2.3-Lines

- The slope of a line passing through points $\left(x_{1}, y_{1}\right)$ \& $\left(x_{2}, y_{2}\right)$ is denoted by m and is defined by

$$
m=\frac{\text { rise }}{\text { ran }}=\frac{\text { change in } y}{\text { change in } x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

Ex: Slope of line passing through $(2,-7)$ \& $(4,2)$

$$
\begin{aligned}
& m=\frac{2-(-7)}{4-2}=\frac{9}{2} \\
& m=\frac{-7-2}{2-4}=\frac{-9}{-2}=\frac{9}{2}
\end{aligned} \quad \int_{(2,-7)}^{(4,2)} x x
$$

Point-Slope form of the equation of a line

- Line $w /$ slope m passing through $\left(x_{1}, y_{1}\right)$

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

Ex: Eqn of line $w /$ slope $-\frac{2}{3}$, passing through $(-2,-3)$.

$$
\begin{gathered}
y-(-3)=-\frac{2}{3}(x-(-2)) \\
y+3=-\frac{2}{3}(x+2) \\
y+3=-\frac{2}{3} x-\frac{4}{3} \\
y=-\frac{2}{3} x-\frac{13}{3}
\end{gathered}
$$

Slope - Intercept

- Eqn of a line $w /$ slope m \& y-intercept b is

$$
y=m x+b
$$

Ex: Eqn of lime $\omega /$ slope -1 \& containing $(0,4)$.

$$
y=-x+4
$$

Equations of Horizontal \& Vertical lines

- Horizontal line passing through (h, k) has equation $y=k$.

Ex $y=3$

$$
\begin{array}{r|c}
x & y \\
\hline-2 & 3 \\
-1 & 3 \\
0 & 3 \\
1 & 3 \\
2 & 3
\end{array}
$$

- Vertical line passing through (h, k) has equation $x=h$.

General form of the Equation of a line

$$
a x+b y+c=0 \quad, \quad a \neq 0, b \neq 0, c=\text { any rood number. }
$$

Ex: $\quad 3 x+4 y=24$

$$
\begin{aligned}
& 4 y=24-3 x \\
& y=6-\frac{3}{4} x \\
& y=-\frac{3}{4} x+6
\end{aligned}
$$

Parallel \& Perpendicular Lines

- Parallel lines have the sans slope.
- Perpendicular lines have slopes which ore apposite reciprocals.
\rightarrow Line 1 has slope a, then line 2 is perpenelicilar to line 1 if it has slope $-\frac{1}{a}$.

Ex: © 6 ire equ of line that passes through $(-1,2)$, and is \perp to a lime with slope $-\frac{1}{2}$.

$$
\begin{aligned}
& m=2 \\
& \quad \text { pint }(-1,2) \\
& y-2=2(x-(-1)) \\
& y=2 x+4
\end{aligned}
$$

(2) Eqn of a line that passes through $(-2,5)$, and is parallel to a line that contains the points $(2,3),(5,7)$.

- $m=$ slope of "other $1 \mathrm{men}^{\prime}=\frac{7-3}{5-2}=\frac{4}{3}$
= slope of "our line".
So

$$
\begin{aligned}
& y-5=\frac{4}{3}(x+2) \\
& y-5=\frac{4}{3} x+\frac{8}{3} \\
& y=\frac{4}{3} x+\frac{23}{3}
\end{aligned}
$$

