1.5-Solviny Other Types of Equations

- In 1.1: Learned haw to solve linear equations:

$$
a x+b=0 \quad(E x: 3 x+1=10)
$$

- In 1.3: Learned how to solve quadratic equations:

$$
a x^{2}+b x+c=0 \quad\left(E_{x}: 3 x^{2}-2 x=10\right)
$$

(Learned 4 methods for soling these)
-In 1.4: Learned about complex numbers so that we could solve quaetratic equations with solutions like $x=1 \pm \sqrt{-18}$.

- Now, in 1.5: Will learn how to solve "other types" of equations, ie. equations not of the form $a x+b=0$ or $a x^{2}+b x+c=0$.

Solving by Factoring
Ex (1) $x^{3}=2 x^{2}$

$$
\begin{aligned}
& x^{3}-2 x^{2}=0 \\
& x^{2}(x-2)=0 \\
& x^{2}=0 \quad \text { or } \quad x-2=0 \\
& x=0 \quad x=2
\end{aligned}
$$

$$
\begin{array}{lr}
(2)(\sqrt{x})^{3}=\sqrt{x} & \Delta^{3}-\Delta=0 \\
(\sqrt{x})^{3}-\sqrt{x}=0 & \Delta\left(\Delta^{2}-1\right)=0 \\
\sqrt{x}\left((\sqrt{x})^{2}-1\right)=0 & \\
\sqrt{x}(x-1)=0 & \longrightarrow \begin{aligned}
\sqrt{x}=0 & \text { or } x-1=0 \\
x=0 & \text { or } x=1
\end{aligned}
\end{array}
$$

$$
\begin{aligned}
& \text { (3) } x^{4}=27 x \\
& x^{4}-27 x=0 \\
& x\left(x^{3}-27\right)=0 \\
& x=0 \text { or } x^{3}=27 \\
& \sqrt[3]{x^{3}}=\sqrt[3]{27} \\
& x=3
\end{aligned}
$$

Solving Rational Equations

- Multiply both sides by the LCD of the denominators.

$$
\left.\begin{array}{l}
\text { Ex (1) } \frac{x+1}{3 x-2}=\frac{5 x-4}{3 x+2} \\
\frac{(3 x-2)(3 x+2)}{1} \cdot\left(\frac{x+1}{3 x-2}\right)=\left(\frac{5 x-4}{3 x+2}\right) \cdot \frac{(3 x-2)(3 x+2)}{1} \\
(3 x+2)(x+1)
\end{array}\right)=(5 x-4)(3 x-2) .
$$

* Check that $x=\frac{1}{4}$ and $x=2$ work! *

$$
\begin{aligned}
& \text { (2) } \frac{1}{x}+\frac{2}{x+1}=1 \\
& \frac{L C D \text { of } \frac{1}{x}, \frac{2}{x+1}: x(x+1)}{x(x+1)\left(\frac{1}{x}+\frac{2}{x+1}\right)=x(x+1)} \\
& x(x+1) \frac{1}{x}+x(x+1) \cdot \frac{2}{x+1}=x(x+1) \\
& x+1+2 x=x^{2}+x \\
& 3 x+1=x^{2}+x \\
& x=x^{2}-2 x-1 \\
& x=\frac{-(-2) \pm \sqrt{(-2)^{2}-4(1)(-1)}}{2(1)} \\
& x=\frac{2 \pm \sqrt{4+4}}{2} \\
& x=1 \pm \frac{1+\sqrt{8}}{2} \\
& x=1 \pm \sqrt{2} \\
& x=1+\sqrt{2} \\
& x=1 \\
& x=1
\end{aligned}
$$

(3) $\frac{x}{x-1}-\frac{1}{x+1}=\frac{2 x}{x^{2}-1}$

Since $x^{2}-1=(x-1)(x+1)$, the LCD is $(x-1)(x+1)$.

$$
\begin{aligned}
& (x-1)(x+1) \frac{x}{x-1}-(x-1)(x+1) \frac{1}{x+1}=\frac{2 x}{x^{2}-1} \cdot(x+1)(x-1) \\
& \frac{x(x-1)(x+1)}{x-1}-\frac{(x-1)(x+1)}{x+1}=\frac{2 x((x+1)(x-1))}{x^{2}-1} \\
& x^{2}+x-(x-1)=2 x \\
& x^{2}+1=2 x \\
& x^{2}-2 x+1=0 \\
& (x-1)(x-1)=0 \\
& x-1=0 \\
& x=1
\end{aligned}
$$

Since $x=1$ "doesn't work" in original equation.

$$
\rightarrow N_{0} \text { solution } \varnothing
$$

Solving Equations w/ Radicals

- Isolate radical, then square (or cube) both sides.

Ex: (1) $\sqrt{x-1}=2$

$$
\begin{gathered}
(\sqrt{x-1})^{2}=(2)^{2} \\
x-1=4 \\
x=5
\end{gathered}
$$

$$
\begin{aligned}
& \text { (2) } \begin{aligned}
& \sqrt{x-1}=-2 \\
&(\sqrt{x-1})^{2}=(-2)^{2}, \quad(x \geq 1) \\
& x-1=4 \\
& x=5
\end{aligned}
\end{aligned}
$$

Chuck: $\quad \sqrt{5-1}=-2$

$$
\begin{gathered}
\sqrt{4}=-2 \\
2=-2
\end{gathered}
$$

(3)

$$
\begin{gathered}
\sqrt{6 y-11}-2 y=-7 \\
\sqrt{6 y-11}=-7+2 y \\
6 y-11=(-7+2 y)^{2} \\
6 y-11=49-28 y+4 y^{2} \\
\vdots \\
y=6
\end{gathered}
$$

(4)

$$
\begin{aligned}
& \sqrt{2 x-5}-\sqrt{x-3}=1 \\
& \sqrt{2 x-5}=1+\sqrt{x-3} \\
& 2 x-5=1+2 \sqrt{x-3}+x-3 \\
& x-3=2 \sqrt{x-3} \\
& \frac{x-3}{2}=\sqrt{x-3}
\end{aligned}
$$

$$
\frac{(x-3)^{2}}{4}=x-3
$$

$$
x=-2
$$

