1.3 -Quadratic Equations

In chapter P: We learned haw to manipulate expressions.
Ex: (1) Changed $x^{2}-5 x+6$ to $(x-3)(x-2)$, but there was no "solving for x ".
(2) Changed $\frac{x^{5}}{x^{3}}$ to x^{2}, but no "solving".
(3) We multiplied $(x+2)\left(x^{3}-7 x^{2}\right)=x^{4}-5 x^{3}-14 x^{2}$, but no "solung."

In 1.1 \& 1.2: We introduced equations, i.e. mathematical statements with equal signs. Now, we can "solve for x ". In $1.1 \& 1.2$, solving for x in an equation was simple, because we dealt with lineur equations (highest porer on x is 1).
Ex $\quad 2 x-7=1$

$$
\begin{aligned}
2 x & =8 & & \text { (add 7) } \\
x & =4 & & (\text { divide by } 2) .
\end{aligned}
$$

Now in 1.3: 4 methods to "solve for x " in an eqn. where the highest porer on x is 2 .

Def: A quadratic equation in the variable x is an equation of the form $a x^{2}+b x+c=0$, where $a \neq 0$, and b, c are any neal number.

Ex (1) $3 x^{2}+5 x-1=0$
(2) $2 x^{2}+17=0$
(3)

$$
\begin{aligned}
& 2 x^{2}-5 x+7=x^{2}+3 x-1 \\
& x^{2}-8 x+8=0
\end{aligned}
$$

Finding Solutions to Quadratic Equations
I/ Factoring

- The zero-product property says that $A \cdot B=0$ if and only if $A=0$ or $B=0$.

Ex (1)

$$
\begin{aligned}
& 2 x^{2}+5 x=3 \\
& 2 x^{2}+5 x-3=0 \\
& (2 x-3)(x+1)=0 \quad(2 x-1)(x+3)=0 \\
& \stackrel{2^{F}+\frac{0}{2 x-3 x}-\frac{2}{-}}{\frac{2 x}{-x}} \\
& \begin{array}{ccc}
F & 0 & \text { F } \\
2 x^{2}+6 x-x & -3
\end{array} \\
& 2 x-1=0 \text { or } x+3=0 \\
& 2 x=1 \quad x=-3 \\
& x=\frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (2) } 3 t^{2}=2 t \\
& 3 t^{2}-2 t=0 \\
& t(3 t-2)=0 \\
& t=0 \quad \text { or } \quad 3 t-2=0 \\
& \\
& \\
& \quad \begin{array}{l}
3 t=2 \\
\\
t=\frac{2}{3}
\end{array}
\end{aligned}
$$

(3)

$$
\begin{gathered}
x^{2}+4 x+4=0 \\
(x+2)(x+2)=0 \\
x+2=0 \\
x=-2
\end{gathered}
$$

Caution! We need the right-hand-side to be O in order to apply the zero product property.
If $(x+3)(x-2)=100$, we cant say

$$
x+3=0 \quad \& \quad x-2=0
$$

III Square Root Property

- If u is an algebraic expression and $d \geq 0$ with $u^{2}=d$, then $u= \pm \sqrt{d}$.

Ex: (1)

$$
\begin{aligned}
& x^{2}=25 \\
& x= \pm \sqrt{25} \\
& x= \pm 5
\end{aligned}
$$

(2)

$$
\begin{aligned}
& x^{2}-13=0 \\
& x^{2}=13 \\
& x= \pm \sqrt{13}
\end{aligned}
$$

- When asked to evaluate $\sqrt{25}$, we look for a positive number where square is 25 . Only 5 matches that description, so $\sqrt{25}=5$.
- When asked to solve $x^{2}=25$, we look for all x-values whose square is 25 . So $x=5 \& x=-5$.
(3)

$$
\begin{gathered}
(x+2)^{2}-17=0 \\
(x+2)^{2}=17 \\
x+2= \pm \sqrt{17}
\end{gathered}
$$

$$
x=-2 \pm \sqrt{17}
$$

III Completing the Square

- Given an expression of the form $x^{2}+b x$, we convert the expression to a perfect square by adding to $x^{2}+b x$ the square of half of b.
Ex (1) $x^{2}+6 x$
\rightarrow add $\left(\frac{6}{2}\right)^{2}$ to $x^{2}+6 x$
So $x^{2}+6 x+9=(x+3)^{2}$.
(2) $x^{2}+3 x$
\leadsto add $\left(\frac{3}{2}\right)^{2}$ to $x^{2}+3 x$
So, $\quad x^{2}+3 x+\frac{9}{4}=\left(x+\frac{3}{2}\right)^{2}$.

Now, we use this method of "completing the square" to solve quadratic equations.

Ex: (1)

$$
\begin{aligned}
x^{2}+10 x+8 & =0 \\
x^{2}+10 x & =-8 \\
x^{2}+10 x+\left(\frac{10}{2}\right)^{2} & =-8+\left(\frac{10}{2}\right)^{2} \\
x^{2}+10 x+25 & =-8+25 \\
(x+5)^{2} & =17 \\
x+5 & = \pm \sqrt{17} \\
x & =-5 \pm \sqrt{17}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (2) } \begin{array}{c}
x^{2}-6 x+7=0 \\
x^{2}-6 x=-7 \\
x^{2}-6 x+\left(-\frac{6}{2}\right)^{2}=-7+\left(-\frac{6}{2}\right)^{2} \\
(x-3)^{2}=2 \\
x-3= \pm \sqrt{2} \\
x=3 \pm \sqrt{2}
\end{array}
\end{aligned}
$$

(3) $3 x^{2}-4 x-1=0$

- Want left-hand-side to look like $x^{2}-b x$.

$$
\begin{gathered}
3 x^{2}-4 x-1=0 \\
\frac{3 x^{2}}{3}-\frac{4 x}{3}=\frac{1}{3} \\
x^{2}-\frac{4}{3} x=\frac{1}{3} \\
x^{2}-\frac{4}{3} x+\left(-\frac{4}{3} \cdot \frac{1}{2}\right)^{2}=\frac{1}{3}+\left(-\frac{4}{3} \cdot \frac{1}{2}\right)^{2} \\
x^{2}-\frac{4}{3} x+\left(-\frac{2}{3}\right)^{2}=\frac{1}{3}+\left(\frac{2}{3}\right)^{2} \\
x^{2}-\frac{4}{3} x+\frac{4}{9}=\frac{1}{3}+\frac{4}{9} \\
\left.\left(x+\frac{6}{2}\right)^{2}\right)\left(x-\frac{2}{3}\right)^{2}=\frac{3}{9}+\frac{4}{9} \\
\left(x-\frac{2}{3}\right)^{2}=\frac{7}{9} \\
x-\frac{2}{3}= \pm \sqrt{\frac{7}{9}} \\
x=\frac{2}{3} \\
x=\frac{\sqrt{7}}{3}
\end{gathered}
$$

IV Using the Quadratic Formula.

- A quadratic equation of the form

$$
a x^{2}+b x+c=0
$$

has solutions

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Ex (1)

$$
\begin{aligned}
& 3 x^{2}=5 x+2 \\
& 3 x^{2}-5 x-2=0 \\
& x=\frac{-(-5) \pm \sqrt{(-5)^{2}-4(3)(-2)}}{2(3)}
\end{aligned}
$$

$$
=\frac{5 \pm \sqrt{25+24}}{6}
$$

$$
=\frac{5 \pm \sqrt{49}}{6}
$$

$$
\begin{aligned}
& 6 \\
& =\frac{5 \pm 7}{6} \rightarrow \frac{5+7}{6}=\frac{12}{6}=2 \\
& \rightarrow \frac{5-7}{6}=\frac{-2}{6}=-\frac{1}{3}
\end{aligned}
$$

Bonus! $3 x^{2}-5 x-2=\underbrace{(x-2)}(3 x+1)$

$$
\begin{array}{lr}
\text { since } & \text { since } x=-\frac{1}{3} \\
x=2 & 3 x=-1 \\
x-2=0 & 3 x+1=0
\end{array}
$$

