P. 3 - Polynomials

Def:- Let x be a variable (ie. a "place-holder" for a number). A monomial is an expression of the form $a x^{n}$, where a is a real number, and n is a non-negative integer.

Ex: $3 x^{4}, 5 x, 3, \pi x,-7 x^{265}$

- The number " a " is called the coefficient of the monomial $a x^{n}$.
Ex: From above: 3,5,3, $\pi,-7$ are the coefficients.
- The power on x in the monomial $a x^{n}$ is called the degree of the monomial.
Ex: From above: 4, 1, 0, 1, 265
- A polynomial is a sum of monomials Ex: $3 x^{4}+5 x+3+\pi x-7 x^{265}$
- Each monomial in a polynomial is called a term of the polynomial.
Ex: Given $3 x^{2}+2 x+1, \quad 3 x^{2}, 2 x, 1$ are the terms.
Note: We usually write polynomials with descending degrees.

Adding/Subtracting Polynomials:
"Combine like terms":
Ex: (1)

$$
\text { (1) } \begin{gathered}
\left(3 x^{2}+5 x-9\right)+(4 x+1) \\
=3 x^{2}+9 x-8 \\
\\
\left(3 x^{2}+5 x-9\right)-(4 x+1) \\
=\left(3 x^{2}+5 x-9\right)+(-(4 x+1)) \\
=\left(3 x^{2}+5 x-9\right)+((-1)(4 x+1)) \\
=3 x^{2}+5 x-9+-4 x-1 \\
=3 x^{2}+x-10
\end{gathered}
$$

$$
\text { (2) } \begin{aligned}
& \left(2 x^{2}+2 x+2\right)-\left(4 x^{2}-4 x+4\right) \\
= & 2 x^{2}+2 x+2-4 x^{2}+4 x-4 \\
= & -2 x^{2}+6 x-2
\end{aligned}
$$

Multiplying Polynomials

- Two ways to think about it:
(1) Remember the distributive property:

$$
\begin{aligned}
& a(b+c)=a b+a c \\
& (b+c) a=a b+a c
\end{aligned}
$$

$$
\begin{aligned}
& \underbrace{\left(4 x^{2}+2 x+1\right)}_{\text {Treat like }}(3 x+5)=\left(4 x^{2}+2 x+1\right)(3 x) \\
& +\left(4 x^{2}+2 x+1\right)(5)
\end{aligned}
$$

the " a " above.

$$
\begin{aligned}
= & \left(4 x^{2}\right)(3 x)+(2 x)(3 x)+(1)(3 x) \\
& +\left(4 x^{2}\right)(5)+(2 x)(5)+(1)(5) \\
= & 12 x^{3}+6 x^{2}+3 x+20 x^{2} \\
& +10 x+5 \\
= & 12 x^{3}+26 x^{2}+13 x+5
\end{aligned}
$$

(2) Multiply each term in the first polynomial by each term in the second.
Ex: $\left(-2 x^{2}+3 x+1\right)\left(x^{2}+2 x-4\right)$

$$
\begin{aligned}
= & \left(-2 x^{2}\right)\left(x^{2}\right)+\left(-2 x^{2}\right)(2 x)+\left(-2 x^{2}\right)(-4) \\
& +(3 x)\left(x^{2}\right)+(3 x)(2 x)+(3 x)(-4) \\
& +(1)\left(x^{2}\right)+(1)(2 x)+(1)(-4) \\
= & -2 x^{4}-4 x^{3}+8 x^{2}+3 x^{3}+6 x^{2}-12 x \\
& +x^{2}+2 x-4 \\
= & -2 x^{4}-x^{3}+15 x^{2}-10 x-4
\end{aligned}
$$

"FOIL": Ex: $(3 x+2)(x-4)$
First + Gutter + Inner + Last

$$
\begin{aligned}
& =(3 x)(x)+(3 x)(-4)+(2)(x)+(2)(-4) \\
& =3 x^{2}-12 x+2 x-8 \\
& =3 x^{2}-10 x-8
\end{aligned}
$$

Squaring a binomial: Let A, B be monomials.

$$
\begin{aligned}
(A+B)^{2} & =(A+B)(A+B) \\
& =A A+A B+B A+B B \\
& =A^{2}+A B+A B+B^{2} \\
& =A^{2}+2 A B+B^{2}
\end{aligned}
$$

Ex $(x+3)^{2}=x^{2}+2(x)(3)+9$

$$
=x^{2}+6 x+9
$$

$$
\begin{aligned}
(x+3)^{2}=(x+3)(x+3) & =x \cdot x+x(3)+3 x+3 \cdot 3 \\
& =x^{2}+3 x+3 x+9 \\
& =x^{2}+6 x+9
\end{aligned}
$$

Difference of Squares:

$$
(A+B)(A-B)=A^{2}-B^{2}
$$

Ex:

$$
\begin{aligned}
& :(x+3)(x-3)=x^{2}-9 \\
& (x+3)(x-3)
\end{aligned} \begin{aligned}
& (x)(x)+(x)(-3)+(3)(x)+(3)(-3) \\
& =x^{2}-3 x+3 x-9 \\
& =x^{2}-9
\end{aligned}
$$

