3.1 - Quadratic Functions

- A function f given by the rule

$$
f(x)=a x^{2}+b x+c, \quad a \neq 0
$$

is called a quadratic function

- Stonderd Form
$f(x)=a(x-h)^{2}+k$, where (h, k) is the vertex of the parabola.
Ex: (1) Find standard form of a function f where graph has vertex $(2,-1)$ \& passes through $(1,4)$.

$$
\begin{aligned}
f(x) & =a(x-2)^{2}+(-1) \\
& =a(x-2)^{2}-1 \\
f(1) & =4 \\
4=f(1) & =a(1-2)^{2}-1 \\
& =a(-1)^{2}-1 \\
& =a-1
\end{aligned}
$$

So $a=5$.

$$
f(x)=5(x-2)^{2}-1
$$

(2) Vertex: $(-3,2)$, passes through: $(1,4)$

$$
\begin{aligned}
& f(x)=a(x+3)^{2}+2 \\
& f(1)=4 \\
& \begin{aligned}
4=f(1) & =a(4)^{2}+2 \\
& =16 a+2 \\
4 & =16 a+2
\end{aligned}
\end{aligned}
$$

$$
\begin{array}{ll}
2=16 a \\
a=\frac{2}{16}=\frac{1}{8}
\end{array} \quad f(x)=\frac{1}{8}(x+3)^{2}+2
$$

Facts: (1) If $a>0$, the parabola opens up.

(2) If $a>0$, the function f has a minimum value of k at $x=h$.

If $a<0$ \qquad "maximum value of k at $x=n$.

Graphing a Quadratic Function
Steps: (1) Complete the square to get into standerd
(2) Opens Up/Dan?
(3) Find vertex
(4) Find x-intercepts \& y intercepts (i fang).

Ex: (1)

$$
\begin{aligned}
f(x) & =2 x^{2}+8 x-10 \\
& =2\left(x^{2}+4 x-5\right) \\
& =2(\underbrace{x^{2}+4 x+4-4}_{\text {adding } 0}-5) \\
& =2\left((x+2)^{2}-4-5\right) \\
& =2\left((x+2)^{2}-9\right) \\
& =2(x+2)^{2}-18
\end{aligned}
$$

vertex: $(-2,-18)$
Opens Up/Darm? opens up, since $2>0$.
x-inturepts: $\quad 0=2 x^{2}+8 x-10$

$$
\begin{aligned}
& x=\frac{-8 \pm \sqrt{64-4(2)(-10)}}{2(2)} \\
&=\frac{-8 \pm \sqrt{144}}{4} \\
&=\frac{-8 \pm 12}{4} \rightarrow \frac{-8+12}{4}=1 \\
& \longrightarrow \frac{-8-12}{4}=-5
\end{aligned}
$$

y-intercept: $\quad f(0)=2(0)^{2}+8(0)-10$

$$
=-10
$$

Note: Gives $f(x)=a x^{2}+b x+c$, the x-vale of the vertex is $h=\frac{-b}{2 a}$, and the y-value of the vertex is $k=f(h)$.
Ex: Find vertex of parabola: $f(x)=2 x^{2}+8 x-10$.

$$
\begin{aligned}
h=\frac{-b}{2 a}=\frac{-8}{2(2)} & =\frac{-8}{4}=-2 \\
k=f(h)=f(-2) & =2(-2)^{2}+8(-2)-10 \\
& =2(4)-16-10 \\
& =8-16-10 \\
& =-18
\end{aligned}
$$

Applications:
(1) Total cost of a product is $C(x)=200-50 x+x^{2}$ where $x=$ number of units produced. Find the x-value for which the total cost is minimum.

- $1=$ coff. on x^{2} is >0. So parabola opens up. Hence the minimum value of C is $y=k$ at $x=h$, where (h, k) is the vertex.

$$
h=\frac{-b}{2 a}=\frac{-(-50)}{2(1)}=\frac{50}{2}=25 .
$$

(2) We want to build a rectangular pen that borders a sher on one side. We have 100 ft . of farce to work with. What is the maximum oneal that can be enclosed?

- Area is length times width.

Let $x=$ width,$y=$ length.

- The perimeter of our pen is

$$
x+y+x=2 x+y
$$

We knew we only have 100 ft . of fence to work with, so our perimeter is $100=2 x+y$.

- We want to maximize area $=x y$. But we need a quadratic expression in order to find a maximum, and $x y$ is not a quachatic expression.
However, since $2 x+y=100$ then $y=100-2 x$.
So $x y$ becomes

$$
x y=x(100-2 x)=100 x-2 x^{2}
$$

which is a quadratic expression.

Since $-2<0$, the parcubola opens deme, and from Fact (2), the maximum valve is $y=k$, the y value of the vertex. Lets first find the x-value of the vertex:

$$
h=\frac{-b}{2 a}=\frac{-100}{2(-2)}=\frac{-100}{-4}=25 .
$$

Remember, 25 is not the maximum. It is the x-value that gives the maximum value k when we plug 25 into the expression. So: $100(25)-2(25)^{2}=2500-1050$

$$
=1450
$$

