Chapter 1 - Equations \& Inequalities
1.1 -Linear Equations in One variable

Def: An equation is a statement that two mathematcal expressions are equal.
Ex: $2 x+3$ is an expression
$2 x+3=7$ is an equation
$2 x^{2}-3=14 x+3$ is an equation, and $2 x^{2}-3,14 x+3$ ane the expressions.
Def: The domain of the variable in an equation (or in an expression) is the set of all real numbers for which both sides of the equation are defined.
Ex: (1) $2 x+3$
Domain: all real numbers, or $(-\infty, \infty)$
(2) $\frac{1}{x}$

Domain: all neal numbers except 0 .

$$
(-\infty, 0) \cup(0, \infty)
$$

(3) $x-2-\sqrt{x}$

Domain: need $x \geq 0$. So, in interval notation, this is $[0, \infty)$.
(4) $\frac{3 x}{x^{2}-5 x+6}$

Domain: need $x^{2}-5 x+6 \neq 0$. Factor: $x^{2}-5 x+6=(x-3)(x-2)$

$$
(-\infty, 2) \cup(2,3) \cup(3, \infty)
$$

Solving Linear Equation
Steps: (1) Simplify both sides
(2) Mane all the terms w/ the variable to one side, and all the constant terms to the otherside (3) Isolate the variable completely (usually by dirromy).

Ex (1)

$$
\begin{aligned}
2 x+1 & =7 \\
2 x+1-1 & =7-1 \\
\frac{2 x}{2} & =\frac{6}{2} \\
x & =3
\end{aligned}
$$

(2)

$$
\begin{gathered}
6 x-(3 x-2(x-2))=11 \\
6 x-(3 x-2 x+4)=11 \\
6 x-(x+4)=11 \\
6 x-x-4=11 \\
5 x-4=11 \\
+4+4 \\
\frac{5 x}{5}=\frac{15}{5} \\
x=3
\end{gathered}
$$

(3)

$$
\begin{aligned}
& 5 x-(3 x+2(x-1))=1 \\
& 5 x-(3 x+2 x-2)=1 \\
& 5 x-3 x-2 x+2=1 \\
& 2=1 \quad \text { inconsistent! }
\end{aligned}
$$

Note on Equal Signs:

- Equal signs are sacred. They are not "glue" to attach steps together
Example: Evaluate $3 x+2$ for $x=-7$.
Bad! $\underbrace{3(-7)=-21+2}_{\text {not equal }}=-19$
Good $\quad 3(-7)+2=-21+2=-19$

Going back to P. 6 for a minute:
Rationalizing expressions:
\rightarrow "We" dent like radical expressions in denemunaters.
Ex: (1) $\frac{\sqrt{5}}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}=\frac{\sqrt{15}}{\sqrt{3 \cdot 3}}=\frac{\sqrt{15}}{\sqrt{9}}=\frac{\sqrt{15}}{3}$
(2) $\frac{\sqrt[3]{4}}{\sqrt[3]{9}} \cdot \frac{\sqrt[3]{3}}{\sqrt[3]{3}}=\frac{\sqrt[3]{12}}{\sqrt[3]{27}}=\frac{\sqrt[3]{12}}{3}$
(3) The conjugate of an expression $a \sqrt{x}+b \sqrt{y}$ is $a \sqrt{x}-b \sqrt{y}$. When the denemenuter contains an expression of the form $a \sqrt{x}+b \sqrt{y}$, we mult. the numerator \& dememinator by its conjugate

$$
\begin{array}{r}
(a-b)(a+b)=a^{2}-b^{2} \frac{3}{\sqrt{7}+\sqrt{2}} \cdot \frac{\sqrt{7}-\sqrt{2}}{\sqrt{7}-\sqrt{2}}=\frac{3 \sqrt{7}-3 \sqrt{2}}{\sqrt{7}^{2}-\sqrt{2}^{2}}=\frac{3 \sqrt{7}-3 \sqrt{2}}{5} \\
\frac{\frac{x}{3 \sqrt{x}-2} \cdot \frac{3 \sqrt{x}+2}{3 \sqrt{x}+2}=\frac{3 x \sqrt{x}+2 x}{9 x-4}}{5}=\frac{3 x x^{1 / 2}+2 x}{9 x-4} \\
\\
=\frac{3 x^{3 / 2}+2 x}{9 x-4} \\
\end{array}
$$

Solving for a given variable:
(1) $d=r t$; solve for r.

$$
\begin{aligned}
& \frac{d}{t}=\frac{r t}{t} \\
& \frac{d}{t}=r
\end{aligned}
$$

(2) $A=\frac{(a+b) h}{2}$; solve for h

$$
\begin{aligned}
& 2 A=\frac{(a+b) h}{2} \cdot \frac{x}{1} \\
& 2 A=(a+b) h \\
& 2 A=a h+b h
\end{aligned}
$$

(Not helpful)

$$
\begin{gathered}
\frac{2 A}{(a+b)}=\frac{(a+b) h}{(a+b)} \\
\frac{2 A}{(a+b)}=h
\end{gathered}
$$

(3) $T=a+(n-1) d$; solve for d

$$
\begin{aligned}
\frac{T-a}{n-1} & =\frac{(n-1) d}{(n-1)} \\
d & =\frac{T-a}{n-1}
\end{aligned}
$$

