3.3 - Dividing Polynomials

- We say 5 is a factor of 10 , since $10=5.2$.
- Similarly, a polynomial $d(x)$ is a factor of a polynomial $p(x)$ if
$p(x)=d(x) \cdot q(x) \quad$ for sane polynomial
Ex $x-1$ is a factor of $x^{3}-1$, since

$$
x^{3}-1=(x-1)\left(x^{2}+x+1\right)
$$

- 5 is not a factor of 13 , but we can still wite $13=2 \cdot 5+3$.

$$
\frac{13}{5}=2+\frac{3}{5}
$$

- Recall long division of numbers:

$$
\begin{array}{cc}
4 \longdiv { 2 4 6 } & 6 \sqrt{248} \\
-\frac{(24)}{06} & \frac{-24}{08} \\
-\frac{6}{0} & \frac{248}{6}=41+\frac{1}{3}
\end{array}
$$

Long Division of Polynomials
(1)

$$
\begin{aligned}
& \text { Compute } \frac{2 x^{2}+x^{5}+7+4 x^{3}}{x^{2}+1-x} \text {. } \\
& x^{3}+x^{2}+4 x+5 \\
& \underline { x } ^ { 2 } - x + 1 \longdiv { \underline { x } ^ { 5 } + 0 x ^ { 4 } + 4 x ^ { 3 } + 2 x ^ { 2 } + 0 x + 7 } \\
& \frac{-\left(x^{5}-x^{4}+x^{3}\right)}{0+x^{4}+3 x^{3}+2 x^{2}+0 x+7} \\
& \frac{-\left(x^{4}-x^{3}+x^{2}\right)}{0+4 x^{3}+x^{2}+0 x+7} \\
& \frac{-\left(4 x^{3}-4 x^{2}+4 x\right)}{0+5 x^{2}-4 x+7} \\
& \frac{-\left(5 x^{2}-5 x+5\right)}{0 x+2 \rightarrow \text { Remenindor }}
\end{aligned}
$$

So: $\quad x^{3}+x^{2}+4 x+5+\frac{x+2}{x^{2}-x+1}=\frac{x^{5}+4 x^{3}+2 x^{2}+7}{x^{2}-x+1}$
Synthetic Dinsion:

- Use when dividing by a polynomial of the form

$$
x-a
$$

Ex: (1) Divide $2 x^{3}-5 x^{2}+3 x-14$ by $x-3$

$$
\begin{aligned}
& +\frac{4}{x-3}
\end{aligned}
$$

(2) $\frac{2 x^{4}-3 x^{2}+5 x-63}{x+3} \quad x+3=x-(-3)$

$$
\begin{aligned}
& -3 \begin{array}{|cccc}
\hline 2 & 0 & -3 & 5 \\
\hline & -63 \\
\downarrow & -6 & 18 & -45 \\
\hline 2 & -6 & 15 & -40 \\
\hline & 57 \\
& \frac{2 x^{4}-3 x^{2}+5 x-63}{x+3}=2 x^{3}-6 x^{2}+15 x-40+\frac{57}{x+3}
\end{array}
\end{aligned}
$$

Remainder Theorem

- If a polynomial $F(x)$ is divided by $x-a$, then the remainder R is given by

$$
R=F(a)
$$

Ex (1) Find the nomainder when $F(x)=2 x^{5}-4 x^{3}+5 x^{2}-7 x+2$ is divided by $x-1$.

$$
\begin{aligned}
R=F(1) & =2(1)^{5}-4(1)^{3}+5(1)^{2}-7(1)+2 \\
& =2-4+5-7+2 \\
& =-2+5-5 \\
& =-2
\end{aligned}
$$

So: $\frac{2 x^{5}-4 x^{3}+5 x^{2}-7 x+2}{x-1}=\cdots+\frac{-2}{x-1}$
(2) Let $f(x)=x^{4}+3 x^{3}-5 x^{2}+8 x+75$. Find $f(-3)$.

- By Remainder Thenem $f(-3)$ is the remainder of $\frac{f(x)}{x-(-3)}$.
$- 3 \longdiv { 1 3 } \begin{array} { l l l l l } { 1 } & { - 5 } & { 8 5 } \end{array}$

\downarrow	-3	0	15	-69
1	0	-5	23	6

So $\frac{f(x)}{x-(-3)}=x^{3}+0 x^{2}-5 x+23+\frac{6}{x-(-3)}$
So: $f(-3)=6$.
(3) What is the remainder of: $\frac{2 x^{3}+3 x^{2}-1}{x}$
(b) $\frac{3 x^{4}-7 x}{x}$
(c) $\frac{14 x^{2}-3 x+7}{x+1}$
(a) $R=-1$

$$
x+1=x-(-1)
$$

(b) $R=0$
(c) $R=14(-1)^{2}-3(-1)+7=14+3+7=24$

Factor Themem
A polynomial $f(x)$ has $x-a$ as a factor if and only if $f(a)=0$.
(When can $/$ unite $f(x)=(x-a)(\cdots)$?)
Ex (1) Is $x^{4}+3 x^{3}-5 x^{2}+8 x+75$ divisible by $x+3$?
Is $x+3$ a factor of $x^{4}+3 x^{3}-5 x^{2}+8 x+75$?

$$
\begin{aligned}
& -3 \begin{array}{|ccccc}
1 & 3 & -5 & 8 & 75 \\
\downarrow & -3 & 0 & 15 & -69 \\
\hline 1 & 0 & -5 & 23 & 6 \\
x+3 & \frac{x^{4}+3 x^{3}-5 x^{2}+8 x+75}{x+\left(\frac{6}{x+3}\right.}
\end{array}=x^{3}-5 x+23+5
\end{aligned}
$$

(2) Given that 2 is a zero of

$$
f(x)=3 x^{3}+2 x^{2}-19 x+6
$$

find all the zeros of f.

- By Factor Themem, since $f(2)=0$, we knew that $x-2$ is a factor of $3 x^{3}+2 x^{2}-19 x+6$.

$$
\begin{aligned}
2 & \begin{array}{rrrr}
3 & 2 & -19 & 6 \\
\downarrow & 6 & 16 & -6 \\
3 & 8 & -3 & 0 \\
x-2 & & 3 x^{2}+8 x-3
\end{array} \quad \rightarrow \text { remainder } 0
\end{aligned}
$$

$$
\begin{aligned}
f(x) & =(x-2)\left(3 x^{2}+8 x-3\right) \\
f(x) & =(x-2)(3 x-1)(x+3)
\end{aligned}
$$

When is $f(x)=0$?

$$
\begin{array}{ccc}
x-2=0 & 3 x-1=0 & x+3=0 \\
x=2 & x=\frac{1}{3} & x=-3
\end{array}
$$

Rational zeros Theenem
Ex: (1) Find all rational zeros of $F(x)=\left(2 x^{3}+5 x^{2}-4 x-3\right.$.

Rational zeros themed says:
If there are any zeros of F that ane rational, they must be of the form
$\frac{\text { Factor of }-3}{\text { Factor of } 2}$

Factors of $-3: \pm 1, \pm 3$
Factors of $2: \pm 1, \pm 2$

A rational zero of F must be

$$
\begin{array}{cccc}
\frac{ \pm 1}{ \pm 1}, & \frac{ \pm 1}{ \pm 2}, & \frac{ \pm 3}{ \pm 1}, & \frac{ \pm 3}{ \pm 2} \\
\downarrow & \downarrow & \downarrow & \downarrow \\
1,-1 & \frac{1}{2},-\frac{1}{2} & 3,-3 & \frac{3}{2},-\frac{3}{2}
\end{array} .
$$

