5.1 - Solving Systems of Linear Equations in Two Variables

A system of linear equations:

$$
\left\{\begin{array}{l}
2 x-y=5 \\
x+2 y=5
\end{array}\right.
$$

Recall: $\quad 2 x-1=5$
\rightarrow Trying to find an x-value that makes the equation true.
Now: $\left\{\begin{array}{l}3 x+4 y=1 \\ 7 x-y=2\end{array}\right.$
\rightarrow Trying to find x-vales) and y-valu els) that make both equations true.

- 3 possible solutions:
(1) Unique solution, i.e. exactly 1 -value $\& I y$-value satisfying the system. Eg: $x=4, y=\frac{1}{2}$
(2) Infinitely many solutions.
(3) No solution

The Substitution Method
Ex:(1) $\left\{\begin{array}{l}2 x-5 y=3 \\ y-2 x=9\end{array}\right.$
From the
second eq u. $y=9+2 x$ *
plug the y value
in

$$
\begin{array}{r}
2 x-5(9+2 x)=3 \\
2 x-45-10 x=3 \\
-8 x=48 \\
x=-6
\end{array}
$$

to $p^{\text {lug }}$

$$
\begin{gathered}
y-2(-6)=9 \\
y=-3
\end{gathered}
$$

(2) $\left\{\begin{array}{l}4 x+2 y=12 \\ -2 x-y=-6\end{array}\right.$
solve for $y^{\text {in }}$
(arbitrary ${ }^{\text {colic }}{ }^{2}$

$$
\begin{aligned}
& 4 x+2 y=12 \\
& 2 y=12-4 x \\
& y=6-2 x
\end{aligned}
$$

plug $y=6 \cos ^{\text {in to }}$ other exc :

$$
\begin{aligned}
-2 x-(6-2 x) & =-6 \\
-2 x-6+2 x & =-6 \\
-6 & =-6
\end{aligned} \rightarrow \text { The statement! }
$$

So:

$$
\begin{aligned}
& x=t \\
& y=6-2 t
\end{aligned}
$$

(3)

$$
\begin{aligned}
& \left\{\begin{array}{l}
x+y=3 \\
2 x+2 y=9
\end{array}\right. \\
& \rightarrow y=3-x \\
& \rightarrow 2 x+2(3-x)=9 \\
& 2 x+6-2 x=9 \\
& 6=9 \rightarrow \text { Not true! }
\end{aligned}
$$

So, no solution!

Elimination Method
Ex: (1) $\left\{\begin{array}{l}2 x+3 y=21 \\ 3 x-4 y=23\end{array}\right.$
(3)

$$
\begin{aligned}
& (2 x+3 y=21) \\
& 6 x+9 y=63
\end{aligned}
$$

$$
(-2)(3 x-4 y=23)
$$

$$
-6 x+8 y=-46
$$

$$
\begin{aligned}
6 x+9 y & =63 \\
-6 x+8 y & =-46 \\
0 x+17 y & =17 \\
17 y & =17 \\
y & =1
\end{aligned}
$$

- If we get ${ }_{\hat{c}}$ something 6 , then we have infinitely many solutions. sorting (any toe $\underset{\text { sentence }}{ }$
- If we get savetuing like $-3=0$ (any false seatana), there are no solutions.

