Looks like: f(x) = an x" + an, x"-1 + -- + a, x + ao

Ex: (1) f(x) = 3x5+9x-1

(2) g(x) = 14x2-x

(3) $h(x) = -3x - 1 - 2x^2 - 10x^{20}$

Power Fruetians: Looks like: f(x) = axn

· We are interested in "End Behavier" of the graphs of power functions.

Notice:

· When a>0, both arrows point up.

· When a 20, both amous >x point down.

n even, a 20: $f(x) \longrightarrow \infty$ $f(x) \longrightarrow \infty$ $\chi \longrightarrow -\infty$

n even, a
$$Lo: f(x) \longrightarrow -\infty$$
 as $x \longrightarrow -\infty$

$$f(x) \longrightarrow -\infty \text{ as } x \longrightarrow -\infty$$

when
$$\underline{n} \text{ odd}, \underline{a} > 0: f(x) \longrightarrow \infty$$
 as $x \longrightarrow \infty$

$$f(x) \longrightarrow -\infty \text{ as } x \longrightarrow -\infty$$

$$\underbrace{n \text{ odd}, a \angle o}: f(x) \longrightarrow \varnothing \quad as \quad x \longrightarrow -\infty$$

$$f(x) \longrightarrow -\infty \quad as \quad x \longrightarrow \infty$$

Leading Term Test:

• f(x) is a polynemial function.

• Look at highest power term: a xn

n e ven		n odd	
a > 0	a 40	a > 0	a < 0
like x2	like -x2	like x3	like -x3

· The zeros of a polynemial function are the x-values whose output value is z-ero. Ex: f(x) = x2+7x+10 = (x+5) (x+2) $f(x) \stackrel{\text{SET}}{=} 0 : (x+5)(x+2) = 0$ X = -5 and X = -2So, -5, -2 are the zeroes of f. * The zeros of a polynemial function one the x-intercepts Graphing a Polynemial Function: $f(x) = -x^3 - 4x^2 + 4x + 16$ 1) Determine End Behanier using Leading Term Test. Leading - x3

Term. (2) Find zeros. -(x+4)(x+2)(x-2)=0Factor by gruping: x = -4, x = -2, x = 2

$$f(-5)=21$$
 $f(-3)=-5$, $f(0)=16$, $f(3)=-35$

