1.4 - Complex Numbers: Quuelratic Eqni's w/ Complex Solutions

Def: The square root of -1 is called i.

$$
i=\sqrt{-1} \text {, so } i^{2}=-1
$$

So, the equation $x^{2}=-1$ has solutions

$$
x= \pm \sqrt{-1}= \pm i
$$

- A complex number (in standard form) is a number z of the form $z=a+b i$, anne $a \& b$ ore real numbers.
- a is called the real part of z
- b is called the imaginery part of z
- For any positive real number 6 , we can take the square root of -6 :

$$
\sqrt{-b}=i \sqrt{b}
$$

Careful! The product property for square roots does not work for negative numbers.

$$
\begin{aligned}
\sqrt{-5} \cdot \sqrt{-2} \equiv \sqrt{(-5)(-2)} & =\sqrt{10} \\
\sqrt{-5} \cdot \sqrt{-2}=i \cdot \sqrt{5} \cdot i \cdot \sqrt{2} & =i \cdot i \cdot \sqrt{5} \cdot \sqrt{2} \\
& =i^{2} \sqrt{10} \\
& =-\sqrt{10}
\end{aligned}
$$

Ex: Find the real \& imaginary parts of the complex numbers
(1) $2+5 i$
-real part: 2
image. part: 5
(2) $3 i$
real part: 0
-image. port: 3
(3) $3+\sqrt{-9}=3+i \sqrt{9}=3+3 i$

- real \& image ports both ave 3
(4) - 42
real part: -42
image. port: 0

Addition \& Subtraction of Complex Numbers

- Similar to combining "like terms" in polynomials.

$$
(a+b i) \pm(c+d i)=(a \pm c)+(b \pm d) i
$$

Ex (1) $(2+5 i)+(4-2 i)=6+3 i$
(2) $(2+\sqrt{-9})-(-2+\sqrt{-4})$

$$
\begin{array}{ll}
=(2+3 i)-(-2+2 i) & \sqrt{-9}=i \sqrt{9}=i \cdot 3=3 i \\
=(2+3 i)+(2-2 i) & \\
=4+i & (3 i)^{2}=3^{2} \cdot i^{2}=9 i^{2}=-9
\end{array}
$$

(3) $5+(3+7 i)=8+7 i$

Multiplication of Complex Numbers

- FOIL!

Ex (1)

$$
\begin{aligned}
(2+5 i)(4+3 i) & =8+\quad \begin{array}{l}
\quad \\
\\
\end{array}=8+20 i+15 i^{2} \\
& =-7+26 i
\end{aligned}
$$

(2)

$$
\begin{aligned}
-2 i(5-9 i) & =-10 i+18 i^{2} \\
& =-10 i+18(-1) \\
& =-10 i-18 \\
& =-18-10 i
\end{aligned}
$$

Complex Conjugates \& Division
Deft: The conjugate of a complex number $z=a+b i$ is the complex number

$$
\bar{z}=\overline{a+b i}=a-b i
$$

- To dilide complex numbers, we nultiply the numerator \& denominator by the conjugate of the denaminator.

Ex: (1) $\frac{1}{2+i} \cdot \frac{2-i}{2-i}=\frac{2-i}{4-i^{2}} \quad(x-y)(x+y)=x^{2}-y^{2}$

$$
\begin{aligned}
& =\frac{2-i}{4-(-1)} \\
& =\frac{2-i}{5} \\
& =\frac{2}{5}-\frac{i}{5} \\
& =\frac{2}{5}-\frac{1}{5} i
\end{aligned}
$$

(2)

$$
\begin{aligned}
\frac{4+3 i}{2-2 i} \cdot \frac{2+2 i}{2+2 i} & =\frac{8+8 i+6 i+6 i^{2}}{4-(2 i)^{2}}=\frac{2+14 i}{4-4 i^{2}}=\frac{2+14 i}{8} \\
& =\frac{2}{8}+\frac{14 i}{8} \\
& =\frac{1}{4}+\frac{7}{4} i
\end{aligned}
$$

Solving Quadratic Equations
Ex: (1)

$$
\begin{aligned}
& x^{2}+16=0 \\
& x^{2}=-16 \\
& x= \pm \sqrt{-16} \\
& x= \pm 4 i
\end{aligned}
$$

(2)

$$
x^{2}-6 x+11=0
$$

Completing the square:

$$
\begin{gathered}
x^{2}-6 x=-11 \\
x^{2}-6 x+\left(\frac{-6}{2}\right)^{2}=-11+\left(\frac{-6}{2}\right)^{2} \\
(x-3)^{2}=-11+9 \\
(x-3)^{2}=-2 \\
x-3= \pm \sqrt{-2} \\
x=3 \pm i \sqrt{2}
\end{gathered}
$$

Using the quadratic formula:

$$
\begin{aligned}
x & =\frac{6 \pm \sqrt{36-4(1)(11)}}{2(1)} \\
& =\frac{6 \pm \sqrt{-8}}{2} \\
& =\frac{6 \pm \frac{i \sqrt{8}}{2} \quad \sqrt{8}=\sqrt{4} \cdot \sqrt{2}=2 \sqrt{2}}{2} \\
& =3 \pm i \frac{2 \sqrt{2}}{2}=3 \pm i \sqrt{2}
\end{aligned}
$$

