3.4 - The Real zeros of a Polynomial

Rational zeros Theorem
Ex: (1) Find all rational zeros of $F(x)=\left(2 x^{3}+5 x^{2}-4-3-3.\right)$

Rational zeros themem says:
If there are any zeros of F that ane rational, they must be of the form

Factor of -33
Factor of 2

Factors of $-3: \pm 1, \pm 3$
Factors of $2: \pm 1, \pm 2$
A rational zero of F must be

$\frac{ \pm 1}{1}$,	$\frac{ \pm 1}{2}$,	$\frac{ \pm 3}{1}$,	$\frac{ \pm 3}{2}$.
\downarrow	\downarrow	\downarrow	\downarrow
$1,-1$	$\frac{1}{2},-\frac{1}{2}$	$3,-3$	$\frac{3}{2},-\frac{3}{2}$

$$
\begin{array}{cccc}
-1 \begin{array}{cccc}
2 & 5 & -4 & -3 \\
\downarrow & -2 & -3 & 7 \\
2 & 3 & -7 & 4 \\
\text { remainder }
\end{array} \\
\left.\begin{array}{c}
F(x) \\
x-(-1)
\end{array}=\begin{array}{l}
-1 \text { is a zero of } F(x) \\
\text { if and only if } \\
(x-(-1)) \text { is a factor } \\
\text { of } F(x) \\
F(x)=(x-(-1))(\text { some other } \\
\text { stuff }
\end{array}\right)
\end{array}
$$

$$
\begin{array}{cccc}
\begin{array}{|cccc}
2 & 5 & -4 & -3 \\
\downarrow & 2 & 7 & 3 \\
\hline 2 & 7 & 3 & 0 \\
\text { remeinder }
\end{array}
\end{array}
$$

$$
\begin{aligned}
\frac{F(x)}{x-1} & =2 x^{2}+7 x+3 \\
F(x) & =(x-1)\left(2 x^{2}+7 x+3\right) \\
F(x) & =(x-1)(2 x+1)(x+3)
\end{aligned}
$$

$F(x)$ set 0 :

$$
\begin{array}{ccc}
x-1=0 & 2 x+1=0 & x+3=0 \\
x=1 & x=-\frac{1}{2} & x=-3
\end{array}
$$

