5.2-Systems of Linear Equations in Three Variables.

Ex (1) $\left\{\begin{array}{c}3 y-z=5 \\ 2 x+y+z=9 \\ x+2 y+2 z=3\end{array}\right.$
Step 1: Interchmye equs to get the first eqn with a coeff. of 1 on x.

$$
\left\{\begin{array}{r}
x+2 y+2 z=3 \\
2 x+y+z=9 \\
3 y-z=5
\end{array}\right.
$$

Step 2: Eliminate x terms from 2nd \& 3 rd eqn.

$$
\begin{gathered}
2 x+y+z=9 \\
-2)(x+2 y+2 z=3) \\
\hline 0 x-3 y-3 z=3
\end{gathered}
$$

$+(-2)(x+2 y+2 z=3)$ add multiple of 1st eqn to 2nd eqn to get a new 2 nd eqn.

So

$$
\left\{\begin{array}{r}
x+2 y+2 z=3 \\
-3 y-3 z=3 \\
3 y-z=5
\end{array}\right.
$$

\rightarrow Now get a coeff. of 1 on y in $2^{\text {nd }}$ equ. Mult. 2nd eqn by $-\frac{1}{3}$:

$$
\left(-\frac{1}{3}\right)(-3 y-3 z=3) \rightarrow y+z=-1
$$

$$
\left\{\begin{array}{r}
x+2 y+2 z=3 \\
y+z=-1 \\
3 y-z=5
\end{array}\right.
$$

Step 3: Eliminate y from $3^{\text {rd }}$ eqn.

$$
\begin{array}{r}
3 y-z=5 \\
+(-3)(y+z=-1) \\
\hline 0 y-4 z=8 \\
-4 z=8 \\
z=-2
\end{array}
$$

Step 4: Plug z into 2nd eqn to find y :

$$
\begin{gathered}
y+z=-1 \\
y+(-2)=-1 \\
y=1
\end{gathered}
$$

Step 5: Plug $y \& z$ into lIst equ to find x :

$$
\begin{gathered}
x+2 y+2 z=3 \\
x+2(1)+2(-2)=3 \\
x-2=3 \\
x=5
\end{gathered}
$$

