2.4 - Functions

Def: A function is a machine that takes in neal numbers as inputs, and spits out real numbers as outputs, sud e that each input has exactly one output. according to a rule
Ex: Let f be a function defined by the role $x^{2}+1$, where x denotes an arbitrary input.

$$
\begin{aligned}
& 2 \xrightarrow{\text { input }}[f] \xrightarrow{\text { output }}(2)^{2}+1=5 \\
& 3 \longrightarrow f \longrightarrow(3)^{2}+1=10
\end{aligned}
$$

Notation: The output value corresponding to an input x is denoted by $f(x)$, read " f of (x) ".

* Not " f times x "*

$$
\begin{aligned}
& 2 \rightarrow f \rightarrow f(2)=5 \\
& 3 \rightarrow \text { 田 } \rightarrow f(3)=10 \\
& \Delta \rightarrow \AA \rightarrow f(\Delta)=\Delta^{2}+1 \\
& a^{2}-7 \rightarrow f \rightarrow f\left(a^{2}-7\right)=\left(a^{2}-7\right)^{2}+1
\end{aligned}
$$

- Sanetinnes the rule of a function is given by an eqn, like $y=x^{2}-6 x+8$, where $y=$ output value.
So, if g is a function defined by the ole

$$
y=x^{2}-6 x+8
$$

then $g(x)=x^{2}-6 x+8$.

Then: 11

$$
\begin{aligned}
g(3) & =(3)^{2}-6(3)+8 \\
& =9-18+8 \\
& =-9+8 \\
& =-1
\end{aligned}
$$

(2)

$$
\begin{aligned}
g\left(\frac{1}{2}\right) & =\left(\frac{1}{2}\right)^{2}-6\left(\frac{1}{2}\right)+8 \\
& =\frac{1}{4}-3+8 \\
& =\frac{-11}{4}+\frac{32}{4} \\
& =\frac{21}{4}
\end{aligned}
$$

(3) $g(x+h)=(x+h)^{2}-6(x+h)+8$

$$
\begin{aligned}
& g(x)=x^{2}-6 x+8 \\
& g(x+h)=x^{2}-6 x+8+h
\end{aligned}
$$

Domain of a function
Def: The domain of a function is the set of all numbers that "we are allayed to plug in".
Note: We usually find the demuin by finding numbers that ore not allowed to be plugged in.

Ex (1) $f(x)=\frac{1}{1-x^{2}}$

$$
\begin{aligned}
1-x^{2} & =0 \\
x^{2} & =1 \\
x & = \pm \sqrt{1} \\
x & = \pm 1
\end{aligned}
$$

We cant plug in 1 or -1 .

Domain: $(-\infty,-1) \cup(-1,1) \cup(1, \infty)$
(2)

$$
\begin{array}{r}
g(x)=\sqrt{x+3} \\
x+3 \geq 0 \\
x \geq-3
\end{array}
$$

Domain: $[-3, \infty)$
(3) $h(x)=\frac{1}{\sqrt{x-1}}$
(1) Need devon $\neq 0 \rightarrow \sqrt{x-1}=0$
(2) Need $x-1 \geq 0$

$$
x-1=0
$$

$x=1 \rightarrow$ so, x cannot be 1
$x \geq 1 \rightarrow$ so, our input has to be
bigger or equal to 1

So, Domain: $(1, \infty)$
(4) $p(x)=3 x^{2}+2 x-1$

Dancers: $(-\infty, \infty)$

Range of a function:
Def: The range of a function is the set of all numbers that are possible outputs of the function.
Ex (1) $f(x)=x^{2}$
Danaus: $(-\infty, \infty)$
Range: $[0, \infty)$
(2) $f(x)=x^{2}-1$

Domain: $(-\infty, \infty)$
Range: $[-1, \infty)$

Remember: Finetims assign exactly one output value for each input value.

Vertical Line test:
 for the input value $x=1$.
So, net a function.

\qquad

