, hence

(φ−1)′(1/3) =
9

4− 4i
. (68)

4This map is also known as the Cayley Transformation.
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Combining the result that |ψ′(0)| ≤ 1 (from Schwarz’s Lemma) along with Equations 65, 66,
67, and 68 we obtain:∣∣∣∣ 1

1− |a|2

∣∣∣∣ · |f ′(1 + i)| ·
∣∣∣∣ 9

4− 4i

∣∣∣∣ · ∣∣∣∣89
∣∣∣∣ ≤ 1

1

1− |a|2
· |f ′(1 + i)| ·

∣∣∣∣ 2

1− i

∣∣∣∣ ≤ 1

|f ′(1 + i)| · 2√
2
≤ 1− |a|2

|f ′(1 + i)| ≤ (1− |f(1 + i)|2) ·
√

2

2
. (69)

Now, since 0 ≤ |f(z)| < 1 for all z ∈ Q, it follows that 1− |f(1 + i)|2 ≤ 1 so that Equation
69 becomes:

|f ′(1 + i)| ≤
√

2

2
.

Since f was arbitrary and this upper bound can actually be attained (by perhaps selecting

an analytic map g : Q→ D with g(1 + i) = 0), it follows that supf∈F |f ′(1 + i)| =
√

2
2

.
Lastly, we need to find a bijective map h : Q→ D with h(1+ i) = 1

2
. The map φ : Q→ D

above is bijective and analytic and does φ(1 + i) = 1
3
, so it would suffice to find a bijective

map from D to D with the property that 1
3
7→ 1

2
. We attempt to find a modular map that does

so. Provisionally assume that there is |a| < 1 so that φa(
1
3
) =

1
3
−a

1−ā 1
3

= 1
2
. Solving, we obtain

ā− 6a = 1. Performing the substitution a = x+ iy for x, y ∈ R, we see that −5x− 7iy = 1
so that y = 0, x = −1

5
, i.e., a = −1

5
. Certainly, | − 1/5| < 1 so that φ−1/5 : D → D is

bijective analytic, hence the map φ−1/5 ◦ φ : Q→ D is bijective with (φ−1/5 ◦ φ)(1 + i) = 1
2
,

by construction.

Problem 11.2 (Group Work I Complex, Number 3). Let f : U → C be a holomorphic
function on an open connected set U ⊂ C. Find all possible values of f if f satisfies
f(z)2 = f(z).

Solution. [Michael Kratochvil, Amrei Oswald, Yanqing Shen] Say f(x + iy) = u(x, y) +
iv(x, y). Then we have

f(z)2 = f(z) =⇒ (u+ iv)2 = u− iv =⇒ u2 − v2 + 2iuv = u− iv.

Since the imaginary and real parts above must be equal, we have that

u2 − v2 = u and 2uv = v.

Say that v 6= 0. Then the above gives us u = 11
2

and therefore v2 = 3
4

=⇒ v = ±
√

3
2

.
If v = 0, then u2 = u =⇒ u = 1. If u = 0, then v = 0.
Note that since f is continous on a connected set U and u ∈

{
−1

2
, 0, 1

}
and v ∈{

±
√

3
2
, 0
}

, f must be constant. Therefore, f(z) ∈
{
−1

2
− i

√
3

2
,−1

2
+ i

√
3

2
, 1, 0

}
.
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Problem 11.3 (Group Work I Complex, Number 5). Let F be the family of all holomorphic
functions on D such that f(0) = 0, f

′
(0) = 2017 and |f(z)| ≤ 2017. Prove that there exists

a constant c > 0 such that cD ⊂ f(D) for every f ∈ F .

Solution. [Kaitlin Healy, Sara Reed, W. Tyler Reynolds, Adam Wood]
Attempt:
Solving this problem came down to seeing that Schwarz’s Lemma is applicable after just a
tiny bit of work. We have included a direct proof using Schwarz’s Lemma, as well as a proof
where we actually prove Schwarz’s Lemma along the way, since the latter would presumable
be more satisfactory for the purposes of the qualifying exam.
Solution:

Easy Proof. Given f ∈ F, let g(z) =
f(z)

2017
on D. Then g is analytic on D with g(0) = 0

and g
′
(0) = 1. By Schwarz’s Lemma, there is a constant a with |a| = 1 such that g(z) = az.

Thus f(z) = 2017az. Notice that z 7→ 2017z is a map of D onto 2017D, and the map z 7→ az
is a rotation of 2017D. Since f is the composition of these maps, we have 2017D = f(D).
Since f is arbitrary, we obtain our result by setting c = 2017.

Alternate Proof. Let f ∈ F , and define g =
f(z)

2017z
on D\{0}. Note that g is analytic. Since

f(0) = 0, we have

lim
z→0

zg(z) = lim
z→0

f(z)

2017
= 0.

Thus, g has a removable singularity at z = 0. We may therefore assume that g is defined
and analytic on all of D. By continuity,

g(0) = lim
z→0

f(z)

2017z
=

1

2017
lim
z→0

f(z)− f(0)

z − 0
=
f
′
(0)

2017
= 1.

By the Maximum Modulus Theorem, |g(z)| ≤ 1

r
for |z| ≤ r and 0 < r < 1. Letting r → 1, we

obtain |g(z)| ≤ 1 for z ∈ D. Since g(0) = 1, it follows from the Maximum Modulus Theorem
that g(z) = az for some a with |a| = 1. Thus f(z) = 2017az. Notice that z 7→ 2017z is a
map of D onto 2017D, and the map z 7→ az is a rotation of 2017D. Since f is the composition
of these maps, we have 2017D = f(D). Since f is arbitrary, we obtain our result by setting
c = 2017.

11.2 Group Work II

11.3 Practice Exam I

11.4 Practice Exam II
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