3.2 - Polynomial functions

Looks like: $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$
Ex: (1) $f(x)=3 x^{5}+9 x-1$
(2) $g(x)=14 x^{2}-x$
(3) $h(x)=-3 x-1-2 x^{2}-10 x^{20}$

Power Functions: Looks like: $f(x)=a x^{n}$

- We are interested in "End Behavior" of the graphs of power functions.

Ex: (1) When n is even:

Notice:

- When $a>0$, both arrows point up.
- When $a<0$, both arrows point down.
n even, a >0: $f(x) \longrightarrow \infty$ as $x \rightarrow \infty$

$$
f(x) \rightarrow \infty \quad \text { as } \quad x \rightarrow-\infty
$$

n even, a $<0: f(x) \longrightarrow-\infty$ as $x \longrightarrow \infty$

$$
f(x) \rightarrow-\infty \quad \text { as } \quad x \longrightarrow-\infty
$$

(2) When n is odd:

when n odd, $a>0: f(x) \longrightarrow \infty$ as $x \longrightarrow \infty$

$$
f(x) \longrightarrow-\infty \quad \text { as } x \longrightarrow-\infty
$$

Hod, $a<0: f(x) \longrightarrow \infty$ as $x \longrightarrow-\infty$

$$
f(x) \rightarrow-\infty \text { as } x \rightarrow \infty
$$

Leading Term Test:

- $f(x)$ is a polynomial function.
- Look at highest power term: $a x^{n}$

- The zeros of a polynomial function are the x-values whose output value is zero.
Ex:

$$
\begin{aligned}
x: \quad f(x)= & x^{2}+7 x+10 \\
& =(x+5)(x+2) \\
f(x) \stackrel{\text { set }}{=} 0: & (x+5)(x+2)=0 \\
& x=-5 \text { and } x=-2
\end{aligned}
$$

So, $-5,-2$ are the zeroes of f.

* The zeros of a polynomial function ane the x-intercepts x

Graphing a Polynomial Function:

$$
f(x)=-x^{3}-4 x^{2}+4 x+16
$$

(1) Determine End Behavior using Leading Term Test.

$$
\text { Leading }_{\text {Term: }}-x^{3}
$$

(2) Find zeros.

Factor by gruping:

$$
\begin{aligned}
& -(x+4)(x+2)(x-2)=0 \\
& x=-4, x=-2, x=2
\end{aligned}
$$

(3) Find y-intercept: $y=16$

(4)

$$
f(-5)=21, \quad f(-3)=-5, \quad f(0)=16, \quad f(3)=-35
$$

