4.1 -Exponential Functions

Before:

$$
\begin{aligned}
& f(x)=3 x^{2}+2 x+1 \\
& f(2)=3(2)^{2}+2(2)+1=3.4+4+1=17
\end{aligned}
$$

Nav:
Def: An exponential function is a function of the form

$$
f(x)=a^{x} \text {, where } a>0, a \neq 1 \text {. }
$$

The base of f is a, and the exponent is x.

Ex (1)

$$
\begin{aligned}
& f(x)=3^{x-2} \\
& f(4)=3^{4-2}=3^{2}=9 \\
& f(2)=3^{2-2}=3^{0}=1
\end{aligned}
$$

(2)

$$
\begin{aligned}
& f(x)=\left(\frac{1}{4}\right)^{x} \\
& f(2)=\left(\frac{1}{4}\right)^{2}=\frac{1}{16} \\
& f\left(-\frac{1}{2}\right) \\
& =\left(\frac{1}{4}\right)^{-1 / 2}=\frac{1}{\left(\frac{1}{4}\right)^{1 / 2}}=\frac{1}{\sqrt{\frac{1}{4}}}=\frac{1}{\frac{\sqrt{7}}{\sqrt{4}}} \\
& \\
& =\frac{1}{\frac{1}{2}}=2
\end{aligned}
$$

Graphing Exponential Functions
(1) $f(x)=3^{x}$

x	y
-3	$3^{-3}=\frac{1}{3^{3}}=\frac{1}{27}$
-2	$3^{-2}=\frac{1}{9}$
-1	$3^{-1}=\frac{1}{9}$
0	$3^{0}=1$
1	$3^{1}=3$
2	$3^{2}=9$
3	$3^{3}=27$

$$
\begin{aligned}
& \lim _{x \rightarrow-\infty} f(x)=0 \\
& \lim _{x \rightarrow \infty} f(x)=\infty
\end{aligned}
$$

(2) $f(x)=\left(\frac{1}{3}\right)^{x}$

Transtonnections of Exponential Functions
Shift $f(x)=3^{x}$ left 3 \& reflected about the y-axis.

$$
\begin{array}{ll}
y=3^{x} & \\
y=3^{x+3} & (\text { shift left } 3) \\
y=3^{-x+3} & \text { (reflect about } y \text {-axis) }
\end{array}
$$

Finding Exponential Functions:
(1) Find the exponential function $f(x)=c a^{x}$, whose graph contains the points $(-1,18) \&\left(4, \frac{2}{27}\right)$.

$$
\begin{gathered}
18=f(-1)=c a^{-1} \\
18=c a^{-1} \\
18=\frac{c}{a} \\
18 a=c \\
\frac{2}{27}=f(4)=c a^{4} \\
\frac{2}{27}=c a^{4} \\
\frac{2}{27}=(18 a) a^{4} \\
\frac{2}{27}=18 a^{5} \\
\frac{1}{243}=a^{5}
\end{gathered}
$$

$$
\begin{aligned}
\sqrt[5]{\frac{1}{243}} & =a \\
a & =\frac{1}{3} \\
\text { So } c & =18(a)=18\left(\frac{1}{3}\right)=6
\end{aligned}
$$

Hence $f(x)=c \cdot a^{x}=6\left(\frac{1}{3}\right)^{x}$
(2) Save problem for $(-2,16)$ and $\left(3, \frac{1}{2}\right)$.

$$
\begin{array}{ll}
f(x)=c \cdot a^{x} & \\
16=f(-2)=c a^{-2} & \frac{1}{2}=f(3)=c a^{3} \\
16=c a^{-2} & \frac{1}{2}=c a^{3} \\
16=\frac{c}{a^{2}} & \begin{array}{ll}
\frac{1}{2}=\left(16 a^{2}\right) a^{3} \\
16 a^{2}=c & \frac{1}{2}=16 a^{5} \\
& \frac{1}{32}=a^{5} \\
& a=\sqrt[5]{\frac{1}{32}}=\sqrt[5]{5 \sqrt{32}}=\frac{1}{2} \\
c=16\left(\frac{1}{2}\right)^{2}=16\left(\frac{1}{4}\right)=4 & a=\frac{1}{2}
\end{array} \\
&
\end{array}
$$

Interest Formulas
(1) Simple Interest

$$
\begin{array}{ll}
I=\operatorname{Pr} t & \\
& P=\text { interest earned } \\
& r=\text { principal amount interest rate (in decimal } \\
& t=\text { four }) \\
&
\end{array}
$$

Ex: We deposit $\$ 8,000$ in a bank for 5 years at a simple interest rate of 6%.
a) How much internet will we cum?
b) How much money is in the account after 5 years?

Solution: a)

$$
\begin{aligned}
I & =(8000)(.06)(5) \\
& =(8000)\left(\frac{6}{100}\right)(5) \\
& =\frac{(8000)(30)}{100} \\
& =(80)(30) \\
& =2,400
\end{aligned}
$$

b) $8,000+2,400=\$ 10,400$
(2) Command Intens

$$
A=P\left(1+\frac{r}{n}\right)^{n t}
$$

$p=$ principal amomalt
$r=$ annual rate

* $n=\#$ of times interest is

$$
t=\text { years }
$$

Ex: \$100 is deposited in a bank that pays 5\% annual inturst. How much money is in the bank after 3 years if the interest is compounded quarterly?

$$
A=(100)\left(1+\frac{.05}{4}\right)^{(4)(3)} \approx 116.08
$$

Daily? $n=365$
Semiannually? $n=2$
Annually? $n=1$
(3) Continuous Compand Interest

$$
\begin{array}{ll}
A=P e^{r t} & A=\text { amant after } t \text { years } \\
e \approx 2.71828 \ldots & P=\text { principal } \\
r=\text { annual rate } \\
t=\text { gears }
\end{array}
$$

Exponential Grith \& Decay

$$
A(t)=A_{0} e^{k t} \quad A_{0}=A(0)=\text { initial ament }
$$

$k=$ granth rate / decay rate

$$
k>0 \quad(\text { granth })
$$

$k<0$ (decay)

$$
t=\text { time }
$$

Ex: In year 2000, there were 6.08 billion people in the world. Assure a growth rate after 1990 of 1.5%. Estimate population in the years
a) 2030
b) 1990 .

$$
\begin{aligned}
& A(t)=A_{0} e^{k t} \\
& \cdot A_{0}=A(0)=6.08 \text { billion } \\
& k=.015
\end{aligned}
$$

So $A(t)=(6.08) e^{(.015) t}$
a) $A(30)=(6.08) e^{(.015)(30)}$
b) $A(-10)=(6.08) e^{(-.015)(-10)}$
(2) Fishing boat is purchased for $\$ 20,000$ Boat value depreerates e a rate of $15 \% /$ yew. Find bout value after 5 years.

$$
\begin{aligned}
& A(t)=A_{0} e^{k t} \\
& \cdot A_{0}=A(0)=20,000 \\
& k=-.15 \\
& A(t)=(20,000) e^{(-.15)(t)} \\
& A(5)=(20,000) e^{(-.15)(5)} \approx \$ 10,392.06
\end{aligned}
$$

